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uation is quite similar. In fact, the following theorem holds.

Fundamental Theorem (Superposition or linearity principle)

If u, c?nd Uy are any solutions of a linear homogeneous partiul differential
equation in some region R, then

U= cu + Colly,

where ¢, and Cg are any constants, is also a solution of that equation in R.

The priu:m:n.C of this important theorem is simple and quite similar to that of
Theorem 1 in Sec. 2.1 and is left to the student,

Vef:iﬁcation of solutions in Probs. 2-23 proceeds as for ordinary differential
€quations. Problems 24-35 concern partial differential equations that can be

sol?ed like ordinary ones; to help the student with them, we consider two
typical examples.

Find a solution u(x, y) of the partial differential equation Upe — 1 = 0,

Solution. Si -derivatj / 1s i
fion. Since no y-derivatives occur, we can solve this like u" — u = 0. In Sec. 2.2 we would

have obtained ¥ = Ae® + Be-= with constant A
and B. Here A and B i
of ¥, 50 that the answer is may be functlﬂnﬂ

u(x, y) = Aty)e® + B(y)e*

with arbitrary functions A and B, so that we have a great variety of solutions. Check the result

by differentiation. i
Solve the partial differential equation Uy = —U,
Solution. I = = — = (

on. Setting i, = p, we have Dy = =P, pyr’p = -Llnp = -y + &), P = c(x)e ¥ and

by integration with respect to x,

ulx, y) = f(x)e ¥ + g(y) where flx)= f c(x) dx;

here, f(x) and g(y) are arbitrary. e

Problem Set 11.1

1. Prove Fuqdamental Theorem 1 for second-order differential equations in two
and three independent variables.

2. Verify that the functions (6) are solutions of (3),

Verify that the following functions are solutions of Laplace's equation,
3. w= 2xy 4. u = x3 ~ Fyyl So ot m xh = 6x%y% 4y
6. u = e¢*sin y 7. u = sin x sinh y Bo wo= e tan (v/y)

Veirify tfl:lat the following functions are solutions of the wave equation (1) for n suitable
value of ¢,

9w m 5% 4 442 10, w = A" 4 Jy® VLo o= win 20 sin 24
12, w = cos 41 win I w0 = gon ot sin x W = win wer win wy

| 8 by su-
perposition. For a homogeneous linear partial differential equation lhi St
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Verify thut the following functions are salutions of the heat equution (2) for i suitable
vilue of ¢, |

18, u = ¢! ¢os x 16, = ¢ % ¢os x 17, « = ¢~ sin 3x

18, u = ¢~ cos wx 19, u = ¢='% ¢cos 2x 20. u = e~ gin wx

21. Show that u = 1/Vx? + v2 + 22 s a solution of Laplace’s equation (5).

22, Verify that u(x, y) = a In (x* + y?) + b satisfies Laplace’s equation (3) and
determine a and b so that u satisfies the boundary conditions # = 0 on the circle
x? 4 y* = | and u = 5 on the circle x2 + y2 = 9,

23, Show that u(x, 1) = v(x + ¢t) + w(x — ct) is a solution of the wave equation
(1); here, v and w are any twice differentiable functions.

Partial differential equations solvable as ordinary differential equations

If an equation involves derivatives with respect to one variable only, we can solve
it like an ordinary differential equation, treating the other variable (or variables) as
parameters. Find solutions u(x, y) of

24, u, =0 25. u, = 0 26. u,, + 4u =0

27. u,, =0 28. u, + 2yu =0 29. u, = 2xyu

Setting u, = p, solve

30. Uy, = U 3. u, =0 32. uy, +u, =0
Solve the following systems of partial differential equations.

33. u, =0, u, = 0 34. u, =0, Uy, = 0 35. u,, =0, Uy, = 0

Modeling: |
Vibrating String, Wave Equation

As a first important partial differential equation, let us derive the equation
governing small transverse vibrations of an elastic string, such as a violin
string. We stretch the string to length L and fix it at the ends. We then distort
it and at some instant, say, t = 0, we release it and allow it to vibrate. The
problem is to determine the vibrations of the string, that is, to find its de-
flection u(x, ¢) at any point x and at any time ¢ > 0; see Fig. 251.

When deriving a differential equation corresponding to a given physical
problem, we usually have to make simplifying assumptions to ensure that
the resulting equation does not become too complicated. We know this
important fact from our study of ordinary differential equations, and for
partial differential equations the situation is similar.
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L1s possible to sum this series, that is, to write the result in

£ :
orm. For this purpose we use the formula [see (11) Appendix 3,1]

COS iTf"—rar sin'Tilg = 1 i T nar
I I3 : n f (x — c'f)} + sin {2— (x + :-r)}]_

Consequently, we may write (16) in the form

] o0
ulx, t) = — in {27 2
) > 2> B_sin {T(x~ct)}+5123nsin{§l—f~r(x+ct)}

n=1
n=1

These two series are those obtain

— ed b ituti
respectively, for the variable x in t Y substituting x ~ ¢ and x + ct,

he Fourier sine series (13) for f(x). Thus

7 L”(x ) =3lf"x = e + fHx + en) ‘

on the interval () < y < L, and has one-sided

and x = L, which are Zer
1 = L, 0. Under these 1
a solution of (1), satisfying (2)-(4). wond

W™
0 I comml
X

Fig. 254. Odd periodic extension of f(x)

szecond derivatives at x = ()
tions u(x, 1) is established as

and we may then regard u(x, 1) as a

; 3 enerali ion.’ T
that 18, as a solution in a broader seng fized solution,” as it i called,

se. For instance, a triangular initial

ThRepresentation (17) has an interesting ph
! e graph (?f f*x = cp) is obtained from t
atter ct units to the right (Fig. 255). This

ysical interpretation, as follows.
he graph of f*(x) by shifting the
means that f*(x — ct) (¢ > 0)

a closed or finite

EXAMPLE 1

Fig. 255. Interpretation of (17)

represents a wave that is traveling to the right as ¢ increases. Similarly,
f*(x + ct) represents a wave that is traveling to the left, and u(x, 7) 1s the

superposition of these two waves.

Vibrating string if the initial deflection is triangular
Find the solution of the wave equation (1) corresponding to the triangular initial deflection

%x if 0<¢:x<£
flx) = . :
2k

L
I(L‘—I) if E{I{L

and initial velocity zero. (Figure 256 on p. 638 shows f(x) = u(x, 0) at the top.)
Solution. Since g(x) = 0, we have B,* = 0 in (12), and from Example 1 in Sec. 10.5 we see
that the B, are given by (5), Sec. 10.5. Thus (12) takes the form

( f}_'a—k[lSinExr.‘,DSEr —l~sin3—ﬂ- cnsmr+—---
e ) = | eSS TR LT L |

For plotting the graph of the solution we may use u(x, 0) = f(x) and the above interpretation
of the two functions in the representation (17). This leads to the graph shown in Fig. 256. §

Problem Set 11.3

Find the deflection u(x, t) of the vibrating string (length L = m, ends fixed, and
¢2 = T/p = 1) corresponding to zero initial velocity and initial deflection:

1. 0.02 sin x 2. k sin 3x 3. k(sin x — sin 2x)
5. 3r 6 }7
K 4 b ———
40 . T i I
% 3n T X

8. k(m2x — x3)

7. k(mx — x?)

Find the deflection u(x, f) of the vibrating string (length L = 7, ends fixed, =1
if the initial deflection f(x) and the initial velocity g(x) are

10. f = 0, g(x) = 0.1 sin 2x 11. f(x) = 0.1sinx, g(x) = —0.2 sinx
12. f =0, ¢(x) = 0.0lxif 0 = x = %w, g(x) = 0.01(7 — x) if%'rr <X=ET

13. How does doubling the tension affect the pitch of the fundamental tone of a

string?
14. How does the frequency of the fundamental mode of the vibrating string depend
on the length of the string, the tension, and the mass per unit length?




C 26, Assume the external force to be sinusoldal, sny, P = Ap sin wt, Show that

§7* ) Y
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"
2 Plp = A sinwt = 3, k(1) sin

n=l

)

£ - R 7 — 1 | o : = d
x4 %) = Rk = ) : where k (1) = (2A/nm)(1 ~ cos nm) sin wr; consequently k,{l | 0 (n even), an
* ﬁN u (/_—\ o k, = (4}"«/”#) sin wf (n odd). Furthermore, show that substitution of
. - . nmx . . cnr
ulx, t) = E G, (1) sin %Tﬂ into (1) gives G, + AnzGﬂ =0, A, = 7
- 2L v B 2L n=1
B el L \J t=2L/5¢ | |
,.-*-*"'Hr 27. Show that by substituting « and P/p from Prob. 26 into (18) we obtain
s _ ch |
h 1 (x+ 3) \éf*(x' ? G. + A,%G, = %(1 — cos nm) sin wt, A, = Tﬂ |
| > -2l | | t = L/2¢
I il Show that if A % # w?, the solution is
Ltz ~ Lpw(x = 3L _ 2A(1 — cos nm)
: > Pall A - * sin wt.
I\ B | 5 L\_ ) ¢ « 3L 750 G, (1) = B,cos At + B *smn At + . ) @

T
.-_-}.-

28. Determine B, and B * in Prob. 27 so that u satisfies the initial conditions
ulx, 0) = f(x), ux, 0) = 0.
29. Show that in the case of resonance (A, = o),
A

= * si — — (1 - T s wt.
G,(t) = B, cos wt + B * sin wt Py (1 — cos nm)t co

W
\
A

o e

S

L\_/J t=4L/5¢c

| | t=L/c
Lf*(x-L)
=4if*(x+ L)

Fig. 256. Solution u(x, t) in Example 1 for various values of t (right

part of the figure) obtained as the superposition of a wave traveling

to the right (dashed) and a wave traveling to the left (left part of the
figure)

[

30. Show that a problem (1)-(4) with more complicated boundary conditions, say,
u(, 1) = 0, u(L, 1) = h(1), can be reduced to a problem for a new function v
satisfying conditions v(0, t) = v(L, 1) = 0, v(x, 0) = f,(x), v,(x,0) = g,(x) but
a nonhomogeneous wave equation. Hint. Set u = v + W and determine w

suitably.

/8 D’Alembert’s Solution
of the Wave Equation

[t is interesting to note that the solution (17), Sec. 11.3, of the wave equation

15. What is the ratio of the amplitudes of the fundamental mode and the second
overtone in Prob. 7? The ratio a,%/(a,2 + a,® + - - -)? Hint. Use Parseval's
identity in Sec. 10.8.

Find solutions u(x, y) of the following equations by separating variables.

16. u, + u, = 0 l?.uz—uy=0 lB.xux-yuu=0
19. yu, — xu, = 0 20. uy, + uy, =0 2. u, ~ yu, = 0 it u _ 5 0% o8 e L
22. uy + uy =20 + Y 23 uy —u=0 24, x%u,, + 3yt =0 ot ox2’ p

can be immediately obtained by transforming (1) in a suitable way, namely,

Forced vibrations of an elastic string by introducing the new independent variables'

25. Show that forced vibrations of an elastic string are governed by

(18) Uy » oMl f.

(2) o= X 40t Z=x— cl

IWe mention that the general theory of partial differentinl equations provides a syste-

where F(x, 1) in the external force per unit length seting perpendicular to the mitie .Iuy"for finding thix transformation that will simplify the equation. See Ref. (C9] in

ra—
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Our result shows that the two initinl conditions and the boundary condi-
tions determine the solution uniquely.

The solution of the wave equation by the Laplace and Fourier transform
methods will be shown in Secs. 11,13 and 11,14,

Problem Set 11.4

Using (14), sketch a figure (of the type in Fig. 256, Sec. 11.3) of the deflection u(x, 1)
of a vibrating string (length L = 1, ends fixed, ¢ = 1) starting with initial velocity
zero and the following initial deflection f(x), where k is small, say, k = 0.01.

1. f(x) = kx(1 — x) 2. f(x) = k sin 2mx 3. f(x) = kix — x9)

4. f(x) = k(x?2 — x%) 5. f(x) = k sin? mx 6. f(x) = k(x® — x9)

7. Show that ¢ is the speed of the two waves given by (4).

8. If a steel wire 2 meters in length weighs 0.8 nt (about 0.18 Ib) and is stretched

by a tensile force of 200 nt (about 45 1b), what is the corresponding speed ¢ of
transverse waves’?

9. What are the frequencies of the eigenfunctions in Prob. 8?
10. Solve the equation of a string of length L

e 7 e e

moving in an elastic medium (y? = const, proportional to the elasticity coefficient

of the medium), fixed at the ends and subject to initial displacement f(x) and
initial velocity zero.

11. Show that, because of the boundary condition (2) in Sec. 11.3, the function f in
(14) of the present section must be odd and of period 2L.

Using the indicated transformations, solve the following equations.
12. u., —u, =0 (v=x,z2=x4+Yy)

xy yy
13. XUy, = YU, + U, (v =x,2z=xy)
14.um—-2ury+uyy=0(u=x,z=x+y)
15'“xz+2“xy+”yy=ﬂ (v=x,2=x—1Y)
lﬁ.um-t-uxy—Zuyy-—"O 0=x+3.2=2x -~ Y)
17.um—4um+3uw=0 W=x+y,z2=3x+Yy)

Types and normal forms of linear partial differential equations. An equation of the
form

(15) Atty + 2Buy, + Cuyy = F(Xy Yy Uy lgy 1)

is said to be elliptic if AC — A% = 0, parabolie i AC — A" « 0, and hyperbolic if
AC ~ B* < 0, [Here A, B, € may be functions of x and y, and the type of (15) may

e different in different parts of the xy-plane.|

T Laphace's equation uy, + 4, = 0 Iy elliptic,

the heat equation 1, = ¢*u, Iv parabolic,

the wave equation «,, = c*u,, is hyperbolic,

the Tricomi equation yu,, + u, =0 is of mixed type (elliptic in the upper
half-plane and hyperbolic in the lower half-plane).

19, If the equation (15) is hyperbolic, it can be transformed to the normal form
u, = F*, 2, u, u, u,) by setting v = P(x, y), z = V(x, y), where ® = const

and W = const are the solutions y = y(x) of the t=.~.4:1u:enti|:)r11iAy"2 - 2By + C =0
(see Ref. [C9]). Show that in the case of the wave equation (1),

$ = x + ct, ¥ = x — ct.

20. If (15) is parabolic, the substitution v = x, z = ¥(x, y), with ¥ deﬁnefi as i'n
Prob. 19, reduces it to the normal form u, = F*(v, z, u, u,, u,). Verify this
result for the equation u,, + 2u,, + u, = 0.

Fig. 257. Undeformed beam in Problem 21

Vibrations of a beam. It can be shown that the small free vertical vibrations of a
uniform beam (Fig. 257) are governed by the fourth-order equation

(16) — +c2— =0 (Ref. [C9].)

where ¢2 = El/pA (E = Young's modulus of elasticity, I = moment of i‘nertfa_ of
the cross section with respect to the y-axis in the figure, p = density,
A = cross-sectional area).

21. Substituting # = F(x)G(y) into (16) and separating variables, show that
FOIF = —Glc2G = B* = const,
F(x) = A cos Bx + B sin Bx + C cosh Bx + D sinh j3x,
G(t) = a cos c¢B% + b sin cp?t.

22. Find solutions u,, = F,(x)G, (1) of (16) corresponding to zero initial velocity and
satisfying the boundary conditions (see Fig. 258)
u(0, t) = 0, u(L, t) = 0 (ends simply supported for all times 1),
U0, ) = 05 e, (L, ) = 0 (zero moments, hence zero curvature, at the ends).




Problem Set 11.5 |

Lo Sketeh wy, uy, ug [see (9), with B = 1, ¢ = I, L = o] as functions of v for the
values ¢ = 0, 1, 2, 3. Compare the behavior of these functions,

14, Find the tempernture in the bar in Prob 131 the left end is kept at temperature
zero, the right end is perfectly insulated, and the initial temperature iy
Uy - CONNT.

Find the temperature in 'lhl: bar in Prob. 13if L = o, ¢ = 1, and

2. How does the rate of decay of (9) for fixed n depend on the specific heat, the 15, f(x) = | 16. f(x) = x

17, f(x) = 0.5 cos 2x 18. f(x) = x?
19, f(x) = xif0<x<dm f)=7m-xifgn<x<m
20, f(x) = 1if0<x<dm flx)=0ifgmn<x<m

2. ) = xif0<x<im f)=0ifgr<x<m

density, and the thermal conductivity of the material?

3. Ifthe first eigenfunction (9) of the bar decreases to half its value within 10 seconds,
what is the value of the diffusivity?

Find the temperature u(x, 7) in a bar of silver (length 10 ¢m, constant cross section
| of area 1 cm?, density 10.6 gm/cm?, thermal conductivity 1.04 cal/em sec °C, specific

heat 0.056 cal/gm °C) that is perfectly insulated laterally, whose ends are kept at
temperature 0°C and whose initial temperature (in °C) is f(x), where

22. Consider the bar in Probs. 4-10. Assume that the ends are kept at 100°C for a
long time. Then at some instant, say, at t = 0, the temperature at x = L is

i | 4. f(x) = sin 0.4mx 5. f(x) = ksin 0.1mx suddenly changed to 0°C and kept at this value, while the temperature at x = 0
‘ 6. f(x) = xif 0 < x < 5 and 0 otherwise is kept at 100°C. What are the temperatures in the middle of the bar at t = 1,

| 7. f(x) =5 — [x — 5] 8. f(x) = 0.1x(100 — x2) 2,3, 10, 50 sec? | |
9. f(x) = 0.01x(10 — x) . (Radiation at end of bar) Consider a laterally insulated bar of length 7 and such

) = xi X - . that ¢ = 1 in (1), whose left end is kept at 0°C and whose right end radiates
1 10 i(;‘){ x.n:f]% b .x <235, 1) =25if25<x <75, fx) = 10 = x if freely into air of constant temperature 0°C. Physical information: The “‘radiation

I boundary condition’ 1s

| 11. Suppose that a bar satisfies the assumptions in the text and that its ends are kept
at different constant temperatures #(0, ) = U, and u(L,t) = U,. Find the

temperature u,(x) in the bar after a long time (theoretically: as t — ).

—u (m, 1) = klu(m, 1) — ugl,

12. In Prob. 11, let the initial temperature be u(x, 0) = f(x). Show that the tem-

perature for any time ¢ > 01is u(x, ) = wu;(x) + wu,(x, 1) with u, as before and

where u, = 0 is the temperature of the surrounding air and k is a constant, say,
k = 1 for simplicity. Show that a solution satisfying these boundary conditions

— 12 — —
u, C Ne

is u(x, t) = sin px e~ Pt where p is a solution of tan pm = —p. Show graphically
yy = i B i nwx o—(enmiLyt that this ec}uation‘has infinitely mlany positive solutions p,, py, p3, * = - , Where
e L ’ p, >n — gand lim (p, —n + 3) =0.
where o : .
| 5 ek i . (Nonhomogeneous heat equation) Consider the problem consisting of
B, = E‘£ [f(x) = wu,(x)] sdex

— — . —

13.

L
| 2
‘nf f) sin T dx + = (= D"V, = U]

I

B~

(Insulated ends, adiabatic boundary conditions) Find the temperature u(x, t) in a
bar of length L that is perfectly insulated, also at the ends at x = 0 and x = L,

assuming that u(x, 0) = f(x). Physical information: The flux of heat through the
faces at the ends is proportional to the values of du/dx there. Show that this

situation corresponds to the conditions

40,0 =0, u(L,t)=0, ulx 0 = fx).

Show that the method of separating variables yields the solution

and conditions (2), (3). Here the term on the right may represent loss of heat
due to radioactive decay in the bar. Show that this problem may be reduced to
a problem for the homogeneous equation by setting u(x, 1) = v(x, t) + w(x) and
determining w(x) so that v satisfies the homogeneous equation and the conditions
0(0, 1) = oL, t) = 0, v(x, 0) = f(x) — wx).

. (Radiation) If the bar in the text is free to radiate into the surrounding medium

kept at temperature zero, the equation becomes
e B
v, = c*v,, — Pu.

.2

Show that this equation can be reduced to the form (1) by setting
uix, 1) = ulx, )w(t).

[ ¢}
Ux, 1) = Ay + S A, cos = o= tonmf Consider v, = ¢, = v(0 < x< L, t >0), 00, 1) = 0, (L, ) = 0, v(x, 0) =
nel L f(x), where the term — v corresponds to heat transfer to the surrounding medium

where, by (2) in Sec. 10.5,

[ b L
A_u-z_t‘.f(.ﬂdx, An-%lm.)cm%'ﬁdx. el

kept at temperature zero. Reduce the equation by setting vlx, 1) = u(x, Hwr)
with w such that w is given by (10), (11),

27, (Ment flux) What is the heat flux ¢(n = = Ku, (0, 1) neross x = 0 for the solution
(10)? Note that ¢(r) == 0 ax 1 < @ Is this physically understandable?

! "."I m ! I',h'l‘. i ¥ 1L







6, Show that u, = r" cos no, 4, = M yin 1o, n = Oy 1y ooy are wolutions of with arbitrary A, and
Vi = 0 with Y24 given by (4), ’
7. Assuming that termwise differentintion is permissible, show that a solution A, = Ty

of the Laplace equation in the disk R « | sntisfying the boundary condition
u(R, 0) = [(0) ([ given) is

" 2 m
i 10
| 1@cosnodo, B, = f 140y sin 0 do

27. Show that (9), Sec. 9.4, imposes on f(0) in Prob. 26 the condition

m— el —

n=1 W AN | -

usually called a "‘compatibility condition." |
28. (Neumann problem) Solve V2u = 0 in the annulus 1 < r < 3 if u(l, 6)
u (3, 0 = 0.

where a,, b, are the Fourier coefficients of f (see Sec. 10.3).

Electrostatic potential. Steady-state heat problems. The electrostatic potential «
satisfies Laplace’s equation V2y = 0 in any region free of charges. Also, the
heat equation u, = ¢2V2y (see Sec. I1.5) reduces to Laplace's equation if the

temperature « is independent of time (*“‘steady-state case’’). Find the electrostatic .
potential (equivalently: the steady-state temperature distribution) in the disk | C i rc u Ia r M e m b ra n e .
r < 1 corresponding to the following boundary values.

8. u(6) = 10 cos? o 9. u(d) = 40 sin® o Use of Fourier—Bessel Series

= PR 6 o e B S { " ?f =$obirs Circular membranes occur in drums, pumps, micmphonies, te:lephones, and

e . palaitsl so on, and this accounts for their great importance in engineering. Whenever

if —m/2 < 6 < m2 a circ;ular membrane i1s plane and its materiz}l is elastic, but _offet_'s no re-

sistance to bending (this excludes thin metallic mtembrahnes!), its v1brat1(_ms

are governed by the two-dimensional wave equation (3'), Sec. 11.7, _whlc_h

14. u(0) = 62 (—-wr <6< 15. u() = 16| (-7w <0< ) we now write in polar coordinates defined by x = r cos 6, y = r sin 6 in
the form [see (4) in the last section]

I 0 if —72 <0< w2 4]
| 12. u(0) = -« ' 13. u(9) = {
7 — 0 if #2<@<3gn 0 if #R2<6<3n2

16. Find a formula for the potential u on the x-axis in Prob. 15. Use the first four
terms of this series for computing u at x = —0.75, -0.5, —0.25. 0, 0.25, 0.5, o2y
. = =l
0.75 (two decimals). F = C (
17. Find a formula for the potential u on the y-axis in Prob. 15,

I18. Find the electrostatic potential in the semidisk r < 1,0 < 6 < 7, which is equal
to 1106(m — 6) on the semicircle r = 1 and 0 on the segment —1 < x < 1.

19. Find the steady-state temperature « in a semicircular thin plate r < a, 0 < ¢ <
ar, If the semicircle r = g is kept at constant temperature uy and the bounding
segment —a <x < aiskeptatu = 0. (Use separation of variables.) T TRk o % :

20. (Laplacian in cylindrical coordinates) Show that the Laplacian in cylindrical co- (1) 6‘.'2 = 2 (—g + —-—*)
ordinates r, 6, z defined by x = rcos 6,y = rsin 8,z = zis ot or* ror/

92U 1 du 1 92u
e T T g |
art  roar  r2 96

Figure 272 shows our membrane of radius R, for which we shall determine
solutions u(r, t) that are radially symmetric,? that is, do not depend on 6.

Then the wave equation reduces to

1 1
Viu = u_ + g 3 gy T Uy,
Express V2u = u_ + u,, in terms of the coordinates x*, y* given by
21. x* = gx + b, y¥=cy +d 22, x* = x 4y, yH=x =y
23. x* = x2, y* = y2 24, XM= 1/x, y* = 1/y
25. x* = x cos @ — y sin a, y* = xsina + y cos o (“rotation through «'")

| 26. (Neumann problem) Show that the solution of the Neumann problem V4 « 0
| if r < R, u,(R, 6) = £(0) (n the outer normal) is Fig. 272, Clroular membrane

]
u(r, ) = A 3} g.ﬂm‘._gﬂ ni I!H‘. )
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Partial sums of these series can now be used fur-uumputlnu-upprux_lmm Values of the potentinl,
Also 1t Is interesting to see that far away from the sphere (he potentinl s approximately that
of & point charge, namely, 55/r. (Compare with Example ¥ in Sec. 8.9.) ifi

Problem Set 11.12

li

Verify by substitution that u,(r, @) and ut(r, ¢), n = 0, 1, 2, in (8%) are solutions
of (2).

Find the surfaces on which the functions Uy, Uy, Ug Are Zero.

. Sketch the functions P _(cos ¢) for n = 0, 1, 2, [see (117), Sec. 5.3].
. Sketch the functions P,(cos ¢) and P,(cos ¢).

Let r, 6, ¢ be the spherical coordinates used in the text. Find the potential in the

interior of the sphere R = 1, assuming that there are no charges in the interior and
the potential on the surface is f(¢), where

3.
8.
10.
11.

i2.
13.

14.
15.

16.

17.

18.
19.

20.

fle) =1 6. f(¢d) = cos ¢
fl9) =1 — cos? ¢ 9. f(¢) = cos? ¢
f(¢) = cos 3¢ + 3 cos ¢

f(¢) = 10cos® ¢ — 3cos?2¢p — Scos ¢ — 1

7. f(d) = cos 2¢

Show that in Prob. 5, the potential exterior to the sphere is the same as that of
a point charge at the origin.

Sketch the intersections of the equipotential surfaces in Prob. 6 with the
xz-plane.

Find the potential exterior to the sphere in Probs. 5-11.
Derive the values of Ay, Ay, Ay, Ay in Example 1 from (13).

In Example 1, sketch the sum of the three explicitly given terms for r = | and
see how well this sum approximates the given boundary function.

Find the temperature in a homogeneous ball of radius 1 if its lower boundary
hemisphere is kept at 0°C and its upper at 20°C.

Show that P, ,(x) = P, _,(x) = 2n + )P, (x). (Use Prob. 8, Sec. 5.3.)

Show that [ 01 P,(x)dx =[P, _,(0) — P ()21 + 1). (Use Prob. 18 and Prob.
12, Sec. 5.3.) Using this, verify Ay, Ay, A; in Example | and compute Ag.

(Transmission line equations) Consider a long cable or telephone wire (Fig, 279)
that is imperfectly insulated so that leaks occur along the entire length of the
cable. The source § of the current i(x, 1) in the cable is at v = 0, the receiving
end T at x = [. The current flows from S to 7. through the load, and returny to
the ground. Let the constants R, L, C, and G denote the resistance, inductance,

onductinee o ground,

' unit length. Show that

S Rl + L g (Kirst transmission line equation)
dx dt

to a small portion of the cable between x and x + Ax (difference of the potentials

where u(x, 1) is the potential in the cable. Hint. Apply Kirchhoff’s voltage law ‘
at x and x + Ax = resistive drop + inductive drop).

21. Show that for the cable in Prob. 20,

di au
e C—
o Gu + v

(Second transmission line equation).

Hint. Use Kirchhoff’s current law (difference of the currents at x and x + Ax =
loss due to leakage to ground + capacitive loss).

x=1

Fig. 279. Transmission line

22. Show that elimination of i or # from the transmission line equations leads to

u, = LCu, + (RC + GL)u, + RGu,

rx

i = LCi, + (RC + GL)i, + RGi.

L

23. (Telegraph equations) For a submarine cable, G is negligible and the freql_lencies
are low. Show that this leads to the so-called submarine cable equations or

telegraph equations

u, = RCu, i, = RCi,

Ix

24. Find the potential in a submarine cable with ends (x = 0, x = /) grounded and
initial voltage distribution U, = const.

25. (High-frequency line equations) Show that in the case of ‘alternating current_s.of
high frequencies the equations in Prob. 22 can be approximated by the so-called

high-frequency line equations

Uy = LCu,, [y = LCiy.

Solve the first of them, assuming that the initial potential is U, sin (mx/l),
u,(x, 0) = 0and w = 0at the ends x = 0 and x = [ for all ¢.




W= 0.

. ahw : W
SAW - o Hi thuy %Pi’ -

Since this equation containg only a derivative |
with respect to x, It may be regarded as an
ordinary differential equation for Wy, §) considered as n function of x, A general solution fs

=5

(9) W(x, 5) = A(s)e™C 4 B(g)e M,

From (6) we obtain, writing F(s) = %{f(n},
W, s) = ZE{w(0, )} = L{f(1)} = F(s)

o0 00

lim W(x, s) = lim f e Shwix. t :f -5t e
A in Tmea s [ a0 g

Th1s implies Ags) = 01in (9) be;ause ¢ > 0, so that for every fixed positive s the function ¢%/¢
Increases as x increases. Note that we may assume s > 0 since a Laplace transform generally
exists for all s greater than some fixed y (Sec. 6.2). Hence we have

W(0, 5) = B(s) = F(s),
so that (9) becomes
Wi(x, s) = F(s)e™s%e,

From the second shifting theorem (Sec. 6.3) with @ = x/c we obtain the inverse transform

(10) wix, t) = f(: = J—r) u(r — f) (Fig, 281),

C '

that is,

ol X . X X
w{x,f)~—sm(f—;) if E{f{;+2w or ct>x>(t — 2mc
anfl Zero ﬂth:t:rwise. This iﬁs a single sine wave traveling to the right with speed ¢, Note that a
point x remains _at rest until # = x/c, the time needed to reach that x if one starts at 1 = 0 (start
of the motion of the left end) and travels with speed ¢. The result agrees with our. physical

intuition. Since we proceeded formally, we must veri | ' '
: , we erify that (10) satisfies the - it
We leave this to the student. } _tn C“"d"-m“ﬁl-

(t=0)]|

t=2m|__ /L
T

21e

(t=4dm) | \/\ -

(0w 6m) | 1 Q
X

Flg. 201, Traveling wave in Example 2

Problem Set 11.13

1. Sketch a figure similar to Fig. 281 if ¢ = 1 and fis “triangular’ as in Example
1, Sec. 11.3, with k = L2 = |,

2. How does the speed of the wave in Example 2 depend on the tension and the
mass of the string?

3. Verify the solution in Example 2. What traveling wave do we obtain in Example
2 if we impose a (nonterminating) sinusoidal motion of the left end starting at

;= (7

Solve by Laplace transforms:

d
4, iﬂi - 2x—“= 2x, u(x,0) = 1, u(0, 1) =1
0x ot
dit du . _ .
S'IE+E=II’M(x’0) =0ifx=0,u0,r)=0ift = 0.

6. Solve Prob. 5 by another method.

Find the temperature w(x, t) in a semi-infinite laterally insulated bar extending from
x = 0 along the x-axis to oo, assuming that the initial temperature is 0, wix, 1) — 0
as x — oo for every fixed t = 0, and w(0, 1) = f(#). Proceed as follows.

7. Set up the model and show that the Laplace transform leads to

32w
sW(ix, s) = (:2-51_—2 , W = $£{w},
and
W(x, s) = F(s)e™ Vs, F = %{f}.

8. Applying the convolution theorem in Prob. 7, show that

t
il By = f/_ f Ft — T)r- Yo~ g,
0

cvV T

9. Let w(0, 1) = f(1) = u(t) (Sec. 6.3). Denote the corresponding w, W, and F by
Wy, Wy and F. Show that then in Prob. 8,

t
X 2 X
R e ' 2cV1

with the error function erf as defined in Problem Set 11.6.
10. (Duhamel’s formula'#) Show that in Prob. 9,

W ) — le-—"&f’gﬂc

and the convolution theorem gives Duhamel’s formula

{
wix, t) = ff(! - 'r)%—f_“dv.
0

WIHAN MARIE CONSTANT DUHAMEL (1797--1872), French mithematician,
k : i

1
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E% =~ 8,5, 36,28, 2.3 .

7. F = _11"2 — 4 1cosx — ..Il. y 2 1 " (-l N1 =
3 4 C(Jb x + 9 cob 3x e I T -|+| N+ ﬁd' .I |l|
E* ~ 4.14, 1.00, 0.38, 0.18, 0.10 i
2 . 1 . 2 ] 2
9. F=—g + = ) i g o 2=
- in x 231n2x gwsm_’,x 4sm4x+25ﬂ_sin5x e 0 0 i

3
4 | 4 | 4
P I e | L. 4 .
iz " [wz TiT8e 6 Tt ] 1311, 0,528,
0.509, 0.313, 0.311
15. Use the Fourier series cos® x = § cos x + 1 cos 3x.

PROBLEM SET 10.9, page 605

2 =T 2 . 2
9. —-f *(I -F) sin W + — cos w] Lo wxa'w

W W

11.

L

2 m'_ = .

_J‘ a51naw+cosaw—1
T 4 w we

} COS xw dw

2 (P coswp °°
13.,4*;! T W= w>0), f@ = [ e cos wx dw
0

oo

15. f(ax) = f A(w) cos axw dw = f A(E) COS xp c_ig, where wa = p
) b \a a '

If we write again w instead of p, the result follows.
. - d?A 3
17. Differentiating (10) we have o el = _L- T*(v) cos wo dv, f*(v) = v2f(v), and

the result follows.

PROBLEM SET 10.10, page 610

1. V2/m (sin 2w — 2 sin w)/w 3. V27 (aw sin aw + cos aw -~ 1)/ wh
7. e~ \Vq/2

9. V2w [(2 — w?) cos w + 2wsinw — 2]/w3
1. VaRif0<w<a, 0ifw>mn

13. V7/2 cos w if |w| < /2, 0 if |w| > a/2

17. Vw2 e~% cos w 19. No

PROBLEM SET 10.11, page 618

1. 1/(1 + i)V 27 | 3. V2Imr (2 — w)"lsin (2 — w)
5. [—1 + (1 + iaw)e~iaw)/w2\/ 21 7. iV2im(cos w — 1)lw

. ™ |
19.-!' llnx—Esln2x+-sm3x+lsm5x—Esinﬁx--k*--)

nw 2 3 9 6

m 4 1 |

p= - - + —cos Sx + ¢
21 5 w(cosx+9c053x 2Scmzs X + )
23, —sl +ls'n2x—lsin3x+lsin4x—+---

. nx 21 - X
25 B S +lcos3 +i<:055x+~-*

T cos 9 & 25 ‘

I/ 1 1
27'%_-Trcosx_FCDSZ‘K+_—_3.3:;1-CO33$+ECDS4I—'“

8 [ . l 1 .
29.T—T(Sinx+§§51n3x+5—3~sm$x+---)

31. — (sin mx + L sin 37x + lS'ﬂ'x o )

T 3 5
4 /. 7 1 .. L . 3w
33.;(sm2x—251n1rx+3sm2x--+ )
1 2 1 1 /. |
35. - — — (cosmx + —cos3mx + -] — —(sinmx — -sin2mx + — - -
4 72 9 ™ 2
4 1 2 ; |
37, —— (cosmx + =cos3mx + +--| + —|2smnmx — —sin2wx + — ¢
e 9 T 2
39. —% + % (cus mX — %cos 2mx + %cos?nrx - 4+ )
2 ( . . )
+ —|sinmx — =sin2mx + — - - -
T %
41. w/4 43. m3/32 47. 5.168,0.075, 0.075, 0.012, 0.012, 0.004
. 2 1 1
— : et i —_ 4 s
49. y = C,cos wt + C, sin wt + Do o — 1 cost + Ho? — ) cos 2t
PROBLEM SET 11.1, page 628
25. u = f(x) 27. u, = f(y), u = xf(y) + gy)
29, u = c(y)e*’“zy 31. u = v(x) + w(y)
33, u = ¢ = const * 35. u = cx + g(y)
PROBLEM SET 11.3, page 637
1. u = 0.02 cos ¢ sin x 3. u = k(cos t sin x — cos 2t sin 2x)
4 (1 . 1 . 1 . |
Nl = 5_11- (Z cos 2t sin 2x 6 cos 6f sin 6x + 100@05 10t sin 10x + )
8k ’ 1 : 1 .
T W= — cnsrsmx+—30053rsm3x+—30055r51n5x+---
s 3 5




O, 1w 12K| (55 = 5= con fainx + (55 = == ) con 3t aln e o oo ' 2 Ay R ON <o |
a (WL in el N M &%
1w o= 01 sin oy (cos r 2 8in 0 18, 27, 960/ = 0.9986 | R [ f NN A, - _LJ’ 703) oos A2 gy
17, u = Ke®=*w 19, w = kexplex® + y%] 0" 24 " 2. 24
21. u = ky®e®™ 23, u = kexp (ex + y/e) - L
Pl 39, um 3 A connx eV, A, = = f f(x) dx,
m
n= 0
2 o 11
A, = —J f(x).connxidx, n =], 2,
PROBLEM SET 11.4, page 642 LB
9. 17.5n cycles/sec 13. u = f;(x)+ fa(xy)
15. u = xfy(x — y) + frlx — ) 17, u = f,(x +y) + S5 43 PROBLEM SET 11.6, page 660
8.2 m\% . mx | 3m\° . 3mx (b-)lr (b + )
23_1- H: = ?‘ (C_OS C(E) I sin I -+ ?3' COS C(T) I S1n T '+ L ') 7' L\/_ eﬁwﬂ dH’ o 'IV__ E,_—w?- dW
' _ = T “(a—x)r T ~(a+x)r
25. u(0,0 =0, u(L, ) = 0, u,0,1) =0, u(L,1) =0 2 2 1
27. BL =~ 3m, 3m, %m, - - - (more exactly 4.730, 7.853, 10.996, + + 1) 11. A(p) = T L B(p) =0, u = ;J’ = pzc{}s_px e~ Pt dp
29, BL = L=, 37, 37, - - - (more exactly 1.875, 4,694, 7.855, + + 1) 0
o1 2 .
13. A(p) = - amp! B(p) =0, u = —f el cos px e~ ¢ Pt dp
i 3 0 p |
PROBLEM SET 11.5, page 654
3. A2 = (In 2)/10, ¢ = 0.00702L7
q PROBLEM SET 11.8, page 671
8. u = $in0. Lmx g~ >0 4100 pag
40 / st L. T 1. ¢ increases and so does the frequency.
bl = 2 (sm S §sm Ll e f) 5. ¢ V260 (corresponding eigenfunctions F4,16= F16.14)" ete.
_ _ - 24-2Y — () o 2/p2 —
g8 /[ . S oA ) 7. A = ab, b = Ala, (ma™2 + na?A=2%)' = 0 gives a?/b®> = m/n.
— iy j : T = 0.3 : @M e s
9. u - (Sln 0.1mx e i 33 sin 0.3mx ¢ | 9, £,(x) = 20dx — ), £,03) = 2y — 32
11. Since the temperatures at the ends are kept constant, the temperntire ¥ 11. B, = (= 1)™*"*8/mnm (n odd), 0 (n even)
approach a steady-state (time-independent) distribution «;(x) un [+ &, § 13. 4(cos mal2 — (— 1)™)(cos nml2 — (= ))mnm?
u, = U, + (U, — Upx/L, the solution of (1) with du/at = O satiafying | 15 B = (—])mtngp 5
boundary conditions. + By, = (=)™ ablmnm )
— —  — n —_— — m
15. u = 1 17. u = 0.5 cos 2x e~ 17. B,,, = 4[1 — (= 1) (b3+3 DI = (= 1)™a + Dlmnnm
man 144a°h B _ . -
19. u = % _8 (:11. cos 2x =% + El@ms G ¢~ 36t £ ., ) 19. B, ., = (—1)"* 33t 21. u = k cos V5t sin 7x sin 2y
w
= o) 1 | 2 23. u = k cos 5wt sin 37x sin 4y
2l.u=—+ (1 —-=)cosxet — —cos2xe ¥ ~ (— + --) cos dy e 4§
8 T T 3 9m '
K o
25 w = Bt 2. - ._L"I 3 nB, e=h PROBLEM SET 11.9, page 673
s . 9. u = 30r sin @ — 103 sin 36
29. 2.57, 0.52, 0.10°C 31, u = (sin §mx sinh §oy)/sink w 400 / ¥ |
, — : = R =75 & C
80 I . (2n = Dmx sinh [2n ~ 1)ry/24] 11, u = - (r sin 6 + 3/ sin 36 + g7 sin 56 + )
3. u = — sin :
oy o = 24 sinh 2n ~ mr 9 f o ™ 5 .
13. u = —rsin@ + -r?sin20 — —r®sin30 — —rtsin46 + - - -
i nrx nm(b — i T 2 9ar 4
; : ( V)
35, u(x,y) = > A, sin . sinh . . A l 1
=l 3 15.u=—--—-—(rcuuf)+~r3c0539+—r5cos.‘59+-t-)
g f f(x) sin S gy “ A =
A a sinh (nabla) J, ﬂ 17, u = m2




Answers to Odd-Numbered Problems App. 2

4 . 1 . 1 )

19, y = -2 £Sln9+—“§r3$1n39+‘—5?‘5311‘153+"')
T \d 3a Sa

21. a®u v + czay.,y,, 23, 4x*u .. + 4y tyun + 2U + 2:4".

25. u + U, 27. Use V2u = 0and u, = u,.

I*I* y*

PROBLEM SET 11.10, page 680

5. T = 6.828pR%f 2, f, the fundamental frequency
9. No

o Jolany)
15. u = 4k L
! m2=1 I:Emz"'rl2(“{:"!1!%)

cos a, 1 Jo(amr)

23. ay 27 = 0.6099 (see Table Al in Appendix 5)

PROBLEM SET 11.11, page 684

3. u = 160/r + 30 5. u = —40In #/(In 2) + 150
17. u = (u; — up)(n r)/In (r/ry) + (ugInry — u; Inry) /n (ry/r,)

PROBLEM SET 11.12, page 690

5. u=1

7. cos2¢p = 2cos2p — 1,2x2 — 1 = 3P,(x) — &, u = 3r2P,(cos ) - |
9. x3 = 2P,(x) + 8P,(x), u = Er3Py(cos ¢) + ErP (cos ¢)

11. u = 4r3P,(cos ¢) — 2r2P,(cos ¢) + rP(cos ¢) — 2

17. This is the analog of Example 1 with 55 replaced by 10.

19. 55(3/8 + 5/16) = 37.8

25. u = U, cos (wt/IN/LC) sin (mx/l)

PROBLEM SET 11.13, page 695

c(s) X
5. Ulx, s) = 5 -+ 5G4 D

wx, ) = x(t — 1+ e
9. Set x%/4c?r = z2, Use z as a new variable of integration, Use erf(w)

U, s) = 0, c(s) = 0,

CHAPTER 11 (REVIEW QUESTIONS AND PROBLEMS), page 70

20, w = A(x) cos 4y + B(x) sin 4y 23, u w A(y)e"® & H(y)e* = 1
28, u = gx)(1 =~ e*¥) + f(x) AT, u = fi(y) + fylx + 3

. ' (TR e | + atd ) o= J.(x *, ) 4 (3N

App. 2 Answers to Odd-Numbered Problems A
200 /. mx 1 3mx
47. = — — 50004572t _ _ i —— ,—0.04115t SR
u 2 (Slﬂ 50 (% 9 Sin 50 € 3 )
49. u = 95 cos 2x e~ ¥ 59. u = 275/r — 27.5

PROBLEM SET 12.1, page 711

3. 32 — 24i 5. —45 + 224 7. —47.2 — 23i 9. —10 ~ 24i
11. 31/50 13. 2xy/(x% + y?) 15, x2 — y2, x2 17. 16

PROBLEM SET 12.2, page 717

3 2.5 5.1 T ] 9. 8/17
11. V2(cos 3 + i sin m) 13. 10(cos 0.927 + i sin 0.927)
15. J(cos 3 + isin 1a) 17. 0.563(cos 0.308 + i sin 0.308)
19. —3.042 21. w/4 23, =2 3 24
25, —0.227 - 0.974i 27. =2 - 2))
29. =1, i, (1 = H/V2 3. (1 + HV2
kr kar
33. V2 — + isin—), k =
(cus T [ sin 12), k=1,9,17
35. 3+ 2,2 —i 37. |z] = Vx% + y2 = |x], etc.
39. Equation (5) holds when z; + z, = 0. Let Zy + 2, # 0 and
¢ =a+ib=z/z + z,). By (19) in Prob. 37, |a| = |c|, |[a — 1| = |e = 1|,
Thus |a| + |a — 1| = |c| + |c — 1. Clearly |a| + |a — 1| = 1. Together we
have the inequality below; multiply by |z, + z,| to get (5).
I=|d +Je—-1]=|—2—| + | L2
Z; T 2y ; t 2y
PROBLEM SET 12.3, page 720
1. Circle, radius 4, center 4i 3. Annulus with center a
5. Vertical infinite strip 7. Right half-plane

9. Region between the two branches of the hyperbola xy = |
11. Circle (x = 17/15)% + y2 = (8/15)2

PROBLEM SET 12.4, page 725

1, 14 + 8, =1 = 2{, 4 = 12{ 30O ~ 130/500, <4, (=2 ~ 11H/1000
5, 20" = Jxy?) = 3y, 20x%y ~ y¥) — 3y

7. [w| =9 9, |org w| = dn/d

11, Re (29)/[e¥ = (2% < y/x? 4 v = 1ify = Ound =1 if x = 0, Ang, No,
13, 6z(e* + NY 18, 20(1 = g)? 17, 0 19, 12
a, -1 A (R






