

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COPPE – PROGRAMA DE ENGENHARIA QUÍMICA

COQ862: MÉTODOS NUMÉRICOS PARA SISTEMAS DISTRIBUÍDOS

Duas abordagens de solução de modelos distribuídos do tipo duplo filme

Carlos Henrique Ferreira Brasil de Souza

Professor: Argimiro Resende Secchi

Conteúdo

- Introdução
- Modelagem
- Métodos utilizados
- Resultados
- Conclusões

Por que remover o CO₂ do gás natural?

 $O CO_2$ é um dos principais contaminantes do gás natural. Problemas causados pela sua presença:

- Redução do poder calorífico
- Aceleração da corrosão em dutos
- Elevado ponto de congelamento

Como remover o CO₂ do gás natural?

Esquemático do tratamento do gás natural pelo processo de absorção reativa do CO₂

Absorção química utilizando alcanolaminas é o processo mais maduro e consolidado. Está sendo amplamente estudado também para remoção de CO₂ de gases de combustão

Alternativamente, o CO₂ pode ser removido via membranas, caminho que está em expansão em unidades *off-shore*

Como é feita a modelagem da absorção reativa do CO₂?

Diagrama esquemático do modelo de duplo-filme

Modelos tradicionais de equilíbrio químico.

Rate-Based Models

(modelos que levam em consideração transferência de calor massa entre as fases)

Objetivo

Resolver um sistema simplificado de duplo filme e comparar os diferentes métodos de discretização para posterior aplicação na modelagem da absorção reativa de CO₂

Conteúdo

- Introdução
- Modelagem
- Métodos utilizados
- Resultados
- Conclusões

Esquemático do modelo de duplo-filme para um estágio de absorção

Simplificações

- As fases líquida e gasosa são consideradas ideais;
- O transporte dos componentes pelo duplo filme ocorre por difusão simples, sem considerar os eletrólitos presentes na solução;
- As correntes possuem capacidade calorífica constante;
- Os coeficientes de difusão são considerados constantes;
- Fase líquida incompressível;
- As reações químicas só ocorrem em fase líquida;
- Somente uma reação química exotérmica ocorre:

 $MEAH + H_2O + CO_2 \leftarrow MEACOO^- + H_3O^+$

- O sistema possui quatro componentes: CO2, H2O, MEA e CH4;
- O equilíbrio líquido-vapor é descrito pela lei de Henry;

Principais equações

Balanço de massa, por componente, para a fase gás:	$\frac{d(y_i^b M^b)}{dt} = N_G^0 y_i^0 - N_G y_i^b - A^I J_{i,G}^I _{z=\delta_G}$
Balanço de energia para a fase gás:	$M^{b}C_{pG}\frac{dT_{G}^{b}}{dt} = N_{G}^{0}h_{G}^{0} - N_{G}h_{G} - A^{I}(q_{G}^{I} + J_{T,G}^{I}h_{G}^{I}) _{z=\delta_{G}}$
Balanço de massa, por componente, para a fase líquida:	$\frac{d(C_i V_L)}{dt} = Q_L^0 C_i^0 - Q_L C_i^b - A^I J_{i,L}^I _{z=\delta_L} + V_L \sum_{j=1}^{nr} (\vartheta_i r_i)_j$
Balanço de energia para a fase líquida:	$V_L C_t C_{pL} \frac{dT_L}{dt} = C_t^0 Q_L^0 h_L^0 - C_t^b Q_L h_L^b + A^I q_L^I _{z=\delta_L} + V_L \sum_{j=1}^{nr} (-\Delta H)r$

Principais equações

Balanço de massa, por componente, para a película gasosa:	$\frac{\partial (C_{i,G}^{I})}{\partial t} = D_{i,mistura} \frac{\partial (C_{i,G}^{I})^{2}}{\partial z^{2}}$
Com condições de contorno, na interface da película com a fase gás, as concentrações se igualam:	$C_{i,G}^{I}(z = \delta_{G}) = C_{i,G}$ $J_{i,G}^{I} _{z=\delta_{G}} = -D_{i,mistura} \frac{\partial C_{i,G}^{I}}{\partial z} _{z=\delta_{G}}$
E, na interface entre as películas líquida e gasosa, existe um equilíbrio termodinâmico:	$C^{I}_{i,G} _{z=0} = C^{I,EQ}_{i,G}$, se i é volátil J $^{I}_{i,G}(z=0) = 0$, se i não é volátil (iônico)
Balanço de energia para a película gasosa:	$\frac{\mathrm{MC}_{\mathrm{p,G}}}{\mathrm{V}_{\mathrm{G}}^{\mathrm{I}}}\frac{\partial \mathrm{T}_{\mathrm{G}}^{\mathrm{I}}}{\partial \mathrm{t}} = \mathrm{k}_{\mathrm{G}}\frac{\partial^{2}(\mathrm{T}_{\mathrm{G}}^{\mathrm{I}})}{\partial \mathrm{z}^{2}} + \frac{\partial}{\partial \mathrm{z}}(\mathrm{J}_{\mathrm{G}}^{\mathrm{I}}h_{\mathrm{G}}^{\mathrm{I}})$

Principais equações

Balanço de massa, por componente, para a película líquida:	$\frac{\partial (C_{i,L}^{I})}{\partial t} = D_{i,mistura} \frac{\partial (C_{i,L}^{I})^{2}}{\partial z^{2}} + \sum_{j=1}^{nr} (\vartheta_{i}r_{i})_{j}$
Com condições de contorno análogas às do gás:	$\begin{split} C^{I}_{i,L}(z = \delta_{L}) &= C_{i,L} \\ C^{I}_{i,L}(z = 0) &= \ C^{I,EQ}_{i,L} \end{split}$
Balanço de energia para a película líquida:	$V_{L}^{I}C_{T,L}^{I}C_{p,L}\frac{\partial T_{L}^{I}}{\partial t} = k_{L}\frac{\partial^{2}(T_{L}^{I})}{\partial z^{2}} + \frac{\partial}{\partial z}(J_{L}^{I}h_{L}^{I}) + V_{L}\sum_{j=1}^{nr}(-\Delta H)r$

Dados da carga					
Gás natural					
Vazão total	1097,2	kmol/h			
Temperatura	310,93	К			
Pressão	60	bar			
Сотро	sição				
Metano	92,871	% mol			
CO ₂	6,99029	% mol			
H ₂ O	0,138659	% mol			
Amina					
Vazão total	62,4	m³/h			
	2885,5	kmol/h			
Temperatura	316,073	К			
Concentrações					
H ₂ O	42,206	kmol/m³			
MEA	4,036	kmol/m³			
Dados do estágio					
Volume	0,71168	m³			
Área inundada	70%				

Conteúdo

- Introdução
- Modelagem
- Métodos utilizados
- Resultados
- Conclusões

Balanços de massa e energia por volume

Balanço de massa – fase gás	$\frac{dC_{i,G}^{I,k}}{dt} = \frac{J_{i,G}^{I,k} - J_{i,G}^{I,k+1}}{\Delta z}$
Balanço de massa – fase líquida	$\frac{dC_{i,L}^{I,k}}{dt} = \frac{J_{i,L}^{I,k} - J_{i,L}^{I,k+1}}{\Delta z} + \sum_{j=1}^{nr} (\vartheta_{i}r_{i})_{j}$
Balanço de energia – fase gás	$C_{T,G}^{I,k}C_{pG}\frac{dT_G^{I,k}}{dt} = \frac{q_G^{I,k} - q_G^{I,k+1}}{\Delta z}$
Balanço de energia – fase líquida	$C_{T,L}^{I,k}C_{p,L}\frac{dT_{L}^{I,k}}{dt} = \frac{q_{G}^{I,k} - q_{G}^{I,k+1}}{\Delta z} - \sum_{j=1}^{nr} (-\Delta H)_{j}r_{j}$

Esquemático da discretização do estágio

Cálculo nos fluxos internos

Condições de contorno – Interface película / fase contínua (bulk)

Interpolação de 2º grau e cálculo da derivada na fronteira para cálculo do fluxo em k+1

Condições de contorno – Interface gás/líquido

Interpolação de 2º grau e cálculo da concentração na interface

Ambiente de simulação: EMSO

Para solução do sistema algébrico-diferencial:

- Dasslc
- Tolerância relativa: 10⁻⁸

Para cálculo do estado estacionário

- Sundials
- Estimativa inicial: solução da integração do sistema dinâmico
- Tolerância relativa: 10⁻⁶

Colocação polinomial modificada

Volumes finitos

Colocação polinomial modificada

Apenas a interface é modelada como um volume finito

Remove a região de alto gradiente, de difícil aproximação polinomial

Objetivo: cálculo direto do fluxo entre a interface baseado na integral das equações de conservação.

Redução do número de pontos fora da região da interface

Utilizado polinômio de Jacobi $\alpha=\beta=0$

Conteúdo

- Introdução
- Modelagem
- Métodos utilizados
- Resultados
- Conclusões

Ajuste da malha dos volumes finitos

Aumento da malha do método dos volumes finitos na película líquida mostrando a convergência da solução

Interface líquida: 20 pontos

Interface gás: 10 pontos

Perfis no estado estacionário – método dos volumes finitos

Perfis no transiente – método dos volumes finitos

Perfis no estado estacionário – comparação entre os métodos

Utilizado 5 pontos internos para colocação

Resultados principais

Resultado	Volumes finitos	Colocação polinomial
Teor de CO2 saída (%)	1,29	1,31
Temperatura do gás (K)	315,6	315,5
Vazão do gás (kmol/h)	1033,8	1034,1
Temperatura do líquido (K)	336,6	336,5
Número de variáveis	774	714
Tempo de solução - Estacionário	0,070 s	0,102 s
Tempo de solução - Dinâmico	0,909 s	2,382 s

Conteúdo

- Introdução
- Modelagem
- Métodos utilizados
- Resultados
- Conclusões

Conclusões

- Método dos volumes finitos é adequado para a resolução do problema de duplo filme
- A convergência do método é mais simples, devido à possibilidade de cálculo dos fluxos da interface de acordo com as equações de conservação
- Aproximação polinomial combinada com volumes finitos reduziu o número de variáveis, mas não aumentou a eficiência computacional
- Próximo passo: volumes finitos com malha exponencial

Obrigado!

carlos.hfbs@gmail.com