Problem Set 1.1:
State the order of the differential equation and verify that the given function is a
solution,

M. y' + 4y = Bx, ¥yo= e 4 2p -1

Iy Yo+ % =0, ¥ = Acos 3x + B sindx

Ly -05y =1, ¥ = ce¥¥ - 2

4. y" =6, y=x'+ar + b+

5. v + vtanx = 1), ¥ o= 0 COS X

6. ¥ — 2" + 2y =0, ¥ = ¢HA cos x + H sin x)

Solve the following differential equations.
7.y = I T ,g_ 9.y = —cosdr 10, ¥ = 48x

Verify that the given function is a solution of the corresponding differential equation
and determmine ¢ so that the resulting particular solution satisfies the given initial
condition.

1. ¥ + v =1, vo= o7t 4, ¥ = 25whenx = 0
12, ¥ = Zxv, y = cett, ¥ 4 when x — |
13, xy' = 2y, ¥ = cxt, ¥y = 12whenx = 2
4.y = x, ¥ - a2 =, w0 =1
P15, v" = y oot x, ¥ = ¢ 5in x, wi—mi) =2
16, 3’ + 1 =0, 24 yt= g HVD = V2

Find a first-order differential equation involving both y and ¥ for which the given
function 15 a solution, i
17. y = x* 18, v = x¥ — 4 19, v = tan x 720, 524 9yt = 9

Applications, Modeling

1. {Falling body) Expeniments show that if a body falls in vacuum due to the action
of gravity, then its acceleration is constant {equal o g = 9.80 meters/sec? =
32.1 fu'sec?; this is called the acceleration of gravity). State this law as a differ-
ential equation for p(r), the distance fallen as a function of time ¢ (already men-
tioned in the text), and solve it to get the familiar law

wry = Lpd,

(In practice, this also applies to the free fall in air if we can neglect the air
resistance, for instance, if we drop a stone or an iron ball.)

{Falling body, general initial conditions) If in Prob. 21 the body starts at r = 0
from initial position y = ¥, with initial velocity ¢ = 1, show that then the
solution is

22

+

v = det + ot + oy,

23. (Airplane takeoff) An airplane taking off from a landing field has a run of 1.8

S

7.

29

kilometers. If the plane starts with speed 5 metersisec, moves with constant
acceleration, and makes the run in 40 sec, with what speed does it take off?

In Prob. 23, if you want to reduce the take-off speed to 250 km/hr. to what value
can you reduce the constant acceleration, the other data being as before?

- {Exponential growth) We know from the text that ¥’ = y with solution y(x) = ce*

governs the growth of & population if the growth rate ¥° = dy/dx equals the
population y{(x) present {x = time). (a) What is the particular solution satisfying
0} = 37 {b}) What initial amount v(0} is necessary to get ¥ = 100 after x = 2
[howurs]!

. (Exponential growth) If in a culture of veast the rate of growth y"(x) is proportional

to the population present at time x, say. ¥ = ky. verify that y(x} = ceh® If ¥
doubles in T day. how much ¢an be cxpected after | week at the same rate of
growth? After » weeks?

{Malthus's law) The law in Prob. 26 (growth rate proportional to the population
present} is called Malthus's law.? For the United States, observed values of
vy = .1'1,8"'. in millions, are as follows,

f 0 0 &0 a0 12} 150 80 19

Year TR0 1830 1860 TR0 19200 195100 1980 199%)
Population 5.3 I3 3 63 105 | 50 230 250

Use the first two columns for determining vy and k. Then calculate values for
1864, 1890, - -+, 1990 and compare them with the ohserved values, Comment,

. (Exponential decay; atmospheric pressure) Observations show that the rate of

change of Lthe atmospheric pressure ¥ with altitude x is proportional to the pres-
sure. Assuming that the pressure at 6000 melers (about 18 000 ft) is half its value
¥ at sea level, find the formula for the pressure at any height,

(Half-life) The half~fife of a radioactive substance is the tme in which half
of a given amount will disappear. What is the half-life of ,,Ra®* (in years) in
Example 47

(Interest rates) Let y(x) be the investment resulting from a deposit v, after x years
at an interest rate r. Show that

yix) = yll + ¢ (interest compounded annoally)

wvx) = w1 + (ri4)]i= finterest compounded guarterly)

¥ix) = w1l + (r365))2 {interest compounded daily).
MNow recall from caleulus that [1 + (Va)]™ — e as n— =, hence [1 +. ()™ — o™,
which gives

¥lx) = ye™ (interest compounded continuously),
What differential equation does the last function satisfy? Let v, = $1000.00 and

r = B%. Compute »(1) and ¥(3) from each of the four formulas and confirm that
there is not much difference between daily and continuous compounding.



Problem Set 1.2: Solve the following initial value problems.

L. Why is it important to introduce the constant of integration immediately when oy =x+y, )= -74 12, xyy' = 2y2 + 422, w(2) =4
the integration is performed? 13, o' =y + xFeTy3 W1) = 0 14, xv' = ¥ + y, yid) =2

15. w¢' = 2% + v¥e, W2 =6 16, o' = v + x?seci(wx), wl) = =2
Find a general solution. Check your answer by substitution.
2.7+ x4 1py® =0 Ly =3Uy+ 1) Using the indicated transtormation, find the general solution.
4.y tescy=10 S0 =000+ 5 17, =y + 22 (y + 1 =10) 18. ¥ =tan(x + ¥} — 1| (x+ v =)
6. vy = Lsintwx (w# 0) 7. v sin 20 = y cos 2x 19. 2x2yy’ = tan (¢33 - 2oyt (dy? = )
H.v' = cos xtany 9. v = ytanh x 20, v = (x + e¥ e v (x + &% = w)
R 1. " = e cos? y y - x + | | — 2v — 4x :
[2. y' = y%sin x 13. ¥ = vixInx) ] T -j:__—_x_+_5 (¥ —x =0 2. ¥ = T e wrs
4. y" = 2%y — 29% 4 x% - 2 15. ' = V1 ~ 32 i -

23, Consider ¥' = flax + by + k). where f is continuous. If & = 0, the solution
15 immediate. (Why?) If & # 0, show that one obtains a separable equation by

Solve the following initial value problems. Check your answer. (L and K are constant ) : ;
using wix} = ax + by + k as a new dependent variable.

16, " = x%e ¥, w2 =10 1I7. 99" + 2 =0, v = =2
18. .-'=1.:|:,Z!1 A0 = 0.5 : " : 2 Gl , _ 1 . - ) I
j.- s . . : 19 }r Sl Sinsy =0, glijf= g Using Prob. 23, find the general solution of the following equations,

20. y' =4Vy + leosdy, ygm = -1 2Ly = (1 - xiy. v} = 1 4.y = (x + y — N2 25.y = 2y + 8
22, deidt = —4er, rill) = B2 23, vldeldny = g = cons, olrg) = &y ) }, B p 4 2 12 ) }'i y I.‘
M, #%' = MNr + I, vy = 4 B = e 1 5 26. ¥y = [y — y* — B 2.9 = (5v + 1)

. Ty Ity vl = 3 25, drsin @ = roos 840, Fdml = —0.3 (Hint. 4 = v — 3)
26 (x2 + 1'% = . w0) = 2 27. Lididn + RE =0, 10 = 1, ' S

28. Aninitial value problem is usually solved by first determining the general solution . ::: nd}ttl-;.z T::::Eﬂf}ﬁ:n::gf?&:’ :hmt:ﬁh I[:mlif];:: du;? ::?czh.tgal S Sshpun
of the equation and then the particular solution. Using {3), show that the particular v ¥ P angent on [he ¥ % &g 0 2xv=.
solution of (1) satisfying the initial condition y(x) = ¥, can also be cbtained
directly from

29. Show that a straight line through the origin intersects all solution curves of a
given differential equation ¥ = g(y/x) al the same angle.
u T 30. The positions of four battle ships on the ocean are such that the ships form the
J-Hf}'*] dy* = J- Fix*y dx*. vertices of a square of length [ At some instant each ship fires a missile that
2 directs its motion steadily toward the missile on its right. Assuming that the four
missiles fly horizontally and with the same speed. find the path of each,

]

Using the formula in Prob. 28, solve:

29, Problem 17, 3. Problem 19.
Problem Set 1.5:

Given uix, ), find the exact differential equation e = 0. What kind of curves are
the solution curves wix, ¥) = const?

Problem Set 1.4:

Find Ir:e general solution of the following qumtin:1s. Lox?+yt=c 2. u = yh?

1. ¥y = X + ¥ 2. y = x4 2_-,] T 5 I2

L el 4. x%y' = yI 4 Sxy + 4x2 My =dx - aflh — ¥ 4. v = cos(x® = y9)
1. : 2 — cin v

5% = v 4 oap + x? 6. (xy' — v) cos (2vlx) = —3x® 5. = expixy”) 6. & = sin .Uz )

7ox% = v+ gy 8. xv' = xsec (pwr) & v 7. u = In (x¥y? 8. u = tan (x* + 4y%)
- - | | = ) . u = cosh (xd — y¥)

¥ : pi= 9.n =y —x + 1) . = cos .
9.y =22 0.y =+ %

¥y — X y+x



Show that the following differential cquations are exact and solve them. Verify that the given function F is an integrating factor and solve the initial value

M. yde + xdy =0 12 x e + Ovdy = 0 problem:

13. vide + Inddy = 0 M yefdx + [ef + (v + lle¥dy = 0 7. 2ydx + xdy =0, w05 =8, F=x

5 —d . -4 = 1 48 4 da — b

M R A S L I 5 Fio i v 8 3ydr 4 2xdy = 0, W-1) = 14, F =l
17. cosh r <os ¥ dx = sinh x sin ¥ oy - 005 ¥y — RI0 Y ayE T z - g - T T¥
19. (2x + eVidy + xe¥Wudy = 0 20, (col y + 1% dx = x cosec? y dy S S e L E e S

10, dx + (x + ¥y + Ndy =0, »2.5) =035, F=¢¥
11, (2"l o 3y + (3 « 2y lxddy =0, w) = -1, F = x%?

Are the following equations exact”? Solve the initial value problems. 12, v + [y + tanix + ¥ dv = 0, ¥0) = w2, F = cos(x + ¥
21, xdy + yidx =0, () =02 13 ydx + [coth(x — y) = y]dy =0, y(3) = 3, F = sinh{x — y)
2. 4de +xldy =0, yl)=-8 _ M. 2xe* - ¥ dx + 2vdy = 0, W0) = V2, F=¢*
23 oy s + (x — Ddy =0, w) = A3
M, ix - Ddr +iy + Dy =0,  wl)=0 F'md an integrating factor F and solve (using inspection or Theorems | and )
25. e®= [~y dr x:!y}-’x" =10, }'{j—EJ = -1 15. 2 cos oy dx = = sin my dy 6. yeosxde + 3smxay =0
i r et = ] =

e s U 17. Qy + a¥ldx + 2xdy =0 18, 2y dx + 3xdy ~ O
27, 2xy dy = (x% + ¥%) dr. »ly =2 19. (1 + 22 4 4 PR P . 5 :
8. cos wx cos 2wy dv - 2 sin wx sin 2@y dv,  w(d2) = 12 -1+ 2x% + dxy) dx dy = ¢ 20, 2y dx = [3¥* + (x — y3)tan y] dy
29, sinhxdr + v lcoshxdy =0, 30— 7 oy + Ddx —(x + I)dy = 0 22, Sde — eV Ty = 0
3. 2 sin wy dy + wcos wy dy = 0, ¥} = 72w 2 avdy + hrdy = 0 4. (Qe¥ + 2pdde + (0 Fe¥ + x)dy =0
31. Solve the equation in Example 3. _
32. If an equation is separable, show that it is exact. Is the converse true? In each case find conditions such that F is an integrating factor of (1). Hinr. Assume
33, Under what conditions is {ax + Bv) dx + (kx + Iy) dy = 0 exact? (Here, a, b, FIFP dx + @ dv) = 0 to be exact and apply (5) in Sec. 1.5

k., ! are constants.) Solve the exact equation. 25 F = x¢ M, F = Jr.tr 27. F = x%b MW, F = ¥

34, Under what conditions is [fix) + gly) dx + [Rx) + piy)] dy = 0 exact?

35. Under what conditions is f(x, ) dx + plx)h(y) dy = 0 exact? 29. Using Prob. 27, derive the integrating factor in Prob. 11,

M. {Checking) Checking of solutions is always important. In connection with the
present method it is particularly essential since one may have to exclude the

To see that a differential equation can sometimes be solved by several methods, function y(x) given by F(x, v) = 0. To see this, consider (xy)~ dy — x2dy =
solve (a) by the present method, () by separation or inspection: show that an inll‘_‘grating factor is & = y and leads to d(wix) = 0, hence v = X,
3. xy' +y+4=0 M. 2vde + x7xdy — ydo) =0 -where ¢ is arbitrary, but F = y = 0} is not a solution of the original equation,
38, birde + By =0 30, e dr = x
40. Can vou figure oul what the solution curves in Example | look like? Hing. Set Problem Set 1.7:

e Bkl iR ALTts 1. Show that ™77 = Ix (but not —x) and g1 = cog g

2. Show that the choice of the value of the constant of integration in [p drx [see
(4}] docs not matier (50 that we may choose it to be zero).

3. Whalt is the limit of ¥(f) as r — =in Example 27 1s it physically reasonable?

Problem Set 1.6:
1. Verify (4).
2. Verify exactness in Example 1 by the usual test.

i et L Find the general solutions of the following diffe I all
3. Venfy the solution in Example 2, as indicated. e 8 : ing differedal Equilions:

. . . 4.y +y =5 5.5 — 4v = 1.8 . | o=
4. Give the details of the derivation of (8). ) ) , ‘: s i }. 2" . s : }.- : j‘ﬂ TG .
- L 2y = Ly = v =2 — 4x . ¥ g =2
5. Venfy that Theorem 1 cannot be used (o solve Example 4. 0 '}, [' e " y b’ ‘1 g i i -Lr ) ¥ j‘r 4x
. . - ) ¥ o=y — llcotxy LAV 2y = TN T = Iy
6. Verify that v, % and £%v% are integrating factors of v dx + 2x dv = 0 and ) '}, y . '!' ] i N ¥ , s L
13, " + 3y = g~ 4. v' + 2v = cos x 15, xv" + 2y = 4o

solve. : S . .
16, (x® — 1" = xv 17, xy’ — 2v = 1T 18, x¥' 41 2xv = sinh 3z



Solve the following initial value problems

19, v 4 3y = 12, w) =6 20, ' = yeotx, wlm =2

.y +y=(x+ 13 »0)=3 22, ¥+ xly = 4% yi0) = -]
23, 4"+ Zay =4y, oyl =3 2. xv' = {1 + xw. vil} = 3¢
25. v coth2x = 2y — 2, y(0) =0 26. ¥ = 2vie + 2% w2 =0

N
7. ¥ + Ay = e ) = 0.7 28y + 3l = g T, p0) = -
General properties of linear differential equations. The finear differential equations
{1y and (2) have certain important properties. In the next two chapiers we shall see
that the same is true for finear differential equations of higher order. This fact is
quile important, since we can use it to obtain new solutions from given ones. Indeed,
prove and illustrate with an example that the homogeneous equation (2) has the
following properties,

29. ¥ = 0is a solution of (2}, called the trivial solution.

M. If v, 15 a solution of (2}, then y — ¢y, {c any constant) is a solution of (2).

M. Iy, and y; are solutions of (2), then their sum v = ¥, + ¥y 15 @ solution of (2).

Prove and illestrate with an example that the nonhomogeneous equation (1) has the

following properties.

31, Iy, is a solution of (1} and v, is a solution of (2), then v — ¥, + ¥y is a solution
of (1) :

33. The difference ¥ = ¥, — v, of twa solutions v, and v, of (1) is a solution of (2).

3. Iy, is a solution of {1}, then v = vy, is a solution of ¥' + pv = cr.

35. Wy is a solution of y; + py, = r; and y, is a solution of Yo + py, = r, (with
the same p), then ¥ = ¥+ ¥, is a solution of ¥ + py = oo

36. If plx) and rix) in (1) are constant. say. pix) = pyand rix) = ¢y, then (1) can bhe
solved by separating variables and the result will agree with that obtained
from {4},

Reduction of nonlinear dilferential Qquﬂiiﬂns to linear Torm. Aprﬂﬂng suilable trans-
formations of variables, reduce o linear form and solve the following equations.
Hint. Some are Bernoulli equations: some become linear if one takes v us the in
dependent variable and v as the unknown fupction,

.oy oy =y IB. v 4+ v =y

Reduction (confinned )

30, vy cosy + osiny = 2x (siny = z) 40, ¥~ 1 = ¢V sinx

41, (e¥ + oy = 1 42, ¥'(sinh 3y — 2xy) = »?
43, 3y + oy = (1 = 2oyt H Zxy' = 10 4y

45, 2xwy" b (x — 1 = et 46, v cosy + 2xsiny — 2x

Some applications (More in the next section)

47. How long will it take (1) in Example 2 to practically reach the limit, say, the
value 3999 157 First guess,

48. Show that if in Example 2 we double the influx (but make no further changes),
the model is »" = 20 ~ [S4200 + 50y, v(0) = 40, Solve this initial value problem.

4%, If in Example 2 we replace the inflowing brine after 10 minutes by pure water
(still fAoewing at 5 galimin), how long will it take o get the tank practically salt-
[ree, say, to decrease wish to 000 Ih? First puess.

50, (Motion of a boat) Two persons are riding in a motorboat, the combined weight
of the persons and the boat bemg 490 ot {about 11 Ib). Suppose that the motor
exerts a constant force of 200 nt (about 45 1b) and the resistance B of the water
is proportienal to the speed ¢, say, R = ke nt, where & = 10 nl - sec/meter. Set
up the dilferential equation for e{e), using Newton's second law

Mass » Acceleration = Force.

Find ¢} satisfying {0} = 0. Find the maximum speed ¢ at which the hoat will
travel {practically after a sufficiently long time). If the boat starts from rest, how
long will it take to rcach 0.9 and what distance does the boat travel during
that time?

51, (Newton's law of cooling} Solve the differential equation in Example 2 of Sec.
1.3 by our present method, assuming the initial temperature of the ball to be
nm = T,

52, Hormone secretion can be modeled by

2t

¥o-a bcusz—4- ky.

Here, 1is tume lin hours, with ¢ = 0 suitably chosen, ez, 800 a.m.], ¥ir) is
the amount of a certain hormone in the blood, a 15 the average secrection rale,
b ocos (mf12) models the daily 24-hr secretion cycle, and Ly models the remowval
rate of the hormaone from the blood. Find the solution whena = & = & = 1 and
W) = 2.

53. (Logistic population model) Show that (8) with 0 < w0} <2 A/E grows monolone
and with »(0) = A/B decreases monotone,

54. (United States) For the United States, Verhulst predicted in 1845 the values
A=003and 8 = 1.6 - 104, where x is measured in vears and yix) in millions.
Find the particular solution (8) satisfyving w0} = 5.3 {corresponding to the year
18041 and compare the valees of this solution with some actual frounded) values:

IROKY K30 1RG0 1890 1920 1950 (980 19490
5.3 I3 u 63 105 150 230 250

85, Show that the curves (8) have a pomnt of inflection (f wx) = A/ZE [Use (7).]

Riccati and Clairaut equations
S6. A Ricoati eguation™ is of the form 3" + pixly = gley? + hix). Verify that the
Riceati equation ' = Ny — % + x~ly has the solution y = x and reduce it
to a Bernoulli equation by the substitution w = v — x and solve i
§7. Show that the general Riccati equation in Prob, 56 (which is a Bernoulli equation
when & = 0) can be reduced to a Bernoulli equation if one knows a solution
v = o, by setling w = v — 1.
58. A Clairaut equation™ is of the form ¥ = x3" + g{§'). Solve the Clairaut equation
v o= xy' 4+ My’ Hine Differentiate the equation with respect to x.



59, Show that the general Clairaut equation in Prob. 58, with arbitvary sis) has as 24, (Cauchy—Riemann equations). Show that for a family eix, ¥} = ¢ = coast the

solutions a family of straight lines v = cx + gle) and a singular solution deter- orthogonal trajectories pix, ¥) = ¢* = const can be oblained from the following
mined by g'(s) = - x, where 5 = y'. (Those lines are tangents lo the latter.) so-called Cauchyv—Riemann eguarions {(which are basic in complex analysis in
HMinr. Differentiate the equation with respect to x, as in Prob. 58. Chap. 12):

60, Show that the straight lines, whose segment between the posilive x-axis . ] :
and y-axis has constant length 1. are solutions of the Clairaut equation rﬂ - ﬂ_I ‘f".j R '1
¥ o= o' — V1 + v whose singular solution is the astroid x2% + y23 = |, v dy v ax
MECRRkEle; 2. Find the orthogonal trajectories of ¢* cos v = o by the Cavchy- Riemann equa-

Lions.
Problem Set 1.9: 30, Isogonal trajectories of a given family of curves are curves that intersect the

given curves al a constant angle &, Show that at each point the slopes ) and

Fimd the differential equation (6} of the [ollowing families, ’ e
mt, of the tangents to the corresponding curves satisfy the relation

Loy = 2. ¢y = g Ay =ocsinly
4. vy = cxet 5 ¢ =T 6.y = Uil 4 cet) My — My

= v 2.1 2.2 2 _ .32 2 2 1 s = tan = Cosl.
T. v = cx? + 1% 8 ofxt 4 oy i 9 e +x — 3 1+ I

Using differential equations. find the orthogonal trajectories of the following curves.

Graph some of the curves and the trajectories. Using this, find the curves that intersect the circles x® + v® = ¢ al 457,

10, 5%~ o= R i, x? & 2 = p2 12, ¥ = ¢fx¥
L v =Injs + ¢ 4 xy = ¢ I5. v = Vx + ¢ Problem Set 2.1:
16, v = cx® 17. 1 = pe=V 18, x2 + 232 = ¢ Important general properties of homogencous and nonhomogeneous linear differential
19, v 4 492 = ¢ Mot — )24+ p = ? Moy = el equations. Prove the following statements, which refer 1o any fixed open interval 1,
and illustrate them with examples. Here we assume that rix) £ 0 in (1).
Applications 1. ¥ = 015 a solution of {2) (called the “‘trivial solution”) but not of (1),
21, (Temperature field) If the isatherms { = curves of constant temperature) in a body 2. The sum of two solutions of (1) is mot a solution of (1).
are Tix, v) = 2x% + y? = vonst, what are their orthogonal tr ajectories (the 3 A multiple y = £y, of a solution of (1) is not a solution of (1), unless ¢ = 1.
curves along which heat will flow | ions at sources or sinks " . . .
& ow in regions free of heat sources or sinks and 4. The sum y = y, + y, of a solution y, of (1) and y, of {2} is a solution of {1).

filled with homogeneous material)?

23. {Electric field) In the electric field between two concentric cylinders (g, 20) the
equipotential lines (= curves of constant potential) are circles given by
iz, ¥) = & + ¥* = const [volts]. Use our present method to get their trajectories

5. The difference y = y, — ¥, of two solutions of (1) is a solution of {2).

Second-order ditferential equations reducible to the first order

ithe curves of electric force). Prablems 619 illustrate that certain second-order differential equations can be re-

24. (Electric field) Experiments show that the eleciric lines of force of two oppo- duced to the first order.
site Chhfﬂi"—j‘ of the same strength at (— 1, 0} and (1. 0) are the circles through 6. If in a second-order equation the dependent variable ¥ does not appear explicitly
(=1, 0)and (1, 01 Show that these circles cun be represented by the eguation g : . . - i . L .
¥+ 0y — ¢1f = | 4 ¢ Show that the equipotential hnes (orthogonal trajec- s pquatmn i m‘-} ) -F{.h Ll } } - Ao ihauhy o A
g : AN obtain a first-order differential equation in z and from its solution the solution

tories) are the circles ix + *)* + y2 = ¢*? — | (dashed in Fig. 23}

25. (Fluid flow) If the streamlines of the flow (= paths of the particles of the fud)
in the channclin Fig, 24 are Wix, ¥} = xy = comst, whal are ther orthogonal
trajectories [called equipotential lines, for reasons explained in Sec. 17.4)7

of the original equation by integration,

Reduce to the first order and solve:

] _ , ) 7. 0" = 2y By =y 9. ¥" = 2v' coth 2x
Other forms of the differential equations. Isogonal trajectories 0. " + 9 =0 1. x" + 3 = y'2 2.o" +y =0
26. Show that (7) can be written as do'dy = — fix, v). Use it to get the arthogonal ) ’ ) ’
trajectories of the curves v = ¢ = pe™ 7 .
27. Show that the erthogonal trajectories of a family gla, v = ¢ can be obtained 13. Another type of equation reducible to first order is Fly, ¥'. ¥"} = 0, in whict
from the following differential cquation and use it to solve Prob. 25: the independent variable x does not aPF‘-"Ea; fIFHCI'“}.n" Usl‘n-;. th: r:h;in l"ule sh:f\:'
ey that ¥* = (dz/dy)z, where z = y', so that we obtain a first-order equation with

dr ¥ as the independent variable,



Reduce to first order and solve: 13. Verify directly that in the case of a double root, xe*" with 4 = —a/2? is a solution

4. ow" + ¥y =10 15. " + W = 0 16. v + ¥2 =0 of (1).
17 y" + ¥ cos y = 0 . " — ¥y =0 19. 3" + (1 +y 2 =0 M. Verify that y = o7% is a solution of " + S¢' 4 6y = 0, but y = xe™¥ js not.
Explain.
. : , . 15, Show that a and & in (1) ¢an be expressed in terms of A, and A, by the formulas
20. A particle moves on a straight line so that the product of its velocity and ac- i e i .ﬁl P . p And A, Dy 10C las
o I a 1

celeration is constant, say, 2 meters®sec?. At time ¢ = 0 its displacement from

the origin is 5 meters and its velocity is zero. Find its position and velocity when 16. Solve y" + 3¥" = 0{a) by the present method, {b) by reduction to the first order.

! =9 sec. : Solve the following initial value problems.
. Fi i s Xy i ASHES i 1, 1)1 1 ]
21 Flndlthe cgrvf:_ln_lhrt, xy-plane which p_’fs‘ie.all':lruugh 1rhi point (1, 1), intersects 17. ¥ — 16y = 0, y0) = 1, V() = 20
the line y = x at a right angle, and satisfies xp" + 2" = 0. i ' ‘o
22, (Hanging cable} [t can be shown that the curve vix) of an inextensible flexible 18, 3" — 49" + 4y = 0, ¥ = 0, ¥ 'J = =1
homogeneous cable hanging between two fixed points is obtained by solving 19, v + 6" + Gy = 0, ¥y = —4, iy =14
y"H—.. AT whmle thc constant & depeT\d.‘i Fr:r_nc:h:z :cigh;. ;l'his curve is 20, " + 3T =0, yl—12) = 4, (=2 =0
called a carenary (from Latin catena = the chain). Find an graph yix), assuming a1, .‘F” . 2_2}, + 04y = 0, WO) = 3.3, J-’r{“] - _1.?

k = 1 and those fixed points are { - 1, 0) and (1, {)7in a vertical n-planc. . ]
Initial value problems 2.y —Ly=0, 0 =0 yi)=10

Verify that the given functions form a basis of solutions of the given equation and 23 4" —4y' - 3y =10, =2 =e, ¥(-2) = —ge

solve the given initial value problem. 24, 59" + 16y + 128y = 0. ¥y = 0, yiop = 23

.y -9 =0, ¥ =2 yO =0 X ¥ 25. Different bases lead to the same solution. To llustrate this, solve " — 9y = 0
¥l = 4, v'{) = —6, using (a) ¢™, £~ (b) cosh 3x, sinh 3x.

4. "+ 4y =0, W)= -5 ¥i0) =2, cos2r sin2x

25 " - B 4y =0, @) =4, W) =3 ef et

26, v" + wly = 0 (w0, i) = —1.5, Y0y = 0; COS WX, SN wy
27, ¥ - T+ 3y =0, w0 = -1, 0) = -5 e, el
28 ch" - 150" — 1S =0, WD =1, ¥l = -4 ¥
9. 2% - dn' + 4y =00 ) =2 (1) = S x% x%In x

3. v - T 4+ My = 0, ¥ o= 1, "0 = 10 e cos dx, e” sin 3x

Problem Set 2.3:

-12 43 Verily that the following functions are solutions of the given differential equation
and obtain from them a real-valued general solution of the form (6).

Ly = cpe?™ + ('Ef"?"". ¥+ 9y =0

. . . . 2.y = {-lel—IISEL‘r + f?f":_"""'n. _.F" + 2y =0

Are the following functions lincarly dependent or independent on the given interval? s

) 1. ¥=r el viE i.—!.-.——ir:. ¥+ ?.n_}" + {“2 i ”}. =l
M+l r—1 (0<x<1) 32, 0, cosh x, any interval F = f_.ll..t--:}-m.: N j R R TN WU 9y = 0
33, sin 2x, sin x cos x, any inferval M oInx,Inx® (x=1) ! I . .
1 r ) 5 v = 'S E-"[*"‘—h'h' + ‘|lr|'|l-m-l.f1 B + 2 i 2z + 2 =
35 |xlex? 0=x<1) 3. |de,x? (m1<x<]) ! ! i . i e Ser=a
37, |cos x|, cos x {0 < x < ) 38 2 -3, -BF 49 (x<0)
39, cosh x, cosh 2x, any interval 40. 1, e2 (x>0 General Solution. State whether the given equation corresponds to Case I, Case 11,
or Case III and find a general solution involving real-valued functions.
6" 4 250 = 0 T.¥" - 25y =0
Problem Set 2.2: B v — 8 + 16y = 0 98" + by o 9y =0
Find a general solution of the following differential equations. 10, ¥" + ¥ + 0,25 = 0 I v" + 2¢' = 0
Ly '+ +2y=0 29" -9 =0 Ly + 1y 4 25y =0 12.8y" -2 -y =0 31" + 6" + 109y = 0
4.y + 4y =0 5. ¥ -6 + 9 =0 6. 5" -2 +0.75y =0 4. 2" + 10y" + 25y = 0 15 5" + 2y 4+ (w? + 1y =0
' ) . . ) ) : . Initial Value Problems, Solve the following initial value problems.
Find the differential equation (1) for which the given functions form a basis of . ' .
solutions, 16, y° — 9y =0, vy = §, L] g
7. et oW B e ™, xom 9, g7 pow? 17, " + 9y = 0, wa) = -2, ¥im =13

10. &, gk= 11. cosh x, sinh x 12. 1, e~k 1B " 4+ 2y + 2y =0, =1, 0 =0



19 ¥ 4w + 4y =0, w0 =3, (0 = 10

20, " - &'+ 1By = 0. yO)=0. N0 =6

2L " 4200 + 100w =0, w01} = 3 Ve = 1177, ¥00) = —3ie = —11.04
2. 106" + 2" + 0.0y = 0. y(I0) = —40fe = —14.72, 3'(10) = 0
.07+ v —y=0. ydl)=et - =737, ) = 1ot 4 o= 31703
4.9" + 4y +425y =0, =1, wm= -2

Roundary Value Problems. Solve the following boundary value problems.

253" - 16y = 0. vy =35, il = Se

26, v" — 9 =0, ¥(—4) = y(d) = cosh 12

2. " - W =0, M) = -1, wid)=e -2

28, " 4+ dy" + 5y =0, yiEm = e T = 06050, wida) = —1de ¥t —0.0011
29y -+ 2y =0, 0= -3  yim =0

30. Show that the solution of a boundary value problem (1), (9) is unigue if and only
il no solution v # O of (1) satisfies WP = p(Py) = 0.

Problem Set 2.4:

In each case apply the given operator to each of the given funclions.
LD+ 3 x4 bx - 2, G
2. 0% - Xy xet, sinh 2y, #3405
A0 4+ ApD = 1) e gem T T
4. (D — 5)%; Sy + cosh 5S¢, o™, pei

sin my = 2 cos oy

Find a general solution of the following equations.

S (DT 2D 2 My = 0 6. 040% = 40 + |y - D

T 12D B - D B.ADT + 60 + 12 — 0
97D — AmD + 4y = 0} L0, (4D% 4 4y + 1Ty = 0

1L (100 + 120 + 36y = (1 12, (fF + D+ &2+ 3y =0

Solve the following initial value problems.

13,007 + 4D 4+ S)y =0, pi) =0, 0= -3

4. (0% ¢ 5D+ By =0, ¥i0) =2, iy = -3

15 (0% - 2D+ w5 4+ 1y =0, W) =1, ¥ @ =1-n
16, (3% — 01D — 38w = 0, wii} —3.9, vy = 74

17 @DF + 6D + Dy = 0. »=3)=We=2708, y(-3 = -1 ¢= 1722
18, (D¢ - 020 + 1000y = 0. wy =0, 0 = 40
W D+ ¥y =0, win=1, - -2

M. Prove that the operator £om 2 s hinear,

Problem Set 2.6:

L. Verify directly by substitution that v, in (7%} is a solution of (1) if (3) has a double
root, but x™ In x and x™2 In x are not solutions of (11 if the roots m, and m, of
(3) arc different.

Find a general solution of the following differential equations.
22 — by =0 ooy Ay’ =0

4 1%y — 2y + 2y =0 S0 4+ 0D + 16)y = 0
6 25" ooy’ — v =10 T2 4+ D 4 =10

B (x%D% — 15xD + iy =0 OB+ 620" b 676y = ()
10, x*" + 30" + 5w =0 I, (222 + oD+ 1y = 1)

12, (x2D% - 3xD 4+ 200 = O 13, (40202 + 8ad - 15 =0

Solve the following initial value problems.

M. x®" —dey’ + 4y =0, wl) =4, ¥ =13

15, (42D% + 4y} — 1)y = 0, w4} = 2, ¥idy = —0.25
16. (202 — 54D + By = 0, w1} = 3, ¥l = 18

17, (22302 — 2 + 2y =0, yil) = =1,  ¥'(1) = =1
18, 102" + d6xy’ + 324y =0,  wl) =0, ¥il)=2
19, (x*D? + xD — 00Dy = 0, ¥l =1, ¥l = 0.1

20. (Potential between two spheres) Find the potential in Example 4 if rp = 2om,
ry = 20 cm and the potentials on the spheres are v, = 220 volts and ©, = 130
volls.

21. (Equations with constant coefficients) Setting v+ = &' (x = 0), transform the
Euler—Cauchy equation (1) into the equation ¥ + (& — 1y + &y = 0,

whose coefficients are constant. Here, dots denote derivatives with respect to 7,
Transform the equation in Prob. 21 back into (1)

Show that if we apply the transformation in Prob. 21, then (2) yiclds an expression
of the form (2), Sec. 2.2, and (7} vields an expression of the form (7], Sec. 2.2,
except for notation.

22

B

Reduce to the form (1) and solve:
24, 203z ¢ D%" + 2103 + 1" 4 18 =0
5 0z -2 + 5z - '+ =0

Problem Set 2.7:

Find the Wronskian of the following bases (that we have osed before). thereby
verifying Theorem 2 for any interval, (In Probs, 4-6, assume x = 0.)

L ehf o', ) # A, L oM, xes

A ™2 cos o, o™ gin wr 4, x™ x™z, My ey

5. x¥ cos (el xh, x* sin (e In 1) 6. x™ x™inx



Find a second-order homogeneous linear differential equation for which the given
functions are solutions. Find the Wronskian and use it to verify Theorem 2.

7. %, xe® B x,xlnx 9, eTcosx, eTsin X
i : i~

10. cosh kx, sinh kx 11, cos mx, sin wx 12, Ve, UV

13, 1, x* 14, 1, e 15, 42, 32

16. Suppose that (1) has continuous coefficients on /. Show that two solutions of (1)
on / that arc zero at the same point in J cannot form a basis of solutions of (1)
on f.

17. Suppose that (1) has continuous coefficients on /. Show that two solutions of (1)
on [ that have maxima or minima at the same point in J cannot form a basis of
solutions of (1) on £,

18. Suppose that y,. ¥, constitute a basis of solutions of a differential equation
satisfying the assumptions of Theorem 2. Show that z; = a; ¥ + apy,.
2, T gy ¥y F oty is a hasis of that equation on the interval ! if and only if the
determinant of the coefficients a, is ot Zero.

19, Hlustrate Prob. 18 withy, = ¢, ¥, = 7%, z; = cosh x, 2z, = sinh x.

20. (Euler-Cauchy equation} Show that 225" — 4xy" + 6y = 0(Sec, 2.6) hasy, = ¥
v, = x% as a basis of solutions for ail x. Show that Wi, x% = Oatx = 0. Does

this contradict Theorem 27

Reduction of order. Show that the given function ¥, is a solution of the given equation.
Using the method of reduction of order, find y, such that ¥, ¥, form a basis. Caution!
First write the equation in standard form.

2. (o D3 = 2+ 1"+ 2y = 0 y,=x + 1

2L x - Iy -y =0, ¥ =&

23, 01— xpy" — 41—+ 2y =0
M1+ o+ -fy =0 y=xr"eosx, x>0
- =gl x#1

yy=0-x1 x#1I

25 o 4+ '+ xy =0, sim X,

Problem Set 2.9:

Find a general solution of the following differcntial equations.
Lov" + y = 3x? 2. 9" = dy = ¥

L+ by + 9y = 18 cos dx 9 cosh x

4. 3" + 4"+ 4y
6 v — 2y + 2y = 2etos x

8. 3" 4+ 1" + 3y = x* + sinyx
10. {(D? + 5D +6)y = 9% - x

12, (D — a0 +3)y = He 3 4 o0
M. (D% + 5D = |
6. (1¥ + D

5.9 — ¥ — 2y =T+
Ty + 2y + Sy = 5x% + 45 + 2
9 (D2 4D +3)y = 2sinx — 4 cos x
1. (D — 2D + 1)y = 2e7

13 (07 + %y = cos 31

15, (1* — 4)y = 2sinh 2x 4 x

1 X 4 o
Hlv = 3% cos 2a

Problem Set 2.10:

Find a general solution of the following equations,

1.
3
5.
7.

11.
13.

¥ oo 2yt oy = 35532 4 42

9 %" - %' + v =eTsinzx

PLIE TR 2.v" 4 4y = 2 wec 2y
Y= 4y = 1267 43"ty - esex
P4 Ay + Ay = e 6. ¥~ Ay’ 4 Sy = 2e2sin

B " o ody' b ody = (32 + 2T
10, ¥" 4 6" + 9y = Se~M:2 4 )
12, (% + 9y = sec 3x

14, (D? + 2D 4 2}y = e~Tcos¥ x

(02— 4D & )y = Gy delt
(N — 2D 4 l)y = pixd

Nonhomogeneous Fuler—Canchy Equations. Find a general solution of the following
equations, Caution! First divide the equation by the coefficient of v" to get the
standard form (1)

15.
17.
19,
21.
23

23,

(x202 dxfr + hly = 4204 16, (x2D% — 2)p = Oyt

(x20% - 230+ Dy = Sy¥ cos x 18, (xf2? — D)y = {3 = xixtes

(xD?* — Dy = x%e* 20, (+2D% — 4xD + 6)y = —Txdsinx
a2y 4 2y = 244xt 22, 4xty" 2 dyy' — oy = 12

a2y~ dxy' + 6y = Lind 24, x%y" ~ 2xy' + 2y = «x

(Comparison of methods) Whenever the method of undetermined coefficients
(Sec. 2.9) is applicable, it should be used because it is simpler than the present
method. To illustrate this fact, solve by both methods

v+ Ayt 4+ 3y = 65 cos 2x.

Problem Set 3.5:
Find a general solution.
L™ = 3y" 4+ 3" — v = gV
2.0 — 6" 4 12y - By = Ve
3¢ - 6" + 11y — 6y = e sini
4. ¥ - 3" = cosh x
5 v 4+ v = secx
6. x "~ Ix3y" 4 Gxv’ - 6y = x¥sinh x
7. 1y + I = e
B, x3™ 4 %" - 2y 4+ 2v = ¥V Inx
9, o™ 4 xZy" - 2xy 4 2y = 2
. 4x%™ + Iny' — 3y = 4412



Respostas:
PROBLEM SET 1.1, page B

1. First order 3. First order

5. First order

7. ~de ¥y 9, ~Zsindx + ¢ 1. 157 + 1

13, 32 15. —2sinx

19 v = y2 41

233" = koy = et 4 Se, wid0) = BOOK + 200 = I800, k = 2,
¥(40) = 85 mfsec = 190 mihr

25, (ab Jem (b} ¥(2) = ce? = 100, v = ¢ = 13.53

27, v = 5.3 exp (0.030e) = 32 {18600, 78 (189)), the other values being much tog

large. A better model is the “logistic law™ in Sec. 1.7.
29, About 1600 vears
PROBLEM SET 1.2, page 13

I. Suppose you forgot « in Example 2, wrote are tan ¥ = x, transformed this 1o
¥ = tan x and afterward added a constant ¢, Then v = tan x +

o7 0, is not a solution of ' = 1 + w2
Jy=rce¥ -1 5.y = tan(x + 312 + o)
7. ¥ = cisin 2p)l2 v = vcoshx
1L tany = 1080 4 o 134 v = cln [af
15. v = sinix + ) 17. v = —%W4 — 42
1%, coty = tanhxy + 1 2hoix — 1 +v3 =1
23. v¥ = gyt + gl — 1) 25, r = —0.3sinp

27. [ = Iyp-Rir

PROBLEM SET 1.4, page 22

1. ¥ = x(ln J,l.'J + ) 3. }'2 = x? — ¢x

5. ¥y =xtaniln|x]| + ¢) T. v = —xilln|x] + ¢
9oyl -y - xl=r¢ 11. v = xiln|x| — 7.4)
13 v = x(eT — ¢)iH 15, v = aix® + §5)1%
17. vy = —x + lan (x + ¢) 19, sin(x2y%) = et

2y — )2+ W0y - 2x =
2w =g by' = a + Bfiu), dulla + bflu)) = dx
5 vy = et — 4y — 2

Wy = ax, vy = g = const, v = gla) = const

PROBLEM SET 1.5, page 26

I. 2vdx + 2vdv = 0

5. 67 (y2dx + 2avdy) - O
Y2y —x+ Di—-de+ dvy =10 1. xy = ¢
I=¢ ) 15, re™® = ¢

19 xfx 4 e¥) = ¢

13. xy
17. sinhxcos vy = ¢

17, »" = 2ypix

T v = [(¢ — 1ax)- 4 -

o, which, for

2145

b —vidy —(x —aldv =0
7. 2iydr 4 xedvlixy = 0

23, Yes, (x — Iy — 1) = |
7. No, v = Vot o+ 3x Usew = Fix.

2L No, y = LH5 + In 1))
25, Yes, e¥* = pory = x
29, No, v = w/coshx M.y = ox
3 b=k ax® o+ oy s Iyt oo 35, aflay = g'(xMly)
37, 2% 4 e = ¢ 3,y = ool

PROBLEM SET 1.6, page 29

Comment. Since integrating factors are not unique, vour Fs may differ fram those
given here.

7. x3y =2 9. ko™ = | LE. x%y3 - ydp2 = 2
L3, veosh(x — vl = 3 15, F = ¢%, % cos v = o
17. F = lxy, x¥3%Y = r 19. F = o7 (x 4 29’ = ¢

20 F = WMx + Iy + 1), v+ 1 =¢ix + 1)
23 F = g lydol et = 23, AP = Addax 4 (aloQ
27, (BAIP + aPfdy = {alx)Q + adlax

2. 0 (f-"-' = 3) ;
¥ Ax

il

it 2z 2 . .
= _(3 - —) — —. Now cquate the terms in ix and in 1y 1o
xh v, i

Ll R

geta = b = 2,

PROBLEM SET 1.7, page 35

5oy = oo — 12 Tovw = co™ 3 + 2p¥ 4o v = ot @y

1. ¥ = ex~% 4+ 3x 14 » = (e + xle™ ™ 5. y = {r + 27072
7. ¥ cx? + e 9, v = 2% ¢+ 4 ooy = 2677 4+ x5
WBoy=¢" a2 5, v = | - cosh 2x 270y = (0T £ ek
Iy = 1+ e 30, siny = 2§ et A =1 ¢ y)es
43y = e - 2 1 45 v = cxeT + dxe” 47. 327.5 min

49. " 4 0.025y = 0,y = ™™ iy = 10, 3(10) = & "% = {19.6 from Example
2, = 1536, p(r) = 0.01if 1 = 385.6 min.

SLOT) =T, + (T, — Te™ Kt where T, is the temperature of the water

53, Eq. (T)gives ¥ = Ayl — (BA)y] = 0if0 < v = A/R and v OO v = AR,

55. Eq. (T pives »" = Ay’ — 2Bpy' = 0if A4 — 28y = Q.

ST, Substitute ¥ = w + o, ¥ = w' + ¢, Since v is a solution, there remains
w' = —pw + giw? + Zwe), a Bernoulli equation.

S ="+ " o+ (dpddsy", e + deldy) = 0, ete,

PROBLEM SET 1.9, page 46

Ly +y=4 3 v = 2ycot e 5.0 = 2viny

Toxy' = 2y = glpF 9 ¥+ ¥ = xiy 11. v = ¢
13 y = ¢* ~ ix 15. v = ¢*p~3= 17. v = o™
19, y = ¢*x? 2L v = Ve - i 23y = ¢*y
25, 4% -~y = o 29, eisiny = ot



PROBLEM SET 2.1, page 67

3 Since y" + pyv' + gy = or

Ty =cxt 4oy,

.y =¢""In fegx v 1] + ey
1. x = —cosy b oy + 0y
2. vy =1

15, vy = (4 - xhe?

2. vy =2 + 1In ;I.r|j.r2
33, Linearly dependent
¥7. Linearly independent

PROBLEM SET 2.2, page 72

Loy =cpem™ + eye ™™ Loy =(e] + cpxde™
9+ 25 +y=10

¥4y -6y =0
B5. (4 — A HA — a0 = A% — (A + A0
17,y = 3e¥r - 2o
23y = et

PROBLEM SET 2.3, page 76

L.y = A cos 3x + B sin dx

5. % = 74 cos wy + B osin wx)
9oLy = o) + yx)e ¥

13, 11, ¢~%*{A cos x + B sin x)
17, y = 2¢os 3x — sin Jx

2. y = (3 + 2y 0=
15, y = SeiT
29 vy = —3¢*cosx

PROBLEM SET 2.4, page 79

Lo 3x® 4 200, 0, (6 + =) cos mx + (3 —
3.0, -S40

15 = () + ryr)ei=?

1Ly = (e, + eyx)e 08

15. ¥ = ¢Tcos mx — sin mwx)

19y = (1 — xpe~=

PROBLEM SET 2.6, page 93

Ly=rc + ex? 5.p =g,
9.y =(c, +e,dna 28 1Ly =

1. y = t'l,vf’-5 k (2_1_25 15. ¥ = Ay
19, y = x®!

21. x = ¢', ¢ = Inx; by the chain rule, ¥" = %' = ¥fx, ¥" = W2 -

¥ =%+ ay + by = 0.
Bor-2=xy=ofs - D+ oz

19y = (Zr — 4~
25 v = e 4+ 3e73 = 4 ¢osh 3r - 2 sinh 3x

5 Sincey" 4 py gy =r - r
9. v =, cosh2x + o,
15, x = le®r + [

19. (¥ — T}e¥ = x4+ o,
23y = €% 4 e = 7 cosh 3y
oy =T = W

3. Linearly independent

A5, Linearly dependent

39, Linearly independent

Sy o= ey 4 oogxle
1L ' =y =0

+ Ay = A%+ ak + b Now compare.
20,y = 30 g gy 32

Ly=e"Acosx + B sinx)

7. ]._}' = :’.‘.f""‘r + ol da

1L Ly=oq ¢ t‘z-e"z‘

i5. Il vy = ¢79A cos wy + B sin )
19. ¥ = (3 4 du)e

L

.y =e¢¥ -2

2@) sin wx
5.y =s"Acosx + 8sin x}
9oy = o) + cyxjeder
L v = =3¢ 3 gip g
17. ¥

{1 — 3xje—m3

+eglnxxt Ty = o] + ey lnx)x

Acosilng) + A sin(lnx)

17. ¥ = —x cos (Inx)

vix2, hence

pARES

PROBLEM SET 2.7, page 98

LW = (4, — Adexp (i x + Ayx) W= e
5. W = prde-l
9, 8" — ' + 2y =0, W = o

13, o - 2y =0, W = 3x?

I "+ 7 =0, W=y

17. W = (1, since y;, = 0, ¥, = (at such an &, by calculus.
19. z; = {y, + ¥ 02, 5, = (¥, — ¥,iL, det [‘TJ'J = — |2
2y, = x4+ x 2y, =1(1 —x"2

25, y, = 3 'cosx

PROBLEM SET 2.9, page 105

.y -2 v =0 W=

ol

15, ¥ — o' + 075y = 0, W = x

1. Acosx + Hsing + 3x2 — 6 3ode, + epx)eT™ & sin 3
5. 00 4 cge? — Lot - Bxoa g 7. " HA cos 2y 4+ B sin 2x) + x®
%ot + {'2‘1'3' + 8§ x . (e, + epn)e” + et
13, A cos 3x + Hsin 3x + Josin 3x 15, (e, + Jude 4 oy + dope~® - Qx
17 ¢77F — &% 4 ye® 19, 4¢7 + 2¢7% + 1* — 6
2. cosy — Jsinx 23 3coslw — o2
25, cpe” + Fcos 2x + ] sin 2x
PROBLEM SET 2.10, page 109
—%r

1. (_l'] + Oy + 3'%1'1"2}('r
N R B i T A R L
3. (o, + o4 — sin xle” 1L (¢, + 0 + x”

13 (¢ 15, ¢, e 4 ox® 4

Iy 4 oue® + felix Sodoy + oy

2}!,24:

T k=14 T 4
oo 4 2 e

19 o) + i + (x - [t
v gl - ed A =4
23 et 4 oot 4 4-‘51

17. g+ ('..._.1'2 - Srcosx

b P SR A L L

5. oot 4 e ¥ o+ Bsin 2y — cos 2x
PROBLEM SET 3.5, page 149

L e, + epx + cux? + (8/105)72]er

308"+ oge 4 ooe™ + fe¥cos x

-1 . g - lad
X + o + CeX Fx e

B oMo

cop X 4 oegx 4 oegx® — 1122

In | xfpe

cp + o8 x + oy sina + In Jsecx + tan x| — roosx + (sing) In fons x|





