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Summary--When a fluid flows through a vessel at a constant rate, either "piston-flow" or perfect mixing is 
usually assumed. In practice, many systems do not conform to either of these assumptions, so that 
calculations based on them may be inaccurate. It is explained how distribution-functions for residence- 
times can be defined and measured for actual systems. Open and packed tubes are discussed as systems 
about which predictions can be made. The use of the distribution-functions is illustrated by showing how 
they can be used to calculate the etficiencies of reactors and blenders. It is shown how models may be used 
to predict the distribution of residence-times in large systems. 

R~sem~-Quand, dans un r6cipient, on introduit, /l vitesse constante, un fluide donn6, on suppose 
g6n6ralement soit un m61ange parfait, soit un "6coulement frontal parfait". En pratique, de nombreux 
syst~mes s'~cartent de l'une ou l'autre de ces hypotheses simplificatrices et les caleuls qui en r6sultent sont 
plus ou moins inexacts. L'auteur expose, pour des syst6mes r6els, comment l'on peut d6finir et mesurer des 
fonctions de distribution pour la "dur6e de s6jour": ceci peut s'appliquer h des tubes vides ou munis de 
garnissages. Par emploi de ces fonctions de distribution, I'auteur montre comment on peut calculer 
l'efficacit~ des r6acteurs ou des m61angeurs. Des mod61es peuvent &re utilis6s pour pr6voir la r6partition des 
"dur6es de s6jour" dans des syst6mes de grandes dimensions. 

INTRODUCTION 

When a stream of material flows steadily through 
a vessel such as a pipe or a tank, in which it takes part 
in some process such as chemical reaction, heat- or 
mass-transfer, or simple mixing, it is usual to make 
use of one of the following assumptions for the pur- 
poses of calculation: 

(a) The fluid in the vessel is completely mixed, so 
that its properties are uniform and identical with 
those of the outgoing stream. This assumption is 
frequently made the basis of calculations on stirred 
reactors or blenders. 

(b) Elements of fluid which enter the vessel at the 
same moment  move through it with constant and 
equal velocity on parallel paths, and leave at the same 
moment.  This type of behaviour will be referred to as 
"piston flow", and is normally assumed when consid- 
ering flow through heat-exchangers, catalytic reac- 
tors, packed towers, chromatographic columns, etc. 

It is clear that there are many cases in which neither 
type of flow corresponds exactly to the facts--for 
instance, fluid in laminar flow in a pipe, or gas flowing 
through a fluidised catalytic reactor or blast furnace. 
It is of some importance to investigate the discrepan- 
cies between the assumed and actual behaviour of 
such systems, and where necessary to allow for them 
in making calculations. This paper is intended to 
clarify some of the problems presented by steady-flow 
systems, and to show how their behaviour can be 
investigated and quantitatively specified. Some of the 
concepts and mathematical expressions which appear 
below have already been used by Gilliland and Mason 
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[8, 9] in the course of a study of flow through fluidised 
beds. 

F-DIAGRAMS AND AGE-DISTRIBUTION FUNCTIONS 

The volume of the vessel occupied by the fluid is V, 
and the volumetric rate of inflow and outflow of fluid 
is assumed constant and equal to v. Suppose some 
property of the inflowing fluid undergoes a sudden 
change from one steady value to another; for instance, 
let the colour change from white to red. Call the 
fraction of red material in the outflow at time 0 later 
F(O). The plot of F(O) vs vO/V will be called an "F- 
diagram". Figure 1 (a)-(d) shows F-diagrams for some 
representative types of system. 

Perfect piston flow [Fig. 1 (a)] will never occur with 
Newtonian fluids; there will always be some longitudi- 
nal mixing, due to viscous effects and molecular or 
eddy-diffusion. Figure l(b) illustrates the departure 
from piston flow caused by restricted longitudinal 
mixing. Figure l(c) is the diagram for perfect mixing; 
the equation of the curve is easily shown to be 

F(O) = 1 - e -~°/v. (1) 

It cuts the ordinate vO/V = 1 at (1 - I/e), and its 
initial slope is unity. Figure 1 (d) shows a diagram of 
the type to be expected when there is a good deal of 
"dead water" in the system; a considerable fraction of 
the fluid is trapped in eddies, and spends much more 
than the average length of time in the vessel, while 
most of the flow takes place through a restricted 
channel. 

The F-diagram of a system is easy to obtain (for 
instance, by injecting tracer materials into the enter- 
ing stream), and its shape will clearly give a good deal 
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Fig. 1. F-diagrams: (a) piston flow; (b) piston flow with some longitudinal mixing; (c) complete mixing; (d) 

dead water. 

of information about the behaviour of the fluid flow- 
ing through the vessel. As will be shown later, much of 
this information can be summarised by two numbers 
which can be derived from the F-diagram. The dia- 
gram also enables certain calculations to be made 
concerning the performance of the system when used, 
for instance, as a blender or reactor. 

The shape of the F-diagram depends on the relative 
times taken by various portions of the fluid to flow 
through the vessel, or, in other words, on the distribu- 
tion of residence-times. Those elements of the material 
in the vessel which have been in it for a time 0 are said 
to have an "age" 0, and the fraction of the material in 
the system having at any instant ages between 0 and 
(0 + dO) is I(0)dO. The fraction of the material having 
ages between 0 and (0 + dO) at the moment of leaving 
the system is E(O)dO. I and E may be called the 
internal and exit age-distribution functions, respec- 
tively. The relationship between E, I and F can be 
shown by imagining the ingoing stream, as before, to 
change from white to red at time 0 = 0. At a time 
0 later the balance sheet for the red material is: 

entered: vO j.o 
still in system: V I(O')dO' 

0 

r" 
left system: g(O')dO' dO". 

3o"=o do'=o 

The last follows because the rate of outflow of red 
material at any time 0" after the change of colour is 

j ~0" 

v E(O')dO'. 
0 

Thus the conservation equation for red material is 

 °fl  ;ofo - -  = E(O')dO' dO". V l(O')dO' +-~ ,,=o ,=o 

(2) 

Also, the total fraction F(O) of red material in the 
outflow at time 0 is 

fo F(O) = E(0') d0'. (3) 

Differentiating eq. (2) with respect to 0, 

1 - E(O' )dO'  = V I ( O )  (4) 
V 

and hence from eq. (3) 

1 - F(O) = V I (0) .  (5) 
1) 

Equation (4) gives the relationship between E(O) and 
I(0), while eq. (5) shows how the latter function can be 
determined from the F-diagram. 

The same information can be obtained in a some- 
what different way, which may prove more convenient 
under some circumstances. Suppose a quantity Q of 
some substance (a radioactive tracer might be chosen 
for ease of estimation) is injected into the entering 
stream virtually instantaneously--that is, within a pe- 
riod very short compared to V/v. As before, samples 
are taken at various times 0 after the injection; the 
concentration of the injected material in the exit 
stream at time 0 is C(O). Then it can be shown, by 
methods similar to those used above, that 

Q d  C(O) =-~-~{F(O)} =Q E(o). (6) 

Plots of VC(O)/Q vs vO/V, which may be called C- 
diagrams, are shown in Fig. 2 for the systems whose 
F-diagrams are given in Fig. 1. Note that 

V [.Oco d{VO~ Q L  ( )  [ - - ( )  = 1 (7) 

so that the area under every C-diagram is equal to 
unity. 

It has been assumed in the foregoing that the forms 
of the functions I and E do not vary with time. In fact, 
however, instability of flow may lead to fluctuations in 
the internal and exit age-distributions, and cause ob- 
served values of F(O) to oscillate about some smooth 
curve of the kind shown in Fig. 1. These fluctuations 
will generally be random in nature, and by making 
a number of determinations of the F-diagram and 
averaging, the mean form of the diagram can be 
obtained. The problems raised by such fluctuations 
will be considered on another occasion; for the mo- 
ment attention will be confined to cases where they 
may be ignored. 



Continuous flow systems 3859 

t 

0 t g O 

vO/v. 

b 

J\. 
! d 

e d 

A 

O t d O I 

Fig. 2. C-diagrams: (a) piston flow; (b) piston flow with some longitudinal mixing; (c) complete mixing; (d) 
dead water. 

It will be noted that 

l(O)dO - {1 - F(O)} dO = 1 

and 

(8) 

ffE(O)dO = (9) 1 

[because the integrals in eqs (8) and (9) represent the 
total fractions of material, in the vessel and at the exit, 
respectively, having ages between 0 and oo--namely, 
all the material in each case]. Equation (8) implies 
that the area between the curve F(O) vs vO/V and the 
line F(O) = 1 is equal to unity. It can be seen immedi- 
ately that the two shaded areas are equal in Fig. 3, 
whatever the shape of the curve. 

The average age 0 E of the material leaving the vessel 
is always V/v. This can be shown as follows: 

fo OE = O" E(O)dO. (10) 

Hence, from eq. (3) 

dF(0) f'l VO dF 0 
= J o  V dO d 0 = J r = o - -  ~- ( ) .  (11) 

It can be seen from Fig. 3 that the last integral is equal 
to 1. 

The average age of the material in the system at any 
time is/i~, where 

fo 0,= O.l(O)dO=-~ O{1- F(O)}dO. (12) 

Integrating by parts we have 

/3 ( '  1 

= ~ J r  = o 02 dF(0). (13) 

The integral in eq. (12) or eq. (13) can be evaluated 
graphically with the help of the F-diagram. 

HOLD-BACK AND SEGREGATION 

The systems illustrated in Fig. l (a)- (d)  show in 
progressively greater degree a quality which will be 
called "hold-back' .  In a system which displays hold- 
back, some elements of fluid spend more, others less, 
than the average time, V/v, in the vessel. In a system 
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Fig. 3. 

with piston-flow [Fig. l(a)], there is no hold-back. 
Quantitatively, the magnitude of the hold-back will be 
denoted by H, and can be conveniently defined as the 
area under the F-diagram between vO/V = 0 and 
vO/V = 1 (area A in Fig. 3): 

V fVlv 
H = ff J0=o F(O) dO. (14) 

H varies from 0 for piston-flow to values approaching 
1 when most of the space in the vessel is dead water. 
For  the completely mixed vessel [Fig. l(c)], H = 1/e. 
The magnitude of H is a measure of the deviation 
from piston-flow. Its significance is most easily vis- 
ualised as follows: if the colour of the inflowing stream 
changes suddenly from white to red, H is equal to the 
fraction of the vessel which will still be occupied by 
white fluid after a volume of red fluid equal to the 
volume of the vessel has flowed in. 

The hold-back is of importance in connection with 
chemical reactors and the successive flow of fluids 
through pipes and other vessels. In the former case it 
will usually be true to say that if the reactants are 
adequately mixed before or shortly after entering the 
vessel, the output of the reactor will be greatest when 
the hold-back is least (although the reverse may be 
true for autocatalytic reactions). A high hold-back 
means that much of the volume of the reactor is 
occupied by material which has already undergone 
reaction, while much reactant passes rapidly through 
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the vessel by a "short-circuit" route. The magnitude of 
the hold-back gives only a general idea of the behav- 
iour of the system, however; the whole F-diagram 
(and possibly other information) is needed if the ac- 
tual performance of the reactor is to be calculated. 
This subject is discussed in a later section. 

An indication of the efficiency of mixing in a system 
can be given by a single quantity, S, which will be 
called the "segregation", and can be derived from the 
F-diagram as follows. If one superimposes the F-dia- 
grams for a perfectly mixed system I-eq. (1)] and for an 
imperfectly mixed system such as that represented in 
Fig. 1 (b), the result will be similar to Fig. 4. 

The degree of departure of the system from perfect 
mixing will be indicated by the size of the shaded area 
(A1 + A2). However, since the area between each 
curve, and the line F(O)= 1 is the same, the two 
shaded regions have the same area (A1 = A2). It is 
thus convenient to define the segregation S quantitat- 
ively as the area A1 between the F-diagram of the 
system and the curve F(O)= 1 -  e -v°/v, up to the 
point (at 0 = T) where the curves cross; it is thus 
equal to half the total shaded area. 

When there is dead water in the system the posi- 
tions of the curves may be inverted, as in Fig. 5. 

,r/z 
ve/v 

Fig. 4. 
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The segregation is then given the negative value 
- A1 to indicate the nature of the departure from 

perfect mixing. In a case such as that illustrated in 
Fig. l(b), the two curves may cut twice, as indicated in 
Fig. 6. 

In such cases A1 + A3 = A2, and the segregation is 
equal to - A2. S varies from + 1/e for piston-flow to 
values approaching - 1 when most of the space in the 
system is dead water. 

The sense in which the word "mixing" has been 
used here should be clearly understood. We are not 
concerned with homogeneity, but with the age-distri- 
bution of material in the vessel and in the outgoing 
stream. If these distributions are the same, the system 
is said to be perfectly mixed, although there might, in 
the experiment described, be a perceptible non-uni- 
formity of colour. On the other hand, when a fluid 
flows through a pipe with a high degree of turbulence, 
the segregation as defined above may approach that 
for piston-flow, although mixing in directions at right- 
angles to the axis of flow may be very efficient, ensur- 
ing that at any given moment the composition will be 
uniform across each cross-section and in the outflow- 
ing fluid. 

As pointed out by Gilliland and Mason I-9], al- 
though the F-diagram for a fluidised bed may be quite 
close to that for perfect mixing, other tests show that 
longitudinal mixing is in fact not very efficient, and 
moreover a considerable proportion of the gas passes 
through the bed in the form of bubbles. 

Under some circumstances, when the fluid con- 
cerned is a gas, molecular diffusion between neigh- 
bouring elements of fluid may play a material part in 
determining the shape of the F-diagram. In liquids, 
however, diffusion coefficients are so small that only 
hydrodynamic effects will usually be of significance. 

F L O W  T H R O U G H  B E D S  O F  S O L I D S  

A very large number of chemical engineering opera- 
tions involve the flow of a fluid through beds of 
stationary solid particles. Calculations are usually 
based on the assumption that piston-type flow occurs 
in such systems. This is certainly not exactly true, 

o , - " 

A t 

~ a  

vO/v - -  vO/V - -  

Fig. 5. Fig. 6. 
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since longitudinal mixing must take place. Many 
cases, however, are probably amenable to the math- 
ematical treatment which follows. 

Consider a packed tubular vessel of length L, 
through which fluid flows with a mean axial velocity 
u. At time 0 = 0 the colour of the fluid changes from 
white to red. Now if the flow were of piston-type, the 
plane boundary between red and white would move 
down the tube with velocity u. We shall denote this 
imaginary plane by x = 0 and use it as the origin of 
a frame of reference moving down the tube with uni- 
form velocity u, so that at time 0 the plane x = 0 is 
distant uO from the entry, and the x-coordinates of the 
ends of the tube are ( -  uO) and (L - uO), respectively 
(see Fig. 7). 

The longitudinal velocity of any element of fluid 
relative to the plane x = 0 will fluctuate irregularly. At 
times the element will be close to a solid surface, and 
viscous forces will slow it down, while at other times it 
will be near the centre of a channel and moving at 
a velocity greater than the mean; part of the time may 
be spent in regions of (urbulence where the element 
will undergo rapid and irregular fluctuations in velo- 
city. If the packing is quite randomly arranged, with- 
out any channelling, each element of fluid will travel 
at the same average velocity, and will experience fluc- 
tuations of the same average magnitude and fre- 
quency. It is clear that the ordinary "random walk" 
theory [10] can be applied to such behaviour; the 
result will be redistribution of red and white material 
according to the laws of diffusion. That is, if c is the 
mean concentration (volume fraction) of red material 
at a plane x at time O, 

t~C 02C 1 

o6- (15) ! 
D is a "diffusivity" which must be determined empiric- 
ally; it will presumably depend on the viscosity, den- 0 
sity and velocity of the liquid, and on the size and 
shape of the packing. The following boundary condi- 
tions will represent the facts with sufficient precision 
under many circumstances: 

c = 0 ,  x > 0 ,  0 = 0  

c = l ,  x < 0 ,  0 = 0  

c = 0 ,  x = o e ,  0 > 0  

c = l ,  x = - o e ,  0 > 0 .  

3861 

in Fig. 8]. Hence 

eft(L - uO~ 
2F(0) = I - \ 2 ~ - D 0 /  (18) 

and since v/V = u/L (V being the void volume of the 
vessel) 

e f t (  1 -  vO/V ~. 
2F(0) = 1 - \2x/(vO/V)(D/Lu)/ (19) 

The F-diagram will thus be determined entirely by the 
value of D/Lu. It will have the general shape shown in 
Figs 1 (b) and 9. 

If we let 
eft(z) = 1 - 2F (20) 

eq. (19) becomes, on rearrangement, 

1 -  vO/V 2 [-DD 
z.,/vo/v x/~" (21) 

(Values of z corresponding to given values of F can be 
found with the help of Fig. 8.) 

For  a given flow-rate and depth of packing, the 
left-hand side of eq. (21) should be constant if the 
diffusion equation (15) is obeyed. However, eq. (21) is 
not very suitable for testing the diffusion hypothesis 
or for determining the value of D since the expression 
on the left-hand side is very sensitive to small errors in 
F over the range of greatest importance. The value of 
D is probably more easily determined from the slope 

(The above conditions hold if the concentration of 
white material at the entry falls virtually to zero at 
a time very much less than L/u. It can be shown that 
this will occur if 4D/Lu << l - - t h a t  is, provided mixing 
is not too effective or the tube too short.) Under these 
conditions the solution to eq. (15) is 

C= ½ 1 1 -  e r f ( ~ - ~ ) ]  (17) 

[where erf(x/2v/-D-0 ) = (2/x/~)I x/2,/-ffO e-r~dy; nu- 
merical values may be found in tables and are shown 

• - - v#  x . O  x . L - u @  

t'O 

(16) .8 

I "6 

4-1 

Fig. 7. 
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Fig. 9. F-diagram calculated for flow through packed col- 
umn compared with experimental points. 

of the F-diagram at vO/V = 1, we find 

dF 
a - 2  X/~--~- (22) 

D/Lu can be calculated from this expression, the F- 
diagram calculated from eq. (19), and the results com- 
pared with the experimental curve. D should, of 
course, be independent of L for a given u. 

The hold-back in the system is equal to ~/D V/nv or 

Figure 9 shows the F-diagram obtained when water 
flowed through a bed of ~]in. Raschig rings (tube 
diameter 4.8 cm; L = 140 cm; fractional free volume 
0.62; volumetric flow-rate 4.5 cm3/s). The curve cal- 
culated from eq. (19) with O/Lu = 0.013 is compared 
with the experimental points and shown to agree well. 

The liquid running over the packing in an absorp- 
tion tower is presumably subject to the same kind of 
mixing, although channelling may prevent eq. (15) 
from being very closely obeyed. The quantity V in this 
case is equal to the total liquid hold-up. 

The effect of longitudinal mixing on the perfor- 
mance of tubular reactors is discussed later. 

F L O W  IN PIPES 

Hold-back will always arise when a true fluid flows 
through a pipe. In the first place, there is a variation in 
velocity from the axis to the wall of the pipe, so that 
the central "core" of fluid moves with a velocity 
greater than the mean, while the fluid near the wall 
lags behind. This effect will be most marked when 
flow is laminar; in turbulent flow the velocity is more 
uniform across the pipe, and the hold-back is less, 
although eddy-diffusion contributes to the longitudi- 
nal mixing. In some circumstances molecular 
diffusion may also contribute appreciably to the hold- 
back. It will be convenient to discuss laminar and 
turbulent flow separately. 

When viscous liquids such as heavy petroleum oil 
or rayon dope are pumped through pipes, the flow 
may be laminar. If the flow is changed, say, from one 

Fig. 10. 

type of petroleum to another, or from normal to 
pigmented dope, the mean composition of the liquid 
leaving the pipe will change only gradually from one 
pure component to the other, and a large volume of 
mixed liquid will be discharged. If certain simplifying 
assumptions are made, the form of the F-diagram is 
easily calculated. (Similar calculations have been 
made by Bosworth 1-2] and by Fowler and Brown 
[7].) 

In the first place, entrance-effects will be ignored (as 
in the derivation of Poiseuille's formula), and the 
liquid will be assumed to be everywhere in unac- 
celerated laminar flow with a parabolic velocity- 
distribution; provided the ratio of the length to the 
diameter of the pipe is sufficiently large ( ~> 0.06Re) 
entrance effects will in fact be unimportant. Secondly, 
it will be assumed that the two liquids have the same 
density and viscosity, and behave as Newtonian 
fluids. Thirdly, molecular diffusion will be ignored. 

If ti is the mean velocity and u the velocity at 
a distance r from the axis of a pipe of radius R, we 
have the well-known relationship 

 :20(1 
The follow-up liquid will thus first appear at the 

exit of a pipe of length L after a time L/2a; after 
a greater time, 0, the situation will be as shown in 
Fig. 10, with a core of follow-up liquid of diameter 
2Rx/1 - L/2aO at the exit. Allowing for the variation 
of velocity from the centre to the edge of the core, the 
fraction of follow-up liquid in the stream leaving the 
pipe is seen to be 

L/2~O __ ?,2 

F(O) = ~ J o  

= 1 -- L2/4ti 2 02, aO/L > ½ 
(25) 

= l - V2/4v202, vO/V > ½. 

The resulting F-diagram is shown in Fig. 11. Its shape 
is independent of the length and diameter of the pipe, 
and of the viscosity and velocity of the fluid (provided 
of course that flow is laminar). The hold-back is ¼. 
Bosworth [2] has calculated the effect of molecular 
diffusion on systems of this kind [his F, is equivalent 
to the present author's E(0)]. He shows that it can 
be ignored providing the following conditions are 
fulfilled: 

R > 1 3 ~ / t i  

L > 6.5 × 104 D,,/~ 
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Fig. 1 i. F-diagram for viscous flow in pipe. 

(where D,  is the molecular diffusivity), and points out 
that in the case of gases turbulence usually occurs 
while R is too small for the first condition to be 
satisfied. With liquids, however, which have much 
higher Schmidt numbers (l~/pD,), there may be a con- 
siderable range of pipe-diameters for which flow is 
laminar and the first condition is also satisfied. 

Bosworth [3] has also derived expressions for E(O) 
(F~ in his nomenclature) for turbulent flow in pipes, 
starting from simplified expressions for the values of 
the axial velocity and eddy-diffusivity at various dis- 
tances from the pipe wall. The following expression 
for F(O) can be derived from Bosworth's formula: 

F(O) = 1 - 2 ~ t " [ 1  - fin - ½fl - ~t"(½ - ~fln - ~4fl) 

- fl(2n + l)(Gt 2n - ¼0t3n)]  (26) 

where 

1 2 v O [ - i  n - ~ + - ~ f l n  
= --~L( - - f in - - f l /2 )  n _  1 + + 

× ~ -~ (2 ,+1)  5-2-2-i+~-22--i 

fl = (n -- 1)2R/0.32 nL 

t.$ 

1-$ 
ve/v 

Fig. 12. Experimental (A) and calculated (B) F-diagrams. 
Water in circular tube, Re = 6940, R/L = 6.3 x 10 -4. 
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Fig. 13. Experimental (A) and calculated (B) values of 
(v/V)(Oo.s - 0o.2). R/L = 6.3 x 10-*. 

n = 7, 2000 ~< Re <~ 100,000 

n = 8, Re > 100,000 

R being the radius and L the length of the pipe. 
Comparison can be made with the experimental 

results of Fowler and Brown [7]. Figure 12 shows an 
experimental F-diagram compared with that cal- 
culated from Bosworth's formula. In Fig. 13 a com- 
parison is made between calculated and observed 
values of (v /V)(Oo.s-  00.2) for various Reynolds 
numbers in a given pipe (i.e. F has the value 0.8 at 0o.s, 
and the value 0.2 at 0o.2). It will be seen that 
Bosworth's formula predicts (at least under the condi- 
tion chosen for the comparison) a much greater de- 
gree of longitudinal mixing than is actually observed, 
and also that it fails to predict the marked effect of 
velocity of flow on the F-diagram for a given pipe. 

R E A C T O R S  

The performance of a steady-flow reactor can be 
calculated from the F-diagram provided the reaction 
is first-order, or pseudo-first-order, with a velocity- 
constant which does not vary from place to place in 
the reactor. For  instance, if an effluent containing 
a radioactive element is allowed to flow through a res- 
ervoir, the concentration of the element at the exit can 
be calculated if its radioactive decay-constant k and 
the F-diagram of the system are known. 

Consider those elements of fluid which have ages 
between 0 and (0 + dO) at the exit. A fraction 
( 1 -  e -k°) of the reactant originally contained in 
these elements will have reacted during its passage 
through the vessel. Hence the total fraction (1 - f )  of 
reactant which reacts during its passage through the 
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vessel is 

f0 1 - f =  (1 - e-k°)E(O)dO. 

From eq. (3) 
E(o) dO = df(Ol. 

P. V. DANCKWERTS 

where 

(27) a = x / l  + 4kD/u  2. 

The value of (1 - c/c*) at the exit (y = L) is equal to 
(28) (1 - f ) ,  the fraction reacted. Hence 

1 - f =  1 
4a 

(1 + a)2exp( - uL /2D) ( I  - a) - (1 - a) 2 exp( - uL/2D)(1 + a)" 
(34) 

Hence, 

f01oi  1 - f =  - e k°)dF(O) 

= 1 - e-k°dF(O).  (29) 
=0 

f can be evaluated by graphical integration if the 
F-diagram is available. 

In the special case, previously discussed, of a tubu- 
lar packed vessel, the expression for F given in eq. (19) 
is unsuitable for use in eq. (29) because of the approxi- 
mations which have been made. Instead we set up the 
differential equation for a tubular reactor with longi- 
tudinal diffusion as well as flow (changes in volume 
are assumed not to occur, so that the mean longitudi- 
nal velocity, u, is the same at all cross-sections). The 
equation is easily shown, by making a balance on 
a section of differential length dy, to be 

d 2 c  u dc kc 
0 (30) 

dy 2 D dy D 

where c is the concentration of reactant at cross-sec- 
tion y. The concentration of reactant in the entering 
stream is c*; owing to diffusion the concentration just 
within the entrance of the reactor, at y = 0, is less than 
c*. The following boundary condition expresses the 
fact that the rate at which reactant is fed to the reactor 
is equal to the rate at which it crosses plane y = 0 by 
combined flow and diffusion. 

u c * = u c - D d c / d y ,  y = 0 .  (31) 

At the outlet (y = L) 

u f c *  = uc - D dc /dy ,  y = L 

f c *  being the concentration of the exit stream. Now if 
d c / d y  were negative, the concentration in the exit 
stream would be greater than that at the end of the 
packing. If d c / d y  were positive the concentration 
would pass through a minimum somewhere in the 
reactor and then rise towards the downstream end. 
Intuition suggests that neither of these situations can 
arise, so that the boundary condition must be 

dc 
d y = O '  y = L .  (32) 

The solution to eq. (30) with these two boundary 
conditions is 

As D - ,  0 this expression tends to 

- k L  
1 - f =  1 - e x p - -  (35) 

t/ 

which is the well-known solution for "piston-flow". As 
D --, oo, we find 

k L  
1 - f =  (36) 

u + k L  

which is the solution for complete mixing. For very 
small values of D 

- k L  
1 - f ~  1 - (1 + k Z D L / u 3 ) e x p  - (37) 

U 

From this it can be seen that the effect of diffusion is to 
decrease the fractional conversion compared to that 
for piston-flow, but that the effect will be negligible 
provided k 2 D L / u 3 ~ .  1, or [ l n f ] 2 D / L u  <~ 1. Thus 
for specified operating conditions it is possible to 
decide, if an approximate value of D is available, 
whether neglect of longitudinal diffusion will lead 
to serious error in calculating the output of the 
reactor. 

The foregoing treatment of reactors will seldom be 
applicable to practical problems except as a rough 
guide. In the first place, the heat of reaction often gives 
rise to temperature-gradients, and hence point-to- 
point variations in the value of the reaction-velocity 
constant, so that the chance of a molecule reacting 
depends on its path through the reactor, as well as its 
residence-time. Secondly, if the reaction is of order 
other than first, the chance of a given molecule reac- 
ting depends on the molecules which it encounters in 
its passage through the reactor; the nature of these 
encounters is largely determined by diffusional pro- 
cesses caused by point-to-point variations in com- 
position in the fluid, which cannot be deduced from 
the F-diagram. Second-order reactions between im- 
perfectly mixed fluids have been considered by the 
author [5]. Denbigh 1-6] has considered second-order 
reactions taking place in a fluid in laminar flow in 
a pipe, under conditions such that molecular diffusion 
may be ignored. 

BLENDERS 

A continuous-flow blender is a mixing vessel into 
which flows a stream of material of continuously 

c (u )I2'l+a'exp'uaJ2°"L '2'la exp'uaJ2°" L' 2 
e x p  × (33) 
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varying composition. In the vessel, elements of mater- 
ial which have entered at different times are mixed, so 
that the outflowing stream shows less variation in 
composition than the input. The case of a perfectly 
mixed blender has been considered in detail elsewhere 
1,4-1, with special reference to the flow of town gas 
through a gas-holder, and consequent smoothing-out 
of fluctuations in the calorific value. Beaudry I-1] has 
considered the special case of a perfectly mixed blen- 
der with a feed consisting of batches of material of 
finite volume. A blender which displays segregation 
will be less effective in reducing fluctuations than one 
in which perfect mixing occurs. 

Suppose the concentration of some component in 
the entering stream has a concentration c~ which fluc- 
tuates with time. Its value at any time is (6 + fit), where 
6 is the mean value of c~ which is assumed to show no 
trend. A convenient measure of magnitude of the 
fluctuations in c~ is its standard deviation #~: 

cr~ = ,~. (38) 

#i is assumed to show no trend. The concentration 
Co = (6 + 6c) of the outgoing stream has a standard 
deviation #o- The problem is to find the ratio ao/ai. 
The rates of inflow and outflow are assumed constant 
and equal to v. The concentration Co(t) in the outflow 
at time t is then given by 

Co(t) = c,{t -- O} E(O) dO (39) 
do=o 

where ci{t - 0} is the concentration in the inflow at 
time (t - 0). Hence 

6, ( t  --  O} E(O) dO (40) 6 0 ( 0  = =o 

and 

If: ]2 = 6,{t - O} E(O)dO (41) [ 6 ° ( 0 ] 2  =o 

However, it is generally true that 

[;o ° ;°f: f ( y ) d y  = 2 f ( y ) f ( y  + r)dydr  (42) 
=0 =0 

where f ( y )  is any function of y. Applying this to eq. 
(42), 

f;f: [60(0] 2 = 2 6i{t - O} 
= 0  = 0  

x 6~(t - 0 - r)E(O)E(O + r) d0 dr. (43) 

Averaging this with respect to t, 

a.2 = (~-~o = 2 f f  ~i{t -- O} fii(t -- 0 - r) 

x E(O)E(O + r)dOdr. (44) 

Now the quantity 

~i{t'} ~dt' - r) 
R(r) - #~ (45) 
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(the numerator being averaged with respect to t') is 
known as the autocorrelation coefficient or serial cor- 
relation coefficient of ci for a time-interval r. Substitu- 
ting eq. (45) in eq. (44) we have 

#~/a] R(r)E(O)E(O + r)dOdr. (46) 
j o=oJ,=O 

R(r) may be found as a function of r from a represen- 
tative record of ci vs t in various ways which have 
been discussed elsewhere 1,4]. [The relationship be- 
tween R(r) and r indicates whether the fluctuations in 
ci are on the whole rapid or slow, and whether they 
display any regular periodicity.] Assuming that R(r) is 
known for a sufficient range of values of r, in order to 
evaluate the integral into eq. (46) it is necessary to 
know E(O) as a function of 0. The necessary informa- 
tion is contained in the F-diagram of the system, and 
the following is perhaps the simplest way of doing the 
calculation. First fit some simple function of 0 (such as 
a power-series) to the F-diagram up to a value 01, at 
which F(O0 is very close to 1. Differentiate this func- 
tion with respect to 0. From eq. (3) we see that 

dF(0) 
- E(O) (47) 

d0 

so that E(O) is now a known function of 0. For a given 
value of 0, E(O + r) is the value obtained by replacing 
0 by (0 + r). It will now be possible to evaluate the 
integral 

fo' fo l(r) = E(O)E(O + r)dO ~ E(O)E(O + r)dO 
=0 

(48) 

algebraically for a number of values of r. The integral 

= 2 f f  
#2/#2 R (r) I (r) dr (49) 

=0 

can now be evaluated graphically. (In practice, of 
course, the upper limit will be taken at some value of 
r for which the integrand has become vanishingly 
small.) 

THE USE OF MODELS FOR PREDICTING F-DIAGRAMS 

Under certain circumstances the F-diagram of 
a large system can be predicted with confidence from 
that for a model. The conditions to be fulfilled are: (a) 
The model must be geometrically similar to the sys- 
tem. (b) The Reynolds number must be the same in the 
model and the system. (c) Gravity-waves, density-dif- 
ferences, surface tension, and other influences apart 
from inertia and viscosity, must be unimportant in 
determining the behaviour of the fluid in both model 
and system. 

In the simple case of a fluid flowing through a tank 
or a fixed bed of solids, the same fluid being used in 
the model as in the system, equality of the Reynolds 
numbers requires that 

vl LI 
- ( 5 0 )  

I)2 L2 
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where vl, v2 are the volumetric flow-rates and LI, L2 
the linear dimensions of the model and system, respec- 
tively. That is, in a 1/10 scale model the volumetric 
flow-rate must be 1/10 that in the full-scale system. If 
the system incorporates a rotating stirrer, the angular 
velocities, oJ, of the stirrers in model and system are 
related by 

fO--~l = (L2)  2 (51) 
,o2 \ ~ / "  

In the 1/10 scale model the stirrer must rotate 100 
times as fast as in the system. 

If these conditions are fulfilled the flow-patterns 
of the fluid will be geometrically similar in model 
and system, hence both will have the same F- 
diagram. 

The simple type of model experiment described 
here cannot be applied to systems in which the fluid is 
of non-uniform density or viscosity owing to vari- 
ations in temperature or composition from point to 
point, or to fluidised beds. 
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NOTATION 

area under curve 
concentration 
concentration of stream entering reactor 
concentration at exit of vessel at time 0 
apparent diffusivity 
molecular diffusivity 

( ~  f :  e-Y2 dY) 

distribution-function for residence-times 
0 
fraction of reactant unreacted 
fraction of material in outflow which has 
been in system for a time less than 0 
hold-back [eq. (14)] 
distribution-function for "ages", 0, of ma- 
terial in system 
first-order reaction-velocity constant 
length of tube or reactor 
parameter in eq. (26) 
quantity of tracer material injected 
radial distance from tube-axis; or time- 
interval 
radius of pipe 
serial correlation-coefficient of c~ for 
time-interval r 
Reynolds number 
segregation (Figs 4, 5, and 6) 
time 
velocity of flow 
mean velocity of flow in open pipe 
volumetric flow-rate 
volume of vessel 
distance referred to coordinates moving 
with velocity u 
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y 

Z 

distance referred to stationary coordi- 
nates 
defined by eq. (20) 

Greek letters 
0~ 

P 
6i, 60 
0 
O'i, 6 0 

(D 

parameter in eq. (26) 
parameter in eq. (26) 
instantaneous deviations of ci, Co from 6 
time interval, residence-time or "age" 
standard deviations of c~, Co from 6 
angular velocity 
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NOTE ADDED IN PROOF 

Flow in pipelines--Hull and Kent [11] have re- 
cently published an account of experiments on petro- 
leum flowing in a 182-mile long 10-inch diameter pipe 
line. A radioactive tracer was used to obtain (in effect) 
C-diagrams for various lengths of pipe. With a 
Reynolds number of 20,000-30,000 the diagrams ob- 
tained were close to those which would be expected if 
the "diffusion" equation (15) were followed, D having a 
value of 1.3 ft2/s. Further experimental work on mix- 
ing in pipe-lines is referred to by the authors [12, 13]. 

Flow in packed beds--Lapidus and Amundson [14] 
have analysed the consequences of longitudinal mix- 
ing in adsorption columns. Bernhard and Wilhelm 
[15] have measured the apparent radial diffusivity in 
fluids flowing through beds of solids. It seems likely 
that the longitudinal diffusivity D [eq. (15)] will have 
a different value. Arthur et al. [16] and Morales et al. 
[17] have shown that the fluid velocity differs mark- 
edly from the mean in the neighbourhood of the wall 
of the column. 


