Problem Set 5.2:
Apply the power series method to the following differential equations.

1.xy' =3y +3 2.x =3y —xy=0

3.y = 2xy 4. (1 — xhy' = 4x3y
S.x+ 1y —QRx+3)y=0 6. y' —y=x
7.y =3y + 2y =0 8. y' —4xy' + (4x2 - 2)y =0

9. (1 —x)y" —2xy" +2y =0 10. y' = xy" +y =0

11. Show that y' = (y/x) + 1 cannot be solved for y as a power series in x. Solve
this equation for y as a power series in powers of x — 1. (Hint. Introduce
t = x — | as a new independent variable and solve the resulting equation for y
as a power series in 1.) Compare the result with that obtained by the appropriate
elementary method.

Solve for y as a power series in powers of x — 1:

12. y' = ky 13.y"+y=0 4. y" - y=0
Radlus of convergence. Find the radius of convergence of the following series.
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27. (Shift of summation index) Show that

S mm — Da,x™2 =3 (j + Dja;, X' =3 (s +

m=2 i=1 s=0

(s + Day, ,x".

Shift of summation index. Shift the index so that the power under the summation
sign is x™. Check your result by writing the first few terms explicitly. Also determine
the radius of convergence.
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n=1 s=2 k=3

Problem Set 5.3:

1. Using (11), verify by substitution that P, - - - , P; satisfy Legendre’s equation.

2. Find and graph Pg(x).
3. Derive (11’) from (11).

4. Show that we can get (3) from (1*) more quickly if we write m — 2 =
first sum in (1*) and m = s in the other sums, obtaining

s in the

S s + 2)s + Dag,, — [s(s = 1) + 25 — klax* = 0.

s=0
5. Show that for any n for which the series (6) or (7) do not reduce to a polynomial,
these series have radius of convergence 1.
6. Solve (1) with n = 0 as indicated in Example 1.
7. Using (11), show that P,(=x) = (= )"P,(x) and P;(—x) = (= )" 'P,(x).

8. (Rodrigues’s formula®) Applying the binomial theorem to (x2 - 1", differen-
tiating n times term by term, and comparing with (11), show that

(12) P(x) = 2. l dx“ [(.t’ = )" | (Rodrigues 's formula).
9. Using (12) and integrating n times by parts, show that
: o o
P = =0,1,-"").
13) J: IP;'(x)dx o (n=0 )
10. (Generating function) Show that
(14) : = 3 P oun

V1 - 2xu + u? D

The function on the left is called a generating function of the Legendre poly-
nomials. Hint. Start from the binomial expansion of 1/V1 — v, then set
v = 2xu — u?, multiply the powers of 2xu — w? out, collect all the terms involving
u”, and verify that the sum of these terms is P (x)u™.

11. Let A, and A, be two points in space (Fig. 83, r, > 0). Using (14), show that
1 1 m
—=-—-——-—=l2P(coss}( ) .

r Vir?2 + r?2 - 2rr,cos @ 2, ra

This formula has applications in potential theory.



Using (14), show that
12. P, (1) = 1

13. P(—1) = (-D"

15. Pp(0) = (= D" 1-3---@n—1)2-4---(Qn).

16. (Bonnet’s recursion®) Differentiating (14) with respect to u, using (14) in the
resulting formula, and comparing coefficients of u™, obtain the Bonnet recursion

(15)  (a+ DP,,,(x) = @n + DxP,(x) — nP,_,(x), n=1,2,-.

17. (Computation) Formula (15) is useful for computations, the loss of significant
figures being small (except at zeros). Using (15), compute P,(2.6) and P4(2.6).

18. Using (15) and (11"), find P,.

19. (Associated Legendre functions) Consider

m2
l—x"’]y=0'

Substituting y(x) = (1 — x2)™2y(x), show that u satisfies

(1 — x?y" — 2xy" + [n(n + 1) -

(16) (= x)d" = 2(m + Hxu' + [n(n + 1) = m(m + D)u = 0.

Starting from (1) and differentiating it m times, show that a solution of (16) is

w ="
dxm
Az
ra
r
,‘ Ay
0 r

Fig. 83. Problem 11
The corresponding y(x) is denoted by P, ™(x). It is called an associated Legendre
Sfunction and plays a role in quantum physics. Thus

“ — IZ)mfz Qﬂ

P,"(x) = -

20. Find P,\(x), P,}(x), P,2(x), P2(x).
Problem Set 5.4:

Find a basis of solutions of the following differential equations. Try to identify the
series obtained by the Frobenius method as expansions of known functions.
L' +2y +xy=0 2. x" + 2y +4d4xy =0

a2y + 6xy' + (6 —xH)y =0 4. 16x2y" + 3y =0

M. o+ =2xy ' +x-1)y=0

5. x%y" + 6xy" + (x2 + 6)y =0 0
7.2x%" + xy' =3y =0
9. x2y" +4xy' + x2+ 2y =0

6. x + 2"+ (x+2)y —y=
8. x%y" +x3 +(x2 -2y =0
10 x+ D" + (x+ 1)y —y=0

13. xy" + 3y’ +4x3y =0 4. x2y" + xy' + x2 -}y =0
15. x - DB +(x=1)y —d4y=0 16. 0" +y —xy=0

17. (1 + )x2y" — (1 + 20)xy" + (1 + 2x)y = 0

18. (1 + 2ox%y" — (1 + x)xy' + (1 + x)y =0

19. 2x(x = 1)y" — (@x2 = 3x + 1)y + Qx2 = x+ 2y =0

20. (x2 = x2y" — (2 + xy' + x2+ )y =0

Hypergeometric equation, hypergeometric series,
hypergeometric functions

21. Gauss’s hypergeometric differential equation!! is

17) xX1 —x)y" +[c—(@a+ b+ 1)xly —aby =0

where a, b, ¢ are constants. Show that the corresponding indicial equation
the roots r, = Oand r, =

yields
_ ab aa + Dbb + 1) ,
R T T P
(18) .
ala + Da + 2)b(b + )b + 2) 3 4
3le(e + e + 2)
where ¢ # 0, —1, —2, - - - . This series is called the hypergeometric series. Its

2. 0"+Q2-2x)y +(x -2y =0

has

1 — c. Show that for r;, = 0 the Frobenius method

sum y,(x) is denoted by F(a, b, c; x) and is called the hypergeometric function.

Using (18), prove:

22. The series (18) converges for [x| < 1.

23. F(1, b, b;x) = 1 + x + x2 + - - -, the geometric series.
24. If a or b is a negative integer, (18) reduces to a polynomial.

H_M:"bna+ Lb+1,¢c+ 1;x),

dx ©
d*F(a, b, c;x) _ala + Dbb + 1) .
a2 = crD Fla+ 2,b+ 2,¢c + 2;x),

Many elementary functions are special cases of F(a, b, c; x). Prove

26' ]ix': F(l'vl‘ I:I) =F(l,b,b;x)= F‘(ﬂ, 1,0;_1’)

27. (1 + x)" = F(—n, b, b; —x), (1 =x)"=1=nxF(1 = n, 1,2;x)

etc.



g

.arctanx = xF(3, 1,3; —x?, arcsinx = xF(3, §, §; x?
.In(1 + x) = xF(1, 1, 2; —x), In : t ; = 2xF(}, 1, i;x’)

30. (Second solution) Show that for r, = 1 — c in Prob. 21 the Frobenius method

31.

32.

yields the following solution (where ¢ # 2, 3,4, - - *):

a-c+)b-c+1)
1'(=c+2)

yylx) = x""(l + (
(19)

(@a-c+NWYa-c+2)b-c+Db-c+2) , )
+ x4
2 (=c+ 2)(-c +3)

Show that in Prob. 30,
Yo(x) = x!"Fla = c 4+ 1,b—¢c + 1,2 = ¢;x).

Show that if ¢ # 0, =1, =2, - - - | the functions (18) and (19) constitute a basis
of solutions of (17).

. Consider the differential equation

(20) (12 + At + B)y + (Ct + D)y + Ky = 0

where A, B, C, D, K are constants, y = dy/dr, and 12 + Ar + B has distinct
zeros t, and t,. Show that by introducing the new independent variable

=1

x:
Iy = 4y

the equation (20) becomes the hypergeometric equation, where the parameters
arerelated by Cty + D = —c(ty — 1,),C =a + b + 1, K = ab.

Solve the following equations in terms of hypergeometric functions.

Cx(l—x)y" + (3= 5x)y -4y =0

35 8x(1 — x)y" + (4 - ldx)y' —y =0
36. x(1 —xp" + G +2x)y -2y =0
37.5x(1 —xpy" + @ —x)y +y=0

38. 4x(1 — x)y" + (1 — 10x)y’ — 2y = 0
39. 4x(1 —x)y" +y +8 =0

40. 2x(1 — x)y" + (7 + 2x)y' =2y =0
41, 4x(1 — " + (2 + 12x)y" - 15y = 0
42. 3x(1 — x)p" + (1 = Sx)y' +y=0
B4 -3 +Dy -2y +y=0

4. 202 — 51+ 6)y + (21 — 3)y — 8y = 0
45. 3t(1 + Dy + 1ty —y =0

Problem Set 5.5:

1.
2.

10.

Show that the series in (11) converge for all x.

The series (11)=(13) converge very rapidly (why?), so that they are useful in
computations. For illustration, find out how many terms of (12) one needs to
compute Jy(1) with an error less than 1 unit of the 5th decimal place. (Hint. Use
the Leibniz test in Appendix 3.) How many terms would you need to compute
In 2 from the Maclaurin series of In (1 + x) with the same accuracy?

. Show that J (x) for even n is an even function and for odd » is an odd function.

Show that for small |x| we have J(x) = 1 — 0.25x2. Using this formula, compute
Jo(x) for x = 0.1,0.2, - - -, 1.0 and determine the relative error by comparing
with Table Al in Appendix 5.

(Behavior for large x) It can be shown that for large x,

Jp(x) = (= 1)™(mx)"Y*(cos x + sin x)

(24)
Jg @) = (= D™ * Ya@x)"2(cos x — sin x).

Using (24), sketch J(x) for large x, compute approximate values of the first five
positive zeros of J,(x), and compare them with the more accurate values 2.405,
5.520, 8.654, 11.792, 14.931.

Using (12) and the Leibniz test in Appendix 3, can you think of an argument
why 2 < x; < V8, where X, = 2.405 is the smallest positive zero of Jy(x)?

. Using (24), compute approximate values of the first four positive zeros of J,(x)

and determine the relative error, using the more exact values 3.832,7.016, 10.173,
13.324.
Using (12) and (13), show that Jg(x) = —J,(x).

Referring to Prob. 8, does Fig. 84 give the impression that J,(x) = 0 when J,(x)
has a horizontal tangent?

Using (12) and (13), show that Jj(x) = Jy(x) - %J’l(x).

Differential equations reducible to Bessel’s equation

Various differential equations can be reduced to Bessel’s equation. To see this, use
the indicated substitutions and find a general solution in terms of J, and J_,, or
indicate why these functions do not give a general solution. (More such equations
Sollow in Problem Set 5.7.)

11.

X2y 4+ xy +(x2-FHy =0

12 x2y" + xy' + (x2 — 16)y = 0

13. 4x2y" + 4xy’ + (100x2 — 9)y = 0 (5x = 2)

14. 4x2y" + 4xy' + x - gy =0  (Vx=12)

15. 9x2y" 4+ 9xy’ + (36x% — 16)y = 0 x% = 2)

16. " +2 +xy=0 (y=uVn

17. 0" + 59 +xy =0 (y = ulx?)

18. 0" -5y +xy =0 (y = x%)

19. 81x2%y” + 27xy’ + OxP + B)y =0 (y = xPu, x¥ =2
20, x2y" + dxy" + g2 + By =0 (y = xYu, xV4 =2



Problem Set 5.7:

Some further differential equations reducible to Bessel’s equation (See also Sec. 5.5.)
Using the indicated substitutions, reduce the following equations to Bessel’s differ-

Problem Set 5.6:
Using (1)—(4), show that
1 Jox) = —J,(x) 2. Ji(x0) = Jyx) = x"Y,(x)

3. Ty = 3,0 - T4 4. Jy(x) = (1 = 4x~3J (x) + 2x~ (%)
5. Using Table Al in Appendix 5 and (3), compute J,(x) for the values x = 0, 0.1,

ential equation and find a general solution in terms of Bessel functions.

Cxy +xy (2 -4y =0

0.2, -, 1.0. 2. x%" +xy' + (A2 - )y =0 (Ax =2
. x"+y +dhy=0 Vx=2

6. Compute Jy(x) for the values x = 2.0, 2.2,2.4, 2.6, 2.8 from (3) and Table Al 4. 4x%" +4xy' + (x—ny =0 (Vi=2

in Appendix 5. g , . B ,
7. Derive Bessel's equation from (1) and (2). S. x 2: +txy + (4f ~y=0 *=2
8. (Interlacing of zeros) Using (1), (2), and Rolle's theorem, show that between two 6. xy" + (1 +2n)y +xy=0 (y=x"w

consecutive zeros of J(x) there is precisely one zero of J,(x). 7. x2y" —3xy’ + 4x* - 3)y =0 (y = x2u, x%2 = 2)
9. Show that between any two consecutive positive zeros of J (x) there is precisely 8. x5y + (1 -2y + 2 + 1 - )y =0 (y=xux"=7

one zero of J, , ,(x). 9. x%y" +dx+ 3y =0 (y=uVx, Vx=12
10. y' + xy =0 (y = uVx, $x3 = 2)
Integrals involving Bessel functions can often be evaluated or at least simplified by 1. y" + x2y = 0 (y = uVh, Ix? = 2)
the use of (1)-(4). Show that 12. y" + k%xy = 0 (y = WVx. ik.xm .
10 [x7, 0 dx = 27,0 + ¢ 1 [xd,, @ dx = —x00 + ¢ 3.y + kix2y = 0 (v = uVa, dke? = 2)
4. " + k%% =0 (y = uVx, 3ka3 = 2)

2. 4, @ dx = [1, @ dx 2,0

Using the formulas in Probs. 10-12 and, if necessary, integration by parts, evaluate
13, [Jx) dx 14, [0 dx 15. [Jy0x) dx

16. Derive the formulas in Example 4 of the text.

17. (Gamma function) Using (5) and V= 1.772 454, compute I'(1.5), I'(2.5), and
I'(3.5).
18. Compute I'(4.6) from Table A2 in Appendix 5.

Elimination of first derivative

19. Substitute y(x) = w(x)v(x) into y” + p(x)y’ + g(x)y = 0 and show that for
obtaining a second-order differential equation for « not containing «’, we must

take
v(x) = exp (—i fp(x) dx) :

15,

16.

17.

Show that for small x > 0 we have Yy(x) = 27~ !(In §x + 7). Using this formula,
compute an approximate value of the smallest positive zero of Y,(x) and compare
it with the more accurate value 0.9.

It can be shown that for large x,

(an Y, (x) = V2U(mx) sin (x — $nm - Lm).

Using (11), sketch Y, (x) and Y (x) for 0 < x = 15. Using (11), compute approx-
imate values of the first three positive zeros of Y,(x) and compare these values
with the more accurate values 0.89, 3.96, and 7.09.

Show that the Hankel functions (10) constitute a basis of solutions of Bessel's
equation for any ».

Modified Bessel functions

The function [ (x) = i~*J (ix), i = V — 1, is called the modified Bessel function
of the first kind of order v. Show that I (x) is a solution of the differential equation

20. Show that for the Bessel equation the substitution in Prob. 19 is y = ux~2 and (12) x2y" 4+ xy' = (x2 4 )y =0
gives )
and has the representation
®) X"+ 2+ F - v =0

Solve this equation with » = Q and compare the result with (6) and (7). Comment.

® x2mo~v

“3) fp(x) = 2 zzmum! I‘(m 4+ v+ 1)'

m=0



19. Show that 7 (x) is real for all real x (and real »), I (x) # 0 for all real x # 0, and
I_,(x) = I (x), where n is any integer.

20. Show that another solution of the differential equation (12) is the so-called mod-
ified Bessel function of the third kind (sometimes: of the second kind)

(14) K (x) = =————[I_x) — L.
n »mw

2 si

Problem Set 5.8:

1. Carry out the details of the proof of Theorem 1 in Cases 3 and 4.

2. (Normalization of eigenfunctions) Show that if y = y is an eigenfunction of (1),
(2) corresponding to some eigenvalue A = A, theny = ay, (a # 0, arbitrary)
is an eigenfunction of (1), (2) corresponding to A,. (Note that this property can
be used to ‘‘normalize” eigenfunctions, that is, to obtain eigenfunctions of
norm 1.)

Find the eigenvalues and eigenfunctions of the following Sturm-Liouville problems.
In Probs. 3-9 also verify orthogonality by direct calculation.

3.y 4+ Ay =0, y0) =0, y()=0

4. y" + Ay =0, y©0) =0, L) =0

5.y"+ Ay =0, y©0) =0, y'(L)=0

6. y" + Ay = 0, y'(©0) =0, L) =0

7." + Ay =0, y'(©0) =0, y(@ =0

8. y" + Ay =0, y(0) = y2m), ¥'(0) = y'2m)
9.y" + Ay =0, y'(0) =0, y(L)=0

10. (xy")' + Ax~ly =0, y(1) = 0, y(e) = 0. Hint. Set x = €.
1. (&) +Axly=0, y1)=0, y'(e)=0

12. (€)' + e¥*(A + Dy =0, y(0) =0, y(m
13. ") + A+ Dx 3y =0, y1) =0, ye)

0 Hint. Sety = e *u.
0

14. Show that the eigenvalues of the Sturm-Liouville problem y” + Ay = 0,
y(0) = 0, y(1) + y'(1) = 0 are obtained as solutions of the equation tan k =
—k, where k = VA. Show graphically that this equation has infinitely many
solutions k = k, and the eigenfunctions are y, = sin k x (k, # 0). Show that
the positive k, are of the form k, = $(2n + l)m + §,, where §, is positive and
small and 8, — 0 as n — . Compute K, and k, (by Newton’s method, Sec.
18.2).

15. Verify by direct calculation that Py(x), P,(x), P,(x) form an orthogonal set on
—1 = x = | (with p(x) = 1) and find the corresponding orthonormal set, also
by direct calculation.

16. Determine constants ay, by, - -, ¢, so that yo = ag y, = by + byx,
Y, = Co + €,x + ¢,x* form an orthonormal set on —1 = x = 1 (with p(x) = 1).
Compare the result with that of Prob. 15 and comment.

17. Show that if the functions y4(x), y,(x), - - - form an orthogonal set on an interval
a = x = b (with p(x) = 1), then the functions yy(ct + k), y,(ct + k), -+,
¢ > 0, form an orthogonal set on the interval (@ — k)/lc =t = (b — k)/c.
18. Using Prob. 17, derive the orthogonality of 1, cos mx, sin mx, cos 2mx, sin 2mx,
c+on —1=x=1(px) = 1) from that in Example 4 of the text.

Verify that the given functions are orthogonal on the given interval with respect to

the given p(x) and have the indicated norm.

19. Lyx) = 1, L(x) =1 — x, Ly(x) = 1 — 2x + $x%, 0 = x < @, plx) = 7%,
norm 1

20. Tyx) = 1, Ty(x) = x, T,x) = 2x* — 1, -1 =x =1, plx) = (0 - x2)-12,
ITgl = Va, ITyl = Tyl = Val2. Hint. Set x = cos

@

Problem Set 5.9:

Legendre polynomials. Represent the following polynomials in terms of Legendre
polynomials.

1. 5x3 + x
3.1, x, x2, x3

2. 10x3 = 3x%2 - Sx — |
4, 35x% + 15x3 — 30x%2 — 15x + 3

In each case, obtain the first few terms of the expansion of f(x) in terms of Legendre
polynomials and graph the first three partial sums.

0 if-1<x<0 0 if-1<x<0
5. f(x)={ : 6. f(x)={ .
x if 0<x<I 1 if 0<x<I
7. f(x) = x| if-1<x<1 8. flx) =¢e* If -1 <x<1
9. Show that the functions P, (cos 6), n = 0, 1, - - -, form an orthogonal set on

the interval 0 = @ = = with respect to the weight function sin 6.

Chebyshev polynomials.?® The functions

sin [(n + 1) arc cos x]

V1 - x2

are called Chebyshev polynomials of the first and second kind, respectively.
10. Show that

T,(x) = cos (n arc cos x), U, (x) = (n=0,1,--)

T, =1, T,(x) = x, T,(x) = 2x2 — 1, T(x) = 4x3 — 3x,

UD = 1- UI(.’:}

2x, U,(x) = 4x2 — 1, Ujs(x) = 8x3 — 4x.

11. Show that the Chebyshev polynomials T, (x) are orthogonal on the interval

—1 = x = 1 with respect to the weight function p(x) = /N1 — x2. Hint. To
evaluate the integral, set arc cos x = #.



12. Show that T, (x) is a solution of the differential equation

(1 = x3HT, = xT, + n2T, = 0.

Laguerre polynomials.?! The functions

e*d"(x"e”")

L,=1, L. (x) = w den n=12
are called Laguerre polynomials.
13. Show that
Lix)=1=x, Lx)=1=2x+x22, Lyx) =1 — 3x + 3x%2 — x%6.

14. Verify by direct integration that L, L,(x), L,(x) are orthogonal on the positive
axis 0 = x < o with respect to the weight function p(x) = e~ *.

15. Prove that the set of all Laguerre polynomials is orthogonal on 0 = x < @ with
respect to the weight function p(x) = =%,

16. Show that

L(x)=3% (_”m(n)x"‘=lfnx+n(n4_ ”xz— +
m

(—n"
" m! *

n!

xm,

m=0

17. L, (x) satisfies Laguerre's differential equation xy” + (1 — x)y’ + ny = 0. Verify
this fact forn = 0, 1, 2, 3.

Hermite polynomials?2. The functions

n
HEG =1, He“(x) = (- l}nexlm,‘_i_;{e—x’m)‘ n =1, 2,_- ..

are called Hermite polynomials.
Remark. As is true for many special functions, the literature contains more than
one notation, and one sometimes defines as Hermite polynomials the functions

L
H“*{X} = (- ”ne:‘d; N

H* =1,
0 1 dx™

This differs from our definition, which is preferably used in applications.

18. Show that

He,(x) = x, Hey(x) = x* — 1, Hey(x) = x* — 3x, He,(x) = x* — 6x% + 3.

19. Show that the Hermite polynomials are related to the coefficients of the Maclaurin
series
oo
et = g (xn"
n=0

by the formula He (x) = n'a,(x). Hint. Note that tx — . 2 = x%/2 — (x — 1)?/2.
(The exponential function is called the generating function of the He,.)

20. Show that the Hermite polynomials satisfy the relation

He, ,,(x) = xHe, (x) — He/(x).

21. Differentiating the generating function in Prob. 19 with respect to x, show that

He,(x) = nHe, _ (x).

Using this and the formula in Prob. 20 (with n replaced by n — 1), prove that
He  (x) satisfies the differential equation

y' = xy" + ny = 0.

22. Using the differential equation in Prob. 21, show that w = ¢ *™He (x) is a

solution of Weber’s equation®
w' +(n+ 3 - 1xHw =0 (n=0,1,--°).

23. Show that the Hermite polynomials are orthogonal on the x-axis —® < x < @
with respect to the weight function p(x) = e~*72.

Bessel functions
24. Sketch Jy(A;0x), Jo(Agex), Jo(Agex), and Jy(Ax) for R = 1 in the interval
0 =x = 1. (Use Table Al in Appendix 5.)

Develop the following functions f(x) (0 < x < R) in a Fourier—Bessel series
FO) = a, oA ox) + ayJo(Aggx) + agty(Agex) + - - -

and sketch the first few partial sums.

2. f I. Hint. Use (1). Sec. 5.6 2. £ {I if 0<x< R
. = 1. . . Sec. 5.6. . =
@ - e Y7 lo if RR<x<R
k if 0<x<a 0 if 0<x<RR
27. f(x)={ . 28. f(x)={ .
0 if a<x<R k if RR<x<R

29. f(x) = 1 — x2(R = 1). Hint. Use (1), Sec. 5.6, and integration by parts.?*
30. f(x) = R? — x? 31. f(x) = x?
32. f(x) = x4

33. Show that f(x) = x" (0 <x < I, n = 0, 1, - - ) can be represented by the
Fourier-Bessel series -

2.}“(0‘1“-\') un(“zn"’)
x" =
aydualay)  ayd, (@)
34. Find a representation of f(x) = x" (0 <x <R, n = 0,1, - - -) similar to that in

Prob. 33.
35. Represent f(x) = x® (0 < x < 2) by a Fourier-Bessel series involving J,.



Respostas:

PROBLEM SET 5.4, page 223
PROBLEM SET 5.2, page 208

1.y, =x'cosx,y, = x!sinx

m

y= =1+ cpx® 3.y = age* ) s )
5.y = ag(l + 3x + 4x2 + 233 + 2t + HaS + -0 0) = gylx + De* 3y =i2(| +x—|+x—l+ ) _smlal.t‘y2=c05;1x
7.9 = ¢y + cx + (Be; — cx? + (Fe; — cx® + - - - . Setting ¢, = A + B and o 33t X *
¢, = A + 2B, we obtain y = Ae* + Be® . This illustrates the fact that even if 5.y, = (sinx)/x3, y, = (cosx)/x?
the solution of an equation is a known function, the power series method may
not yield it immediately in the usual form. Practically, this does not matter 9 _ 1 | - J_r_f + .r_“ N COX X _ sinx
because the main interest concerns equations for which the power series solutions R B 20 4! X2 2T 2
define new functions. — o — T
9.y = ayx +ay(l — x2 — hx4 — Jx® — Jx® — - - .). [This is a particular case of :; i‘ _ z_;);‘;n x: In: 2 cos 12 15 v = (6 — Dys = (x — 1)-2
Legendre's equation (n = 1), which we consider in Sec. 5.3.] e » Y2 ) 9' ! . P72 e
ll.(f"l’”);_.\'=f+l.y=('0(l+f)+(l+f}(f"‘%f2+_"') l?-y]—qug—xlnx'!'x l.yl'— .rf."yz_(-"i')(’
=cx +xInx (V= dyldn 35.y = AFG, 1. 40 + BVxF(1,3, %0
13. y = a1 = 22! + (94! = + -+ ) + at = BB+ — -+ ) 3.y = AF, — 1, &0 + BXSFE, -3, §: %)
. = agcos (x — 1) + a;sin(x — 1) 39.y = A(l - 8x + ¥ x?) + Bx¥F, -3.5L0
15. 3 17. 19. VI 21, V57 23,0 25. V2 1.y = AF(-3, -3, %0 + Bx'2(1 + 4x)
2. S (m + Dom + 2) 1, 43.y=CF(-} -4t 1D+ G- N2
maa (M D7+1 a5.y = o, F(—- 1,44t + D) + ot + DBF-3, 1,50+ 1)
PROBLEM SET 5.3, page 213 PROBLEM SET 5.5, page 231
9. Set (x2 — )" = v(x). Since v', v", - - -, v™ V are zero at x = 1 and v®" = 2m+2 y2m
(2n)!, we obtain from (12) 1. Use (7b), Sec. 5.2, and 22me24n(m + Din + m + I)!/sz‘“m!(n + m)! -
1 1 1
(2":1!)2_[ P2dx = f p™p™ dx = [p™-Dp™)L, — J’ p=Dpm+1) gy as m — o (x fixed).
-1 -1 -1 5. Approximate values 7 + k7 = 2.356, 5.498, 8.639, 11.781, 14.923.
1 1 7. 47 + km k = 1,2,3,4;2.5%, 0.8%, 0.4%, 0.2%
S (‘”"f 0@ dx = (—1)"(2“”f (% = 1" dx 11. AJ4(x) + BJ_,5(x) 13. AJy,(5x) + BJ_yy(5%)
Ea - 15. AJ, (x%) + BJ_,4(x?) 17. x~%J,(x); see Theorem 2.
1 w2
= 22n)! f (1 = x)" dx = 2(2n)! J' sin?"*1 B dB 19. x'3(AJ,5(x17) + BJ_15(x'"))
0 0
2-4---(12n) 2
= ! =
I S T T
(x = cos ).
13. Set x = — 1 and use the formula for the sum of a geometric series.
15. Set x = 0 and use (1 + w?)~12 = ¥ (_ I'Q) uem,



PROBLEM SET 5.6, page 235

5. J,x) = 27V (x) — Jy(x); see (3) with » = 1.
7. Start from (2), with v replaced by v — 1, and replace J,_, by using (1).
9. Let J,(x,) = J,(xp) = 0. Then x,~"J (x)) = x,7"J,(x,) = 0, and [x""J, (x)]" =

0 somewhere between x, and x, by Rolle s theorem. Now use (2). Then use (1)

withv = n + 1.
13. —2J,(x) = Jy(x) + ¢ by (4)
17. 0.886 227, 1.329 340, 3.323 351

15. =2J, - 2J, - J, + cby (4)

PROBLEM SET 5.7, page 240

1. AJ,(x) + BY,(x) 3. AJ(Vx) + BYy(V)

5. AJM(xz) + BY,,(x? 7. XHAL () + BYy(x*)

9. Vx [AJyp(Va) + BJ_ (VX)) = xV[A sin Vx + B cos V]

11. Vx [AJ,,3x?) + BY,,(3x?) 13. Vx[AJ,,(3kx®) + BY,,(3kx?)
15. 1.1

17. Set HV = kH ®, use (10), obtain a contradiction.

19. For x # 0 all the terms of the series (13) are real and positive.

PROBLEM SET 5.8, page 248

3.A=[Q2n+ DaRP,n=0,1,---;y(x = sin (3Q2n + Dmx)

5.A=[2n+ Dw2L. n=0,1," - W) = sin ((2n + 1)wx/2L)
7.A=n*n=0,1,---;y (x) = cos nx

9. A = (nn/lL*,n = 0,1,y (x) = cos (nmx/L)

1. A= (@n + Da22,n=0,1,- -5y, (x) = sin ((2;: + l)%'ln |.x|)

13. A = n?zx% n = 1,2, -+ ;y,(x) = xsin (nm In |x|); Euler-Cauchy equation

15. V2, V3P,(x), VP, 17. Set x = ct + k.

PROBLEM SET 5.9, page 255

5.
15.

21.

31.

4P, + 2P, 3. x2 = Py + §P,,x3 = §P, + §P,
1Py + 4P, + 5Py + - - - 7. 4Py + 3P, +
Since the highest power in L_ is x™, it suffices to show that
J e ixkL dx = Ofork < n:
- - — k _— = — ne=I
[ e dx f ~ (xme-7) dx f d“u ) dx

0

=...-(_|)k J’dﬂ*

G, = X a, (" = 3 He (x)t"/n! = 1G = 3 He, ,(x)1"(n - 1)!, etc.

Write e~*2 = p, o™ = d"w/dx™, etc., integrate by parts, use the formula
He, = nHe,_, (Prob. 21); then, for n > m,

(x™e~%) dx

0.

f vHe He dx = (- l)"f He v™ dx = (- l)““f He] o™=V dx
= (=1)"Im f_ He, ™ Vdx = - - -

= (=1t [ Hey o= dx = 0.

. By (1) in Sec. 5.6, with v = 1,

2 ks
an = R2 Jz(“mn)f ( )dx “mozjlz(“mo)"; wdy(w) dw

-2 f=2 ( JoA10%) JoAnx) )
o)y (@) ayol (@) agyt)(ay) .
a, = ZaURI(‘;xmz{ga/R} 2. a, = ﬁz(“mﬂ)
@RS Aa,) %o le(amo)
a - ZR?' Uz(ﬂmo) ]

] i

" aggd(ay,y) [ a0/ (@)
J3(ag3x/2) ‘.. ]

@gq)y(@ys)

3 =16 I:J3(al3xf2)
ay3dy(ay5)



