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Summary--New collocation methods are given for solving symmetrical boundary-value problems. Ortho- 
gonality conditions are used to select the collocation points. The accuracy obtained is comparable to that of 
least squares or variational methods and the calculations are simpler. Applications are given to one- 
dimensional eigenvalue problems and to parabolic and elliptic partial differential equations, encountered in 
problems of viscous flow, heat transfer and diffusion with chemical reaction. 

Risumr--De nouvelles mrthodes de classement sont donn~es pour rrsoudre des problrmes symrtriques de 
valeurs fi la limite. Pour srlectionner ces points de classement on utilise des conditions d'oirthogonalitr. La 
prrcision obtenue est comparable ~ celle des mrthodes des carrrs minima ou des variations et les calculs 
sont plus simples. Des applications sont donnres pour des problrmes de valeur caractrristic ~t une 
dimension et pour des 6quations partielles differentielles paraboliques et elliptiques rencontr6 dans les 
probl~mes d'rcoulement visqueux, de transfert de chaleur et de diffusion avec rraction chimique. 

Zusammenfassung--Es werden neue Kollokationsmethoden zur L6sung symmetrischer Grenzwert-Prob- 
leme angegeben. Dabei werden Orthogonalit/itsbedingungen zur Wahl der Kollokationspunkte verwendet 
Die erzielte Genauigkeit ist der Methode der kleinsten Quadrate bzw. der Variationals-Methode vergleich- 
bar und die Berechnungen sind einfacher. Die Methoden werden auf eindimensionale Eigenwert-probleme 
und auf parabolische und elliptische Teil-Differentialgleichungen angewandt, wie man sie bei Problemen 
des viskosen Flusses, der W/irmeiibertrangung und der Diffusion mit chemischer Reaktion antrifft. 

INTRODUCTION 

Trial-function expansions are widely used in solving 
boundary-value problems. The expansion coefficients 
are typically determined by variational principles or 
by weighted-residual methods [1-8], the latter being 
the more widely applicable. These methods are at- 
tractive because of the compactness of the results, as 
compared with conventional finite difference solu- 
tions. The finite-difference computations, on the other 
hand, are more easily automated. Here the convenien- 
ces of the two approaches are combined by using 
orthogonal polynomial expansions, fitted by collo- 
cation techniques. 

Collocation methods have been used for more than 
40 years to solve integral equations. They were appar- 
ently first applied to differential equations by Frazer 
et al. [9] and independently by Lanczos [10, 11]. The 
basic procedure for differential equations is as follows. 
Consider an unknown function y(x) which satisfies 
the linear or non-linear differential equation 

LV(y )=0  i n V  (1) 

and the linear or non-linear boundary condition 

L S ( y ) - 0  o n S  (2) 

where x is the position vector and S is a boundary 
adjoining the volume V. The dependent variable y is 
approximated by a series expansion yt~) containing 
n undetermined parameters; the parameters are then 

tOn leave from Instituttet for Kemiteknik, Danmarks 
tekniske H~jskole, Copenhagen, Denmark. 
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determined by applying eq. (1) or eq. (2) at each of 
n selected points. 

Three classes of collocation methods are recog- 
nized. Interior collocation requires a function ytn) 
which satisfies the boundary conditions identically; 
the function is adjusted to satisfy eq. (1) at n points in 
V. Boundary collocation requires a function ytn) which 
satisfies the differential equation identically; the func- 
tion is adjusted to satisfy eq. (2) at n points on S. 
Mixed collocation employs collocation points in both 
regions and is used when ytn) satisfies neither of the 
given equations. The present paper deals mainly with 
interior and boundary methods. 

Comparatively little has been done on criteria for 
selecting the collocation points. An equidistant spac- 
ing is not generally appropriate, in view of the Runge 
divergence phenomenon [11] for equidistant poly- 
nomial interpolation. Lanczos [11] has pointed out 
that for one-dimensional problems in - 1 < x < 1, 
the choice of the zeros of the Tschebysheff polynomial 
Tn(x) as collocation points tends to minimize the 
maximum magnitude of the residual LV(ytnJ). 
The Lanczos method as adapted by Clenshaw and 
Norton [12, 13] has recently found many applications. 
This method capitalizes on the good convergence 
properties of the expansion of yt~ in Tschebysheff 
polynomials; however, it does not take full advantage 
of the boundary conditions. 

In this paper, new collocation methods are de- 
veloped and applied to several simple geometries. The 
residual LV(y ~")) or LS(y(")) is represented as an ortho- 
gonal polynomial over its region. By appropriate 
choices of the weight function in the orthogonality 
relation, we obtain collocation methods of accuracy 
comparable to the Galerkin interior and boundary 
methods. The collocation points thus selected are also 
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optimal quadrature points for numerical integration 
of the solution over the same region. 

Interior collocation principle 
We begin by considering a symmetrical second- 

order boundary-value problem in one independent 
variable, x, in the region x 2 < 1. Here x may be the 
distance from the midplane in a slab, or the radial 
coordinate in a cylindrical or spherical system. The 
differential equation is 
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nomial set defined by 

fo(1  x 2 ) p l ( x 2 ) p n ( x 2 ) x a -  1 dx Cl6~n 

LV(y)=O fo rx  2 < 1  (3) 

(7) 

for all positive integers i and n. Here the volume 
element d V has been replaced by the proportional 
quantity x °- 1 dx; thus, for slabs a = 1, for cylinders 
a = 2 and for spheres a = 3. 

The polynomials defined by eq. (7) are Jacobi poly- 
nomials [14, 15]. They are given explicitly by 

a a 2)  P,(x 2 ) = F  - i , i + ~ + l , ~ , x  

( - i ) ( i  + 2 + 1)  
= 1 +  x 2 +  ... 

( a ) (  o ) 
( - - i ) ( - i + 1 ) . - . ( - - 1 )  i + ~ + 1  ... i+-~+i  

-4- X 2i 

( 0 ' ( 2 ) ( 2 +  1 ) . - . ( 2  + i - 1 )  

(8) 

and the boundary conditions are 

y = y ( 1 )  a t x  2 = 1  (4) 

dy 
d---x=0 a t x = 0  (5) 

For the slab, eq. (4) yields two conditions and eq. (5) is 
a corollary. 

For interior collocation, the approximating func- 
tion is chosen such that the boundary conditions are 
satisfied. A suitable function is 

n - 1  
yr,) = y(1) + (1 - x 2) ~ a]")P~(x 2) (6) 

i = 0  

in which the P~(x 2) are polynomials of degree i in X 2, 
yet to be specified and the al n~ are undetermined 
constants. 

A set of n equations is needed to determine the 
collocation points. We note that, once yt~ has been 
adjusted to satisfy eq. (3) at n collocation points, 

2 2 xl,...,xn, the residual function LV(y ~) either 
vanishes everywhere or contains a polynomial factor 
Gn(x 2) of degree n in x 2, whose zeros are the collo- 
cation points. Then by analogy with Galerkin's 
method, which specifies that the residual be ortho- 
gonal to all the trial functions, we choose the collo- 
cation points by specifying that Gn(x 2) be orthogonal 
to all the functions (1 - x2)p~(x 2) of eq. (6) over the 
region V. Our specification is automatically satisfied 
by taking G~(x 2) and P~(x 2) from the orthogonal poly- 

in which F is the hypergeometric function. The con- 
stant C~ of eq. (7) is correspondingly given by 

[r(a/2)]2r(i + 1)r(i + 2) 
C~ = (9) 

(4i + a + 2)F(i + a/2)F(i + a/2 + 1) 

The polynomials P~(x 2) and their constants C~ are 
given in Table 1 for several values of a and i. The 
collocation points xl, ... ,xn, given by the zeros of 
Pn(x2), are shown in Tables 2-4. The orthogonality in 
eq. (7) ensures that the zeros of P~(x 2) are real, distinct 
and located within the open interval 0,1. The com- 
pleteness and other properties of these polynomials 
are summarized in [14, 15]. 

This completes the statement of the interior collo- 
cation principle. The key formula is eq. (7), which 
provides both the trial functions and the collocation 
points. 

The collocation principle developed here is a dis- 
crete analog of Galerkin's method. The collocation 
principle is based on orthogonality, not of the residual 
function, but of a polynomial which vanishes at the 
same points. Numerical comparisons have thus far 
indicated that this collocation method gives about the 
same accuracy as the Galerkin method and is simpler 
to use. The two methods give identical results in 
problems with a residual of degree d ~< 2n (e.g. for 
linear differential equations with constant coeffi- 
cients). The relation between these and other approx- 
imate methods is discussed in Appendices A and B. 

lnterior forraulae based on ordinates 
The interior method can be applied either by 

inserting eq. (6) into the differential equation at 



a = l  
P~(x 2 ) 

Ci 

a = 2  
Pi(x  2 ) 

Ci 

a = 3  

Pi(x 2 ) 

C~ 

Solu t ion  of b o u n d a r y - v a l u e  p rob lems  by o r t h o g o n a l  co l loca t ion  

Tab le  1. The  po lynomia l s  P~(x 2) and  cons tan t s  C~ for i ~< 3 

i = 0  i = 1  i = 2  i = 3  

1 1 --  5X 2 1 -- 14x 2 + 21x 4 1 -- 27x z + 99x 4 - " ' "  x 6 
5 

2 16 128 2048 
2-1 16"--5 2625 

1 1 - -  3X 2 1 - -  8X 2 + l O x  4 1 - 15x 2 + 45x 4 - 35x 6 
1 1 1 1 

8 1"2 1-6 

1 I - -~X 2 1-6xZ+3---~x 4 1 - l l x 2 + ~ - x 4 - ~ - x 6  

2 16 128 2048 
15 405 6825 187,425 
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x = x ~ ,  . . . , x ,  and solving for the coefficients 
ato ") ... -(") , , ,-1, or by formulating an equivalent set of 
equations in terms of the unknown ordinates 
y(")(x~).., y(")(x,). Tables for the latter method are 
provided here. The derivation of the tables is de- 
scribed in Appendix C. 

The gradient and Laplacian operators for the func- 
tion y(")(x) of eq. (6) are given by 

dyt.) ) n + I 
= E AI~>Yt")(xJ) (10) 

x = x i  j =  1 

-~-x /[ .... = ~" at"),.tn)lv ~ (11) 
j = l  

~(n) for i = 1 . . . . .  n + 1. The coefficients AI~ ) and o u are 
given for slabs, cylinders and spheres in Tables 2, 
3 and 4, respectively. Equations (10) and (11) are to be 
used to rewrite eq. (3) as a set of difference equations 
at the points xl . . . .  ,x,. The operators for i = n + 1 
are not needed under the boundary condition of 
eq. (4), but are useful when derivatives occur in the 
boundary conditions; in the latter case the boundary 
is also a collocation position and the calculation be- 
comes a mixed collocation method. These operators 
are exact for any even polynomial y(x) of degree not 
exceeding 2n. 

Derivatives of higher order may be obtained by 
repeated application of eqs (10) and (11). One must 
arrange the calculations so that only even functions 
are differentiated at each stage; thus, if a derivative of 
odd order is desired, eq. (10) must be used last. 

Integrals of the solution over the volume V can be 
calculated with high accuracy via the summation 
formula 

f O  n + l  f ( x ) x " - l dx  = ~, W~")f(x,) (12) 
i = 1  

which requires knowledge of the solution only at the 
interior collocation points Xl . . . . .  x. and at the 

boundary, x. + 1 = 1. The theory of formulae of this 
type is treated by Kopal [16]. Equation (12) is exact 
for any even polynomial function f(x) of degree not 
exceeding 4n; its high precision is due to the use of the 
zeros of the orthogonal polynomial (1 - x2)p,(x 2) as 
the quadrature points (see Appendix B). The weights 
W~ ") are shown alongside the coordinates xi in Tables 
2 4 .  The values for a = 1 were first given by Radau 
[16, 17]; the other values are new. 

For problems governed by an integral condition 
rather than a condition at the boundary, y(1) will be 
unknown. An equation for y(1) can then be obtained 
from the integral condition via eq. (12). This is another 
example of a mixed collocation method. 

It is sometimes desirable to transform the cal- 
culated ordinates y(")(Xl) . . . . .  y(")(1) into an expan- 
sion of the form in eq. (6). To obtain the coefficient 
ak we multiply eq. (6) by Ph(xZ)x *- 1 dx and integrate 
from x = 0 to 1. With the aid of eq. (7) we get 

a~ -- ~ [y") - y(1)] P~(x2)x °- t dx 

k -- 0 . . . . .  n - 1. (13) 

Since the degree of [y(") - y(1)]Pk(x 2) will not exceed 
4n - 2, the integration can be done exactly by means 
of eq. (12); hence, 

1 n 
ak = ~kk ,~1 W'[Y("'(X') - Y(1)]Pk(X2) 

k = 0 . . . . .  n - 1 (14) 

Thus, the expansion coefficients can be calculated by 
a weighted summation process. The necessary con- 
stants are given in Tables 1-4 for n ~< 3. The use of 
these tables is illustrated in Examples 1-3. 
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Solution of boundary-value problems by orthogonal collocation 

Boundary collocation principles 
Boundary collocation is useful for linear partial 

differential equations, with linear or non-linear 
boundary conditions. The approximating function y¢") 
is formed by a linear combination of solutions of the 
differential equation. The boundary-condition resid- 
ual LS(y {"~) is then set equal to zero at n selected 
points to determine the coefficients of combination. 

A strict analogy with our interior collocation prin- 
ciple would dictate the use of orthogonalized solu- 
tions of the differential equation, Oo(X) . . . . .  O,- l (x) ,  
to form the trial functions and to select the boundary 
collocation points. Such a procedure has definite 
merits if the same differential equation is to be solved 
many times; however, it has not been used here be- 
cause of the success obtained with simpler methods. 

For the present study we have used the zeros of 
various orthogonal polynomials, with appropriate 
symmetry on S, as boundary collocation points. This 
collocation procedure is analogous to the method of 
moments [1-3, 81, but is easier to apply. Each poly- 
nomial family is associated with a particular weight 
function w(x), and gives rise to an optimal quadrature 
formula for integration of polynomials weighted by 
w(x) over S. The choice w(x) = 1 gives results similar 
to Galerkin's method. Example 3 shows that this 
choice is a good one, but that there are other interest- 
ing possibilities. 
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It is desired to compute the dimensionless mean reac- 
tion rate (effectiveness factor) 

= y d x  (18) 

by interior collocation and to compare the results 
with the exact solution 

tanhA ~, e x p { - [ A  2 + ( m  +½)27t2]T}  
A 2 . ~  A 2  m=0 "[- (m + ½)27~2 

(19) 

obtained by Laplace transformation. 
The problem is symmetrical about x = 0, so that 

y may be approximated by eq. (6) with time-depen- 
dent coefficients a~")(T). The spatial derivatives of y~"~ 
are obtained via Table 2; thus eq. (15) is approximated 
at the collocation points by 

n + l  dYt")(x~) ~ B c") t.) 
= ij Y (Xj) -- A2yO°(xi) 

d T  s=l 

i = 1 . . . . .  n. (20) 

Setting y.+ 1 = 1 according to eq. (17) and converting 
to matrix notation, we get 

EXAMPLES 

The collocation methods are demonstrated here for 
several linear problems. Non-linear problems will be 
treated in a later paper. 

Example  1. Transient  diffusion with first-order 
reaction 

A catalyst slab with interior void fraction e, initially 
filled with inert fluid, is exposed at time t = 0 to 
a reactant concentration cAs along the surfaces z = 
__B. The ensuing reaction is isothermal and first- 

order in the local reactant concentration ca; the effec- 
tive reactant diffusivity ~ a  is constant. Setting 
y = ca/cas, x = z /B ,  T = ~t/B2~ and A 2 = 

B2kt/~A,  the problem can be stated in the dimension- 
less form: 

D.E.: 

I.C.: 

B.C.1, 2: 

t;3y 632y 
- -  - -  A 2 y  in - 1  < x < 1 (15) 

OT Ox 2 

y = 0  f o r - l < x < l a t T = 0  (16) 

d 
d--T [yt.)] = [Bt.) _ A2i] [y t . ) ]  + [K(.J] (21) 

with the initial condition 

[yt")] = [0] at T = 0. (22) 

Here [y(")] is the column vector of dimensionless 
concentrations y~"~ (x 1, T ) . . . . .  yt")(x., T ); [B ~"J ] is the 
n x n matrix of coefficients R!:~ for i and j < n, and ulJ  

D~n) for [K ~n)] is the column vector of coefficients u o 
i = l , . . . , n , j = n + l .  

Equations (21) and (22) are solvable by standard 
methods [181. The result may be written via Sylves- 
ter's theorem as 

[ y , . , ]  = ~ (1 - e -x'T) kfi. [(A 2 _ 2,)I - B " ]  

,= I  2, (,~. - 2.)  k = l  
k # r  

[K ~ ] 

(23) 

in which 21 . . . . .  2. are the eigenvalues (assumed dis- 
tinct) of the matrix [A2I - B~')]. The n-point collo- 
cation approximation for the mean reaction rate is 
found by inserting the elements of [y~')] into eq. (12): 

w (.) (24)  r/{"~ = W~ ' °Y{ " ) (x j )  + , ,  . + 1 .  
j = l  

Here eq. (17) has again been used to evaluate 
y = l  a t x = + l f o r T = 0 .  (17) y(")(X.+l). 
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] 
0 ,  .4#' 

&o o.. o., o .  o!, = 
0 O ~  0.1 0-1~ 0.~' 

JT Xj 

Fig. 1. Approximate and exact solutions for unsteady-state Fig. 2. Effect of interior collocation position, xl, on accu- 
effectiveness factors, Example 1. racy of steady-state effectiveness factor calculation with 

n = 1. Curves are contours of constant percentage error, 
E = 100 (rf 1) - r/)/q; the dotted curve is for E = 0. 

Figure 1 shows the exact solution for q, along with 
the collocation approximations for n = 2 and n = 3. 
At small values of T the collocation approximations 
are high, since eq. (24) gives r#,) = ul{,),, ,+z when the 
interior concentrations are zero; this error is inherent 
in the polynomial approximations but diminishes 
rapidly with increasing n. At larger values of T the 
collocation approximations are remarkably good; the 
approximation ~/{3} is accurate within 0.8% for 
T t> 0.01 and A ~< 8. 

In the limit as T ~ oo, eq. (23) approaches the 
steady-state solution of eq. (21): 

[yr.)] = [A2I _ B(.)]-  1 [K{.)]. (25) 

The effectiveness factors computed from this solution 
are shown in Table 6. The first approximation, given 
by 

5 2.5 1 
r/{1) = - -  (26) 

62.5 + A  2-t 6 

is accurate within 0.005% for A ~< 2; the higher ap- 
proximations q{2) and q{3} are still better. 

Other  choices of collocation points have been tes- 
ted for the steady-state problem, to see how the accu- 
racy is affected. The results for n = 1 are shown in 
Fig. 2; the contours give the percentage error 
E = 100(q °)  - rl)/q for each combination of Xl and 
A, and the dotted contour is for E = 0. The value 
xz = 0.44721, given in Table 2, is clearly optimal for 
A < 1, and give less than 1% error up to A = 2. 

The opt imum xz for this problem is nearly constant 
for A < 0.5, but increases thereafter with increasing A. 
This trend arises because the parabolic concentration 
profile y"} becomes a less satisfactory approximation 
when A is large. 

Table 5. Steady-state effectiveness factors for example 1 

Thiele Collocation solutions Exact 
modulus eqs (27) and (28) solution 

eq. (22) 
(A) r/{1} r/{2} rt {3} 

0.0 1.00000 1 .00000 1.00000 1.00000 
0.5 0.92424 0.92424 0.9~24 0.92424 
1.0 0.76190 0 .76159  0 .76159 0.76159 
2.0 0.48718 0 .48202  0.48201 0.48201 
4.0 0.27928 0 .25041 0 .24984 0.24983 
8.0 0.19799 0 .13175  0 .12534 0.125~ 

0.16667 0.~667 0.03571 0.00000 

Table 6. Eigenvalues of eqs (30)-(32), case 1 

-~1 .~2 23 

Collocation, n = 1 2.5 - -  - -  
Collocation, n = 2 2.467437 25.53 
Collocation, n = 3 2.46740111 22.29 87.7 
Exact values 2.46740110 ... 22.21 ... 61.7 

The steady-state problem has also been solved for 
n = 2, with various choices of x l  and x2. The collo- 
cation points of Table 2 with n = 2 proved to be 
optimal near A = 0, and satisfactory for a larger range 
of A as illustrated in Table 5. 

On  the basis of Fig. 2, one might choose a compro-  
mise value of xt,  such as xl  = 0.498, which gives less 
than 5% error up to A = 6. Such an approach how- 
ever, is based on hindsight; the error contours could 
not be plotted unless the solution were already 
known. We therefore recommend the xi of Tables 2 -4  
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as the best points that can be chosen a priori for 
collocation of the polynomial in eq. (6). 

Example  2. Eioenvalue problems 
The interior collocation method has been applied 

to several eigenvalue problems of the form 

V 2 y + A f ( x ) y = 0  i n 0 < x < l  (27) D.E.: 

B.C.I.: 

B.C.2.: 

y = 0  a t x = l  (28) 

d Y = 0  a t x = 0  (29) 
dx 

with various even functions f ( x ) ,  where f ( x )  > 0 for 
0 < x < 1. Non-trivial solutions y(x) occur only for 
certain values of the parameter 2; approximations to 
the first n of these eigenvalues are desired. 

The solutions contain only even powers of x; ac- 
cordingly y may be approximated by eq. (6) and eq. 
(29) is thereby satisfied. Evaluation of V2y (') via eq. 
(11) and elimination of y(')(x,+ t) via eq. (28), gives the 
collocation equations 

~'11 y ~*j, + 2f(xi)Yt~)(xt) = O, i = 1 . . . . .  n (30) 
j= l  

or in matrix notation 

[M(,)] [y(.)] = [yr.)] 2, (31) 

where [M t")] is the n x n matrix with elements given 
by 

,j = -- Bij / f ( x i ) ,  

and [y(*)] is the column 
y " ' ( x 0  . . . . .  y('J(x,). 

i = 1 ,  . . . ,n  

j = 1 . . . . .  n (32) 

vector with elements 

Equation (31) yields non-trivial solutions [ytn)] 
only when ;t is an eigenvalue of the matrix [M(')]. 
Thus, the eigenvalues and right eigenvectors of [M(')] 
are approximations to the first n eigenvalues and 
eigenfunctions of eqs (27)-(29). The approximations 
converge rapidly with increasing n, as the following 
results illustrate. 

Case 1: f ( x )  = 1, a = 1. This is a standard example. 
The kth eigenfunction is c h c o s ( k -  ½)nx, where ck is 
an arbitrary constant; the kth eigenvalue is (k - ½)2n2. 
The collocation approximations 2~ ") . . . . .  2(~ ) are 
found as the eigenvalues of the n x n matrix of ele- 
ments M~7 ) = - B~7 ) obtained from Table 2. The re- 
suits are given in Table 6 and show good convergence 
with increasing n; they approach the exact values from 
above in each case. The lowest eigenvalues are ap- 
proximated most accurately and the same situation 
can be expected for the eigenfunctions. 

Since L V ( y  ~"~) is a polynomial of the same degree as 
y(') in this problem, the results are identical to those 
of the Rayleigh-Ritz and Galerkin methods for the 

Table 7. Eigenvalues of eqs (30)-(32), case 2 
(Graetz problem) 
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21 22 2a 

Collocation, n = 1 4.5 - -  - -  
Galerkin, n = 1 4.0 - -  - -  
Collocation, n = 2 3.679 48.32 
Galerkin, n = 2 3.665 36.33 - -  
Collocation, n = 3 3.65714 24.70 244 
Exact values 3.656793 22.30473 56.9605 

same trial functions. For  further discussion of this 
point, see Appendix A. 

Case 2: f ( x )  = 2(1 - x2), a = 2. This case arises in 
the Graetz-Nusselt  problem [19] of heat transfer to 
a Newtonian fluid in laminar flow through a tube. The 
smallest eigenvalue, 2~, is the asymptotic value of the 
local Nusselt number for large distances into the heat- 
transfer region. 

Calculation of the matrix [M (")] according to eq. 
(32), and determination of the eigenvalues, gives the 
results shown in Table 7. For  comparison, exact 
values computed from the results of Abramowitz [20] 
are included. The initial approximation by collocation 
is less accurate here than in case 1, because of the 
higher degree off(x); however, the approximations for 
larger n converge satisfactorily. Galerkin's method is 
somewhat more accurate than orthogonal collocation 
in this case. 

Case 3: 

f ( x )  2(1 -- X 2) + (4/(~ + 1))(TR/Z½)~- 1(1 -- X ~+ 1) 
1 + (4/(ct + 3))(ZR/T½) ~- 1 

a ~ 2 .  

This case arises in the extension of the 
Graetz-Nusselt  problem to an Ellis fluid, presented 
by Matsuhisa and Bird [21]. The smallest eigenvalue 
is the ultimate value of the local Nusselt number; it 
depends on the dimensionless parameters zR/z~/2 and 
• . The notations ~, TR and zl/2 are the same as in 
reference [21]. 

Matsuhisa and Bird computed values of 21 by 
a single iteration of the method of Stodola and 
Vianello [22], which is a form of the Schwarz method 
[2, 16]. This method gives good precision but the 
integrations are tedious in the present problem and 
higher approximations have not been carried out. 

The solution by collocation is straightforward. The 
complicated form off (x)  raises no special difficulty, 
since only the numerical values f ( x t )  . . . . .  f ( x , )  are 
required. The matrix [M (')] is computed via eq. (32) 
and its eigenvalues are computed by standard 
methods. 

Table 8 shows the collocation approximations to 
).~ as functions of xR/~:~/2 and ~. The first approxima- 
tions are high, as in Table 7, and are not included. The 
second and third approximations coincide within 

CE$ 50-24-J 
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Table 8. Collocation solutions for ultimate Nusselt number in laminar flow of an 
Ellis fluid through an isothermal tube 

n re/z1/2 a = 1.5 2 2.5 3 3.5 5 

2 3.706 3.697 3.687 3.681 3.680 3.679 
0.1 

3 3.690 3.677 3.666 3.660 3.658 3.657 

2 3.714 3.712 3.700 3.690 3.685 3.680 
0.2 

3 3.699 3.695 3.680 3.669 3.663 3.658 

2 3.727 3.748 3.749 3.741 3.729 3.700 
0.5 

3 3.715 3.736 3.735 3.724 3.710 3.678 

2 3.737 3.787 3.826 3.857 3.881 3.921 
1 

3 3.727 3.781 3.821 3.850 3.872 3.905 

2 3.748 3.830 3.920 4.016 4.115 4.397 
2 

3 3.741 3.831 3.925 4.022 4.119 4.391 

2 3.762 3.877 4.004 4.128 4.240 4.503 
5 

3 3.757 3.885 4.019 4.143 4.251 4.497 

2 3.771 3.900 4.031 4.150 4.255 4.506 
10 

3 3.768 3.912 4.049 4.167 4.267 4.500 

2 3.792 3.926 4.047 4.158 4.259 4.506 
100 

3 3.793 3.942 4.067 4.175 4.270 4.500 

2 3.805 3.930 4.048 4.158 4.259 4.506 
(3O 

3 3.809 3.946 4.068 4.175 4.270 4.500 

0.6%, as in Table 7, and the third approximations are 
thus judged to be accurate to four digits. 

Example 3. An elliptic partial differential equation 
As a final example, consider the differential equa- 

tion 

d2v d2v 
= - 1 (33) dX 2 dy 2 

in the square region x 2 < 1, y2 < 1, with the bound- 
ary conditions 

v = O  at x = __l and at y =  __l.  (34) 

These dimensionless equations describe the axial velo- 
city v(x, y) of a Newtonian fluid of constant density 
and viscosity, in developed laminar flow through 
a square duct. 

The exact solution for v has been obtained in series 
form by Boussinesq, and the results are summarized 
in Dryden et al. 1-23]. The main quantities of interest 
are the dimensionless volumetric flow rate q = 
S S v dx dy and the dimensionless eentreline velocity 
Vm,x- Stewart 1-24] has used this problem to demon- 
strate the variational methods of Hill and Power  [25] 
and Johnson 1-26], which provide upper and lower 
bounds on q. Here the same problem is used to dem- 
onstrate the interior and boundary collocation 
methods. 

1. Interior collocation. A suitable polynomial  ex- 
pression for v, subject to the boundary conditions and 
the symmetry conditions v(x, y) = v(y, x); v( - x, y) = 
v(x, y), is 

n - I n - 1  

v t~) = (i - x2)(1 - y2) ~ y~ al]~p~(x2)Pj(y2), 
i=O  j = 0  

a(~) = a (~) (35) i j  3~ • 

Here Pdx 2) and pj(y2) are defined by eq. (8) with 
a = 1. This expansion is a direct extension of eq. (6) 
and can be fitted analogously. 

Because of the symmetry, the problem is solvable 
by considering one octant of the duct, as shown in 
Fig. 3. The collocation points are selected by assigning 
each coordinate the set of values listed for xt in Table 2. 
The derivatives dZv/dx 2 and d2v/dy 2 are obtained by 
applying Table 2 in each coordinate direction. These 
derivatives are inserted into eq. (33) to obtain the 
collocation equations, which are then solved for the 
local values of v ~') at the collocation points. 

The simplest case, n = 1, involves a single collo- 

cation point (xl, Yt) -- (w/~, ~/~). The approximations 
to the partial derivatives are 

d2v,1) 
dxZ x~,y, = -- 2"5V(1)(xt'Yl) + 2.5(0) (36) 

a2o., I 
Ix , , , ,  = - 2 5 v ( 1 ) ( x 1 ' y l )  + 2.5(0) (37) 
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Fig. 3. Collocation points for the square-duct problem, first quadrant.  The residual is equated to zero at 
the solid points; it correspondingly vanishes, by symmetry, at the circled points 
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Table 9. Volumetric flow rate and maximum velocity for Example 3 

Approximate solutions Exact 

Boundary Interior Boundary Boundary Boussinesq 
collocation collocation collocation collocation series 

(Radau zeroes) (Radau zeroes) (Legendre zeroes) (Tschebysheff zeroes) solution 

q(1) 

q(2) 

q(a) 

q(+) 

v~. ), 

t1(2) max 

(3) 
Dmax 

(4.) 
Dmax 

8 
- - =  0.53333 
15 

59 
- - =  0.56190 
105 

0.562279 

0.562304 

3 
- - =  ~30000 
10 

33 
- - =  0.29464 
112 

0.294686 

0.294686 

5 
- = 0.55556 
9 

253 
- - =  0.56222 
450 

0.562302 

5 
- - =  0.31250 
16 

151 
- - =  0.29492 
512 

2 
- = 0.66667 
3 

76 
- - =  0.56296 
135 

0.562336 

0.562311 

1 
- = 0.33333 
3 

53 
- - =  0.29444 
180 

0.294694 

0.294685 

5 
- = 0.83333 
6 

337 
- - =  0.56167 
600 

3 
- = 0.37500 
8 

47 
- -  = 0.29375 
160 

q = 0.562305 

0m,=0 .294685  

a n d  the  r e su l t i ng  co l l oca t i on  e q u a t i o n  is 

- 5 v ( 1 ) ( x l , y 0  = - 1 (38) 

w h i c h  yields v(1)(xl, yl)= }. A p p l i c a t i o n  of  eq. (12) 
g l v e s  

fI' q(1) = v (1) d x  dy  
- 1  • - 1  

2 2 

= 4 E E W~t)W~)v(1)(xk,Y ") 
k = l m = l  

= 4[(~,)(-~)(~) + 0 + 0 + O] 

= ~. (39) 

I n s e r t i o n  of  v(1)(xl, Yl) in  eq. (35) gives the  veloci ty  
prof i le  

v (1) = 1'~(1 --  xZ)(1 --  y2) (40) 

a n d  the  ccn t re l ine  veloci ty  v,,,-(1) = ~6. T a b l e  9 shows  
t h a t  these  resul ts  a re  qu i t e  accura te .  

T h e  nex t  a p p r o x i m a t i o n ,  n = 2, yie lds  t h r ee  col lo-  
c a t i o n  poin ts :  (x 1, Y0 = (0.285232, 0.285232), (12, Yl) 
= (0.765055, 0.285232) a n d  (12, Yz) = (0.765055, 

0.765055). T h e  p o i n t  (xl ,  y2) = (0 .285232,0.765055)  
lies in  the  s e c o n d  o c t a n t  a n d  is o m i t t e d  because  of  
s y m m e t r y  (see Fig. 3). T h e  th ree  co l l oca t i on  e q u a -  
t ions ,  o b t a i n e d  via  T a b l e  2, m a y  b e  wr i t t en  in m a t r i x  
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form as 

[ - 2 8  + 7x//'7 14 - x/~ 

7 + ½w/7 - 2 8  

0 14 + x/~ 

J. V. VILLADSEN and W. E. STEWART 

o q I-il I : ' l x 2 ' ' I  = 
- 2 8  - L:'I 2, y )3 ] 

(41) 

and solved by elimination to obtain 

V(2)(xl ,Yl)  ----. - / 7 2  v , 9  + 
56 

V(2)(X2, Yl)  = 

vt2~(x2, y2) = - -  
9 - 2X/~ 

56 

Insertion of these results in eq. (35) gives 

v t2) = (1 - x2)(1 - y2) 

-253 21 (1 - 5x 2 + 1 - 5y2)/ 
-'1 

! 
63 

12---~(1 5x~)(1 - 5y 2) J 

as the second approximation to the velocity profile. 
Higher approximations are found analogously by 

collocating at n(n + 1)/2 points arranged as shown in 
Fig. 3 and solving for n(n + 1)/2 values of v. The 
results for q and Vm, converge rapidly, as shown in 
Table 9, and for most purposes the results with n = 2 
would be sufficient. Here again, the interior collo- 
cation method is identical with the Rayleigh-Ritz and 
Galerkin methods (see Appendix A). From the theory 
of the Rayleigh-Ritz method it follows that the suc- 
cessive approximations q(1),qt2) . . . .  should converge 
toward the true q from below; the numerical results 
confirm this. 

2. Boundary collocation. For this procedure we re- 
quire an approximating function which satisfies eq. 
(33) identically. A suitable one is 

n - I  

V 'n~ = Vt,(x,y) + ~,  c~n)q~i(x,y) 
i = 0  

in which 

m, = - ¼(x 2 + y2) 

q~o=l  

~I = X 4  - -  6 x 2 y  2 + y4 

~2 = xa -- 28x6y 2 + 70x¢y 4 -- 28x2y 6 + yS 

~a = xX2 - -66x l °Y  2 + 495xSy" -- 924x6y 6 

+ 495x4y s -- 66x2y to + x t2 . 

Here ve satisfies the complete eq. (33) and the tpi satisfy 
the homogeneous equation 

02~)i/~X 2 + 6~2tpi/63y 2 = 0 .  

The approximate solution is determined by choos- 
ing the constants cl "~ to satisfy the boundary condi- 
tions of eq. (34) at a selected set of points. In view of 

(42) the symmetry, we consider only the boundary residual 
for the first octant, 

n - - 1  

z:lvc"~)l~=l = -¼11 + F)  + Y~ cl%,,(1,y) 
i = 0  

0 ~< y ~< 1 (46) 

and set this function equal to zero at n values ofy. The 
(43) boundary residual will automatically vanish at the 

corresponding points in the other seven octants. 
When the constants cl "~ are chosen to make the 

residual of eq. (46) vanish at n points Yl, . . . ,  Y,, then 
the right-hand side of this equation becomes divisible 
by a polynomial G,(y 2) = ( y 2 _  y ~ ) . . . ( y 2 -  y~). By 
analogy with the method of moments, which would 
require the residual to be orthogonal to a set of 
n chosen functions on the interval 0 ~< y ~< 1, we 
choose G,(y 2) to be member of a set of polynomials 
~ko(y2),tkl(y 2) . . . .  that are orthogonal on the same 
interval. The collocation points must then be the zeros 
of the polynomial ~,,(y2) in the chosen set. 

Three choices of orthogonal polynomials are tested 
here: Legendre polynomials, Tschebysheff poly- 
nomials, and Radau polynomials. The zeros of these 
polynomials have been widely tabulated, since they 
are the quadrature points in the numerical integration 
formulae of Gauss, Tschebysheff, and Radau 1-161 for 
the integration limits - 1, 1. Each of these choices of 
collocation points minimizes the boundary residual in 
a weighted least-squares sense, but with a different 

(44) weight function w(y) as discussed below. 
The results of these three choices are shown in 

Table 9. Collocation at the Radau zeros gives the 
closest approximations both for q and for Vm,; collo- 
cation at the Tschebysheff zeros is the least accurate 
for both quantities. These differences can be under- 
stood qualitatively in terms of the weight functions for 
the three polynomial families: unity for the Legendre 
polynomials, (1 - y2) for the Radau polynomials, and 
( 1 -  y2)-~/2 for the Tschebysheff polynomials. The 
Radau weighting tends to give highest accuracy near 
the centres of the walls, whereas the Tschebysbeff 
weighting emphasizes the corners. 

In this problem, Legendre boundary collocation 
(45) converges toward the correct q from above, whereas 
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Radau boundary collocation converges from below. 
The Legendre collocation results for n < 2 are identi- 
cal with the upper bounds on q obtained by a varia- 
tional method with equivalent trial functions [24]. 
These results merit further study, to see if comparable 
upper and lower bounds can be obtained in other 
problems. 

CONCLUSION 

The collocation methods developed here permit 
rapid solution of many types of second-order bound- 
ary-value problems. The finite-difference formulation 
is attractive because of its simplicity and is more 
efficient computationally than existing finite-differ- 
ence methods. 

These collocation methods differ from other 
weighted residual methods in that the residual here is 
not directly orthogonalized, but is matched to an 
orthogonal function at its zeros. The necessity of in- 
tegrating the residual is thereby avoided, and the 
calculations are correspondingly simplified. The accu- 
racy is comparable to that of Galerkin’s method. 

Of the two orthogonal collocation methods de- 
scribed here, the interior method is the more versatile 
since it can be used for non-linear differential equa- 
tions. Furthermore, by treating y(1) in eq. (6) as an 
unknown function, one can handle various types of 
boundary or integral conditions; in such cases the 
interior method becomes a mixed method as dis- 
cussed under eqs (11) and (12). Applications of the 
interior method to non-linear problems are under- 
way, and will be reported in a later paper. 
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NOTATION 

geometric constant: 1 for slabs, 2 for 
cylinders, 3 for spheres 
coefficients in eq. (6) 
coefficients in eq. (10) 
coefficients in eq. (11) 
coefficients in eq. (44) 
constant in eq. (9) 
interpolation error in eq. (B2) 
unit matrix 
derivative bound in eq. (B2) 
boundary-condition operator in eq. (2) 
boundary-condition residual for approx- 
imate function y(“) 
differential-equation operator in eq. (1) 
or eq. (3) 
differential-equation residual for approx- 
imate function y(“) 
elements of matrix [M’“)], defined in eq. 

(32) 
number of collocation points in one 
space dimension 

Q.(U) 

Q:(Uj) 

P”(U) 

pA("j) 

4 

S 
T 

U 

V 

V 

w !“) 

X 

Y 

Y 
(n) 

[=(u-ul(i)...(u-U”)] 
[ = dp.(u)/du] at u = u, 
polynomial given by eq. (8), with i = n 

and x2 = u 
[ = dP,(u)/du] at u = u, 
( = 40,“) dimensionless volume flow rate 
through square duct. In notation of [22], 
q = QpL(S?, - gL)- ‘B-* 

boundary region of eq. (2) 
dimensionless time defined above eq. (15) 
X2 

dimensionless velocity in square duct. 
In notation of [24], v = v,~L(~~ - 

9$_)-‘B-2. 

volume over which eq. (1) or eq. (3) is 
applied. 
coefficients in eq. (12) 
position coordinate defined above eq. (3) 
dependent variable in eqs (l)-(S); posi- 
tion coordinate in Example 3 
approximatitlg function in eq. (6) 

Greek letters 

w 
6in 

1. i 

Cl1 

PI 

c31 

c41 

PI 

C61 

c71 

PI 

c91 

WI 
Cl11 

Cl21 

Cl31 
Cl41 

the gamma function of z 
Kronecker symbol: unity if i = n, zero 
otherwise 
effectiveness factor, defined in eq. (18) 
ith eigenvalue 
Thiele modulus, defined above eq. (15) 
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APPENDIX A: COMPARISON OF INTERIOR 
APPROXIMATION METHODS 

Our interior method is briefly compared here with 
several other methods, for the general problem in eqs 

(3~(6). 
The Galerkin interior method determines the ap- 

proximate solution by setting the differential-equa- 
tion residual L”(y”)) orthogonal to all the trial func- 
tions. For the y(“) function of eq. (6), the orthogonality 
relations over ‘v become 

I 
1 

(1 - xZ)pi(x2)[LY(y’“‘)]X”-‘dx = 0 
0 

i= )..., 0 n-l. (Al) 

Our collocation method, on the other hand, uses the 
orthogonality relation 

5 
1 

(1 - X2)Pi(X2)[(X2 - xt) . ..(x2 - xf)] 
0 

xs-‘dx=O, i=O,...,n-1 (A2) 

to define the collocation points x1, . . . ,x, where 
L”(y’“)) is to vanish. The two methods agree if L”( y’“‘) 
is a polynomial of degree d < n in x2. 

The Ritz and Rayleigh-Ritz variational principles, 
when applicable, give the same solution for y’“) as 
Galerkin’s method [8]. Hence, the variational solu- 
tions for y(“) are equivalent to the collocation method 
given here, as long as L”(y(“)) is a polynomial of 
degree d Q n in x2. The upper or lower bounds given 
by the Rayleigh-Ritz method can be obtained directly 
from the results of the collocation solutions (see 
Examples 2 and 3). Many other variational principles 
have been proved equivalent to Galerkin’s interior 
method [27] and are correspondingly related to the 
interior collocation method given here. 

A weighted least-squares method may be written 
for this symmetrical problem as 

a 1 
xpo s w(~~)[Z,"(y'"')]~x"-~ dx = 0 

i = 0, . . . ,n - 1 (A3) 

where w(x2) is a weight function, positive for x2 < 1. 
For comparison, eqs (A2) can be combined to give 

-& 
s 

l(1 -x2)[(x2 -x:)...(x2-x,2)12 
0 

x“-‘dx=O, i=l, . . ..n (A4) 

which shows that our interior collocation points also 
satisfy a least-squares criterion. Thus, if one chooses 
w(x’) = 1 - x2 and if L”(y(“)) is a polynomial of de- 
gree d Q n in x2, then eqs (A3) lead to the same results 
as our interior method. 

The Lanczos selected-points method [lo, 11) may 
be applied here by setting L”(y(“)) = 0 at the zeros of 
a different form of Jacobi polynomial, namely, the 
Tschebysheff polynomial T2”(x). These collocation 
points satisfy the orthogonality conditions 

[(x2 - x:) . . . (x2 - x.‘)] dx = 0 

i = 0, . . . ,n - 1 (As) 

and the function in the brackets is T2.(x). In compari- 
son with the xi of eq. (A2), the Tschebysheff zeros are 
distributed closer to x2 = 1, because the weight func- 
tion (1 - x2)- ‘I2 goes to infinity at that point. 

The Tschebysheff polynomials are optimal for ordi- 
nary interpolation in a finite interval, with the ter- 
minal values unspecified. However, for interior collo- 
cation these polynomials have several disadvantages: 
(i) the resulting collocation points are concentrated 
near x2 = 1, where the uncertainty in the solution is 
the least; (ii) the function y(“) is prescribed at x2 = 1 
and is therefore not optimally interpolated by 
Tschebysheff polynomials; (iii) the weight function in 
eq. (A5) prevents any equivalence with the 
Rayleigh-Ritz or Galerkin methods; (iv) the zeros of 
r2, (x2) are poorly situated for numerical integration 
of the solution over ‘v. A brief demonstration of the 
method may be obtained by extrapolating Fig. 2 to 
x1 = 0.70711, the positive zero of T2(x); the results are 
definitely inferior to those obtained via Table 2. 

In boundary collocation, the Tschebysheff poly- 
nomials work somewhat better, since objections (i) 
and (ii) do not apply. Some numerical results are given 
in Table 9; the values for n = 2 are good. 

APPENDIX B: ALTERNATE DERIVATION OF INTERIOR 
METHOD 

The interior collocation method owes its accuracy 
to a property of eq. (12): the minimization of the 
integration remainder term. To prove this property, 
we use a method similar to Kopal’s analysis [16] of 
the Gauss integration formula. 



Solution of boundary-value problems by orthogonal collocation 

Consider the interpolation of an even functionf(x) 
in - 1  ~< x <~ 1, using the fixed interpolation points 
x = ___1 and the disposable interior points 
__+xt, . . . ,  +x~. By fitting f (x)  at all of these points, 

and df /dx  at the interior points, we obtain the inter- 
polation formula 

fP"(U)~2f(l) 
f (x)  = (p,(1)J 

P, t j J .  u -- 1 - , u ,  _ 

×{(u p.(u) ~2 
_ uj)p,n(us) j f(uj) 

"}- ~ (U- Uj) u-- i  pn(U_~) .~2f,(uj) 

(B1) 

in which u is x 2, pn(u) is (u - ut) ... (u - u.) and primes 
denote derivatives with respect to u. This formula is 
exact for f(u) of degree not exceeding 2n (and hence 
forf(x)  of degree not exceeding 4n); forf(u) of higher 
degree the error E(u) is bounded by 

K 
IE(u)l ~< ~ (1 - u){pn(u)} 2 (B2) 

at each point in the region - 1 ~< x ~< 1. Here K is the 
maximum absolute value of (d2"+tf/du2"+l) in the 
same region. Equation (B1) is similar to the Hermite 
(n + 1)-point formula [16], except that here the deriv- 
ative is left unspecified at the last point. 

Equation (B1) can be integrated over V to obtain 
a quadrature formula forf(x), exact forf(x)  of degree 
not exceeding 4n. Equation (B2) can be integrated in 
the same manner to obtain an error bound for the 
quadrature when applied to functions of higher de- 
gree. The error bound is 

• o E(x)x°- 1 <~ (2n + 1)---'-'-~ 

j 'o(1 u){p.(u)}2½u ('12)-' du (B3) i 

and depends accordingly on the choice of interpola- 
tion points. Making this error bound stationary with 
respect to each of the u ,  we obtain 

(1 - -  u){p,(u ut"12)-l du = 0 

i = 1 . . . . .  n (B4) 

which can be arranged to give 

f0(1 x2)pn(x2)X2iXa- 1 dx = 0 I 

i = 0 . . . . .  n -- 1 (B5) 

The polynomial pn(x 2) thus defined is equivalent to 
Pn(x 2) expect for a numerical factor. Thus, the error 
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bound in eq. (B3) is made stationary by taking x1,2 ... ,x,2 
as the positive zeros of Pn(x2). The stationary value is 
a minimum, since the integral on the fight of (B3) has 
positive second derivatives with respect to all the ui. 

Integration of eq. (B1) over the volume V gives 

o f(X)X.-  1 dx 

fl + f(u,) = f ( l )  2 I.p.(1)J ./=1 

11 u - 1  

u - - 1  

X {(U --~j)Pn(Uj)JPn(U)' ~2u(a/2)-' du (B6) 

Now if the error bound on this formula is minimized, 
by choosing Ul . . . . .  u~ to satisfy eq. (B4), then the 
integral in the last term vanishes identically for 
j = 1 . . . . .  n. Hence the optimal form of eq. (B6) is that 
given in eq. (12), in which the derivatives off(x) do not 
appear. The integration coefficients of eq. (12) are 
given in terms of the Jacobi polynomials by 

wp' = ~ ~ (u - u,)P;(u,)J 

i = 1 . . . . .  n (B7)  

w(n) = f l l  fPn(")~2u(a/2)-ldu (ns) 
n+, Jo 2 [V,( l )J  

and are accordingly positive. The error bound for eq. 
(12)  can be correspondingly evaluated as 

f ~ E ( x ) x a - i d x  

n!(n + 1)!F(n + a/2)F(n + a/2 + 1) 
<~K 

(2n + 1)!(4n + a + 2)[F(2n + a/2 + 1)'12 

(B9) 

with the aid of eqs (8) and (9); this bound is the 
minimum of eq. (B3) with respect to ut . . . . .  u,. 

Equation (12) can be used to relate the interior 
method to more familiar principles. For  example, 
application of eq. (12) to eq. (A1) gives 

W~")(1 - x~)P~(x~)[Lv(y("i)lx=x,- 1 = 0 
j=l 

i = 0 . . . . .  oo (B10) 

which requires that the residual vanish at each in- 
terior quadrature point; this is the interior collocation 
principle. 

The summation on the left of eq. (B10) is the opti- 
mal n-point estimator of the corresponding integral 
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for all values of i. Thus, the collocation method gives 
the minimum n-point error bound on the integral of 
eq. (A1) for i = 0 . . . . .  oo, the minimization being done 
in the choice of x~, ... ,x, .  This minimum property 

y = x °, y = x 2, ... ,y = x 2" and solving the resulting 
systems of equations for the arrays AI7 ), B~7 ) and W ~"). 
The calculations may be summarized compactly in 
matrix form: 

I 
(dx°/dx) lx, 

-A (n ) I  
L--u J 

I (dx°/dx) l . . . .  

(C1) 

I 
V (x °) k, 

FR {n) 1 
L - - i j  J 

LV2(xO)I . . . .  

v2xnx] ] 
V2Ix2n'H 

I ,'lxn+l 

(C2) 

I W o ] = foXx2+ (C3) 

enables the collocation method to give good results 
even when the integrand in the eq. (AI) is of too high 
a degree to be integrated exactly by eq. (12). 

Application of eq. (12) to the least-squares principle, 
[eq. (A3)] again gives eq. (B10) provided one chooses 
w(x) = 1 - x 2. Other weight functions lead to other 
quadrature formulae and other collocation principles; 
thus, the weight (1 - x 2 )  -~/2 leads, for a = 1, to the 
Lanczos method discussed under eq. (A5). 

APPENDIX C: CALCULATION OF DIFFERENTIATION 

AND INTEGRATION COEFFICIENTS 

The coefficients in Tables 3, 4 and 5 were computed 
by writing eqs (10), (11) and (12) for the functions 

in which 

Ii x~ ~p] [ Q ]  = 

2 2n 
X . +  1 X . +  1 

(C4) 

The collocation points xl  . . . .  , x, that appear here are 
the roots of P,(x 2) = 0 and x "+1 is unity. The roots 
were located approximately by Graeffe's method and 
refined to 10-digit accuracy by Newton's method. The 
calculations in eqs (C1)-(C3) were then done with 
standard matrix subroutines• 


