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a  b  s  t  r  a  c  t

This work  presents  a method  to solve  boundary  value  problems  based  on polynomial  approximations
and  the  application  of the  methods  of  moments  and  the Galerkin  method.  The  weighted  average  residu-
als  are  evaluated  by  improved  Gauss-Radau  and  Gauss-Lobatto  quadratures,  capable  to exactly  compute
integrals  of  polynomials  of  degree  2n  and 2n  + 2 (where  n  is  the number  of internal  quadrature  points),
respectively.  The  proposed  methodology  was  successfully  applied  to  solve  stationary  and  transient  prob-
lems of mass  and  heat  diffusion  in  a catalyst  particle  and  of  a tubular  pseudo-homogeneous  chemical
reactor  with  axial  advective  and  diffusive  transports.  Through  the improvement  of  the  usual  procedures
of numerical  quadratures,  it was  possible  to establish  a  direct  connection  between  the residuals  on  inter-
nal  discrete  points  and  the residuals  on the  boundaries,  allowing  the  method  to  exactly  reproduce  the
moments  and  Galerkin  methods  when  applied  to  linear  problems.

© 2013 Published by Elsevier Ltd.

. Introduction

The application of the method of weighted residuals (MWR)  consists basically in the approximation of the dependent variables of
he problem by expansions series of known functions (called trial functions) with coefficients to be determined. The replacement of this
pproximation in the differential equation gives rise to the residual function. Nullifying the weighted average residual functions in the
roblem domain, with appropriate weights, it is possible to determine the coefficients of the proposed trial functions. The distinction
etween the different methods originates from the choice of the weights to be used in the computation of the weighted average residual
unctions. The most widely used methods are: orthogonal collocation method (OCM), method of moments, Galerkin method, and least
quare method (Finlayson, 1972; Villadsen & Michelsen, 1978).

The selection of trial functions is of great importance to the success of the MWR,  because this choice is directly related to the accuracy
nd the convergence of numerical solution (Finlayson, 1971, 1972; Finlayson & Scriven, 1966; Snyder, Spriggs, & Stewart, 1964). The use of
rthogonal polynomials as trial functions has some advantages, such as the minimization of the residuals maximum magnitude (Villadsen

 Stewart, 1967). Most applications of this technique use Lagrange polynomial approximation, taking as collocation points the roots of
rthogonal polynomials: Finlayson (1971) used the roots of Legendre polynomial, McGowin and Perlmutter (1971) used the roots of the
hebyshev polynomial, and Secchi, Wada, and Tessaro (1999), Lefrève, Dochain, Azevedo, and Magnus (2000), Sousa and Mendes (2004),
arroso, Henrique, Sartori, and Freire (2006), Damak (2006), Solsvilk and Jakobsen (2012) used the roots of Jacobi polynomials. The use of
rthogonal polynomials also extends to majority of the computer packages that make use of MWR,  such as PDECOL (Sincovec & Madsen,
979), that uses the Legendre polynomials, COLSYS (Ascher, Christiansen, & Rusell, 1981), that uses the Gauss-Legendre polynomials,
WRTools (Adomaitis, 2002; Chang, Adomatis, & Lin, 1999), that uses the Jacobi polynomials, and PDECHEB (Berzins & Dew, 1991), that

ses the Chebyschev polynomials.

Only few papers present criteria to justify the choice of the Jacobi polynomial parameters  ̨ and ˇ. Lefrève et al. (2000) select the values

f these parameters to minimize the error of numerical solution. Secchi et al. (1999) select the values of  ̨ and  ̌ that best approximate
he weight of a characteristic function obtained by a self-adjoint form of the system. Solsvilk and Jakobsen (2012) applied orthogonal
ollocation, Galerkin, tau and least squares methods, using the Jacobi polynomial with different values of the parameters  ̨ and ˇ, in order
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o investigate the influence of the node point distribution in the accuracy and in the condition number of the coefficients matrix. According
o these authors the utilization of Legendre polynomial gives the best result in terms of accuracy and lowest condition number of the
oefficients matrix.

The MWR  is commonly applied to solve models described by partial differential equations systems and boundary value problems widely
sed in chemical engineering. Models of tubular reactors with axial dispersion were solved by: Grotch (1969), applying the Galerkin method,
inlayson (1971), applying the OCM, McGowin and Perlmutter (1971), applying the OCM and also the Galerkin method, and Lefrève et al.
2000), applying the OCM. Problems of mass and heat diffusion in a catalyst particle were solved by: Villadsen and Stewart (1967), Villadsen
nd Michelsen (1978), and Dudukovic and Lamba (1978), applying the OCM, and Wedel, Michelsen, and Villadsen (1977), applying the
CM and the Galerkin method. Hanse (1971) applied the OCM to solve the dynamic and stationary model of a packed bed reactor. Sousa
nd Mendes (2004) applied the OCM in the resolution of a catalytic membrane reactors model. Secchi et al. (1999) applied the OCM in
he radial discretization of a set of partial differential equations that describe the process of ultrafiltration of bovine serum albumin in
ollow fiber membranes. Wang, Anthony, and Akgerman (2005) used the OCM in the solution of trickle bed and slurry reactors models for
ethanol production.
As reported by Finlayson and Scriven (1966), the accuracy of the numerical solution is more sensitive to changes in the trial function

han with the type of MWR  applied. Snyder et al. (1964) verified that the convergence of the Galerkin method increasing the number of
xpansion terms is faster when compared with the collocation method or the least squares method. Becker (1964) classifies the least squares
ethod as the best criterion of weighting for the application of MWR.  Although because of its difficulty for implementation the use of this
ethodology is considerably limited. Wedel et al. (1977) reported that the collocation method is easier to be applied than the Galerkin
ethod, since the computational effort needed for integration is avoided, and the results did not show a significant difference. Solsvilk and

akobsen (2012) reported that the error obtained applying the Galerkin, tau and orthogonal collocation methods using Jacobi polynomial
ith different values of the parameters  ̨ and ˇ, differ insignificantly. In its turn, the condition number of the coefficients matrices is more

ensitive to this change. According to these authors the application of the Galerkin and tau methods, using the Legendre polynomial roots
s collocation point, present lower condition numbers than the application orthogonal collocation and least square methods. Furthermore,
he selection of the parameters  ̨ and  ̌ is more critical for the Galerkin, tau and least square methods than for the OCM. It must be pointed
ut, that these results were obtained applying those methods to a very simple and linear example: reaction–diffusion equation of a catalyst
aving a slab geometry or spherical geometry with a first order reaction in steady state, considering the symmetry and Dirichlet boundary
ondition at the surface.

Since the development of WRMs,  it is well known that the application of polynomial approximation in problems with advection
ominance gives origin to unrealistic oscillation in the solution and is not recommended for this type of problems (Becker, 1964; Finlayson &
criven, 1966; Grotch, 1969; McGowin & Perlmutter, 1971; Snyder et al., 1964; Wedel et al., 1977). For problems with advection dominance,
t is more indicated the use of orthogonal colocation on finite elements (Carey & Finlayson, 1975; Sereno, Rodrigues, & Villadsen, 1991) or
ther families of methods, such as finite differences and finite volumes, which are out of the scope of this work.

The original form of the orthogonal collocation method may  just reproduce the method of moments and Galerkin method in a limited
umber of problems, such as models of linear differential equations with symmetry and Dirichlet boundary conditions. In models with non-

inear differential equations and Danckwerts boundary conditions, for example, the classical form of the orthogonal collocation method
annot be directly related with methods of weighted residuals (MWR).

The present work aims to develop a systematic procedure to solve boundary value problems, proposing polynomial approximations to
he dependent variables that nullify the first n weighted average residues, where the corresponding integrals are evaluated by improved
auss-Radau and Gauss-Lobatto quadratures, which are capable to exactly compute the integrals of polynomial functions up to degree
n + 1 and 2n + 2, respectively. With this improvement in the quadrature formulas, the method exactly reproduces the methods of the
oments and Galerkin when applied to linear problems.
The main advantage of this new methodology is related to the utilization of the same Jacobi polynomial for both moments and

alerkin methods, with the specificities of each method appearing only in the evaluation of the system discretization matrices. After
he discretization, the procedure for solving the resulting algebraic or differential-algebraic system is the same for both methods.

In Section 2, a detailed explanation of the proposed methodology is presented through its application to two  specific problems: with
patial symmetry and without spatial symmetry. The main advantage of this methodology is its generalized characteristic. In comparison
ith the classical orthogonal collocation method, this procedure approaches closely the method of moments and method of Galerkin with no

dditional computational cost. In Section 3, the proposed methodology is applied for testing and evaluation of typical chemical engineering
xamples: mass and heat diffusion in a catalyst particle, and tubular pseudo-homogeneous chemical reactor with axial advective and
iffusive transports, considering in both cases isothermal and non isothermal, and stationary and transient models.

. Methodology

Following the traditional procedure (Villadsen & Michelsen, 1978), the proposed methodology begins with polynomial approximations
f the dependent variables and their replacement in the problem equations, generating the residuals expressions. In order to establish
he necessary conditions to determine the polynomial coefficients, the null weighted residual averages are evaluated using a convenient
uadrature method for computation of the integrals. The discretized system can be solved by any algebraic equations system solver for
tationary problems or any differential-algebraic equations system solver for transient problems.

In order to introduce the proposed methodology, let us consider two types of partial differential equation models. In the first one, we
onsider a transient second-order boundary value problem with spatial symmetry for planar, cylindrical or spherical geometry. Example
f this type of problem is the transient reaction–diffusion equation in a catalyst particle with different shapes (slab, cylindrical, spherical).

his model can be described in a generic way as:

F

(
t, x, �(x, t),

∂�(x, t)
∂t

,
∂2�(x, t)

∂x2
+ s

x

∂�(x, t)
∂x

)
= 0 (1.1)
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n the domain 0 ≤ x < 1 and t > 0

BC1 :
∂�(x, t)

∂x

∣∣∣∣
x=0

= 0 (1.2)

BC2 :

(
�

∂�(x, t)
∂x

+  �(x, t)

)∣∣∣∣
x=1

= �bulk(t) (1.3)

IC : H

(
t, x, �(x, t),

∂�(x, t)
∂t

)∣∣∣∣
t=0

= 0 (1.4)

here s = 0, 1 and 2 for planar, cylindrical and spherical geometry, respectively, and � is a model parameter.
The symmetry of the profile, described by the first boundary condition, Eq. (1.2), suggests the change in the spatial variable x to u = x2

ransforming the original equations to:

F

[
t, u, �(u, t),

∂�(u, t)
∂t

,  4

(
u

∂2�(u, t)
∂u2

+ s + 1
2

∂�(u, t)
∂u

)]
= 0 (1.5)

BC1 :
∂�(u, t)

∂u

∣∣∣∣
u=0

: finite (1.6)

BC2 :

(
2�

∂�(u, t)
∂u

+ �(u, t)

)∣∣∣∣
u=1

= �bulk(t) (1.7)

IC : H

(
t, u, �(u, t),

∂�(u, t)
∂t

)∣∣∣∣
t=0

= 0 (1.8)

Applying a polynomial approximation of degree n in the independent variable u to the state variable �(t, u) according to

�(u, t) ≈ �(n)(u, t) =
n+1∑
j=1

�j(u)�j(t) (2)

here �j(u) is the jth Lagrange polynomial in u of degree n such that:

�j(u) =
n+1∏

k = 1

k /= j

u − uk

uj − uk
⇒ �j(ui) = ıi,j =

{
1 when i = j

0 when i /= j
:  (Krö necker ı function) (3)

j(t) = �(n)(uj, t), and 0 < u1 < u2 < · · · un < un+1 = 1 are the n + 1 interpolation points.

The approximation proposed in Eq. (2), can also be represented by the form:(4)�(u, t) ≈ �(n)(u, t) = �bulk(t) +
n∑

j=1

aj(t)[uj − (1 +

j�)]where a =

⎛
⎜⎜⎝

a1
a2
...

an

⎞
⎟⎟⎠ ∈ �n.

Replacing the polynomial approximation �(n)(u, t), Eq. (2), in the model represented by Eq. (1.5), we  obtain the residual of the approxi-
ation, defined by:

R(n)[u, ˚(t)] = F

[
t, u, �(n)(u, t),

∂�(n)(u, t)
∂t

,  4

(
u

∂2�(n)(u, t)
∂u2

+ s + 1
2

∂�(n)(u, t)
∂u

)]
(5)

here ˚(t) =

⎛
⎜⎜⎝

�1(t)
�2(t)

...
�n+1(t)

⎞
⎟⎟⎠.

The residual function expressed by Eq. (5) evaluates the quality of the approximation in every point of the domain: 0 ≤ u ≤ 1.
In order to establish the necessary conditions to determine the numerical solution of the problem in the interpolation points, �(n)(uj,
), we applied the concept of average value of a function to compute the first n average weighted residuals, as following:

R̄
(n)
j [˚(t)] =

(
s + 1

2

)∫ u=1

u=0

u(s−1)/2ωj(u)R(n)[u, ˚(t)]du = 0, for j = 1, 2, . . .,  n, (6)
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here R̄
(n)
j [˚(t)] is the j-th average weighted residual of the approximation and ωj(u) is the j-th weight corresponding to the method of

eighted residuals. In this work the method of moments and the Galerkin method were applied, resulting:

Method of moments : ωj(u) = uj−1 for j = 1, 2, . . ., n (7)

Galerkin method : ωj(u) = ∂�(n)(u, t)
∂aj

= uj − (1 + 2j�) for j = 1, 2, . . .,  n. (8)

In the proposed methodology, the average weighted residuals, as defined by Eq. (6), are numerically calculated by Gauss-Radau
uadrature procedure with the inclusion of upper bound point un+1 = 1, resulting in:

R̄
(n)
j [˚(t)] ≈

n+1∑
k=1

˝j,kR(n)
k

(t) = 0, for j = 1, 2, . . .,  n (9)

here R(n)
k

(t) = R(n)[uk, ˚(t)], 0 < u1 < u2 < · · · un < 1 are the n roots of the Jacobi polynomial P(1,(s−1)/2)
n (u), un+1 = 1, ˝j,k = Hk · ωj(xk) for j = 1,

, . . .,  n and k = 1, 2, . . .,  n + 1 and Hk, for k = 1, . . .,  n + 1, are the Gauss-Radau quadrature weights given by Hk =
(

s+1
2

)∫ u=1
u=0

u(s−1)/2[�k(u)]2du.
Eq. (9) is a linear system of algebraic equations that can be represented by the following matrix form:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

˝1,1R(n)
1 · · · ˝1,nR(n)

n ˝1,n+1R(n)
n+1

˝2,1R(n)
1 · · · ˝2,nR(n)

n ˝2,n+1R(n)
n+1

...
...
...
...

...
...

˝n−1,1R(n)
1 · · · ˝n−1,nR(n)

n ˝n−1,n+1R(n)
n+1

˝n,1R(n)
1 · · · ˝n,nR(n)

n ˝n,n+1R(n)
n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (10)

This algebraic linear system can be solved according to:

⎡
⎢⎢⎣

R(n)
1

...

R(n)
n

⎤
⎥⎥⎦ = V · R(n)

n+1, where V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V1

V2

...

Vn−1

Vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= G−1P, G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

˝1,1 · · · ˝1,n

˝2,1 · · · ˝2,n

...
...

...

˝n−1,1 · · · ˝n−1,n

˝n,1 · · · ˝n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, and P = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

˝1,n+1

˝2,n+1

...

˝n−1,n+1

˝n,n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(11)

The matrix G is invertible when all quadrature points are different, which is always true for orthogonal polynomials, and due to the
inearly independence of the residual weights; these two  facts assure the full rank of matrix G.

It is important to emphasize that Eq. (11) allows a unified procedure of the methods of moments, Galerkin and orthogonal collocation.
he orthogonal collocation method can be obtained by setting the vector V = 0, and when the method of moments or the Galerkin method
re applied we must calculate the components of vector V according to Eqs. (7) and (8), respectively, and the definition of the terms of
atrix ˝.  Besides, the proposed methodology connects the residual at the internal points to the residual at the upper boundary point.
The approximation for the dependent variables and its derivative can be described by the expressions (Villadsen & Michelsen, 1978):

�(n)(ui, t) = �i(t) (12.1)

∂�(n)(u, t)
∂t

∣∣∣∣
ui

= d�i(t)
dt

(12.2)

∂�(n)(u, t)
∂u

∣∣∣∣
ui

=
n+1∑
j=1

Ai,j�j(t) (12.3)

∂2�(n)(u, t)
∂u2

∣∣∣∣
ui

=
n+1∑
j=1

Bi,j�j(t) (12.4)

(
2 (n) (n)

) n+1∑

u

∂ � (u, t)
∂u2

+ s + 1
2

∂� (u, t)
∂u

ui

=
j=1

Ci,j�j(t) (12.5)

here Ci,j =
(

uiBi,j + s+1
2 Ai,j

)
.
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Replacing in Eq. (9) the model described by Eq. (1), using the approximation presented in Eq. (12), gives rise to the following system of
ifferential-algebraic equation (DAE):

F

⎛
⎝t, ui, �i(t),

d�i(t)
dt

,  4
n+1∑
j=1

Ci,j�j(t)

⎞
⎠ = ViF

⎛
⎝t, 1, �n+1(t),

d�n+1(t)
dt

, 4
n+1∑
j=1

Cn+1,j�j(t)

⎞
⎠ for i = 1, 2, . . .,  n (13.1)

BC2 : 2�

n+1∑
j=1

An+1,j�j(t) + �n+1(t) = �bulk(t) (13.2)

IC : H
(

t, ui, �i(t),
d�i(t)

dt

)
t=0

= 0 for i = 1, 2, . . .,  n. (13.3)

The steady-state version of this model can be obtained considering (d�i(t)/dt) = 0 and �bulk(t) = �bulk = constant, transforming the DAE
ystem of Eq. (13) into a system of non-linear algebraic equations:

F

⎛
⎝ui, �i, 4

n+1∑
j=1

Ci,j�j

⎞
⎠ = ViF

⎛
⎝1, �n+1, 4

n+1∑
j=1

Cn+1,j�j

⎞
⎠ for i = 1, 2, . . .,  n (14.1)

BC2 : 2�

n+1∑
j=1

An+1,j�j + �n+1 = �bulk. (14.2)

In the second type of problem, we consider a transient second-order boundary value problem without spatial symmetry. Example of
his type of problem is the transient reaction–diffusion–advection equation in a tubular reactor. This model can be described in a generic
ay as:

F

(
t, x, �(x, t),

∂�(x, t)
∂t

,
∂�(x,  t)

∂x
,

∂2�(x, t)
∂x2

)
= 0 (15.1)

n the domain 0 < x < 1 and t > 0

BC1 :

(
−�

∂�(x, t)
∂x

+  �(x, t)

)
x=0

= �feed(t) (15.2)

BC2 :
∂�(x, t)

∂x

∣∣∣∣
x=1

= 0 (15.3)

IC : H

(
t, x, �(x, t),

∂�(x, t)
∂t

)
t=0

= 0 (15.4)

Applying a polynomial approximation of degree n + 1 in the independent variable x to the state variable �(t, x) according to

�(x, t) ∼= �(n+1)(x, t) =
n+1∑
j=0

�j(x) · �j(t) (16)

here �j(x) is the j-th Lagrange polynomial in x of degree n + 1 such that:

�j(x) =
n+1∏

k = 0

k /= j

x − xk

xj − xk
⇒ �j(xi) = ıi,j =

{
1 when i = j

0 when i /= j
(17)

j(t) = �(n+1)(xj, t), and 0 = x0 < x1 < x2 < · · · xn < xn+1 = 1 are the n + 2 interpolation points.
The approximation proposed in Eq. (16) can also be represented by the form:

�(x, t) ≈ �(n+1)(x, t) = �feed(t) + [�a2(t) − (1 + 2�)a1(t)] + (1 − x)2
n∑

j=1

aj(t)xj−1 (18)

hich automatically satisfies both boundary conditions.
Replacing the polynomial approximation �(n+1)(x, t), Eq. (16), in the model represented by Eq. (15.1), we  obtain the residual of the
pproximation defined by:

R(n+1)[x, ˚(t)] = F

[
t, x, �(n+1)(x, t),

∂�(n+1)(x, t)
∂t

,
∂�(n+1)(x, t)

∂x
,

∂2�(n+1)(x, t)
∂x2

]
(19)
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here ˚(t) =

⎛
⎜⎜⎝

�0(t)
�1(t)

...
�n+1(t)

⎞
⎟⎟⎠.

The residual function expressed by Eq. (19) evaluates the quality of the approximation in every point of the domain: 0 < x < 1. In order
o establish the necessary conditions to determine the numerical solution of the problem in the interpolation points, �(n+1)(xj, t) = �j(t), we
pplied the concept of average value of a function to compute the first n average weighted residuals, as following:

R̄
(n+1)
j [˚(t)] =

∫ x=1

x=0

ωj(x)R(n+1)[x, ˚(t)]dx = 0, for j = 1, 2, . . .,  n (20)

here R̄
(n+1)
j [˚(t)] is the j-th average weighted residual of the approximation and ωj(x) is the j-th weight corresponding to the method

f weighted residuals. The terms ωj(x) presented in Eq. (20) are related with the method of weighted residuals applied to the numerical
olution of the problem. In this work the method of moments and of Galerkin method were applied, resulting:

Method of moments : ωj(x) = xj−1 for j = 1, 2, . . .,  n (21)

Galerkin method : ωj(x) = ∂�(n+1)(x, t)
∂aj

= (1 − x)2xj−1 +

⎧⎨
⎩

−(1 + 2�) when j = 1

� when j = 2

0 when j > 2

for j = 1, 2, . . ., n. (22)

In the proposed methodology, the average weighted residuals, as defined by Eq. (20), are numerically calculated by Gauss-Lobatto
uadrature procedure with inclusion of both lower and upper bounds, x0 = 0 and xn+1 = 1, resulting in:

R̄
(n+1)
j [˚(t)] ≈

n+1∑
k=0

˝j,k · R(n+1)
k

(t) = 0, for j = 1, . . .,  n (23)

here R(n+1)
k (t) = R(n+1) [xk, ˚(t)], 0 < x1 < x2 < · · · xn < 1 are the n roots of the Jacobi polynomial P(1,1)

n (x), x0 = 0, xn+1 = 1, ˝j,k = Hk · ωj(xk) for

 = 1, 2, . . .,  n − 1 and k = 0, 1, 2, . . .,  n + 1, and Hk are the Gauss-Lobatto quadrature weights given by: Hk =
∫ x=1

x=0

[
�k(x)

]2
dx.  For j = n, we have:

n,k = Hk · xn−1
k

when the method of moments is applied and ˝n,k = Hk · (1 − xk)2xn−1
k

+ (C(1,1)
n /p′

nodal
(xk)) when the Galerkin method is

pplied (see Appendix A).
Eq. (23) is a linear system of algebraic equation that can be represented by the following matrix form:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

˝0,0R(n+1)
0 ˝0,1R(n+1)

0 · · · ˝0,nR(n+1)
n ˝0,n+1R(n+1)

n+1

˝1,0R(n+1)
0 ˝1,1R(n+1)

1 · · · ˝1,nR(n+1)
n ˝1,n+1R(n+1)

n+1

...
...

...
...

...

˝n−1,0R(n+1)
0 ˝n−1,1R(n+1)

1 · · · ˝n−1,nR(n+1)
n ˝n−1,n+1R(n+1)

n+1

˝n,0R(n+1)
0 ˝n,1R(n+1)

1 · · · ˝n,nR(n+1)
n ˝n,n+1R(n+1)

n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (24)

Eq. (24) can be expressed in another form that relates the n residuals at internal points, R(n+1)
1 , . . ., R(n+1)

n , with the residuals at the

oundary points, R(n+1)
0 and R(n+1)

n+1 , according to the expression:⎡
⎢⎢⎢⎢⎢⎢⎢⎣

˝0,1 · · · ˝0,n

˝1,1 · · · ˝1,n

...
...

...

˝n−1,1 · · · ˝n−1,n

˝n,1 · · · ˝n,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

R(n+1)
1

...

R(n+1)
n

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

˝0,0 ˝0,n+1

˝1,0 ˝1,n+1

...
...

˝n−1,0 H˝n−1,n+1

˝n,0 ˝n,n+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
[

R(n+1)
0

R(n+1)
n+1

]
· (25)

This algebraic linear system can be solved according to:

⎡
⎢⎣

R(n+1)
1

.

.

.

R(n+1)
n

⎤
⎥⎦ = V(1)R(n+1)

0 + V(2)R(n+1)
n+1 , where V = [ V(1) V(2) ] = G−1P, G =

⎡
⎢⎢⎢⎢⎢⎢⎣

˝0,1 · · · ˝0,n

˝1,1 · · · ˝1,n

.

.

.
.
.
.

.

.

.

˝n−1,1 · · · ˝n−1,n

˝n,1 · · · ˝n,n

⎤
⎥⎥⎥⎥⎥⎥⎦

and P = −

⎡
⎢⎢⎢⎢⎢⎢⎣

˝0,0 ˝0,n+1

˝1,0 ˝1,n+1

.

.

.
.
.
.

˝n−1,0 H˝n−1,n+1

˝n,0 ˝n,n+1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (26)
As already mentioned, this procedure allows a unified procedure of the methods of moments, Galerkin and orthogonal collocation. The
rthogonal collocation method can be obtained by setting the matrix V = 0, and when the method of moments or the Galerkin method
re applied we must calculate the components of matrix V according to Eqs. (21) and (22), respectively, and the definition of the terms of
atrix ˝.  Besides, the proposed methodology connects the residual at the internal points with the residuals at the boundary points.
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The approximation for the dependent variables and its derivative can be described by the expressions (Villadsen & Michelsen, 1978):

�(n+1)(xi, t) = �i(t) (27.1)

∂�(n+1)(x, t)
∂t

∣∣∣∣
xi

= d�i(t)
dt

(27.2)

∂�(n+1)(x, t)
∂x

∣∣∣∣
xi

=
n+1∑
j=0

Ai,j�j(t) (27.3)

∂2�(n+1)(x, t)
∂x2

∣∣∣∣
xi

=
n+1∑
j=0

Bi,j�j(t) (27.4)

Replacing in Eq. (24) the model described by Eq. (15), using the approximation presented in Eq. (27), gives rise to the following system
f differential-algebraic equation (DAE):

F

⎛
⎝t, xi, �i(t),

d�i(t)
dt

,

n+1∑
j=0

Ai,j�j(t),
n+1∑
j=0

Bi,j�j(t)

⎞
⎠ =

= V(1)
i

F

⎛
⎝t, 0, �0(t),

d�0(t)
dt

,

n+1∑
j=0

A0,j�j(t),
n+1∑
j=0

B0,j�j(t)

⎞
⎠+

+ V(2)
i

F

⎛
⎝t, 1, �n+1(t),

d�n+1(t)
dt

,

n+1∑
j=0

An+1,j�j(t),
n+1∑
j=0

Bn+1,j�j(t)

⎞
⎠

for i = 1, 2, . . .,  n

(28.1)

BC1 : −�

n+1∑
j=1

A0,j�j(t) + �0(t) = �feed(t) BC2 :
n+1∑
j=1

An+1,j�j(t) = 0 (28.2)

IC : H
(

t, xi, �i(t),
d�i(t)

dt

)
t=0

= 0 for i = 1, 2, . . .,  n. (28.3)

The steady-state version of this model can be obtained considering (d�i(t)/dt) = 0 and �feed(t) = �feed = constant, transforming the DAE
ystem of Eq. (28) into a system of non-linear algebraic equations, Eq. (29).

F

(
xi, �i,

n+1∑
j=0

Ai,j�j,

n+1∑
j=0

Bi,j�j

)
= V(1)

i
F

(
0, �0,

n+1∑
j=0

A0,j�j,

n+1∑
j=0

B0,j�j

)
+ V(2)

i
F

(
1, �n+1,

n+1∑
j=0

An+1,j�j,

n+1∑
j=0

Bn+1,j�j

)
for i = 1, 2, . . .,  n. (29.1)

BC1 : −�

n+1∑
j=1

A0,j�j + �0 = �feed BC2 :
n+1∑
j=1

An+1,j�j = 0 (29.2)

The main advantage of the procedure proposed in this work is related to the possibility to develop a criterion for selecting the quadrature
oints and also to establish a direct connection between the residuals in the internal discrete points and the boundary residuals, allowing
hat the same Jacobi polynomial be used for the method of moments and for the Galerkin method. The specificity of each method appears
nly in the calculation of the discretization matrices of the system. Thus, the structure of the discretized equations is very similar to the
tructure generated by applying the classical form of the OCM. Note that by setting the vector V = 0, the proposed procedure reduces to the
lassical OCM.

. Selected problems for testing and evaluation

In order to test and evaluate the proposed methodology, two typical chemical engineering examples are solved: mass and heat balance
n a catalyst particle with irreversible chemical reaction and tubular pseudo-homogeneous chemical reactor with axial advective and
iffusive transports. Stationary and transient, isothermal and non-isothermal models will be considered. For stationary models the algebraic
quations systems, resulting from the application of the discretization procedure, were solved by the Newton–Raphson method. For the
ransient models, where the application of the proposed methodology gives rise to a system of differential-algebraic equations, we  use the
omputational code DASSL (Petzold, 1989).
In order to evaluate the performance of the method we  use the mean square residual value, defined by the expression:

R̄(y) = (s + 1)

∫ x=1

x=0

xs[R(n)(x, y)]
2
dx (30)
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.1. Catalyst particle with irreversible chemical reaction

The unidirectional mass and energy balances in a catalyst particle at the unsteady state with geometry s (s = 0 for plane, s = 1 for
ylindrical, and s = 2 for spherical), in which there is an irreversible reaction of order m,  described, in dimensionless form, by Eqs. (31)–(33).

∂y(u, t)
∂t

− 4

(
u

∂2y(u, t)
∂u2

+
(

s + 1
2

)
∂y(u, t)

∂u

)
+ �[y(u, t), �(u, t)] = 0 (31.1)

Le
∂�(u, t)

∂t
− 4

(
u

∂2�(u, t)
∂u2

+
(

s + 1
2

)
∂�(u, t)

∂u

)
− ��[y(u, t), �(u, t)] = 0 (31.2)

here

�[y(u, t), �(u, t)] = ˚2[y(u, t)]mexp
[

�
(

1 − 1
�(u, t)

)]
(31.3)

ubject to the following boundary conditions:

BC1 :
∂y(u, t)

∂u

∣∣∣∣
u=0

: finite (32.1)

∂�(u, t)
∂u

∣∣∣∣
u=0

: finite (32.2)

BC2 :
2
Sh

∂y(u, t)
∂u

∣∣∣∣
u=1

+ y(u, t)
∣∣
u=1

= ybulk(t) (32.3)

2
Nu

∂�(u, t)
∂u

∣∣∣∣
u=1

+ �(u, t)
∣∣
u=1

= �bulk(t) (32.4)

nd to the following initial conditions:

y(u, t)
∣∣
t=0

= yinitial(u) (33.1)

�(u, t)
∣∣
t=0

= �initial(u) (33.2)

n which the independent variables u (u = x2 with x being the original spatial variable) and t are defined in the domain: 0 ≤ u < 1 e t > 0, ˚
s the Thiele modulus, Le is the Lewis number, Sh is the Sherwood number, Nu is the Nusselt number, � is the dimensionless heat of the
eaction, � is the dimensionless activation energy of the reaction and m is the reaction order.

The application of the procedure described in Section 2 results in the system of 2n differential equations and 2 algebraic equations,
iven by Eq. (34).

dyi(t)
dt

−
n+1∑
j=1

Ci,jyj(t) + �[yi(t), �i(t)] − V(y)
i

⎧⎨
⎩dyn+1(t)

dt
−

n+1∑
j=1

Cn+1,jyj(t) + �[yn+1(t), �n+1(t)]

⎫⎬
⎭ = 0

Le
d�i(t)

dt
−

n+1∑
j=1

Ci,j�j(t) − ��[yi(t), �i(t)]−

V(�)
i

⎧⎨
⎩Le

d�n+1(t)
dt

−
n+1∑
j=1

Cn+1,j�j(t) − ��[yn+1(t), �n+1(t)]

⎫⎬
⎭ = 0

2
Sh

n+1∑
j=1

An+1,jyj(t) + yn+1(t) = ybulk(t)

2
Nu

n+1∑
j=1

An+1,j�j(t) + �n+1(t) = �bulk(t)

(34)

here

Ci,j = 4
(

uiBi,j + s + 1
Ai,j

)

2

�[yi(t), �i(t)] = ˚2[yi(t)]mexp
[

�
(

1 − 1
�i(t)

)]
.
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Table  1
Mean square error, mean square residual and infinity-norm, considering the isothermal steady state problem for m = 1, s = 2, Sh = 1 and different values of Thiele modulus (˚).

n Method of moments Galerkin method

3
∫ 1

0
x2[error(x)]2dx 3

∫ 1

0
x2Res2(x)dx

∥∥error(x)
∥∥

∞
3
∫ 1

0
x2[error(x)]2dx 3

∫ 1

0
x2Res2(x)dx

∥∥error(x)
∥∥

∞

 ̊ = 10
3 9.47 × 10−6 2.88 × 10−2 9.5 × 10−2 5.09 × 10−6 2.81 × 10−2 5.68 × 10−2

4 2.37 × 10−7 1.14 × 10−3 1.76 × 10−2 1.02 × 10−7 1.24 × 10−3 9.73 × 10−3

5 3.54 × 10−9 2.65 × 10−5 2.41 × 10−3 1.37 × 10−9 3.31 × 10−5 1.28 × 10−3

6 3.29 × 10−11 3.77 × 10−7 3.00 × 10−4 1.20 × 10−11 5.36 × 10−7 1.85 × 10−4

 ̊ = 20
3 7.55 × 10−5 1.52 2.41 × 10−2 5.04 × 10−5 1.32 1.44 × 10−1

4 8.41 × 10−6 2.14 × 10−1 9.49 × 10−2 4.23 × 10−6 1.90 × 10−1 5.01 × 10−2

5 7.54 × 10−7 2.41 × 10−2 3.24 × 10−2 3.08 × 10−7 2.32 × 10−2 1.60 × 10−2

6 5.01 × 10−8 2.02 × 10−3 9.31 × 10−3 1.82 × 10−8 2.20 × 10−3 4.48 × 10−3
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T
V

7 2.45 × 10−9 1.25 × 10−4 2.26 × 10−3 8.34 × 10−10 1.55 × 10−4 1.08 × 10−3

8 8.89 × 10−11 5.73 × 10−6 4.69 × 10−4 2.94 × 10−11 8.07 × 10−6 2.23 × 10−4

The formulation presented here, Eq. (34), uses the same Jacobi polynomial, P(1,(s−1)/2)
n (u), for the methods of moments and Galerkin.

he differences between the methods appear only in the computation of the components of the vectors V(y) and V(�).
Considering the specific case of isothermal and first order chemical reaction, the residue R(n)(u, y) is also a polynomial function in u

ith the same degree n of y(n)(u). Thus, the integrand of Eq. (6) is expressed as a polynomial in u of degree up to 2n − 1, when the method
f moments is applied, and of degree up to 2n, when the method of Galerkin is applied. This makes possible to exactly evaluate the integral
epresented by Eq. (6) with Gauss-Radau quadrature, using the point un+1 = 1 and n internal quadrature points, 0 < u1 < u2 < · · · un < 1, which
re the roots of the Jacobi polynomial with  ̨ = 1 and  ̌ = (s − 1)/2, i.e., P(1,(s−1)/2)

n (u).
For isothermal and first order chemical reaction, the application of the method of moments results in a system of equations identical

o that generated by the application of the classical OCM, using as colocation points the n roots of the Jacobi polynomial with  ̨ = 0 and
 = (s − 1)/2. The application of Galerkin method can only be reproduced by the classical OCM in the specific case of Dirichlet boundary
ondition, when Sh→ ∞.  In this specific situation, the integration of the average weighted residue, Eq. (6), can be exactly evaluated by
auss-Jacobi quadrature adopting as internal points of quadrature the n roots of P(1,(s−1)/2)

n (u). This is equivalent to impose that the
esidual function will be zero in the n roots of this Jacobi polynomial.

In order to evaluate the utilization of the mean square residue in the performance of the applied MWR,  the proposed methodology was
pplied to the stationary and isothermal model. In Table 1, the mean square error, mean square residual and infinity-norm are compared
onsidering the following parameters values: m = 1, s = 2 and different values of Thiele modulus (˚).

Analyzing the values presented in Table 1, we verify that the two  methods (moments and Galerkin) present similar performances. For
ll the cases the Galerkin method presents a better performance, but the difference is not significant. Comparing the values obtained by the
ean square error, the mean square residual and the infinity-norm, it is possible to conclude that the value of the mean square residual can

e used to evaluate the performance of the applied MWR. The values obtained show a good agreement between the mean square residual
nd the infinity-norm, indicating that large pointwise errors are properly weighted.

Analyzing Fig. 1, it is possible to note that the utilization of low number of quadrature points gives rise to solution with unrealistic
scillation. These oscillations occur due to the inability of polynomial approximations to describe severe gradients.

Comparing the results presented in Fig. 2, it is possible to observe that the increase of the Thiele module introduce steep gradients near
he surface. In both cases the adaptability of the polynomial approximation, and consequently its accuracy, can be improved by increasing
he number of quadrature points. It must be pointed out that increasing the number of quadrature points also increases the computational
fforts. It is very important to consider this aspect, because in some cases it is more indicated the use of adaptive mesh, that allows increase
he number of quadrature points in regions absolutely necessary, than increase the global points of quadrature.

In Fig. 3, it is possible to verify that the location of the points where the residual function is zero slightly changes with the value of Sh
arameter, when the Galerkin method is applied. This feature indicates that the proposed methodology has a self-adaptive property, since
he location of the points where the residual function is zero changes with the variation of model parameters.

For the non-isothermal and stationary case, the methodology was applied using 5 internal quadrature points considering the values of
he parameters:  ̊ = 0.5, m = 1, s = 2, Sh = 66.5, Nu = 55.3, � = 20 and � = 0.6 (Finlayson, 1972).

In this case, when the Galerkin method is applied, we  observe that the points where the residual function for the mass balance equation
s zero are not the same points where the residual function for the energy balance equation is zero (see Table 2). It is also observed that

he location of the points where the residual functions are zero is different for the methods of moments and Galerkin (Figs. 4 and 5,
espectively), indicating, once more, the adaptive feature presented by the proposed procedure.

Comparing the mean square residues shown in Table 3, we  can see that the proposed methodology produces more accurate results than
he application of the classical form of the OCM, especially if it is takes into account the results obtained by the method of moments.

able 2
alues where the residual functions are zero with the Galerkin method.

x Resy(x) = 0 Res�(x) = 0

x1 0.0628 0.0628
x2 0.2358 0.2360
x3 0.4766 0.4771
x4 0.7259 0.7268
x5 0.9233 0.9248
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a

b

Fig. 1. Concentration profile in the stationary and isothermal model of catalyst particle, obtained by the application of methods of moments (a) and Galerkin (b) considering
different internal points of quadrature and parameters m = 1, s = 2, Sh = 1 and  ̊ = 20.
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For the non-isothermal and transient case, the methodology was  applied using 8 internal quadrature points, considering the values of the
arameters:  ̊ = 0.5, m = 1, s = 2, Sh = 66.5, Nu = 55.3, � = 20, � = 0.6, Le = 0.9, and ybulk(t) = �bulk(t) = 1 (Finlayson, 1972). The initial conditions
re: yinitial(u) = 0 and �initial(u) = 1. In Fig. 6, it is possible to observe that the point close to the upper boundary where the energy balance
esidual function is zero slightly changes with time. This fact was  also observed for the residue function of the mass balance. This behavior
s more clearly identified when the method of Galerkin is applied due to the residual weights parameter dependence, Eq. (8). When the

ethod of moments is applied, the location of the points where the residual functions is zero is almost unchanged, changing only due to
he non-linearity of the model equations. In this late method, these points remain very close to the collocation points when the classical
orm of the OCM is applied with collocation points properly selected as the n roots of the Jacobi polynomial with  ̨ = 0 and  ̌ = (s − 1)/2,
orresponding to the numerical computation of the integrals of the weighted residuals by pure Gaussian quadrature method, that does
ot include boundary points.
able 3
ean square residue of the classical orthogonal collocation, method of moments, and Galerkin method for the non-isothermal steady-state model, with  ̊ = 0.5, m = 1, s = 2,

h  = 66.5, Nu = 55.3, � = 20 and � = 0.6.

n Orthogonal collocation P(0,0)
n (u) Method of moments Galerkin method

R̄y R̄� R̄y R̄� R̄y R̄�

3 6.15 × 10−2 2.21 × 10−2 1.59 × 10−2 5.72 × 10−3 2.87 × 10−2 1.02 × 10−2

4 1.61 × 10−3 5.80 × 10−4 4.65 × 10−4 1.67 × 10−4 7.85 × 10−4 2.78 × 10−4

5 3.04 × 10−5 1.09 × 10−5 7.44 × 10−6 2.67 × 10−6 1.33 × 10−5 4.67 × 10−6

6 4.60 × 10−7 1.65 × 10−7 9.42 × 10−8 3.39 × 10−8 1.79 × 10−7 6.24 × 10−8
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ig. 2. Concentration profile for different  ̊ in the stationary and isothermal model of catalyst particle, obtained by the application of the methods of moments (a) and
alerkin (b) with parameters m = 1, s = 2 and Sh = 1.

.2. Tubular pseudo-homogeneous chemical reactor with axial advective and diffusive transports

The mass and energy balances in a fixed-bed reactor, in which an irreversible chemical reaction of order m occurs, are described by the

ollowing system of partial differential equations:

∂y(x, t)
∂t

+ ∂y(x, t)
∂x

− 1
Pem

∂2y(x, t)
∂x2

+ �[y(x, t), �(x, t)] = 0 (35.1)

Fig. 3. Normalized residual in the catalyst particle considering steady-state isothermal model for different values of the parameter Sh applying the Galerkin method.
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Fig. 4. Normalized residual of the non-isothermal steady-state mass balance equation in the catalyst particle when applying the moments and Galerkin methods.

w

s

F

Fig. 5. Normalized residual of the non-isothermal steady-state energy balance equation in the catalyst particle when applying the moments and Galerkin methods.

∂�(x, t)
∂t

+ ∂�(x, t)
∂x

− 1
Peh

∂2�(x, t)
∂x2

− ��[y(x, t), �(x, t)] = 0 (35.2)

here

�[y(x, t), �(x, t)] = Da[y(x, t)]mexp
[

�
(

1 − 1
�(x, t)

)]
(35.3)

ubject to the following boundary conditions:∣

BC1 : − 1

Pem

∂y(x, t)
∂x

∣∣∣
x=0

+ y(x, t)
∣∣
x=0

= yfeed(t) (36.1)

ig. 6. Normalized residual of the non-isothermal and transient energy balance equation in the catalyst particle for different times when applying the Galerkin method.
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Table  4
Concentration values at the inlet and outlet of the reactor for the stationary and isothermal case, obtained by Finlayson (1972) and by the application of the proposed
procedure.

n Finlayson (OCM) Moments Galerkin

y(0) y(1) y(0) y(1) y(0) y(1)

m = 1, Pe = 15 and Da = 8
4 0.7260629 0.0026254 0.7246852 0.0034243 0.7272829 0.0038743
6  0.7220846 0.0028608 0.7220526 0.0028642 0.7222041 0.0028928
8  0.7219910 0.0028617 0.7219909 0.0028617 0.7219981 0.0028632
Exact 0.7219898 0.0028617 – – – –

m  = 2, Pe = 1 and Da = 2
3  0.6368092 0.4575999 0.6367842 0.4575887 0.6367910 0.4575923
6  0.6367841 0.4575887 0.6367841 0.4575887 0.6367841 0.4575887
FDM 0.6367841 0.4575887 – – – –

a

w
n

T
M

− 1
Peh

∂�(x, t)
∂x

∣∣∣∣
x=0

+ �(x, t)
∣∣
x=0

= �feed(t) (36.2)

BC2 :
1

Pem

∂y(x, t)
∂x

∣∣∣∣
x=1

= 0 (36.3)

1
Peh

∂�(x, t)
∂x

∣∣∣∣
x=1

= 0 (36.4)

nd to the following initial conditions:

y(x, t)
∣∣
t=0

= yinitial(x) (37.1)

�(x, t)
∣∣
t=0

= �initial(x) (37.2)

here the independent variables x and t are defined in the domain: 0 < x < 1 and t > 0, Da is the Damköhler number, Pem is the Peclet mass
umber, Peh is the Peclet energy number, � and � are dimensionless parameters, and m is the reaction order.
able 5
ean square error and mean square residue, considering the isothermal steady state problem for m = 1, Da = 20 and different values of mass Peclet numbers (Pem).

n Method of moments Galerkin method∫ 1

0
[error(x)]2dx

∫ 1

0
Res2(x)dx

∫ 1

0
[error(x)]2dx

∫ 1

0
Res2(x)dx

Pem = 0.1
3 3.03 × 10−11 1.52 × 10−5 1.56 × 10−11 1.54 × 10−5

4 2.95 × 10−13 4.24 × 10−7 1.33 × 10−13 4.43 × 10−7

Pem = 1
3 1.41 × 10−6 1.20 × 10−2 1.13 × 10−6 1.72 × 10−2

4 4.01 × 10−8 9.70 × 10−4 2.29 × 10−8 1.00 × 10−3

Pem = 10
3 8.81 × 10−4 1.05 8.18 × 10−4 1.07
4  9.69 × 10−5 1.71 × 10−1 8.03 × 10−5 1.80 × 10−1

5 9.37 × 10−6 2.33 × 10−2 6.60 × 10−6 2.55 × 10−2

6 7.65 × 10−7 2.60 × 10−3 4.58 × 10−7 2.98 × 10−3

Pem = 100
3 6.95 × 10−3 4.74 5.98 × 10−3 4.61
4  1.66 × 10−3 1.33 1.41 × 10−3 1.42
5  3.49 × 10−4 3.29 × 10−1 2.92 × 10−4 3.90 × 10−1

6 6.36 × 10−5 7.02 × 10−2 5.21 × 10−5 9.24 × 10−2

7 1.00 × 10−5 1.29 × 10−2 7.97 × 10−6 1.86 × 10−2

8 1.36 × 10−6 2.05 × 10−2 1.05 × 10−6 3.19 × 10−3
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ig. 7. Concentration profile in the stationary and isothermal model of the fixed-bed reactor, obtained by the application of the moments (a) and Galerkin (b) methods
pplying different internal points of quadrature and parameters m = 1, Da = 20 and Pem = 100.

The application of the procedure described in Section 2, results in the system of 2n differential equations and 4 algebraic equations,
iven by Eq. (38).

dyi

dt
+

n+1∑
j=0

C(y)
i,j

yj + �[yi, �i] − V (y)
i,0

⎡
⎣dy0

dt
+

n+1∑
j=0

C(y)
0,j

yj + �[y0, �0]

⎤
⎦+

− V(y)
i,1

⎡
⎣dyn+1

dt
+

n+1∑
j=0

C(y)
n+1,j

yj + �[yn+1, �n+1]

⎤
⎦ = 0

d�i

dt
+

n+1∑
j=0

C(�)
i,j

�j − ��[yi, �i] − V(�)
i,0

⎡
⎣d�0

dt
+

n+1∑
j=0

C(�)
0,j

�j − ��[y0, �0]

⎤
⎦+

− V(�)
i,1

⎡
⎣d�n+1

dt
+

n+1∑
j=0

C(�)
n+1,j

�j − ��[yn+1, �n+1]

⎤
⎦ = 0

− 1
Pem

n+1∑
j=0

A0,jyj + yn+1 = yfeed(t)
1

Pem

n+1∑
j=0

An+1,jyj = 0

− 1
n+1∑

A � + � = � (t)
1

n+1∑
A � = 0

(38)
Peh
j=0

0,j j n+1 feed Peh
j=0

n+1,j j

here �[yi, �i] = Da[yi]
mexp

[
�
(

1 − 1
�i

)]
C(y)

i,j
=

[
Ai,j − 1

Pem
Bi,j

]
C(�)

i,j
=

[
Ai,j − 1

Peh
Bi,j

]
.
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ig. 8. Concentration profile for different Pem in the stationary and isothermal model of the fixed-bed reactor, obtained by the application of the moments (a) and Galerkin
b)  with the parameters m = 1 and Da = 20.

The formulation given by Eq. (38) uses the same Jacobi polynomial, P(1,1)
n (x), for the method of moments and the Galerkin method. The

ifferences between these methods only appear in the computation of the components of matrices V(y) and V(�).
Considering the specific case of isothermal and first order chemical reaction, the residual function R(n+1)[x, y(t)] is also a polynomial

unction in x with the same degree n + 1 of y(n+1)(x, t). Thus, the integrand of the weighted average residuals of the approximation will be
olynomials in x with degree up to 2n, when applying the method of moments, and with degree up to 2n + 2, when applying the Galerkin
ethod. This makes possible to exactly evaluate the integral of the average weighted residuals by the improved Gauss-Lobatto quadrature

described in Appendix A), independent of the applied MWR.  It is important to emphasize that, for this example, the application of the OCM,
sing as collocation points the roots of Jacobi polynomials with  ̨ =  ̌ = 0, was unable to reproduce the methods of moments or Galerkin.
his collocation procedure can be interpreted as a MWR  using the Gauss-Jacobi quadrature method to compute the corresponding integrals
f the method of moments. If the model equations are linear, this OCM and the method of moments will be almost equivalent, differing
nly in the last moment, when the Gauss-Jacobi quadrature method cannot compute exactly the corresponding integral.

The improvement in the Gauss-Lobatto quadrature formulas also enable the use of the same Jacobi polynomial, P(1,1)
n (x), for the methods

f moments and Galerkin. In this case, the application of each method is specified in the computation of the components of matrices V(y)

nd V(�).
In order to compare the results of the proposed methodology with those obtained by Finlayson (1972) using OCM, the stationary and

sothermal model was firstly solved, and the results for the reactor inlet and outlet concentrations are given in Table 4.
Analyzing the values presented in Table 4, it is observed that, for this linear problem, with n = 4 the proposed methodology presents

umerical results closer to the analytical solution when compared to the results obtained by Finlayson (1972) applying the OCM,  although
or 6 points both methods are equivalent. For the nonlinear case (m = 2), with only 3 quadrature points, the numerical solution applying
he method of moments is almost identical to the solution obtained by application of finite difference method (FDM) using 100 grids
oints (Finlayson, 1972). The increase in the number of quadrature points, from 3 to 6, does not change the solution obtained by applying

he method of moments and produces some improvement in the solution obtained by the Galerkin method. These results indicate the
uperiority of the method of moments due to its simplicity and better convergence property when compared with the Galerkin method.

In order to evaluate the performance of the methodology in advective or diffusion dominated problem, the mean square of the error
nd residual were computed, considering the following parameters values: m = 1, Da = 20 and different values of Pem.
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Fig. 9. Normalized residual of the non-isothermal steady-state mass balance in the fixed-bed reactor when applying the method of moments.
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Fig. 10. Normalized residual of the non-isothermal steady-state mass balance in the fixed bed reactor when applying the Galerkin method.

Analyzing the values presented in Table 5, we  verify that the two methods (moments and Galerkin) present similar performances. For
ll the cases, the Galerkin method presents a better performance, but the difference is not significant. Comparing the values obtained by
he mean square error relative to the analytical solution and the mean square residual, it is possible to conclude that the value of the mean
quare residual can be used in evaluating the performance of the applied MWR.

Analyzing Fig. 7, it is possible to note that the utilization of low quadrature points gives rise to solution with unrealistic oscillation.
omparing the results presented in Fig. 8, it is possible to observe the increase in the gradient of the profiles due to the increase in the Pem

umber. These results confirm that the application of polynomial approximation gives better result for diffusive dominated problem. For
dvective dominated problem it was necessary to increase the quadrature points to maintain the accuracy of the numerical procedure. In
ases in which is necessary to use high number of quadrature points is advisable the usage of adaptive meshes or the application of MWR
n subdomains instead of global approximation methods.
In Figs. 9 and 10, we can see that it is possible to observe that the point close to the upper the residual function is zero varies with the
alue of the parameters Pe and Da for the methods of moments and Galerkin.

able 6
oncentration values at the inlet and the outlet of the reactor in the stationary and non-isothermal case, obtained by Finlayson (1972) and by the application of the proposed
rocedure.

n Finlayson (OCM) Moments Galerkin

y(0) y(1) y(0) y(1) y(0) y(1)

1 0.62609 0.25217 0.60847 0.21693 0.61376 0.22753
3  0.58031 0.23537 0.58016 0.23528 0.58032 0.23527
6  0.58006 0.23528 0.58006 0.23528 0.58006 0.23528

n  Finlayson (OCM) Moments Galerkin

�(0) �(1) �(0) �(1) �(0) �(1)

1 1.02094 1.04188 1.02193 1.04385 1.02163 1.04326
3  1.02350 1.04282 1.02351 1.04282 1.02350 1.04283
6  1.02352 1.04282 1.02352 1.04282 1.02352 1.04282
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Table  7
Values where the residual function is zero.

x Moments Galerkin

Resy(x) = 0 Res�(x) = 0 Resy(x) = 0 Res�(x) = 0

x1 0.0012 0.0244 0.0905 0.0318
x2 0.0598 0.1226 0.2132 0.1442
x3 0.1830 0.2816 0.3692 0.2992
x4 0.3527 0.4781 0.5447 0.4810
x5 0.5455 0.6816 0.7177 0.6678

w
i

s
t
b
l

s

o
t

F

x6 0.7328 0.8572 0.8652 0.8356
x7 0.8849 0.9709 0.9711 0.9629

In Table 6, the values of concentration in the input and the output of the reactor for the non-isothermal and stationary case are compared
ith the results obtained by Finlayson (1972), using the parameters values: Da = 3.36, m = 2, Pem = Peh = 2, � = 17.6 and � = 0.056. The results

n Table 6 show that the three methods are equivalent, but the method of moments is slightly superior to OCM and Galerkin method.
Comparing the points where the residual function is zero (collocation points) for the methods of moments and Galerkin, considering the

ame set of parameters used in the previous case (except the value of Pem that is now equal to 8), presented in Table 7, it can be observed
hat their location is not the same for the method of moments and the Galerkin method, and they are not the same for mass and energy
alances. This is a new feature of the proposed methodology when compared with the classical orthogonal collocation method, where the

ocations of the collocation points are fixed and are the same for all discretized variables.
For the non-isothermal and transient case, the methodology was  applied using 8 internal quadrature points and considering the same

et of parameters used in Table 6 (Finlayson, 1972). We  consider the start-up of the reactor, i.e., yinitial(x) = 0 and �initial(x) = 1.

Fig. 11 presents the concentration profile of the reactor for the application of 8 internal points of quadrature. Small oscillations were

bserved at the beginning of the integration. These oscillations are related to the suddenly change in the flat initial profile of the problem
hat can hardly be well approximated by polynomial functions without a mesh refinement.

ig. 11. Concentration profile in the transient and non-isothermal fixed-bed reactor, obtained by the application of the Galerkin method with 8 internal points of quadrature.

Fig. 12. Normalized residual of the mass balance in the fixed-bed reactor at different times for non-isothermal transient model when applying the Galerkin method.
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Another interesting characteristic of the proposed methods is the dynamical location of the collocation points, as can be observed in
ig. 12. This figure shows the dynamic profiles of the normalized residual function of the mass balance during the start-up of a fixed-bed
eactor when the Galerkin method was applied. Similar behavior was  observed when the method of moments was  applied.

In this application the adaptive nature of both methods can be more clearly visualized. This adaptability is a consequence of the
ependence of the residuals at the internal points to the value of the residuals at both boundaries.

. Conclusion

One of the greatest challenges for the application of the orthogonal colocation is the appropriate selection of the orthogonal polynomial
hat ensures null average weighted residuals, which is null only in very simple and unrealistic examples. The selection of the orthogonal
olynomial is directly related with the accuracy of the discretization procedure, since the accuracy of the methodology depends on the

ocation of the colocation points in the problem domain that are the roots of the orthogonal polynomial.
The most notable aspect of the proposed procedures is that, by improvements in the usual procedures of numerical quadrature, it was

ossible to establish a direct connection between the residuals at the internal discrete points with the residuals at the boundaries. This
spect improve the usual method of polynomial approximation, since the structure of the resulting discretized equations are similar to
he equations that results from applying the classical form of the orthogonal collocation method, based on criteria of average weighted
esiduals.

This work demonstrated that the implementation of the OCM, using as collocation points the roots of Jacobi polynomials, to solve the
eaction-diffusion problem in a catalyst particle and the fixed-bed reactor model, considering in both cases isothermal operation and first
rder reaction, is unable to reproduce the methods of moments and Galerkin. This aspect contributed in favor of the proposed methodology,
ince the procedure developed was able to closely approach the method of moments and the Galerkin method in a simple way, where it
s only necessary to identify the roots of Jacobi polynomials and the weights of the corresponding quadrature.

The results also showed that the procedure of discretization presents an adaptation to model parameter variations and also change with
he type of the boundary conditions. This behavior is more clearly identified in problems with no axial symmetry. Moreover, we  verify
hat the points where the residue function nullify, for distinct dependent variables, are not the same, as well as there are mobility of these
oints in transient problems. It is important to emphasize that in the classical form of the OCM, the collocation points do not present any
obility and are independent of the model parameters and boundary conditions.
The observed oscillations in some examples are characteristics of application of polynomial approximation in problems that presents

igh gradients. This unrealistic oscillation is not caused by the proposed procedure and appears in applications of the orthogonal collocation,
oments and Galerkin methods. For this particular situation, the increase of collocation points is not the best alternative to improve the

uality of solution. In this case is advisable the utilization of adaptive mesh procedure or the application of the MWR  on subdomains.

ppendix A. Improved Gauss-Lobatto quadrature method∫ 1

0

(1 − x)˛xˇf (x)dx ∼=
n+1∑
k=0

Hkf (xk) + 1
(2n  + 2)!

d2n+2f (t)
dt2n+2

∣∣∣∣
t=	

C(1+˛,ˇ+1)
n

here the abscissas of the quadrature are x0 = 0, xn+1 = 1 and 0 < x1 < x2 < · · · < xn < 1 are the n roots of the Jacobi polynomial p(˛+1,ˇ+1)
n (x),

k =
∫ x=1

x=0
[�k(x)]2dx for k = 0, 1, . . .,  n + 1 are the quadrature weights, and:

C(˛+1,ˇ+1)
n =

∫ 1

0

(1 − x)1+˛x1+ˇ[p(1+˛,1+ˇ)
n (x)]

2
dx.

hen f(x) is a polynomial function of x of degree less or equal to 2n + 2, we have: 1
(2n+2)!

d2n+2f (t)
dt2n+2

∣∣∣
t=	

= a2n+2, where a2n+2 is the (2n  + 2)th

oefficient of the polynomial, and the integral:

∫ 1

0

(1 − x)˛xˇf (x)dx =
n+1∑
k=0

Hkf (xk) + a2n+2C(1+˛,ˇ+1)
n

an be exactly computed.
In particular, to calculate the nth weighted residual in Galerkin method in the second type of problem, Eq. (15.1), and considering the

agrange interpolation of the residual: R(n+1)(x) ∼=
∑n+1

k=0�k(x) · R(n+1)(xk), we have:

R̄
(n+1)
n =

∫ x=1

x=0

(1 − x)2 · xn−1 · R(n+1)(x)dx.

dentifying that the function (1 − x)2 · xn−1 · R(n+1)(x) is a polynomial function of degree 2n + 2 with the (2n  + 2)th coefficient equal to:
n+1∑
k=0

1
p′

nodal
(xk)

· R(n+1)(xk),
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here pnodal(x) =
∏n+1

i=0 (x − xi), we can calculate R̄
(n+1)
n through the improved Gauss-Lobatto quadrature procedure, resulting in:

R̄
(n+1)
n =

n+1∑
k=0

[
Hk(1 − xk)2 · xn−1

k
+ C(1,1)

n

p′
nodal

(xk)

]
· R(n+1)(xk).
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