Problem Set 12.1:
I. (Powers of the imaginary unit) Show that
2= -1, i*= -,
(1)
{ I o
? = —| ;E = -], ra =1 '

Letz, = 4 — Siand z; = 2 + 3i. Find (in the form x + iy)

2. 3,5, (g + )t 4. iz,
6. 3z, — 62, 7. 0.2:% 8. z,/(z; + 2
Find
10. Re —— IO PR 12. Re
1+ T -

14. (0.3 + 0.4 15. Re z2, (Re 2)*

18. Show that z is pure imaginary if and only if Z = —2z.

(2 - 3)?
2 4+ 3
16. Im 23, (Im z)?

5. zfz,
9. 338/ ;22

& I

13. Im

17. (1 + 0¥

19. Verify the formulas in (10) for z, = 31 - 34iand z; = 2 - 50

20. If the product of two complex numbers is zero, show that at least one factor

must be zero.

Problem Set 12.2;

1. (Multiplication by i) Show that multiplication of a complex number by i corre-
sponds to a counterclockwise rotation of the corresponding vector through the

angle =2
Find
2. |-0.24 3 1.5 + 24 4. |74, |24
z 5+ 7 z+ 1
o Iz =i % G~
Represent in polar form:
10. 2i, -2i 1. 1+ 12. -3
14. m 15. r"\fi . b —————
T, 4+ 4 =V2 = 23

Determine the principal value of the arguments of
18. -6 — 6i 19. =10 =i N -=

V2 + 2

5. |cos @ + isin @

9 (1 + n®
L TEE .

13. 6 + 8i

2+ 3
5+ 4

2. 2 + 2

Represent in the form x + iy:
22. 4(cos k= + isindm
24. 10(cos 0.4 + jsin 0.4)

23. 2V2(cos §m + i sin §m)
25. cos (—1.8) + isin(—1.8)

Find all values of the following roots and plot them in the complex plane.

26. Vi 27. V-8i
o Y-T+3d N V=1

Solve the equations:
M2+z+1-i=0
3. -3 +2W2-8+6i=0

Problem Set 12.4:

W V-T-24i 2.1
2. V=1 8. YT+

B 2-5+iz+8+i=0

Find f(3 + 0, f(—=0), fi—4 + 2i) where f(z) equals

.22+ 2z

2 1INl - 2)

3 1/:2

Find the real and imaginary parts of the following functions.

4. fiz) = 21 + 2)

Suppose that z varies in a region R in the z-plane. Find the (precise) region in the
w-plane in which the corresponding values of w = f(z) lie, and show the two regions

graphically.
7. f() =224 >3

In each case, find whether f(z) is continuous at the origin, assuming that f(0) = 0
and, for z # 0, the function f(z) equals
11. Re (2323

10. Re z/jz|

Differentiate
13. (22 + 0
16. (z + iz — i)

Find the value of the derivative of
19. (z + Nz = Dt =i
2.2 — 2zat —i

5 fi) =222 - 32

B. fizd = 1l/z, Rez =10

14, (22 - Az + 1)
17. (iz + 2)/(3z — 6i)

20, (z2 - N?at3 - 2
23, (1 + /a2

12. Im 21 + |2])

18. ikl - 2)?
18. 23z + N2

21, Wz at 3
24. 2 + in)®at 2i

6. fiz) =22 + 4z - |

9. f(z) = % |arg 2 S}



25. Show that fiz) = z = xis not differentiable at any z. 28. Show that if f(z) is analytic and Re f(z) is constant, then f(z) is constant.
26. Show that f(z) = |z|? is differentiable only at z = 0; hence it is nowhere analytic. 29, (Identically vanishing derivative) Using (4), show that an analytic function whose

Hint. Use the relation |z + Az|2 = (z + AzHZ + Az). derivative is identically zero is a constant.
27. Prove that (1) is equivalent to the pair of relations 3. Derive the Cauchy-Riemann equations in polar form (7) from (1).
lim Re f(z) = Rel, lim Im f(z) = Im/. Problem Set 12.6:
I==ly L |

1. Using the Cauchy-Riemann equations, show that e* is analytic for all z.

28. If lim f(z) exists, show that this limit is unique. Compute ¢ (in the form u + iv) and |e?] if z equals

g
29. If z,, 25, - +  are complex numbers for which lim z, = a.and if f(z) is continuous 2.3+ m L1+ 4. 2 + Smi 5 V2 - Li
o - 6. 7mil2 7.1+ 0m 8 —1 + L4i 9. —9mil2
lim f(z,) = fla). )
- Find the real and imaginary parts of
30. If f(z) is differentiable at z,, show that f(2) is continuous at z,. 10. &% 11. 7 12, & 13, e 2
Problem Set 12.5: . . oy
Are the following functions analytic? [Use (1) or (7).] Write the following “P"'ﬁ“f’"i in ‘th': polar form (6).
1L fo) = 2* 2. f(z) = Re () 3. f(z) = e*lcosy + isiny) M- 1+ 15. Vi, V=i 16. Vz 17. 3 + 4i
4. f(z) = ilzt 5. flz) = K1 = 2) 6. f(z)=2-1%2
T.flz)=Inlzd +iArgz 8. flz2) = V1 - 29 9. fiz) = Arg 2 Find all values of z such that
10. f(z2) =z + Iz 1. fiz) =22 -2 12. fiz) = e*(siny — icosy) 18. e is real 19. e < 1 IR 21. Re e% = 0

Are the following functions harmonic? If so, find a corresponding analytic function

Find all solutions and plot som i ;
B p e of them in the complex plane

1 ¥ e g =
13 1 = xy 14, v = xy 15, u = xl(x? + y?) Muoem et dtalal #oetm=dtA D=0
16. v = 1/(x? + ¥9) 17. u = x* = Iy? 18. u = sin x cosh ¥
] 2 s 2 H 3 -
19, u = * cos 2y 20. 0= iln|d 2. 0 = (2 - y)? 26. Show that u = ™ cos (x¥2 — y*/2) is harmonic and find a conjugate.

Determine a, b, ¢ such that the given functions are harmonic and find a conjugate
harmonic.
22, u = ¥ cos ay 23, u = cos hxcoshy 24. u = sin x cosh cy

25. Show that if w is harmonic and v a conjugate harmonic of u, then u is a conjugate

harmonic of — o,
26. Show that, in addition to (4) and (5), Fig. 300. Fundamental region of the
; ) b nential functi L |
(n fi(2) = u, - i, fllz) = o, + iv,. exponential function e* In the Z-plane

27. Formulas (4), (5), and (11) are needed from time to time. Familiarize yourself  27. Find all values of k such that fiz) = e*(cos ky + i sin ky) is analytic.
with them by calculating (z*)" by one of them and verifying that the resultis a5 28 Show that f(z) = e is nowhere analytic.
expected.




29, It is interesting that f(z) = e® is uniguely determined by the two properties
fix + i0) = ¢* and f'(z) = f(z), where f is assumed to be entire. Prove this.
Hint. Let g be entire with these two properties and show that (g/f)" = 0.

30. Prove the statement in Prob. 29, using only the Cauchy-Riemann equations.
Problem Set 12.7:

1. Prove that cos z, sin z, cosh z, sinh z are entire functions.
2, Verify by differentiation that Re cos z and Im sin z are harmonic.

Compute (in the form u + iv)
3 ocos (1.7 + 1.50)
6. cos 10§

9, cos 3w

5. sin 10
B. cos(m + m)
11, cos (2.1 — 0.20)

4. sin (1.7 + 1.5
7. sin (V2 - 4)
10. sin (3 + 2i)

Compute (in the form & + iv)
13. cosh (-2 + 3i) 14, sinh (4 = 3i)

12. Show that

15, sinh (2 + i)

Find all solutions of the following equations.
16. coshz = 0 17. cosz = 3
19. sin z = isinh | 20. sin z = cosh 3

18. sim z = 1000
21. coshz = §

. Find all values of z for which {(a) cos z, (b) sin 2 has real values.
. Obtain cosh (- 1.5 + 1.70) from { 15) and the answer to one of the above problems.
. Find Re tan z and Im tan z.
. Prove that cos z is even, cos (—2) = cos z, and sin z is odd,
sin{-2) = —sin z.
26. Show that cos z = sin{(z + §=) and sin (w — z) = sin z, as in real.
27. Show that sinh z and cosh z are periodic with period 2mi.
28. From (9) and (15) derive the addition rules

EER

9. Prove

cosfz + sinfz =1, cos?z — sin*z = cos 2z

cosh? z = sinh2z = 1, cosh? ¢ + sinh® z = cosh 2z.

30. Show that [sinh y| = |cos z| = cosh y and |sinh ¥| = |sin z| = cosh y. Conclude

that the complex cosine and sine are not bounded in the whole complex plane.

Problem Set 13.1:

Find a representation z = z(r) of the straight line segment with endpoints
Lz=0andz=1+2i 2.z2= -3+ 2iandz = —4 + 5i
dz=4+2iandz =3 + 5i 4. z=0andz =5+ 10/
5.z= —diandz = -7 + 38i 6.z=1-jiandz =9 - 5i

What curves are represented by the following functions?

.00 +2ip, 0sSt=13 B.3-i1, —-1s1s51
92.1-i-2" 013w 10. 2 + i+ 3e* O0S1<2w
1.1+ ¥4, -1=152 12 ¢t + 2ir*, =251352
13. cost + 2isint, -w<i<mw 4. t+1Y ds1s5

Represent the following curves in the form z = z(1).

15. z=-3+4i]l=4 16. |z =i =2

17. y = Ux from (1, Do (3, §) 18. ¥ = x? from (0, 0) to (2, 4)
19. 2+ &yt = 4 20, dx - 12 + 9y + 22 =36

Evaluate I_I"{z] dz by the method in Theorem | and check the result by Theorem 2:
C

C the line segment from —1 — ito 1l +
C the segment in Prob. |
C the semicircle |z| = 2 from —2i to 2i in the right half-plane
' the boundary of the triangle with vertices 0, 1, i (clockwise)

21. flz) = az + b,
22, flz) = €%,
23. fla) = 2%,
24. f(z) = 543,

Evaluate f f(z) dz, where
[*

25. flz) = 2z% = 7%, C the unit circle (counterclockwise)

26. flz) = Rez, Citheparabolay = x2from0to | + i

27. fiz) = Imz,  C the circle |z = r (counterclockwise)

28. f(z) = 4z - 3, C the straight line segment from ito | + |

2. flz) =(z= 1"+ 2z = 1), Cthecircle |z — 1] = 4 (clockwise)
W. f(z) = sin z, C the hine segment from 0 to i



31. fiz) = e¥, € the vertical segment from mi to 2mi

3. fiz) = zcos 2%,  C any path from 0 to mi

3. fiz) = cosh 3z, C any path from wif6 10 0

M. fiz) = ¢, C the boundary of the square with vertices 0, 1, 1 + i, i (clockwise)
35, fiz) = Re(z?),  C the square in Prob, 34

3. fiz) = Im (%),  C the square in Prob. 34

3. filzp=32, Ctheparabolay = x*from0to 1 + i

B fla)=(z- "=z~ Cthecircle |z — 1| = } (clockwise)

3. f(z) = sin*z,  C the semicircle |z| = w from — i to i in the right half-plane
40, f(z) = sec?z,  C any path from mi/4 1o #/4 in the unit disk

41. Evaluate J’lm (z%) dz from 0 to 2 + 4i along (a) the line segment, (b) the x-axis
C

to 2 and then vertically to 2 + 4i, (c) the parabola y = x2.
42. Evaluate j{z“" + 2% dz from 1 to — | along (a) the upper arc of the unit circle,
(

(b) the lower arc of the unit circle.

&

. Evaluate I|z| dz from A: z = —ito B: z = i along (a) the line segment AR,
o

{b) the unit circle in the left half-plane, (c) the unit circle in the right half-plane.

Prove (6) in Sec. 13.1.

. Verify (6) in Sec. 13.1 for k,f, + k,f, = 3z — z*, where C is the upper half of
the unit circle from 1 to =1,

. Verify (7) in Sec. 13.1 for f(z) = Uiz, where C is the unit circle, C, its upper
half, and G, its lower half.

47. Verify (8) in Sec. 13.1 for f(z) = z2, where C is the line segment from — 1 — |
ol + 0.

&8 &t

Using the ML-inequality (5), find upper bounds for the following integrals, where C
is the line segment from 0 to 3 + 4/,

48, JLﬂ (z + 1) dz 49, |efd:
[

(o
50. Find a better bound in Prob. 49 by decomposing € into two arcs.
Problem Set 13.3:

1. Verify Cauchy's integral theorem for the integral of z* taken counterclockwise
over the boundary of the rectangle with vertices — 1, 1, 1 + i, —1 + i.

2. Verify Theorem 2 for the integral of sin z from 0 to (1 + i) (a) over the segment
from 0 to (1 + i, (b) over the x-axis to m and then straight up to (1 + ).
3. Verify the result in Example 3.

4. For what contours C will it follow from Cauchy's theorem that
dz COS 2 el
—_— = —_— = — = 07
(a) f; : 0, (b) i’-' m— dz =0, (c) izl n gdz 0?

5. The integral in Example 4 is zero. Can we conclude from this that it is zero over
the contour in Prob. 17

6. Can we conclude from Example 2 that the integral of 1/{z? + 4) taken over
(a) |z — 2| = 2, (b) |z — 2| = 3 is zero? Give a reason.

Integrate fiz) counterclockwise over the unit circle and indicate whether Cauchy's
theorem may be applied.

7. fiz) = |7 8 fi2) = & 9. flz) = Imz
10. f(z) = N2z — 5) 1. f(z) = T 12. fiz) = 1K=z = 3)
13. f(z) = tan z 14, flz) = 2 15, f(z) = 2

16. f(z) = 1z 17. f(2) = Wz + 2) 18. f(z) = z® sec z

Ewvaluate the following integrals. (Hinr. If necessary, represent the integrand in terms
of partial fractions.)

19.f 3
L = |

C the circle |z = 2 (counterclockwise)

dz : ?
20. iﬁil‘lhl ,  Cthecircle |z — 4mi| = 1 (clockwise)
cos 2 . ‘ ‘
2l. é_z dz, C consists of |z} = | (counterclockwise) and |z] = 3 (clockwise)
(-
=1 o
1. dz,  C the contour in Fig. 323
f e
dz o
3. fz‘ = C the contour in Fig. 324

2. §R= zdz.  C the contour in Fig. 325
C

y ¥
C
N _ C
1 x
-1 1 =

Fig. 323. Problem 22 Fig. 324. Problem 23 Fig. 325. Problem 24



25, § :dz . Cmbkr =10k~ = § (comrciockwion) lljl:gmle the given function over the given contour C (counterclockwise or as in-
L+ ] dicated).
sinz ; L 17. (22 - iVmz, Cthecircle |z = 3
. fz s 30 Cile—2+34 =1 (counterclockwise) 18. e~3(2z + i),  C the boundary of the triangle with vertices —1, 1, —i
2 + 1 . 19. (tan zM(z — i),  C the boundary of the triangle with vertices —1, 1, 2
2. fzz 4 C@ld =1t - § =4 (@ = 2 (clockwise) 20. cosh (z* — #iM(z - mi),  C any ellipse with foci 0 and i
p 2. [Ln(z = Dz = 5). Cthecircle|z - 4 =2
8. f : ::,. C: |z + 1| = | (counterclockwise) 22, [Ln(z + D22 + 1), C consists of the boundary of the triangle with vertices
c | - §i, =1 = i, 2i (counterclockwise) and |z| = } (clockwise)
iz + | "
Bz e G = 12,0) =2 cosmersiockwise) 23. e¥fl(z = | = Dz%,  C consists of [/ = 3 (counterclockwise) and |z| = 1
(o (clockwise)
3. f Re (z%) dz,  C the boundary of the triangle with vertices at 0, 2, and 2 + i 24. (sin z)/(4z® — Biz),  C consists of the boundaries of the squares with vertices
(counterclockwise) +3, +3i (counterclockwise) and =1, +i (clockwise)
Problem Set 13.4:
Evaluate the following integrals. 25, Show that § (z = 274z = z;)~! dz2 = 0 for a simple closed path C enclosing
+i 1+1 wi C
1 Ix zdz 2. J- 22 dz k8 { et dz z, and z,, which are arbitrary.
o = Problem Set 13.6:
; L 1] ]
4. I sin? z dz 5. f .fn dz 6. f sin z dz Integrate the following functions counterclockwise around the circle |z| = 2. (n in
‘:‘ ™ = Probs. 10 and 12-15 is a positive integer. a in Probs. 12 and 16 is any number.)
L] v
7. [ cosh 3z de 8. [ coszd: 9. [ sinh mz d boeWe ~ 3% . Lok - At 3. e=le? 4. (cos 2)/z?
b L b 5. (cos z)/z2 6. ez — 1)? 7. 2z + 1)? 8. (sin mz)/z?
" . ) 0 9. (e* sin z)/z? 10. &%/z" 11. e/ 12. #%ygn+l
e f i u [ LR 2 J; 2c08 2 dz 13, 2%z + D 14 (sin 2/ IS. (cos W™ 16, (sinh az)/z*
i 1 !
13 [z a W [ ed 5. [ @ - 0 Integrate f(z) around the contour C (counterclockwise or as indicated).
: i ' 17. flz) = z7%tan wz,  C any ellipse with foci =i
Problem Set 13.5: 18. f(2) = %2, Cthecircle |z — 1 - | =2
Integrate 1/(z* — 1) counterclockwise around the circle 19. f(z) = (z — 472 cot z,  C the boundary of the triangle with vertices =
Liz-id=1 Llz-1l=1 lz+1]=1 Llz+3=1 and 2
2. fiz) =(z=4r*Lnz, Cthecircle|z -5 =3
Integrate (z2 — 1)/(z? + 1) counterclockwise around the circle e i
. Q) = ———=. C¢ ts of th i |
S Iz -2 =2 &t~ fm 7. 1 = § o s f prp—r onsists of the boundary of the square with vertices
=3 = 3 (counterclockwise) and |z| = | (clockwise)
; ; : 2y Ln(z + 3) 4
Integrate the following functions counterclockwise around the unit -::ln:lle. 22. f(z) = ':1{ +] T Cos Z . Cthe boundary of the square with vertices + 2, = 2i
9. (cos 2)/2z 10. &%z I (z+2Mz-2) 12. (ef - 1)z <

13. 232z - ) 14. (sin 22z 15. (z — m)~'cos z 16. e¥/(3z - i)



23. If f(z) 1s not a constant and is analytic for all (finite) z, and R and M are any
positive real numbers (no matter how large), show that there exist values of z
for which |z| > R and |f(z)] > M. Hint. Use Liouville’s theorem.

24. If f(z) is a polynomial of degree n > 0 and M an arbitrary positive real number
(no maltter how large), show that there exists a positive real number R such that
Ifiz)] = M for all |z] = R.

25. Show that fiz) = ¢ has the property characterized in Prob. 23, but does not
have that characterized in Prob, 24,

26. Prove the Fundamental theorem of algebra: If f(z) is a polynomial in z, not a
constant, then f{z) = 0 for at least one value of z. Hinr. Assume f(z) #« 0 for
all z and apply the result of Prob. 23 to g = I/f.

Problem Set 14.1:



Respostas:
PROBLEM SET 12.1, page 711

3.2 - 24 -+ H{i 7. —47.2 = 23i 9. —10 — 24i
11. 31/50 13, 2xp/(x? + ¥8) 15 X =y a7 17. 16
PROBLEM SET 12.2, page 717

) 25 5 1 T. 1 9. ®RI17

11. V2(cos }= + isin}m) 13. 10(cos 0.927 + i sin 0.927)
15. Hcos im + isin{m 17. 0.563(cos 0.308 + i sin 0.308)
19. —3.042 21. w4 3. -2+ 2

25. =0.227 - 0.974i 27. 22 - 2D

29. =1, =i, (1 = V2 31 +(1 = WV2

33 ﬁ(m% + fsml—i) k=1.917

B I+ 2.2~ 3. lzd = Vx + y2 =[x, ete.

39. Eguation (5) holds whcnz, z, = 0. Let z; + z, # O and
c=a+ ib=z/Nz + z). By (19) in Prob. 31 lal =lel.la = 1| = e = 1.
Thus |a| + |la = 1| = Id + |¢ = 1]. Clearly |a| + la = 1] & 1. Together we
have the inequality below; multiply by |z, + z,| to get (5).

T fe iz
1‘ ! L+t 4

i
L + 4

15| + +

PROBLEM SET 12.4, page 725

1. 14 + 8i, =1 — 26,4 - 12§ 3. 09 — 13Vs00, —i, (—2 — 111000
5. 2(x? - 3xy®) - 3x, 200x%y - ¥3) - By
T. wl=>9 9. larg w] = 374

1. Re (2323 = (x2 — yx? + ) = 1ify = 0and -1 if x = 0. Ans. No.

13. 6z(z2 + i)? 15. 211 - 2)® 17. 0 19. in2

2. - 127 23, -1+ D

25. The quotient in (4) is Ax/Az, which is 0if Ax = 0 but | if Ay =
no limit as Az — 0.

27. Use Re f(z) = [fiz) + Fl2V2, Im fiz) = [fz) - flani.

29, By continuity, for any € > 0 there is a & > 0 so that [f(z) — fla)| < € when
|z - a] < & Now |z, — a| < &for all sufficiently large n since lim z, = a. Thus

Ifiz,) = fla)| < e for these n.

0, so that it has

PROBLEM SET 12.5, page 731

1. Yes 3. Yes 5. Forz # | 7. Yes 9. No
11. No 13. flz) = —iz%2 15. fiz) = 1/z

17. f(z) = z¥ 19. No 21. No

2. b= 1,v= —sinxsinhy

2. f'(z) = u, = iv, = 0, u, = v, = 0, hence v, = u, = 0 by (D),

U= const, = can.n' _r' = y + ju = const.

PROBLEM SET 12.6, page 734

3. 1.469 + 2.287i, 2.718 K. 3.610 — 1.972i, 4.113
T. —23.141, 23,141 9,
1. exp (x* — 3xy®) cos (3x2y — 39), exp (¥3 — 3xy?) sin (3xly — 39

=i;:1

13. e % cos 2y, —e ¥ sin 2y 15. el pg=dwid o-wil 3vid

17. 5 exp (i arc tan 3) 19. x>0

.yv=(n+ 14, n =0, £1,+--

B.z=2+2n+ )wi,n=0 %=1, -

25. Mo solutions 2. k=1

. (lf) =(g'f - gfVgt=0, s:nceg =g, f' = figlf = k = const by Prob.
29, Sec. 12.5. g(0) = f(0) = = Jgivesk =1, g = f.

PROBLEM SET 12.7, page 738

3 -0.303 - 2.11% 5. 11013

7. 26.974 — 4.256i 9. cosh 3x = 6195.8

11, —0.5150 + 0.1738i 13, —-3.725 - 0.512i

15, 1.960 + 31660
19. 22nr + i, 22n + D — i
23. Use Prob. 3.

PROBLEM SET 13.1-13.2, page 760

Lz=(+2,0=t=1
3:=44+2i+(-1+3n0s51=1
§5.z2= -d4i+(-1+600=51=7
9. Lower semicircle (radius 2, center | — i)

17. §(2n + Dm - (- 1)"1LBISI
2. =(af3)i = 2nwi,m=10,1, -

7. Straight segment from 0 to 3 + &



11. Parabola vy = 3x? from (-1, 3) to (2, 12)

13. Ellipse 4x? + v* = 4 15. 3 — 4i + 4" 0= 1 =27
17. 1+ i, 1 5123 19. 2cost +isint, 0 =¢= 2w
21. 26(1 + ) 23. 0 25. 0 27. —mr?
2. —2mi 3.0 33, il s -1 -
37.1 + i3 39, (w — § sinh 2m)i

41, 3213 + 64if3, 32i, 8 + 1285 43, i, 1, 2 49. 5¢°

PROBLEM SET 13.3, page 766

5. Yes, by the deformation principle

7. 0, no 9. —m, no 11. 0, no 13. 0, yes 15. 0, no
17. 0, yes 19. 2mi 1. 0 23, 2mi 25 —-w,
27. —2mi, 0, —4mi 29, =2mi, 0

PROBLEM SET 13.4, page 770

1. 2+ & =2 50 T. —if3 9, —Un
11. 0 13. =sinh | 15. — 1566i/35

PROBLEM SET 13.5, page 773

1. — =2 3 -mil 5 -2Inr 7.0 9. =i
11. 0 13, =% 15. 0 17. 2 19. -2 tanh |
21. 2% Lnd = B.7I0 23, me W = _0.1769 + 0.3866i

25, Use partial fractions.

PROBLEM SET 13.6, page 778

1. 0 3. 2wl 5.0 7. —6mi 9. 2mi 11. 0
13, 2mi 15. 0 17. 2m% 19. <27 21 $wedi



T

o e e

EXAMPLE 6

10. (Umqueness of limit) Show that if a sequence convergasi its llmlt is unlque. |
11. If z, z,, - - + converges with the ]Imltfﬁniﬂ'zi ,z,'“, © L gonverges w

12. Show l;hat uqdw the assumptions of Pro if' 8 22" 2

:ll'a! B‘h W 4|]n| ul 1“ ( ”"'1

! | f" ‘- 1 F ﬂ‘ﬁ ']Iil P' | li } L lE ~!il.t’.llu IEL-LI ﬂh 1J_'r" ”.Ii'l" :r-" ‘J' Ilf J-‘

‘M?' <q=1~4a* <] for mn er ﬂm some (!ﬁ aimt[y 1am) NP,

Hence |z | < q'”' < | for all n > N* Absolute convergence of the series
2y + 2y + - - now follows by the comparison with the geometric series.

(b) If L > 1, also \’ﬂz > 1 for all sufficiently large n. Hence |2,| = 1 for
those n. Theorem 3 now implies that Zy + 2o + +o o diverges.
(c) Both the dwergenr harmonic series and the convergent series

1 -I(; +§ + 16 + 25 + - - - give L = 1. This can be seen from (In n)/n — 0
an

._ N
- (a) L

isnlge Bt | A Al 1 1l »
n nlm EE,(1:'1:*3)11‘114, 12 -5 nﬂfﬂ i E(Wﬂ)lnﬂ - ﬁ

Root test .
Is the following series convergent or divergent?

e e I
4 = r n _— = — = | — ! m— — [ 2 —_— L R}
E:ﬁ g2 g & =] T e ot i

Solution. By Theorem 10, the series diverges, since
"4 -n" 4= V17 V17
22n+3_n =n —=L= 4}1' l
V4n + V4n + 3

This is the end of our discussion of basic concepts and facts on complex
series and convergence tests. In the next section we begin our actual work.

Problem Set 14.1

Sequences

Are the following sequences Zys L5 * " "5 Z,, + * - bounded? Convergent? Find their
limit points.

b o =0(= 1054 420 ¢ hgireseiai 3oz, = (=" (n + i)
4. z, = (3 + 4i)"n! 5.3)" = (1 + 0" 6. z, = 3m + ey
T2, = (D" iln . 8 2z = #oil & Sin) 9. 2, = i"cos nm

[*, show that 2y 2" "y 2ot zg‘l’,n- ﬁ'hﬂ} oy 1 5 with ular_rwm & ?ﬂi"

ﬂﬂﬂ«?ﬂ v tu di'f

Pt

i -
- l|||

el T buolute orgence) Show that if o series converges absolutely, it is conver-
= 8 Al ol gmmn T TR L T gre

A'r_n the following series convergent or divergent?

00 ' o 0 .
(100 + 200H)" n—i o i"
5 120 n! o 2 3t 2 ; E’l n
o0 o O 12n
| R 4 BBt
8. S ( ) 19. 2 (3) ; gy
ﬂ-ﬂ ' =1
(2i)"n! @0k 7)™ n+ 1
21. 2 — 22, 2 23. 3
e, L o @n)! e A
24. Suppose that |z, ,,/z,| = g < 1, so that the series z; + z, + * - - converges by

the ratio test (Theorem 7). Show that the remainder R, = z,,,; + Z,,o t =~
satisfies [R, | = |z,, . (//(1 — q) (Hint. Use the fact that the ratio test is a comparison

of the series z, + z, + - + * with the geometric series.)

25. Using Prob. 24, find how many terms suffice for computing the sum s of the
series in Prob. 23 with an error not exceeding 0.05 and compute s to this accuracy.

Power Series ' )

Power series are the most important series in complex analysis, as was
mentioned at the beginning of the chapter and as we shall now see in detail.
A power series in powers of z — z, is a series of the form

where z is a variable, a,, a,, - + - are constants, called the coefficients of the

series, and z, 1s a constant, called the center of the series.
Ifz, = 0, we obtain as a particular case a power series in powers of z:

oo
(2) 2 a1t =ag+ @zt a2+

Convergence Behavior of Power Series

We have made the definitions in the last section for series of constant terms.
If the terms of a series are variable, say, functions of a variable z (for
example, powers o ﬁ § in a pow -a-;am). they assume definite values if

'MMMﬁd Mﬂ 1 { El :|1‘1|1$hlu h? E 1 y Jm:'_.. 1% fm’ ﬂnﬂ!ﬂ‘l&ﬂ Offun’ﬂlﬂflﬁ
of 2, the partial sums, the remainders, and the sum will be ﬁumulm of 2,

) | I'- IIH |:-=-'I..- | m i | | | | 11 | i _'n_' 1|-|! {.] n], 1 I ||
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Summary. Power series converge in an open circular disk ¢ en fi
nary. Fower series converge in an open circular disk or some even for
every z (or some only at the center, bu they are useless); for the radius of
convergence, see (5), (6), or Example 6,

Exf:ept for the usclgss ones, power series have sums that are analytic
functions (as we show in the next section); this accounts for their importance.,

Problem Set 14.2

Find the center and the radius of convergence of the following po

0 ¥ 1 wer :eries.
n=0 n=1 n=0 4
4a 5 5 L. Al
n=0 i n§[} 3" . ﬂ§1 n?
* 210 55 o
7 n | _
—.Eu TR By & ™zt Q) 9. 3 (3z = 20"
o ( n=1 n=0
: = 1" 5 i"p3 o0
L et oy (3n)! .
N2 ; Z 12. — (z 4+ w)"
n;ﬂ ; ::‘)1 n=0 2" n§0 (n)?® ( il
e S = Iyr ® +2
1340 N 4. 3 < - Al
' I ¢ 15.
= 2n +71) beagah E'u TR
" n! . 2 n 00
16- = n'ﬂ-
2 mla + 7. 2 g 18.::3 7z ~ )"
n= n=1 H

19. Shpw that if a power series 2a_z" has radius of convergence R (assumed finite),
then 2a,z*" has the radius of convergence V/R.

20. Does _theré exist a power series in powers of z that converges at z = 30 + 10;
and diverges at z = 31 — 6i? (Give a reason.)

The Qmin goal of this section is to show that
fqnct:qns (Theorem 5). On the way we shall see that power series behave
nicely under addition, multiplication, differentiation, and integration, which
makes It-h'ern very useful in complex analysis, i Mt '

To simplify the formulas in ~i’:‘himwmi?'wm- = 0 and write

o \ | '1;_‘ v B (*F)

power series represent analytic

| ' ] |

f - v -Ik
(1) | o | =2 N, h
o) it Seuieut] b fira ._.-Ji_lh vy _.._-i"' f‘-ﬂ“ R

Thadrem 1
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This is no restriction, since in a series in powers of z* ~ z; with any center
Zo We can always set z* ~ z, = zto reduce it to the form (1),

If an arbitrary power series (1) has a nonzero radius of convergence, its
sum is a function of z, say, f(z). Then we write

(2) s Na 2= a; + a2 + a2’ + - (| < B).
n=0

We say that f(z) is represented by the power series or that it is developed in
the power series. For instance, the geometric series represents the function
f(z) = 1/(1 — z) in the interior of the unit circle |z| = 1. (See Example 1 in
Sec. 14.2.)

Our first goal i$ to show the uniqueness of such a representation; that is,
a function f(z) cannot be represented by two different power series with the
same center. If f(z) can at all be developed in a power series with center
Zy» the development is unique. This important fact is frequently used in
complex and real analysis. This result (Theorem 2, below) will follow from

(Continuity of the sum of a power series)
The function f(z) in (2) with R > 0 is continuous at z = (.

Proof. By the definition of continuity we must show that

lim £(2) = £(0) = a,

z—0

that 18, we must show that for a given € > 0 there is a § > 0 such that |z| < §
implies |f(z) — a,| < e. Now (2) converges absolutely for |z]| = r < R, by
Theorem 1 in Sec. 14.2. Hence the series

co 1 o0 .
2 lagrmmt == 3 ay|r” (r>0)
n=1 n=1

converges. Let § be its sum. Then, for 0 < |z| = r,

IA

If@z) — ao' i

oo oo
2 a,2" =z X la,| |21
n=1 n=1

5 :
=4 3 a [r7= = [4]s.
h=1

This is less than e for |z| < &, where 6 > 0 is less than both r and €/S. #

From this theorem we can now readily obtain the desired uniqueness
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With Theorem 3 as a tool, we are now ready to establish our main result
in this section:

Theorem 5 (Analytic functions. Their derivatives)

A power series with a nonzero radius of convergence R represents an analytic
function at every point interior to its circle of convergence. The derivatives
of this function are obtained by differentiating the original series term by
term. All the series thus obtained have the same radius of convergence as

the original series. Hence, by the first statement, each of them represents
an analytic function.

Proof. (a) We consider any power series (1) with positive radius of con-
vergence R. Let f(z) be its sum and f,(z) the sum of its derived series; thus

(4) f@= > a,z2" and f(2 = X na, 2",
n=0 n=1

We show that f(z) is analytic and has the derivative f,(z) in the interior of
the circle of convergence. We do this by proving that for any fixed z with
2| < R and Az — 0 the difference quotient [ f(z + Az) — f(z)]/Az approaches
f,(@). By termwise addition we first have from (4)

+ A7) — = + At —
£z Az; @ _t)=3a [(z i)z z _nzn_lll

n=2

(3)

Note that the summation starts with 2, since the constant term drops out in
taking the difference f(z + Az) — f(z), and so does the linear term when
we subtract f,(z) from the difference quotient.

(b) We claim that the series in (5) can be written

oo

e > a,Az[(z + AZ)" 2 + 2z2(z + A)"3 + oo Fi(n —1)z04).

n=2

The somewhat technical proof of this is given in Appendix 4.

 (¢) We consider (6). The brackets contain n — 1 terms, and the largest
coefficient is n — 1. Since (n — 1)2 < n(n — 1), we see that for |z| = R,
and |z + Az| = R,, R, < R, the absolute value of this series cannot exceed

[AZ|“ e n(n = 1)Ry=4 8

nw2

This series with a,, instead of |a,| is the second derived series of (2) at
z = R, and converges absolutely Ey‘-Thwnm 3 and Sec, 14.2, Theorem 1,
Hence our present series converges, Let K(R,) be ity sum. Then we can
write our present result

|

&by Hrl‘ tL,{.‘..’i'ilil.‘l _'_ ".:_ i A . ] stk ._u." 3 \lh\".‘n-.a

D T

Letting Az —» 0 and noting that B, (< R) is arbitrary, we conclude that f(z)
is analytic at any point interior to the circle of convergence and its derivative
is represented by the derived series. From this the statements about the
higher derivatives follow by induction. il

Summary. The results in this section show that power series are about as
nice as we could hope for: we can differentiate and integrate them term by
term (Theorems 3 and 4). Theorem 5 accounts for the great importance of
power series in complex analysis: the sum of such a series (with a positive
radius of convergence) is an analytic function and has derivatives of all
orders, which thus are analytic functions. But this is only part of the story.
In the next section we show that, conversely, every given analytic function
f(z) can be represented by power series.

Problem Set 14.3

Find the radius of convergence of the following series in two ways, (a) directly by
the Cauchy—Hadamard formula (Sec. 14.2), (b) by Theorem 3 or Theorem 4 and a
series with simpler coefficients.

2 nn-—-1 _ & £ - n Gar
1. 5%; I (z = 1) Egi nin + 1) éga St
(=10% (" = 2nln 4 1) ® (n + m)
I — 85 = Z 6. zh
4 ngb1+‘](ﬂ) Tzi 7 TE% .

d (—6)" ) > s S 9 - (2n)! n+1
i+ D B Eﬂ [( )] P S )

B n

10. In the proof of Theorem 3, we claimed that Wn — 1 as n — . Prove this. Hint.
Set Vn = 1 + c,, where ¢, > 0, and show that ¢, — 0 as n — oo.

11. Show that (1 — z)=2 = =¥ _, (n + 1)z" (a) by using the Cauchy product, (b) by
differentiating a suitable series.
12. Applying Theorem 2 to (1 + 2)P(1 + 2)9 = (1 + 7)P*4 (p and g positive integers),

show that
s ) q p+q
B L
A NI Y Ll ff

13, If f(2) in (1) is even, show that a, = 0 for odd n. (Use Theorem 2.)

14. (Fibonacci? numbers) The Fibonacci numbers are recursively defined 'by
gy = a, = |, a, = a,_, + a,_, if n 2. Show that if a power series

aq + ayz + o - represents f(z) = 1/(1 = z = z%), it must have these numbers
as coefficients and conversely. Hint, Start from f(z)(I = z = z*) = | and use
Theorem 2,

18, Write out the proof on termwise addition and subtraction of power series indi-
eited in the text,

- ~ FECSEa— U a— i i eniolN..
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Il When z = x these are the familiar Ma i i
o i > ‘ claurin series of the real functi
‘; i Similarly, by substituting (12) into (11), Sec. 12.7. we B ctions cos x and sin x,
o COShz=E;T=1+__+Z_+
it | (15) n=0 (2n)! 2! 4!
- % 2n+1
'| ; z 3 5
o sinh 2 =" ). Al e
= 8 el
] | g 5007 R 0 2 ol A
4 EXAMPLE 4  Logarithm
Al |' From (9) it follows that
‘i
It |
| (16)
i (2] < 1).
*!' Replacing z by —z and multiplying both sides by — 1, we get
| (17) L o ATS S e _
[ill Z) HI_Z—E+‘E+E+... (Iz'{:l)
I ; By adding both series we obtain
5 (18) e Sk LI
Bl | e 22:+3+—5-+-..) (e <1). N
| se:ine ;ht?] n:xt s_e:l:ttign we explain some practical methods of obtaining Taylor
! at avoli ' : LA :
| | e cumbersome calculations of the derivatives in (9).
| Relation to Last Section
| | Our discussion in thellast section can be nicely related to the present section:
i eorem 2  Every power series with a nonzero radius of convergence is the Taylor series
1 of {hf f unction represented by that pawerﬁﬁﬁ (more briefly: is ,4,‘. Tayl
R | series -Of ”Sﬁ'Hﬂ"I)_ i . £, .E‘ AAMALY o d0 ZQJJJQ’
i y -9;...1'1‘ Sl in " H‘.iqmrl
| T
| onll it SUm F(2); thul e i s & i convergence R and
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and more generally

fo@) = pla, + (n+ Dnv 3 2a, 42 - z9) + -

all these series converge in the disk |z — zUl < R and represent analytic
functions. Hence these functions are continuous at z = z,, by Theorem 1
in the last section. If we set z = z,,, we thus obtain

f®(zy) = nla,,

f(zlj} = Ay f’(zg) = 4y, Bt

Since these formulas are identical with those in Taylor’s theorem, the proof
is complete. %

Comment. Comparison with real functions

One surprising property of complex analytic functions is that they have
derivatives of all orders, and now we have discovered the other surprising
property that they can always be represented by power series of the form
(9). This is not true in general for real functions; there are real functions that
have derivatives of all orders but cannot be represented by a power SEries.
(Example: f(x) = exp (—1/x?) if x # 0 and f(0) = 0; this function cannot
be represented by a Maclaurin series since all its derivatives at 0 are zero.)

Problem Set 14.4

Find the Taylor series of the given function with the given point as center and
determine the radius of convergence. (More problems of this kind follow in the next

section, after the discussion of practical methods.)

1. &%, 10 3, e 2 3. sinmz, O

4y COS By T2 5. sinz, 2 6. 1/z, 1

To L =2} =1 8. 1/(1 — 2), i 9. Lng,

10. sinh (z — 2i), 2i 11. z°, -1 12. 24— z22 + 1, 1
13. sin?z, O 14. cos?z, 0 15. cos (z — w/2), /2

Problems 16-26 illustrate how you can obtain properties of functions from their
Maclaurin series.

16. Using (12), prove (e?) = ¢t

17, Derive (14) and (15) from (12). Obtain (16) from Taylor’s theorem.
18, Using (14), show that cos z is even and sin z is odd.
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I i = il N 4 :
| | | 1 1 | e et F L '.' g N i r - s
S HiInd the Macinurin series ol o2y . 1
" | ¥ S 1 ! - E st il | r l
¥ %3 o

i T . 4 a1 b Al -
AT N e st st
e Yy mve f (2, : a4 ||;|-.i_.- t merelore, since fim -..{'F .

Plistinis o w b
PO N, 0 . L i |
| . _ o), 1) . AL tor | e ‘ 151+z—-sm(z+1) =
1 Observing that £(0) = 0, we obtain by successive differentiation Y 19, 27 % 2% ="2," .14' (gt Sl ' (z + 1) ;
':| | e 10) = 0, 4 16, ¢*, —mi 17. cosh z, mil2 18. sin mz, 112
. | fm i ZJ(‘FZ i szl': f-'ﬂ'(o) = 2, j‘h‘r‘{n)}j[ o= ”3‘ ) - . k
i fR =6f "4 2f " %0 =0 Find the first three nonzero terms of the Taylor series with the given point as center
; il (5) "2 ' | ' Y and determine the radius of convergence.
| 9 = 614 + 8f'f" + 2ff@, £®0) = 16, £O0)/5! = 2/15, otc, * cos 2z s ™
b | i Hénce the tasiiltis 19. ¢* sinz%, 0 20. T 45 0 - tanz, -
P |
il 4 — 6
| & Z
I' e 23. cos ) 0 24. T
I | 3) tﬂﬂz=z+%z2+%z5+%z7+--- (’E]qf) b RaieTIes % (3—:5 272 — 3z + 1
i Dol
:I |.
! | i EXAMPLE 6  Undetermined coefficients 25, (Euler numbers) The Maclaurin series
|.=| | Find the Maclaurin series of tan z by using those of cos z and sin z (Sec. 14. 4), :
Ijl Solution. Since tan z is odd, the desired expansion will be of the form (4)
I tan'z= ajz +gersig St s nssss
i . PR defines the Euler numbers E, . Show that? Eg
l | Using sin z = tan z cos z and inserting those developments, we obtain By = —6l.
| 3 5 : : - :
| | z z 2 4 26. (Bernoulli numbers) The Maclaurin series
é'.l E—"‘,'l"-T—+"‘=(alz+a3z3+asz5+...)1_z_+z___+”__ ( _
| 3 151 2! 4! : B, B,
| i i - =0 Byg ® it o mE A
Since tan z is analytic except at z = + /2, *+3m/2, - -+, its Maclaurin series converges in the o ef — 1 1 & 5

disk |z| < #/2, and for these z we may form the Cauchy product of the two series on the right

defines the Bernoulli numbers B,. Using undetermined coefficients, show that’

I (see Sec. 14.3), that is, mul.'tip1y the series term by term and arrange the resulting series in
1 | p_zwer?r Ef z. ‘Bf:j Theorem 2 in Sec. 14.3 the coefficient of each power of z is the same on both
| sides. This yields i 1 Sedond
1 s T R e Lo B 4
1 ; 3 2l g 510 g Ty e ete. 27. Using (1), (2), Sec. 12.7, and (5), show that
_ Hencea;, = 1,4, =1 4. = 2 ' 1 » 282 —. 1)
| 1 y 3 = 3, dg = 15, etc., as before. 2 2i 4i : yn-1 B. z2n-1
| 18 - e g =, 4 ;
| 1 (7) tanz o L o i 12:1( ) ! 3,
! [ 28. Developing 1/V 1 — z2 and integrating, show that

1 Problem Set 14.5

1 Find the Maclaurin series of the following functions and determine the radius of

1\ z3 1 -3\ 2° 1-3-5):{"
PR 1 2" SRt YIG ) UL TS e
SARERSE Z+(2)3+(_2-4)5+(2-4-6 7 (i

| CORFEIEEULG Show that this series represents the principal value of sin~! z (defined in Prob.
1 | . - o st 3 22 45, Sec. 12.8). _ |
| i o 18 it 1 . , ™ Mo iy . 29. Was the radius of convergence in Example 3 to be expected from the form of
k. Gt igld ' - i the given function?
| 4. (T"__—Z)g‘ | 5. sin gz?-l Lol il ﬂ;ﬂ mf: ma'hh__iﬁﬂ i 30, Find a Maclaurin series for which the corresponding function has more than one |
| o e e Yk R s lii-h e H) ~ singularity on the circle of convergence.
ot = AL ol ‘ﬁ} B 1
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} , PS4 |y, . . S ..‘_. & g 5
BRI o e i g Bt i D gt cnvurzrce,

(el i 9 R . « 10 i' 1 :
ORIy 16 1 gw' | it 15 lﬁ"ﬂ: . 5, Cosh 2z
' | i® M VO DO MG L FASY : .
| f(Z) el 2 (2“ b 1) l = H—Z — 3 - 5 .= 9 e ! I " ' . | Z Z
| n=0 90T Don (80 Setbn " - T‘; Bt o 1) ) s | 8 L
5o ‘ r g (I - &) Szl 29) 04z 27
PLE6  Find the Laurent series of f(z) = 1/(1 — z2) that converges in the annulus 1/4 < |z ~ 1| < 112 e ﬁé ieani BRAgH - 9 !
and determine the precise region of convergence. e &30 E B —E‘;’_ LA o 2)?
Solution.. The annulus has center 1, so that we must develop |
Il fz) = = e Ex and each of the following functions in a Laurent series that converges for
' | (2= 1)t ) 11‘0 < |z ~ 2| < R and determine the precise region of convergence.
| inpowersof 7 — 1. W " e ot o 1 by s | : 1 -
. .e calculate jtl lﬂ. i l Zn =] 11. Zz T . Zﬂ = 1 12. Z sinh S . ZD = 4
zi1=2+(;-1)'=% l ] LA - 4, —2% B al e T =1
| - [1 il (__ Z . )] g 131 (z g 7?)3‘ 0 m . (z 57 25]2 s [ iz ] A
|
| _ sin z T 1 0
i | A0 ¥ L= =k 16, z —4m3’ 0 4 17. (z + D)2 — (z + 1) 9 :
| =3 2 . 2 @ - D
b 2 f0 2 2 antl |
I this EEFIE h J 18' 1 ] 24 B ZO — _l
§ converges in the disk |(z — 1)/2| < I, that is, |z — 1| < 2. tsl{nats _
= 1/(z — 1) now gives the desired series i | 2 Muldplication Wy
M % n+1 Find the Taylor or Laurent series of 1/(1 — z2) in the region
! s S it L L R 20. |z| > 1 e e g
n=0 2 z=1 4~ '8 ]ﬁ(z_ S - e
A8

The precise region of convergence is 0 <

! Using partial fractions, find the Laurent series of (3z2 — 6z + 2)/(z® — 3z2 + 2z) in
| that 14z + 1) in f(z) is singular at

the region
22. 0< |z < 1 2301 < 2= 2 24. |2 > 2

lz = 1] < 2; see Fig. 344. We confirm this by noting
— 1, at distance 2 from the center of the series. i

1

- Find all Taylor and Laurent series with center z = z, and determine the precise
region of convergence.

1) g _ 2 ' z* 3
dimal | | sinh z
; - I = [ L] i = & L] == 1
28. 7 =i 29 0 % l 30 P—
| Fig. 344. Region of convergence sin z I 73 — 2iz2 TR
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the sphere §, and P* is the image point of 2 with respect to this mapping,
The complex numbers, first represented in the plane, are now represented

by points on §. To each z there corresponds a point on .

Conversely, each point on § represents a complex number z, except for

the point N, which does not correspond to any point in the complex plane,
This suggests that we introduce an additional point, called the point at infinity
and denoted by the symbol e« (infinity). The complex plane together with
the point » is called the extended complex plane. The complex plane without

that point « is often called the finite complex plane, for distinction, or simply
the complex plane, as before.

Of course, we now let the point z = ® correspond to N. Then our mapping
becomes a one-to-one mapping of the extended complex plane onto §. The
sphere S is called the Riemann number sphere. The particular mapping we
have used is called a stereographic projection.

Obviously, the unit circle is mapped onto the ‘‘equator’’ of S. The interior
of the unit circle corresponds to the *‘Southern Hemisphere’’ and the exterior
to the “*Northern Hemisphere.”” Numbers z whose absolute values are large
lie close to the North Pole N. The x and y axes (and, more generally, all the
straight lines through the origin) are mapped onto“‘meridians,’’ while circles
with center at the origin are mapped onto “‘parallels.”” It can be shown that
any circle or straight line in the z-plane is mapped onto a circle on .

Analytic or Singular at Infinity

EXAMPLE 5

If we want to investigate a function f(z) for large |z|, we may now set

z = 1/w and investigate f(z) = f(l/w) = g(w) in a neighborhood of w = 0,
We define f(z) to be analytic or singular at infinity if g(w) is analytic or
singular, respectively, at w = 0. We also define

(4) g(0) = lim g(w)

w—(

if this limit exists.

Furthermore, we say that f(z) has an nth-order zero at infinity if f(1/w)
has such a zero at w = 0. Similarly for poles and essential singularities,

Functions analytic or singular at infinity

The function f(z) = 1/z2 is analytic at @ since g(w) = f(l1/w) = w2 s analytic at w = 0, and
f(z) has a second-order zero at ©. The function f(z) = 23 is singular at % and has there a pole
of third order since g(w) = f(1/w) = 1/w3 has such a pole at w = 0. The function ¢* has an

essential singularity at % since ¢! has such a singularity at w = 0, Similarly, cos z and sin 2
have an essential singularity at 2,

Recall that an entire function is one that is analytic everywhere in the (finite) complex plane,

Liouville's theorem (Sec. 13.6) tells us that the only hounded entire functions ure the constants,
hence any nonconstant entire function must be unbounded, Henee it by o singularity ut oo, y

pole if it is a polynomial or an essentinl singularity if' it s not. The functions Just considered
are typical in this respect, (A

ialh r..h,_-l.i -u.”rll“l!"u“'-"m”‘ ! H 1 ‘

A meromorphic function is an analytic function whose only singularities
the finite plane are poles.

LI

LI 6 Meromorphic functions '
Rational functions with nonconstant denominator, tan z, cot z, sec z, and csc z are meromorphic

functions, B

This is the end of Chap. 14 on power series, particularly Taylor series
(which play an even greater role here than in calculus), and on Laurent
series, Interestingly enough, the latter will provide us with another powerful
integration method in the next chapter.

Problem Set 14.8

Singularities. Determine the location and type of the singularities of the following
functions, including those at infinity. (In the case of poles also state the order.)

1. cot z 2. 1z + a)? 3. z + /7

3 I 2 cos 4z sin? z
4'E_E_2_E§ > (z* — 1)3 6 7% cos 2z
7. e™((z2 - iz + 2)2 8. elzt) 4 -2 9. (e — 1 — 2)/z73
10. cosh [1/(z* + 1)] 11. tan 1/z 12. (cos z — sin )~}

13, cos z — sin z 14. 1/sinh 3z 15. eV&-Dj(ez — 1)

16. Verify Theorem 1 for f(z) = z73 — z71. Prove Theorem 1.

Zeros, Determine the location and order of the zeros of the following functions.
17, (z* - 16)2 18, (z — 16)8

20, ¢* — % 21. z72 cos® 7z

23, (322~ DI(z2—2iz +3)2 24. (z2 — 1)2%(e” — 1)

19. 7 sin? 7z
22. cosh? z
25. (1 — cos z)?

26. If f(z) has a zero of order n at z = 2y, Show that f2(z) has a zero of order 2n,
and the derivative f'(z) has a zero of order n — 1 at z = Z, (provided n > 1).

! 27. Prove Theorem 4.

28, If f,(z) and f,(z) are analytic in a domain D and equal at a sequence of points
Z, in D that converges in D, show that f,(z) = f,(z) in D.

29, Show that the points at which a nonconstant analytic function f(z) assumes a
given value k are isolated.

Riemann number sphere. Assuming that we let the image of the x-axis be the meridians
0% and 180°, describe and sketch the images of the following regions on the Riemann
number sphere.
30, |Z' = 1

M fe] =100

31, First quadrant
M, Lower half-plane

32, Second quadrant
3. § 8 |2 =2
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EXAMPLE 4  Residue at a simple pole calculated by formula (4)

— E I
s ST (see Example 3)

Ry 9 : [0i
Ri:,',s——~-—~jZ I [Z+£] :—0{-—_.5f i
=1

322 + A

EXAMPLE 5 Another application of formula (4)
Find all poles and the corresponding residues of the function

cosh 7z
f(z} A
Solution. p(z) = cosh =z is entire, and q(z) = z* — 1 has simple zeros at 1, i, — 1, —i. Hence
f(z) has simple poles at these points (and no further poles). Since ¢'(z) = 423, we see from (4)
that the residues equal the values of (cosh mz)/4z3 at those points, that is,

cosh o ~ 2.8980. msf} i _cosm _ cosh 7 cosh (— i) i _f_ §

:
4 4i3 R g -3 4

Formula for the Residue at a Pole of Any Order

Let f(z) be an analytic function that has a pole of any order m > 1 at a point
Z = z,. Then, by the definition of such a pole (Sec. 14.8), the Laurent series
of f(z) converging near z = z, (except at z = z, itself) is

- b'm bm—l
fz) = I + @ g + -

where b, # 0. Multiplying both sides by (z — Zy)™, we have
(z-2)"f(2) =b, +b, @—z)+: :+ by = 2o) odi bz = zo)1M=1
T ay(z = 2™ + ay(2 = 2p) B e

We see that the residue b, of f(z) at z = g, is now the coefficient of the
power (z — zo)™~ 1 in the Taylor series of the function

8@ = @ - ™)
Hetphl kg t}avy

on the left, with center z = z,, Thus, by Taylor's thec

; m = | L‘. I:-'- |1
i o A
- gl R

nee I f(2) has a pole of mth order at z = z,, the residue is given by

g =

“In particular, for a second-order pole (m = 2),

(s Res f() = lim -[[(z - 2)2f@]' }.
o | S s

':f - LU
T

~ Mesldue at a pole of higher order

The function

W SGZ

s e e

his i pole of second order at z = 1, and from (5*) we obtain the corresponding residue

ROBFIL) =i [ 2] =
zm] 21 dZ

! Residues from partial fractions 3

1

¥

1l f(2) Iy rational, we can also determine its residues from partial fractions. In Example 6,

= 10
20z = 8 + $ + 5 -
z+4dz~-1%* z+4 z-1 (z-1

f(z) =

Ihis shows that the residue at z = 1 is 8 (as before), and at z = —4 (simple pole) itis — 8.

Why is this so? Consider z = 1. There the Laurent series has .the last twc? fra:ctmns as its
principal part and the first fraction as the sum of its other p:::.rt. This first fr_ac_tmn 1s analyltlc at
¢ = |, so that it has a Taylor series with center z = 1,‘ as it should be. Similarly, at z = —:
the first fraction is the principal part of the Laurent series.

Integration around a second-order pole |
Cn;.l'.:lurclnckwise integration of f(z) in Examples 6 and 7 around any simple closed path C
sich that z = 1 is inside C and z = —4 is outside C gives (see Example 6 or 7)

50z : 50z 9. B = 16 eS0T
= 2mi Res 5 = 2mi - 8 = 16 = 50.27i.
i(a W T Ty

Problem Set 15.1

‘F‘lnd--.thl' residues at the singular points of the following functions.

3 sin z

I -.- g ol .I | '.‘ ]'|, i, |
y | .‘_1+ t ' -, i el ‘ | 6 et
‘i P 3 Iy o . -_!(‘ = “0.




o Bninte wklal: 11d tnalda thntetastd 120,
'!’r'h."'iri': SWhieh __ Anside the cirele |

Loy .'“r g & S 3 ".I;"I.'II -
i'z:-'{-ia' h'!"""-"

I ol I

10,

3 —z% - 227 4 8 32+ 6
13. (z% - 1)2 s 28 =522 + 4z A (z + 1)(z4 + 16)

Evaluate the following integrals where C is the unit circle (counterclockwise).

C C C e

L 4

| 19. 9€cot z dz 20. : gz 21, = bt dz
1 | A J. sinh 3z b 2% rmidz ; : l
i: i- 97 b el ~ the Integral along C being taken counterclocl;lw:se and ;h'e tOthel';'H:eaglgi ;

I : ; . 13.3). We now reverse the sense of integratio
! hl 22 f 8 9z 23 ‘E TR 24 i g ok glockwise (see Sec. 13.3)

|

€, '+, €. Then the signs of the values of these integrals change, and we
abtain from (2)

25. Another derivation of (5). Obtain (5) without using Taylor’s theorem, by m — |
differentiations of the formula for (z — Zg) "1 (2).

M ¢ de =  f@) e+ fyde+ -+ $ ) dz
L

Cy Co Ci

All these integrals are now taken counterclockwise. By (1) in the last section,

Residue Theorem

‘ So far we can evaluate integrals of analytic functions f(z) over closed curves

C when f(z) has only one singular point inside C. We shall now see that the
| residue integration method can be extended to the case of several singular
|' 4 points of f(z) inside C. This extension is surprisingly simple, as follows.

f f(z) dz = 2mi Res f(2),
G

z=zj

%0 that (3) yields (1), and the theorem is proved. §

This important theorem has various applications in con_nection with com-
plex and real integrals. We first consider some complex integrals.

R | Theorem 1 Residue theorem

Let f(z) be a function that is analytic inside a simple closed path C and on
r C, except for finitely many singular points 1) 29 "t gy inside C. Then

Integration by the residue theorem |
1 E‘fnlgulo the following integral counterclockwise around any s:mp;e closed path such that' (a)
0 and | are inside €, (b) 0 is inside, 1 outside, (c) 1 is inside, 0 outside, (d) 0 and 1 are outside.

4 — 3
%2 zdz
Ll

(1)

Solution. The integrand has simple poles at 0 and 1, with residues [by (3), Sec. 15.1]

= LR 4 —.32
Res -Fdt: = [4 33’] = —4, Res ': - [ _ ] =7
w0 22 = 1) 2= 1 Jzm0 2t S22 kL) Zo i llz=i

the integral being taken counterclockwise around the path C.

I

) | Proof. We enclose each of the singular points z, in a circle €. with radius
| small enough that those k circles and C are all separated (Fig. 346). Then
f(z) is analytic in the multiply connected domain D bounded by € and
Cy, - -+, C and on the entire boundary of D. From Cauchy's integral
theorem we thus have ' WO ankbn |

[Confirm this by (4), Sec. 15.1.] Ans. (a) 2mi(—=4 + 1) = —6i, (b) —8i, (¢) 2i, d@o. N

Poles and essential singularities | |
. :vlluato the following integral, where € is the ellipse 9x% 4 y2 = 9 (counterclockwise).

f(-‘_: “_“] 2 * :f""") dz

i ol i i angh A .

2) _cgf(z) dz + fhm) dz + § f@ dz o f. f(2) de =
’ 5

r

Cy

i v 3

w
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and simble poles at =2, which lie outside C, 5o that they are of no interest here. The second
term of the integrand has an essential singularity at 0, with residue m2/2 as obtained from

2

! sl

-~)=z+-:r+—~-+-~-.
2 X

Ans. 2@i(—1/16 - 1/16 + m2/2) = w(me — 1/4)i = 30.221; by the residue theorem,

EXAMPLE 3 Confirmation of an earlier basic result

Integrate 1/(z — Zg)™ (m a positive integer) counterclockwise around any simple closed path
C enclosing the point z = Zg-

Solution. 1/(z - Zo)™ is its own Laurent series with center 7 = Zp consisting of this one

-term
principal part, and

]
Res = 1

2=z < T

1

I
Res =0

In agreement with Example 2. Sec. 13.2, we thus obtain

§ dz {211'1 lfm=1
c@-z9™ | if = 2.3 e

Problem Set 15.2

152 + 9 ) ;
Integrate 3z % counterclockwise around the following paths C.

‘Z—-.-
L |z = 1 2, 1z|=
4oz ~3 =2 S.lz -5+ 2 =124

Evaluate the following integrals, where C is any simple closed path such that all the
singularities lie inside C (counterclockwise).

52 | - _ z cosh 7z
7.f22+4dz . - ﬂ.fz4+_l3z2+36dz
10. 3(; sinh ‘z' &

S

I

| ) T P -l ' d ] e 4 ‘ Ly I.q“'l.-i'-'.} 'I* | ; ,‘.I :,j 3 ”
! '. - & I||Ir- -I_ | Lot .. '\_'l-tl.-llr‘-. g li i i ! o | 'r_{: \?}{*:‘1.1 . ir';r.i:-' ':;. ;i- '*‘m lﬁ% I %i 'II' : l'l :‘.# 7 - !." ;,‘ é;:- ___: = I : I,- (s
> X wn 4z ¢ o e e nd £ram S D ST VORI T AR L,
I U ’ £ _
U by 1 & L sinh z
illt |"£-¢Ot-§ dz | 20, 9(;4" cot 4z dz 21. f4za £ dz
T ¢

1 — 47 4+ 622

ol et _ 4
22 fmdz 23. itan 2mz dz 24. 5£(z2 Fho - g%
o

tan 7rz
25, §tan w2 de 2. fcoth L 27. 56 dz
(i C C

23

3 2
24 - 3iz Cos 7z t 4 523 + 67

z 4)3
cosh z e 30, (z + s
za.f————:m 29'35 dz -CEZ

Evaluation of Real Integrals

We now show the very surprising fact that the residue_ theorem also yielc{s
a very elegant and simple method for evaluating certain classes of compli-
cated real integrals.

#grals of Rational Functions of cos ¢ and sin ¢

We first consider integrals of the type

27
(1) Jig= f F(cos 6, sin 0) do
0

where F(cos 6, sin 6) is a real rational function of cos 6 and sin 6 [f_or examgle,
(sin? 0)/(5 — 4 cos 0)] and is finite on the interval of integration. Setting
e = 7z we obtain

and we see that the integrand becomes a rational function of z, say, f(z).
As 0 ranges from 0 to 27, the variable Z ranges once around }]13_: unit circle
2l = 1 in the counterclockwise sense. Since dz/df = ie , we have
dO = dzliz, and the given integral takes the form

dz
(3) i 1=£ﬂp5,

ﬁhﬂ .:I‘ 1 ".'T';L"‘ 114
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u WWWWWIWMNM Looking back, we realize that the key ideas of our pres

o Autiash the #Tﬂ thl rst method we mapped the interval of mtegr&tlon on the real
Iﬁil onto a closed curve in the complex plane (the unit circle). In the second
method we attached to an interval on the real axis a semicircle such that we
got a closed curve in the complex plane, which we then “"blew up.” Thjs
second method can be applied to further types of integrals, as we show in
the next section, the last in this chapter.

(7)

'—-ﬂﬂ- S Twl SR :

&

where we sum over all the residues of f(z) correspondmg to the poles of
f(z) in the upper half-plane. A
¥
_ - Problem Set 15.3
EXAMPLE 2 An improper integral from 0 to « '
Using (7), show that © . Fvaluate the following integrals involving cosine and sine.
| w2 g o do
L T oV R bl f 2. f 3' f 0
l ) I + & cos 0 fn-+cosﬂ L 113712 cos
Solution. Indeed, f(z) = 1/(1 + z%) has four simple poles at the points ’
. L 2mr
~ . , do de f cos 8
o= ey 25 23 = €34, 2y = e ™A, | & .L‘ 5 ~ 3 sin 0 P Ju’ 5/4 — sin 6 % L8+ 5in 04
The first two of the these poles lie in the upper half-plane (Fig. 348 on p. 847). From (4) in Sec. _r 2 2 9 21 cos A
5.1 we find ) . ¢os ¢ 3. f L do 9. J' do
. = RAE ' 17_3cgse 5 —4cos b 13 — 12 cos 26
ReSflz) = 1 el _ L -snia _ _ 1 qin v 0 ’
z=2 L+ Z4Jrjz=z'1 _4234z=31 4 4 : an | 4+ 4 cos 6 Hint. Use
10, f do cos 20 = (2% + z7%).
Res f(z) = [y = fel, 21 o= 9mild _ _I_F—wiM Mo 84 11008 7 4
2=29 (14 34}’J2=22 _433Az=-__zz 4 4 '
By (1) in Sec. 12.7 and (7) in the current section, Hyaluate the following improper integrals.
g | Rl K . o ® Sridx f‘“ dx f 1 + x2
N | ™ — T4 —ifdy R e ’ ; 13.
! 4 0
o Since 1/(1 + x*%) is an even function, we thus obtain, as asserted, Jhiger 1 dx
I ' 14, f 1 dx 6. ¢ 1 16
| o x + 1 —_— X
1l TII | f dx i 1 dx g pe bl . .
A MR | e ah. e
| 19. f
f (x% - 2x + 2)° R f (x2 + D(x2 +9) R
, EXAMPLE 3 Another improper integral ~
:, | Using (7), show that

, J’ % =1
R L X+ Suf 4 4

”I ---2,!4'-1*5)2

o
T e
Y 2

Solution. The degree of the denominator is two units higher than that of the numerator, so that
our method again applies. Now

Further Types of Real Integrals

~ 'There are further classes of real integrals that can bi;. evalui.atac: by appll-fiing
which are of no interest here). We culeulate the mldu ), m. ls.l. noting that the residue theorem to suitable namplax integrals. In applications such in-
qﬁ'm - 4{8 | IUI. R URY L RN r'hl ¥ § IIL.(I " ~legrals may an . 1ﬂ4m“m h m mlfﬂfm‘ ﬂlpr.l.ntalﬂﬂﬂl

R N TR | { specinl functi ueh clusses ¢

== -.l.

has simple poles at 2/ and 7 in the upper hnll'-plﬂm (il ut -10“ und -l in the lower half-plane,




EXAMPLE 2

.

R e nA 1 e

Ppr. v, Him | ol R
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thE I;nn:::ipal_ val_ue e)_cists., a_lthough the integral itself has no meaning. The
whole situation 1s quite similar to that in the second part of Sec. 15.3

'_l“o evaluate an improper i‘ntegral whose integrand has poles on the real
axis, we use a path that avoids these singularities by following small semi-

circles with centers at the singular points: thi ;
. points; this met
the fallowing example. method may be illustrated by

Integrand having a pole on th e (B
Show that ROk e real axis. Sine integral

oo

sin x
f dx = =
§j & 2

(This is the limit of the sine integral Si(x) as x — =; see Sec. 10.9.)

k]

Solution. (a) We do not consider (sin z)/z because this function does not behave suitably at

. . - rz £l -
infinity. We consider ¢%*/z, which has a simple pole at z = 0, and integrate around the contour

in Fig. 349. Since e%/z is analytic inside and on C, Cauchy’s integral theorem gives
(7) e dz = 0
g % |

(b) We prove that the value of the inte ICi
€ the ! ntegral over the large semicircle C, a
R approaches infinity. Setting z = Re®, we have dz = jRe® de, dz/z = ?dgfr?jiﬁz?eﬁg e

E‘iz m : e
_{[ = dz] = f e” i do EJ e df (z = Re"),
1 0 0
In the integrand on the right,

|€izi LY IE.z'R(cos 6 + i sin &‘}l = JeiR cos &I JE—R sin ﬂr — o—Rsin ¢

We insert this into the integral and use sin (7 — 8) = sin 6 to get an integral from 0 to #/2:
<[ T . w2
fleiz[df;:fe—.&smﬂdg:zf E—Rsinﬁdg
0 0 0 |

Now Fig. 350 shows that sin 6 = 20/7if0 = ¢ = \ |
Ky ishtion: )= 20/m 1t 0 = 6 = 7/2. Hence — sin § = —26/7. From this and

Fig. 349, Contour In Example 2

| L A b D g 1

-

e u! T Sin by 8ol

Soita RO e

m/2
Fig. 350. Inequality in Example 2

2 2 o
2 ! e~ R sin b gg < ZI e~ 2ROIT 4o — = 1-¢eF - 0 a R-owm
: 0

Hence the value of the integral over C, approaches 0 as R — .

(¢) For the integral over the small semicircle Cy in Fig. 349 we have

iz 2 _ 1
[ [ 2
Z & Z

Cy Co Ca

The first integral on the right equals —wi. The integrand of the second integral is analytic and
thus bounded, say, less than some constant M in absolute value for all z on C, and between
C,y and the x-axis. Hence by the ML-inequality (Sec. 13.2), the absolute value of this integral
cannot exceed Mr. This approaches 0 as r — 0. Because of part (b), from (7) we thus obtain

o]

e 2 plx e 12 ot
f—dzzpr.v.f — dx + lim —-dz=pr.v.J’ — dx — @i = 0.
Z X r0 0, ° !

Hence this principal value equals ari; its real part is 0 and its imaginary part is

(8) 5 f L e

X

— o

(d) Now the integrand in (8) is not singular at x = 0. Furthermore, since for positive x the

function 1/x decreases, the areas under the curve of the integrand between two consecutive
positive zeros decrease in a monotone fashion, that is, the absolute values of the integrals

AT+

L =f s (n =0,1,-°

n %
YT

form a monotone decreasing sequence |I,|, |I|, - - - ,and I, = 0 as n — . Since these integrals
have alternating sign (why?), it follows from the Leibniz test (in Appendix 3) that the infinite

series I, + Iy + Iy + + - - converges. Clearly, the sum of the series is the integral

* sin x b sin X
f dx = lim dx
0 X h—oo 0 X

which therefore exists. Similarly, the integral from 0 to —o exists. Hence we need not take
the principal value in (8), and

Since the integrand is an even function, the desired result follows.
W'Y :l.ll:i# 14 FE RN AL iy { kL il




Theorem 1

r|'-u|'| |'1|| Hl ﬂi{lhb‘ “||u ]‘
....-ql..i

‘a l| r|
suggests the followmg

Simple poles on the real axis
If f(2) has a simple pole at 7 =

Im | f(z) d7 =

0 o)

\ ':i"'f --t !'lI 111 wala s N
" n. L ||. i nn] It |T[ﬁﬁ3 l;ﬂh? 11 |u || ujuqh #th

we let €, shrink to a point, '

e pfmess

a on the real axis, then (Fig. 351)

i Res f(z).

£=0a

——
a+r X

Fig. 351. Theorem 1

Proof. By the definition of a sim
at z = a the Laurent series

b
Firari L

& =l

+ 2(2),

ple pole (Sec. 14.8) the integrand f(z) has |

= Res f (z)

e=da

where g(z) is analytic on the semicircle of integration (Fig. 351)

CZ: Z=a +

and for all z between C, and the

m

fC zf(z) dz = [

0

rete” 0=60=7

1

x-axis. By integration,

The first integral on the right equals bymi. The second cannot exceed My
In absolute value, by the M- mequahty (Sec. 13.2), and Mar — 0 as

r— (.

We may combine this theorem
Thus [see (7), Sec. 5.3,

#
with (7) of Sec. 15.3 or (3) in this section.

ot T

(summation over a.ll mlﬁ“ﬁn‘%ﬂ er |,n| lune m lzm
B ke ||1 t| ] |”J r||
an the x-ﬁmﬁaﬁnwthn nmf -l“ worntion llﬁ '-’.n & “ \ n
f - = . E i | I{ |_...ni‘--

_. .|||I' l_I.|., |’| i |..

degrec depres

p=rr

"
-l

. :;ﬂ'

r ﬂ) { I' .
1. Derive (3) from (2).

Evaluate the following real integrals.
COS X r sin x T sinix
zf 3. dx 4.f T

J 1+ xt
J' COS X
f 7 (XZ A4 1)2

cos 2x sin nx cos 4x
d d
dx f dx 16, [mx4+5x2+4 i

e GRET ] )4
% sin x cos 2.:: T coskx

. | ; . d

H f_mx2+2x+4dx H f (x? & i £4‘*4+13x2+9 £

14. Integrating e~% around the boundary of the rectangle with vertices —a, a,
a + ib, —a + ib, letting a — o, and using

J b s Vo
f 8‘353 dx = _2"‘ s show that J- g_.:cz cos 2bx dx = _2_ E‘_bz_
. 0

Ccos x T SR
5 f d 6. :

0

Poles on the real axis. Find the Cauchy principal value of the following integrals.

o0 d.x f X ;
L] y d |
16 J;m (.K' e l}(xz o 2) 17 S 8 = IS %

dx W dx J-m o
gty = f FINE-D e

=i 2
sin rx

S J‘ sm4wx 2. f CUES 27”5 - 23]
x2 -1 x =X

Zx-—x2

f dx

y — X

15:

24. Show that the result in Example 2 remains the same if we replace the upper
semicircle C, by the corresponding lower semicircle.
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21. 27 Ln 4 = 8,710/
25. Use partial fractions.

23, me=?t A = —(),1769 + 0.38661

PROBLEM SET 13.6, page 778

1. 0 3. 2m2 5.0 7. —6mi 9. 27i 11. 0
13. 2mi 15. 0 17. 272 19. —2m 21, §me4i

CHAPTER 13 (REVIEW QUESTIONS AND PROBLEMS), page 778

17. —2mi 19. 2i 21. 0 23, 2mi
25. —2mi 27. isin 1 29. 0 31. 2 sin |
33. —13 sin #2 35. — /2 37. —5 + 8mi 39. 2m?

PROBLEM SET 14.1, page 790

1. Yes, no, =1 + 2/ 3. Yes, yes, 0 5. No, ﬁo, none
7. Yes, no, =1 9. Yes, ho, =1, *i 15. Convergent
17. Convergent 19. Convergent 21. Divergent
23. Convergent
(n + 2)!!
2(n + I)2

'wn+1| a2

5. =
: I'='g  2P(n 4530

By =

<005 n=35 s=1.657

PROBLEM SET 14.2, page 796

L =i | 3. 0, 2V7 5.2i, 5 y (R
9. 2i3, 1/3 11. 0, V2 13. 0, 15. 0, 1
17. 0, V273 19. 2 a,2*" = T a,(2?)", |23 < R, ete.

PROBLEM SET 14.3, page 801
1, % . 3.V5 5. V72 . 1/ 9. 1/4

PROBLEM SET 14.4, page 807

1. 1 — z + z%21 — 2331 4 — « &

3. mz — w3233 + wOZP5t — + ...

5.1 -(z-3m2!'+ z-4m%4! — + -+, R= w
T.32+3z+ 1D+ 3@+ D2+ gz + D+« tR-z

9. G- D -3z =12+ 4z -13 =4 ., Rum|

11. —1+5(z+])-10(z+1)’+10(z+l)’-‘5(:+l)‘-h(u~|-1]5
13. sm“z-i iaosh-z’-falz‘mw»a“z'l&lﬁ-+-~-. R= o

E : 'LI I '-| — “|_. ;{:-fb._|l?_'r'r||; 1

11. 0 13. /8 15, 0 17. 2 19, -27

b .l: i * lun hlil.{ :!""' .:"I""_-r 11 |

41‘*‘%

PROBLEM SET 14,5, page 810

Ll=z0hgd =gl mvii| Rml
2tz Vb2t 4 0, R=1

8, 228~ 2928/31 o 29219/8] = 4+, R= o

7. 24 2%2 + 2%3l 4+, R=®

9. 20z — 2) — Wz + 4% = —17/16 — (15/32)z - (67/256)z* + -+, R =2

1R =Rl =]z — 1 = @) = [~ D8Iz — 1 — 9 — 4+

13.
15.

17.
19.
21.
23.

R =\V2

—i+ (2= =Tk - )2 -9 — ) +Siz— D+ @ -0

130 —(z + D3S! + @+ DY -+ -4y R=w
iz — im) + iz — L7033 + i(z — §m)d/S! + -+, R=
22+ 22 4+ 723 + ., R= o

21
1+2(z—~-i—1r]+2(z—%1r)2+%(z—:}ﬂ)3+"', R = gzm
I — 22/18 = 2827 + =~ " R =3

PROBLEM SET 14.6, page 819
1. Use Theorem 1. 3. R = 1/NVm>0.56

s

9.
13. |z
17.

19.

sin njz|| = 1; Z 1/n® converges. 7. |2 =1 Snlpd + 2)) =3 1/n?
tanh® x| = 1, 1/n(n + 1) < 1/n? 11. |z + 21| = L3 =8 §F> 0
|=4 -8, 6>0 15. Nowhere

Convergence follows from the comparison test (Sec. 14.1). Let R, (z) and ‘Rn*
be the remainders of (1) and (5), respectively. Since (5) converges, for iwen
e > 0 we can find an N(e) such that R, * < € for all n > N(e). Since If, @ =M,
for all z in the region G, we also have IR.(z)] = R,* and therefore |R (z)] < r:‘f
for all n > N(e) and all z in the region G. This proves that the convergence o

(1) in G is uniform.
No. Why? 2M. n=1, 10,16, 27, 65

PROBLEM SET 14.7, page 827

mw0

1
S (Dt = L g
Z

n=(

_ E ("'1) g1=2m =

2n)!

o0
b
=




(o AR L ; HP SR 1 r'ﬁan ¥ 1)/2 (third ordar) 23. +1/V/3 (simple)
Y *‘*‘ u§ ELa w B 28, 0, %2m, +4m, - - - (fourth order), by (6), Sec. 12.7
4 ﬂ_u (2?!]' L + mnm (%me ) ‘27. fiz) = (z — Zy)"g(2) by (3), and g(z,) # 0. Hence I/g(zn) 1s analytic at z = Zy-

Let its Taylor series be

1
$

i DRESTR L

- |
1 1 g + ci(z2 — 24 + + - >
15, (z—l)+2—3/z—1 —_— o N T T N L e, | 1 0
( ) + RS 2 © T G g " 1@ iz )" i

E @+idt-l=—(z4pH1_1— (2 4 = o R ; . which proves the first statement. Multiplication of h(z) does not change this. |

Ko ' o 8 4 29. Apply Theorem 3 to f(z) — k. h
19. 3 z2n 21. E (‘; l]:“ 2 ‘:ﬁ i | 31. Region between the 0° and 90° meridians |

n=0 ' b L3

33. Small spherical disk centered at the North Pole |
35. Belt between two parallels that includes the equator |

CHAPTER 14 (REVIEW QUESTONS AND PROBLEMS), page 834

21. @, sin (z - 2) 23. 12, Lo(l +22) 25 13 |
27. o, ¥ 29. ©, cosh Vz I'
31. 1 — 2z + 29)%2! — 233! + — -+, R = w

B 12+ @+ DA+ @+ D2+ @+ 1D¥16+---, R=2
35.k—kz(z—2—3£)+k3(z_—2~—3i)2- + k=2 -3)/13, R = VI3

29, g A felh o (=D S
Eﬁ (=P~ 1) < |z =Sl="1 Eﬁ' @— i’ I%

_ 2 3 o e e I
(___I)ﬂ+1(z i %ﬂ-)ZH 1 y , o 37. 1 + 3Z + 62 -+ IU'Z + ) R | |i
a2 E 2n)! Bl ‘ 3, 3 U 1 o 1 >0, pole of second ord |
al ) I . — ; —_ — > . ; (o |
, kel 2 @n + D (z 5 Il pole of second order |
4 ' F
33. (1 — 42) 2 g#n [Hlel e T (-—3 £ _13) >3 —:E’ 2| = l" i.l o o0 _ |
n=0 &7 T e AR 41. > z" % 0<|zl <1, pole of fourth order
oo oo rigde B . n=>0 I!
35. Let 2 a,(z — z5)™ and 2 ¢,(z2 — z5)™be two Laurent sel?icés“.@ﬂhli nime = 1 _ o : |‘
. ' 43. > | > 0, essential singularity

=
Il
=

f(z) in the same annulus We multlply both series by (z ~ z@)ﬂﬂ ' !_:_7..?

along a circle with center at Zy in the interior of the annul o (—=1)rt! “
. . g o )
converge uniformly, we may mtegrate term by term. This yiel 45 42 n (@ = "% 0<fe = 1| <1, pole of second order .
Thus, a; = ¢, forall k = 0, +1, . ﬁ" ﬂ:l
47. > —}ﬂfz"‘ﬂ, z| > 0, simple pole
- : n=1
PROBLEM SET 14, . ©
| ET 14.8, page 833 -l 49. > E— (z = D"3, |z — i >0, pole of fifth order

1. 0, £a, 2, - - - (simple poles), o (essential singularity) n=0
3. 0, = (simple poles) -

I"Ir’

S. =1, *i (third-order poles),  (essential singularity) Z.A
7. —1i, 2i (second-order poles), o (essential singularity) ! ool

PROBLEM SET 15.1, page 841

: | 1. 3@tz = 1) | 3. ~13l(@atz = 0)

9. 0 (simple pole), o (essential singularity) ) 5. i3 (at —i), —16i/3 (at 2i) 7. 1 (at z = *xnmw)

11. 0 (essential singularity), +2f1r, +2/3m, (Bil‘ﬂﬂl@;p@] J" 9. ¥4 (at =1) by (5) 1. 1@tz =0)

13. o (essential singularity) - g R b ‘ 13. -9/16, 9/16, ;—9:'/16 9if16 (poles of second orderat z = 1, ~1, i, ~i)
15. 1, » (asacmial ﬂnnularitim; *uzi.‘mr? (n mn;, ,l,y . ;! a‘ﬁ’q* le pole 15, 3/17 t - ~]) 17, 0 19. 2mi '

L " .‘
. ol . UR W T L e
B 7 ﬂl[' - '.'rr'--'.-J.||- 4. t-l~l:|"-

l‘z 2@ *a’ “"“" £ ™ n il il 3 _ _ .J___r_,..ll,”.l; . ¥ sl N Lheiil




. Vg . M oE!D 10.4 '!ll
Lo=2m 3 -6m KO iom 1 Lols|wse O“ﬂl’ﬁﬂ:ih '
ii{i ” #i(co! - -. A Miiﬁi{d A0 Ahl L L ‘mtim ' " " ._ T "
17, mi 19. 8mi 21, misin § = 1.506i | ha-. 4l
25. —4i 27. 0 29, —4isinh § = —2.084i

o 3e<|w<e? ~§nm <tm we< §m
8. Interior of the elllpse u?/(cosh? 2) + v%(sinh?2) = 1 in the first quadrant

7. Elliptical annulus bounded by u?/cosh? 1 + v%sinh? 1 = 1 and
u?/cosh? 2 + v?/sinh? 2 = 1 and cut along the positive imaginary axis

9. t = z% maps the given region onto the strip 0 < Im ¢ < 7, and w = e' maps this
strip onto the upper half-plane. Ans. w = e?.

1. w =cosz=0atz= +Q2n + Da2,n=0,1, -
13. znmi,n=0,1, -+ 15. Upper half-plane v > 0
17. Lower half-plane v < 0 9. h2=u=h3md=v=x2

PROBLEM SET 15.3, page 849

1. 47/\V3 3. 27/35 5. 87/3 7. /30 9. (
11. = 13. 7/\V2 15. 27/3 17. /2 19. #/16

PROBLEM SET 15.4, page 855

PROBLEM SET 16.5, page 882

- -V3/2 L ; ol |

3. 0 5. 2n/V3)e 605 =, 1439 7., mle 1. w moves once around the unit circle |w| = 1. I

9. 0 11. —=(sin 1)/V3eV3 = —0.2700 RS N . | . \
3 9, A 5. |zl = 1;Inz = In|g| + i# = i@ moves up the v-axis by 27 each time.

2 v =Viin |

13. ©/10e* — 2m/30e 15 gt - / W e 7. =1 (first order), 2 sheets 9. 0, 2 sheets |

19. —m/2 21. 7/2 23. B3 — e Mm2 =40k 11. a, 3 sheets 13. 0, =1, 2 sheets Ul

15. —1, infinitely many sheets 17. —3i, 3 sheets |

CHAPTER 15 (REVIEW QUESTIONS AND PROBLEMS), page 856

19. 0, 2 sheets

11. 0, yes 13. 57/2, yes 15. — 18, yes 17. 0, no | |

19. —2mil(n + 1)}, yes 21. —if2, no 23. —64ml, yes CHAPTER 16 (REVIEW QUESTIONS AND PROBLEMS), page 883 I

25. mil4, yes 27. 2a/7 29, 47/\V3 31. /60 | b1, 55 Al 4] paen g | 1 i S ik e i

33. 72 35. 0 37. @3 39, w2 R i, 3 RS |
19. The domain between the parabolas 4 = 3+ — v?and u = 1 — 1p2

S5 = oLl ) Rage Do | & 21. Jarg w| < w8 23. u = 1 25. i+ d=% 270,

Lou=1-30%4~-1g%9 — 360% 16 — ggv° 3o=20 & 29. =ilV3 3. (£n + PR AVa3] iz 35. 2l(z + 2)

5. The positive and the negative v-axis, respectwely 7. w<§ 37. 5z 39. 2z/(z — 1) A, e B Toey <3, W = iz

9. |arg w| < 2m/3 11. 72 <argw < 13. 4delt, 4“‘!:4 A 45. w = o¥ LI W = 2300 49. 2 + VG

15. 3cost + isintz, —3sint + icos! n

17. ¢ + it™1, 1 — is? 19. —al2 21, 2, x20 PROBLEM SET 17.1, page 889
23. 0, +7il2, =i, - -+  25. By conformality 27. Only in size
| L. & =20x +200 3. @ = 20(1 — yld)
5. = 110 — 50xy 7. (110 In r)/In 2

FROBLEM.SET 10.2,,pnde s 9. 200 — (100 In r)/In 2 1y = 22 + ¢
1.2=0 3.0, £1; =i 5. —1 + 1V3 7. ®i 13. x2 — y2 = const 15. (x = 1/2¢)% + y? = 1/4c2
9. +i 1. w=4dlz,w = (2 + 4z + 1), etc. 13, w = azld 17. u = cRe[Ln(z —a) + Ln(z + @)l = clIn |22 — a2
15. w = (az + b)l(a — bz) 17. z = Qiw — 4)/(=w + 3)

| R PROBLEM SET 17.2, page 893
PROBLEM SET 16.3, page 873 ) §o R

3. ®(x,y) = Uyxy. w = u + iv = :zzmapsﬁonto =2 s ),
5. Apply w = z2.
7. Corre spending rays in the w-plane Jrn§1;t= equal an lua, and tl” mapplnn is

unn’llrnf ' “

1. w-3z+§' T 3.w-(z

]

5owem liz o | '7.w-(3tz _,r_-__,;
9 wm iz " lanz-(de

.-I r'i : o I | ¥ ll':_ll ‘ ¥ '. |I1: _|'_'-: ', .;| '. "l," - '.-.. ;': . 5 - ) |-| | , --..I1= . I | r . : [ I' -i ! :rl d " 4 —_ : i{ﬂ:‘





