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demonstrated to be true or false but in their present forms are unsatis- 
factory. 

(3) The hypothesis of Predenhagen, so far as it relates to anodic oxygen 
or an oxygen alloy as the immediate cause of passivity, is not to be recon- 
ciled with facts. 

( 3 )  ?io explanation of the phenomena of passivity e ien approximately 
satisfactor). has yet been produced. Yet, when 
the experimental development warrants it, I confidently expect the cause 
of passivity to be found in an altered state of the u?(atul it.idJ, this altera- 
tion, whatever its character, being produced by tin\’ oiw ( J )  ( I  W I L ) I L ~ V I .  of 
different agencies. 

In conclusion, I wish gratefully to acknowledge my indebtedness to 
Prof. ;\lax LeBlanc, of the University of Leipzig, in whose laboratory 
this research was carried out, for his constant helpful counsel and uniform 
kindness during the progress of the work. I ani also grateful for the 
courtesies and help bestowed by 1)r. Biittger, 1)r.  1:reundlich and n r .  
Drucker, Privat-Dozenten in the TTniversit!.. 
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Many of the investigations of the past few years, on the velocity of 
reactions in gases, haTe been based lipon the determination of the change 
in the composition of the gases while passing through heated tubes. The 
velocity coefficient has then usually been calculated by applying the for- 
mulas derived for reactions taking place in stationary gases. 

Bodenstein and Wolgast‘ recently pointed out that  this method of 
calculation is justifiable only when the gases pass throtigh the tube en- 
tirely without mixing. For those cases where diffusion or convection has 
caused even partial mixing of the gases in the tube, they show that the 
usual method may lead to serious error. They develop formulas which 
hold when the mixing of the gases can be considered complete. 

IfTe have then a t  our disposal, for the calculation of velocity coefficients, 
two formulas, one of which holds when there is no mixing and the other 
when there is complete mixing. The only means, however, for determin- 
ing which of the two formulas will give the most accurate results, in any 
series of experiments, is to calculate the coefficients by  both formulas and 
then to choose that  which gives the “better constant.” That this method 

1 Z .  phys. Chem., 61, 422-436 (1908). 
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is highly unsatisfactory became evident when Bodenstein and Wolgast 
applied their equations to the results obtained by Jellinek on the velocity 
of the reaction 2NO = N, + 0,. In  one series of experiments the co- 
efficients obtained by the new formulas were only very slightly less con- 
stant than those obtained by the old; yet the difference between the con- 
stants given by the two methods was considerable. We can also see the 
difficulty in using this test if we consider that the degree of mixing may be 
different in each of the experiments. 

The object of the present paper is: 
I ,  To obtain criteria of practical value, for deciding, in any experiment, 

which, if either, of the above-mentioned formulas will yield accurate 
results. 

2 .  To determine, theoretically, the magnitude of the error arising from 
the application of the formulas to cases other than the limiting ones for 
which they were especially derived. 

3. To develop formulas from which to calculate the velocity coefficient 
in those cases where .neither of the above-mentioned formulas holds good, 
but where, in the mixing of the gases, diffusion plays a more important 
part than convection. 

I t  will be the object of subsequent papers: 
I .  To find a means of calculating the velocity coefficient when the walls 

of the tube, by acting catalytically, introduce a disturbing factor. 
2. To apply these theoretical results to Jellinek’s’ work on the 

velocity of the reaction 2NO - N, + 0,; to Rowe’s2 work on the 
velocity of combination of hydrogen and oxygen, and to  the work of other 
investigators. 

General Theory of the Effect of Diffusion and Convection. 
Let us consider any reaction : 

n,A, + n,A, + n3A, + n,‘A,’ + n,‘A,‘ + etc. 
We assume that the reverse reaction takes place to a negligible degree 

only. In  accordance with the nomenclature first proposed by van’t 
Hoff let us represent the concentration of n,A, (not AI!) by c1 thus 

Cl = [n,A11 or c1 = [A,I/n,, 
c2 = [n,A,] or c2 = [A,]/n,, etc. 

Let us assume further that  the reaction occurs without change of volume 
or that the volume changes only so slightly as to have a negligible effect. 
The necessity for this restriction is shown by Weg~cheider,~ in a discussion 
of the influence of the changes of volume on the velocity of reactions. 
Applying the law of mass action we have: 

Z. anorg. Ckm. ,  49, 229-276 (1906). 

Ibid., 359513-587 ( I F ) .  
* 2. phys. Chem., 59, 41-71 (1907). 
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For the sake of simplicity we will confine our attention a t  present to 
those cases in which the mixture undergoing the reaction contains equiva- 
lent concentrations of the various constituents A, ,  A,, A,. etc. This will 
not seriousl!. restrict the usefulness of the resulting formulas. The con- 
centrations c,, c?, cg, etc., are then equal and remain equal to each other 
so that we may omit the subscripts. Equation ( I )  thus becomes 

- - - kc", where n = n, + n, $- n, -r . . dc 
dt 
__ 

LVhen the change of concentration in each element of volume is caused 
solely b y  the reaction taking place in that volume, as for instance, in sta- 
tionary homogeneous gas mixtures, we niay integrate equation (2)  directly, 
with the following results : 

a K , t  = log .- for rz = I .  
C O  

(3) 

(4) 

k ,  is the velocity coefficient as calculated for ctclhinwy gases. 
a is the original concentration (at the time t = 0). 

c, is the concentration a t  the time t 
In the case of moving gases we may apply equations (3) and (4), pro- 

vided we consider our element of volume to move along with the gas and 
provided there is no appreciable transfer of the reacting substances, either 
by diffusion or convection, through the bounding surfaces of the moving 
element of volume. The time t must be taken to mean the time required 
for the gas to pass the length of the tube. I t  was the erroneous use of 
equations (3) and (4) to which Hodenstein and Ll'olgast called attention. 

When a gas mixture undergoing a reaction passes, with uniform velocity, 
so slowly through a vessel that  diflusion and convection bring about a 
complete mixing of the constituents, then the concentration c becomes 
constant throughout the vessel and becomes independent of the time. 
In  equation ( z ) ,  d c / d t  must then be taken to mean a partial derivative 
and in the integration we must consider kc" as constant; thus we get : 

(5) u -- C ,  = k,c: t .  
k, is the velocity coefficient as calculated for complete mzxing. 
a is the concentration of the reacting substance in the gas entering the 

c, is the concentration inside the vessel and in the gas leaving the vessel. 
t is the average time which a particle of gas remains in the vessel. If 

v is the volume of gas (in cc.) entering the vessel per second, measured 
at the temperature of the vessel, and V is the volume of the vessel (in 
cc.), then t = V/V. 

Y essel. 
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Equation (5) is essentially the same as those of Bodenstein and Wol- 
gast. We have, in equations ( 3 )  and (4) and in equation (j),  the two 
limiting cases for no mixing and for complete mixing of the gases. When 
a and c, are nearly equal, the two formulas become practically identical, 
but  in other cases i t  becomes very important to decide which formula 
applies most accurately. 

The mixing of the gases is caused by convection currents and by diffu- 
sion. 

The convection currents are produced by the inertia of the stream of 
gas as it enters the vessel. In  such experiments as we shall consider, 
currents set up by differences of temperature are probably never of im- 
portance. The amount of mixing caused by convection will in general 
be approximately proportional to the density (inertia) of the gas and 
inversely proportional to the coefficient of internal friction. The latter 
increases with increasing temperature, approximately with the 2/3 power 
of the absolute temperature, while the density is inversely proportional 
to the absolute temperature. The amount of mixing is therefore, roughly, 
inversely proportional to the 1.7 power of the absolute temperature. At 
1100' C. the mixing would be about 1/13 and at 1600' C. about 1/22 as 
great as a t  ordinary temperatures. 

On the other hand the coefficient of diffusion varies approximately with 
the square of the absolute temperature, so that a t  IIOOO i t  is about 22 

times and a t  1600' about 41 times greater than at ordinary temperatures. 
It is therefore highly prohable that, at very high temperatures, the effect 
of diffusion is much greater than that of convection. 

Of course convection can not well be considered mathematically and i t  
will therefore remain a disturbing factor in all determinations of the 
velocity of reactions by the heated tube method. Care should be taken 
to  design the apparatus so tha t  convection may be avoided as much as 
possible. 

Derivation of Equations. 
Let us consider the problem of determining the effect of diffusion on 

the composition of a reacting gas mixture passing through a tube (Fig. I.) 
of which the portion A-B is heated to a uniform temperature. We assume 
that this heated portion is 

B by thin porous plugs, in 
the pores of which the gases 
move with such high veloc- 

reacting substances carried 

sharply bounded at .4 and A P P' 6 

ity that  the quantity of the 

past these points by diffu- 

-Y- I 

- y + d y 4  
*G:-' 

1 
I 

sion is negligible compared Fig3. 
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to that carried along by the movement of the gas. This condition is 
substantially realized in all esperinients made with heated tubes or 
vessels, for the gas is made to enter and leare the vessel through capillar!. 
tubes, in which the velocity is so g r a t  :LS to rencler the eifect of diffusion in 
these tubes entirely insignificant. 

lye now assume that there is no mixing h y  convection; that is, kve con- 
sider that all the parts of the gas more through the tube with the same 
uniform velocity, which we will designate by ,v. 

Let us now consider the changes of concentration of one of the reacting 
substances A,  a t  a cross-section 1’ which moves along with the gas (with 
the velocity s ) .  The total change in concentration dc is equal to the siim 
of the changes caused by time and inotioii reslmtively. 

Thus, 
ac ac 
at aY 

dc = dt -t d y ,  

but  d y l d t  = s, therefore d y  = sd t ;  and a c l a f ,  the time rate of change of 
the concentration a t  any fixed cross-section of the tube, is zero, since a 
stationary condition is assumed to prevail. ’I‘he equation thus redtices to 

dc ac  
dt  aY * 

7- s 

In the element of volume bounded by I’ and P’ the number of mols 
of reacting substance (nA) which disappear by the reaction in the time 
dt is according to ( I )  : qdydtkc,“lc,“? . . . . where q is the area of the cross- 
section of the tube. 

Through the plane P,  according to Fick’s law, the following number of 
niols of nX enter the element of volume: 

-Dq dt a c / a y .  
Here D is the diffusion coefficient of the gas ;I. Through the section 

P’ the following amount of n A  leaves the element of Arolume; 

The total increase in nAl in the time dt is therefore: 

q d y  dt (D  :;2 - kclnlc/’ . . 
Hence, 

(7)  

Combining this with (6) we have: 

k, will be used to indicate the velocity coefficient calculated by con- 
sidering diftuszon but by neglecting convection. 
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We get one such equation for each of the reacting substances A,, A,, A,, 
etc. In  order to simplify matters we are now compelled to consider 
only those cases in which we have equivalent quantities of the reacting 
substances. The equation (8) now becomes: 

( 9 )  

If there is only one reacting substance or if the different substances 
have diffusion coefficients nearly equal, the set of simultaneous equations 
reduces to a single one. In  many cases these conditions are fulfilled; in 
others we shall have to remain content with an approximation obtained 
by calculating the results as though all the 'substances had the same 
diffusion coefficient D. 

When 
the order of the reaction is higher than the first, let us be content for the 
present with approximate results; we shall see, however, that these will be 
very close approximations if diffusion is sufficiently active to make the 
difference of the concentrations, between the ends A and B of the tube, 
relatively small. We may thus put c = co + x where c, is the con- 
centration a t  the section B and x is a quantity small compared to c, 
in those cases where n> I. 

Equation (9) can only be integrated, as it  stands, when n = I. 

With sufficient accuracy we may write: 

Substituting this in (9) we obtain: 
(10) C" = (c, + x)" = c,n-yco + nx). 

d'x d x  D - - s - - ~ c , " - - I ( c , +  nx) = 0. 
dYZ dY 

This is a linear differential equation with constant coefficients and can 
We then be solved in the usual way by substituting em? for c, + fix. 

find for the coniplete solution : 
c, + nx = B,emlY + B,em*Y, 

where B, and B, are constants of integration and m, and m2 are found 
from the following equation by taking the + and the - signs respectively 

(12) 

s f . \ i ~ ~ + 4 D n k ~ c , " - ~  
zD m - -  

In  order to determine the constants B, and B, we must take into account 
the relation existing between the diffusion coefficient, concentration, and 
velocity of the moving gas and the quantity (Q)  of reacting substance 
which passes any cross-section of the tube in a given time. This relation 
may easily be expressed in the form of the following equation: 

At a cross-section through the tube near the porous plug R ( y  = I,) the 
concentration is c, and the amount of reacting substances passing this 
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cross-section is equal to  that  escaping from the tube through the porous 
plug B ;  in other words dQld t  = c,qs. \Ye thus find by consideration of 
(14) that for y = I,, d c l d y  = 0. But c = c, + x ;  hence from (12) follows: 

By substituting dc/'dy = o and y = I, in (15) we get one of the two 

(16) 
The other equation may be obtained by substituting y = L in ( 1 2 ) ;  

equations needed to determine B, and B2 : 
B1m,emIL + Bzmsem2L = 0. 

x then becomes zero by equation ( I O ) ,  and we have: 

(17)  co = B,e"lL f B2c?'%L. 
Solving the simultaneous equations (16) and ( I  7) we find : 

Our next step is to find the concentrations prevailing a t  the end A of the 
tube. At the porous plug -1 the concentration will be discontinuous, 
that  is, there will be a finite difi'erence of concentration between the two 
sides of the plug no matter how thin the plug may be. Let n be the con- 
centration of the reacting substances in the gas before passing the plug 
A, and a, the concentration just after passing it. On the side of the plug 
A facing B we ha\-e y = o and c = a,, or x = ul - c,. Substituting 
these values in ( I  2 )  we get : 

(19) nu, - (n - I ) C ,  = R, t B,. 
Although c is a discontinuous function of y a t  the point A, this is not 

the case with dQld t ,  for none of the reacting substance disappears within 
the porous plug A. To the left of the plug, dQ/dt  is equal to uqs, while to 
the right of the plug i t  is a l p  - Dq dc ldy .  Equating these two values 
and substituting for d c l d y  its value obtained from (15) b y  putting y = 0, 

and by rearranging the terms, we find: 
n s  
D - _  (a  - u,) = B, m, + B,m,. (20) 

To simplify the application of the above formulas we will define three 
numbers,' P, N and M ,  as follows: 

nkDc, Iz -'I, p =  -- N = . - -  -. , M = dPZ + 2 PN. 
2D' S 

(21)  

Then from (13) : 
m,L = P + AI 
m,L = P - 11 (22)  { 

P, S and M have each the dimensions zero 
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By substituting these in (IS) and in turn substituting the new expres- 
sions for B, and B, in (19) and by rearranging the terms we can finally 
make the equation take the form: 

na, - (a - I)C, = kp (P si& M + M cosh M).' Me (23) 

Similarly, from (IS), (zo), (zI), and (22) we obtain: 
c,N sinh M 

M *  n(a - a,) = - ep 
To find the concentration a t  points between the ends A and B, of the 

tube, we make these same substitutions in the equation (12). 
The result is: 

c, + nx = .nc - (n - I )C,  = 
" [ P sirth M (I - y/L) + M cosh M( I - y/I,). ] 

Mep(I-$'/L) 

By adding (23)  and (24) we obtain: 

We shall now consider certain special cases for which equation (26) 
will take very simple forms. 

First Case, Mixiitg Nearly Complete.-Let us consider the case that 
P is small compared to I, so that Pz can be neglected in comparison with 
I. Then M is also small and sinh M can be expanded into a series of 
which we need take only the first two terms: 

si& M = M + M3/6 and cosh M = I + M 2 / z .  
Substitute these in ( 2 6 ) ,  then substitute for M its value in terms of P 

and N from (21). Expand the ep into a power series taking only the first 
three terms. Then divide the numerator of the second member of the 
equation by the denominator and neglect, in the result, terms containing 
P2. Rearrange the terms, substitute for N its value from (21) and put 
I, = s t ,  where f is the time during which the gas particles remain in the 
tube. In  this way we obtain: 

(27)  a - C, = k , ~ , ?  (I ++ NP). 
This equation holds approximately in all cases where +NP is small (less 

than 0. I )  even if vt > I and a is large compared to  c, . For as long as NP 
is small, a, - c, is also small compared to c, , as can readily be shown from 
equation (23);  and therefore ( I O ) ,  upon which ( 2 7 )  is based holds good. 

By combining (5) with ( 2 7 ) ,  remembering that +NP is small compared 
to I, we get: 

(28) b ,  = k , ( ~  - + NP). 
A form sometimes more convenient can be obtained from (28) by sub- 

1 Sinh M (hyperbolic sine of M) is equal to & eM - & e-M; cosh M - &" + &e-". 
(See J. W. Mellor's High Mathematics, Etc., for a table of the hyperbolic functions.) 
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stituting for N and P their values from ( 2 1 ) .  Then by considering that 
k ,  and k ,  differ from each other only slightly and that  I, = st, and by 
combining with (j) we get : 

Second Case, Only Slight AIZixing.-lI'e will now take the case where 
D/s  is so small that there is only slight mixing of the gases in the tube. 
The concentration a,  therefore, will differ only little from a so that  if a is 
large compared to c, the equation ( 2 6 )  will not hold except when n = I .  

Hence we can best treat the case before us by going back to the original 
differential equation (9 ) .  Since D is small we can, without serious error, 
substitute for d?c/dy2 an approximate value obtained as follows. Put  
D = o in (9) ; this gives us a sufficiently accurate value for dcldy .  By dif- 
ferentiation we get : 

nkDc'l-l d c 
- 

d3c 
dy2 -- s dy' 

Substitute this in (9) : 
Dnk, dc dc 

s c  C'L 
_ _ _ -  + S  - = : - k  d Y* ( 30) 

This equation holds between the porous plugs A and €3, but  since c is 

k ,  can be calculated from (30) by placing D = 0 :  

discontinuous at A, i t  does not apply a t  A itself. 

d c  
C" 

s =  - ksdy. 

Subtract this from (30) : 
Dnk, d c  

s c  
( k , - k s ) d y  = , 

Since k ,  - k ,  is small we can substitute k ,  for k ,  in the second 
We now integrate: member, making an error of the second order only. 

for y between the limits o and I,, and for c between the limits a,  and c,. 
a Dnk, 

( k , -  k,)L = __ S log -1, co 

a ,  differs from a by a small quantity of the first order, but in determin- 
ing k,-k, .ne can replace, in the second member, a,  by u and cause a n  
error of the second order only. The equation may now be written : 

Dn k ,  = k ,  ( I  + -- log "). SL c, 
When n = I OF when (I does not differ much from c, equation (31) 

can be shown to be equivalent to : 

This last result can also be obtained from (26) by methods somewhat 
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analogous to  those used in the derivation of ( 2 7 ) ,  making the assumption 
that  D is small and neglecting terms of the second order. 

We see by a consideration of the equations (32), (28) and (21) that I /P is 
a measure of the amount of mixing caused by diffusion. 

When I /P is zero there is no mixing and equation ( 2 6 )  reduces to (3) or 
(4) or a t  least it  does so when the assumption' that was made in its deriva- 
tion, is fulfilled. 

When I /P increases without limit then there is complete mixing and equa- 
tion ( 2 6 )  becomes identical with (j). 

Conclusions and Summary.2 
In order that the formulas which have been derived, may be applied 

by those who have not cared to follow the rather long calculations 
that were necessary, the following pages will be devoted to a brief state- 
ment of the problem which I have attempted to solve and of the results 
obtained. 

We have considered the problem of determining the change of composi- 
tion which will occur in a reacting gas while it passes with uniform velocity 
through a heated tube. mTe have taken into account the effect of diffusion 
and convection on such change of composition. 

The heated portion of the tube is assumed to have a uniform tempera- 
ture and to  be of the same cross-section throughout its length. The gases 
are supposed to enter and leave this heated portion so rapidly that  no 
perceptible reaction takes place except in this sharply defined heated 
region. 

We consider only those cases where the walls of the tube do not act 
catalytically and where the reaction takes place without change of vo l~k ie  
or where the change of density in passing through the tube is small-in 
any case, less than ten per cent. 

If the reaction is of an order higher than the first, that  is, if n > I we as- 
sume : 

I .  That the reacting substances are present in equivalent amounts. 
2 .  That the diffusion coefficients of the different reacting substances 

have the same magnitude. If this should not be the case, then those 
formulas given below which involve the diffusion coefficient D will not 
give accurate results; but in most cases by substituting in the formula first 
the value of the largest diffusion coefficient possessed by any of the sub- 
staiices and then the value of the smallest coefficient, we can obtain 
two results between which the true result must lie. It should be noted 
that the diffusion coefficients of gases do not differ very largely from 
each other. 

This may be done in practice by using capillary tubes. 

This assumption is that when m> I ,  a, differs only little from c,. 
* For the meaning of the symbols used see the list a t  the end of this paper. 
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In the following several paragraphs, are given the formulas of t!ie most 
practical value. 

U 
t,t = log ~ , 

CO 
This holds onlyfor n = I ( 3 )  

This holds for n > I .  

These formulas hold accurately only when diffusion and convection 
do not cause any perceptible mixing of the gases in the tube. 

If it can be safely assumed that convection plays but a small par t  
compared to diffusion-and from the considerations given in the early 
part of this paper (after equation j) this does appear probable-then we 
niay say with certainty that equations (3) and (4) hold accurately 

nD a 
SL c, 

whenever the quantity -~ log is negligibly small compared to I .  

If this quantity is not negligible but  has a value less than 0.1, then 
the following equation gives a very close approximation to the true 
velocity coefficient : 

k , = k s ( l  + - l o g U - ) .  nD 
SL c, 

When diffusion and convection are so active as to cause complete 
mixing of the gases in the tube, the velocity coefficient should be cal- 
culated from the following equation: 

(5) n -c, = Iz,c,"t. 
In order to decide whether the mixing is complete or not, we have 

the following simple criterion. If the quantity - - IS negligible 
6D c, 

compared to I ,  then it is certain that the mixing is so nearly com- 
plete tha t  equation (j) will hold accurately. \.\;hen this quantity is 
not negligible but has a value not exceeding 0.1 then the following is a 
close approximation for the Yelocitv coefficient if convection plays but  a 
small part compared to diffusion: 

nsL a-c, . 

6D c ,  
If we are not able to assume that  the effect of convection is negligible, 

we have, at least, the following to help us to determine the true velocity 
coefficient k :  

(33 )  k S  < kD < k < b M .  
LL'hen convection is negligible K becomes identical with K,. On 

the other hand when convection is much more important than diffusion, 
k approaches k , .  

Equations (31) and (29) should never be applied except when the 
second terms in the parenthesis are numerically less than 0.1 or (for 
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very rough results) 0.2.  In  those cases where both these quantities 
are larger than the numbers given, the coefficient K ,  may be calculated 
with almost any desired degree of accuracy, by a method of approxi- 
mation, from equation (26)' provided that when n > ~  the quantity 
a ,  (calculated from equation 23) differs only by a relatively small amount 
from c, . The details of this calculation will be discussed later in a paper 
which will deal with the application of the formulas here derived. 

The numerical values of the diffusion coefficients of many pairs of 
gases are easily available, for example in Landolt-Bornstein's Tables; 
in all cases, however, the diffusion coefficients may be calculated with 
sufficient accuracy from the coefficients of internal friction.* The order 
of magnitude of all diffusion coefficients is about the same. In  nearly 
all cases, except when one of the gases is hydrogen, the diffusion coeffi- 
cients have values a t  oo C. which lie between 0.09 and 0 . 2  cm.? per second. 
The diffusion coefficient increases rapidly with the temperature, nearly 
in proportion to the square of the absolute temperature. 

In  conclusion, to give a clearer idea of the effect of diffusion on the 
composition of gases passing through heated tubes, I have calculated, 
as an example, a curve (Fig. 2)  giv- 
ing the concentration of the react- 
ing substance in a hypothetical ex- 
periment as a function of the dis- 
tance from A, the end of the tube 
a t  which the gas enters. 

The gas is assumed to enter the 
tube (of I O  cm. length) with the 
concentration a - 22.32 and to have -0 

while in the tube. The reaction is k 
the velocity s = I cm. per second 

taken to be monomolecular and its 
velocity coefficient equal to 0 . 1 .  e 
Three cases are considered : 

I .  Diffusion and convection play 
no par t ;  this gives us the curve S, 
calculated from equation (3). 

2.  Convection is absent, but dif- 
fusion occurs, the value of D being 
taken as  equal to 5.0. Curve D is 
thus calculated froni equations (25)  
and (24). Fig. 2. 

B A - y  

See under the heading Derivation of Equations. 
See 0. E. Meyer, Die Kinetische Theorie der Gase, 2nd Ed., pp. 274.  
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3.  Diffusion and convection cause complete mixing, thus nnking the 
concentration throughout the heated portion of the tube constant. Equa- 
tion (5) here gives us the curve If, 

It  appears, clearly, from the curves that diffusion and convection 
tend to decrease a - c,, that is, they act in a way equivalent to a decrease 
in the velocity of the reaction. 

I.1 \ t  O/ S j w b o l s  and The i r  Meunzngs. 

The numbers in parentheses refer to equations in the text 
(1 = ccsncentration of the reacting substances in the gases before 

entering the heated portion of the tuhe. 
a, = concentration of the reacting stibstances immediately after 

entering the heated portion of the tube. Thus in Fig. I ,  (I, is 
the concentration on the right-hand side of the porous plug A. 
See c. 

c = concentration of the reacting substance inside the heated portion 
of the tube, a t  any distance ?' from the porous plug X, Fig. I .  

All concentrations are to be measured in mols. per unit of volume. 
c, = concentration of the reacting substances in the gases leaving 

the heated portion of the tube. 
k = true velocity coefficient of the reaction. Defined by ( 2 )  when 

this is applied to homogeneous gas mixtures. 
hD = velocity coefficient col~ztluted from ( z G ) ,  (29) ,  (31) or others. 

I t  may be different from k. 
kx = velocity coefficient calculated from ( 5 )  ; it may differ from h. 
hs = velocity coefficient caic?rlnted from ( 3 )  or ( I )  ; i t  may differ from h. 
L = length of heated portion of tube. 
RI = a number defined by ( 2  I ) .  

N = a number defined by (21) .  

n = order of the reaction. See ( 2 ) .  

P = a number defined by ( 2  I )  ; I /P is a measure of the amount of mix- 
ing caused by diffusion. 

s = linear velocity of the gases while passing through the heated 
portion of the tube 

t = time required for the gases to pass the length of the heated por- 
tion of the tube. t = L/s. 

1' = distance measured to the right from the porous plug .4, Fig. I .  

See c 

See c. 
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