RPN TUNING STRATEGY FOR MODEL PREDICTIVE CONTROL
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Abstract: A novel tuning strategy based on RPN for MIMO MPC is presented. The RPN indicates
how potentially difficult it is for a given system to achieve the desired performance robustly. It
refleds both the dtainable performance of a system and its degreeof diredionality. These system's
properties are the basis of the propossed RPN-MPC tuning strategy, which is applied in the
controller design of an air separation plant. Although it was only used a linea nominal model, the
results can also be gplied at least at some extent for nonlinea systems with uncertainties.
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1 INTRODUCTION

Model Predictive Control (MPC) is a discrete-time
technique in which the control action is obtained by
solving open loop optimization problems at each time
step. The flexibility of this type of implementation
has been useful in addressing various implementation
issues that traditionally have been problematic. From
apractical viewpoint, an attractive feature of MPC is
its ability to naturally and explicitly handle both
multivariable input and output constraints by direct
incorporation into the optimization. The MPC
strategy was first exploited and successfully
employed on linear plants, especialy in the process
industries, where relatively slow sample times made
extensive on-line intersample computation feasible.
Recent improvements in computer power have made
MPC a viable alternative approach in a variety of
additional applications as well.

Dynamic matrix control (DMC) (Cutler and
Raemaker, 1980) is considered the most popular
MPC algorithm currently used in the chemica
process industry. It is not surprising why DMC, one
of the earliest formulations of MPC, represents the
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industry standard today. A large part of DMC appeal
is drawn from an intuitive use of a finite step
response model of the process, a quadratic
performances objective over a finite prediction
horizon, and optimal manipulated input moves
computed as the solution to a least squares problem.
Another form of MPC that has rapidly gained
acceptance in the control community is Generalized
Predictive Control (GPC) (Clarke et al. 1987). It
differs from DMC in that it employs a controlled
autoregressive and integrated moving average
(CARIMA) mode of the process which alows a
rigorous mathematical treatment of the predictive
control paradigm. The GPC performance objective is
very similar to that of DMC. Nevertheless, GPC
reduces to the DMC algorithm when the weighting
polynomial that modifies the predicted output
trajectory is assumed to be unity (Camacho and
Bordons, 1995). The tuning strategy proposed in this
paper is directly applicable to DMC and GPC.
Moreover, it can be easily extend to include all other
MPC control strategies.

The full dimension of the control design task consists
of two parts: control structure design and controller
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design. In (Trierweiler, 1997 and (Trierweiler and
Engell, 1997a) a new index, the Robust Performance
Number (RPN), was introduced. RPN is a
controllability measure that can be used bah for
control structure design and for controller design. In
this paper, we present a tuning strategy for MPC
algorithm based on RPN. The main idea of the
proposed tuning strategy is sding the system and
weighting matrices corredly. To dothat, we gplied
ascding procedure based on RPN.

The paper is gructured as follows: in sedion 2, the
necessary badkground about MPC is presented. In
sedion 3, the RPN is sortly discussed. Sedion 4
presents the RPN-tuning strategy for MPC. In sedion
5, the RPN-MPC tuning strategy is analyzed using an
air separation plant as example.

2 BACKGROUND

A MPC algorithm employs a distinctly identifiable
model of the processto predict its future behavior
over an extended prediction horizon. A performance
objedive to be minimized is defined over the
prediction horizon, usualy a sum of quadratic set
point tracking error and control effort terms. This
cost function is minimized by evaluating a profile of
manipulated input moves to be implemented at
successve sampling instants over the @rntrol
horizon. The fealbadk behavior is achieved by
implementing only the first manipulated input move
and repeding the cmmplete sequence of steps at the
subsequent sample time.

The various MPC agorithms propcse different cost
functions for obtaining the @ntrol law. A quite
general expresgon for the objedive functioniis:

P
J= Z||9(t+ jlt)-r(t+ j)|(22 +
=R
" ) (1)
Z||Au(t+ j _11|w
]:

where §/( t+j | t) is the predicted output j steps into
the future based upon information available & timet,
r(t+j) is the reference signal j steps into the future,

Au(t) = (1-ZY) u(t) = u(t)-u(t-1), and||x||5v is the
weighted Euclidean morm of x0OO" defined as
||x|l\i/:xT\Nx with WO O™ positive definite.

The tuning parameters are the minimum costing
horizon (Py), the maximum costing horizon (P), the
control horizon (M), the sampling time (tg), the
controlled variable weight (Q), and the move
suppresgon weight (W). The weighting matrices Q
and W can be chosen as time-varying (i.e., functions
of j). Here, for simplicity, they are assumed to be
time-invariant.

Ead of the @ove parameters has a spedfic role in
tuning of MPC agorithm. Using the acumulated
experience of applying predictive dgorithms, a
number of engineaing rules have been identified to
obtain appropriate values of the parameters for good
performancein different appli cations, such as:

Po and P. The meaning of P, and P is rather
intuitive. They mark the limits of the time in
which it is desirable for the output to follow the
reference Thus, if ahigh value of Py istaken, itis
becaise it is unimportant if there ae arorsin the
first instants which will provoke a smocth
response of the process Note that process with
dea time there is no reason for Py to be lessthan
this time delay, since the output will only begin to
evolve passed this time. Equivalently, process
with inverse response, the output will only to go
to the final response diredion after passed inverse
response dfed. Of course, the arresponding
inverse response time aan also be used to set P,
The maximum costing horizon P should be equal
or smaller than the open-loop settling time of the
process in samples, since nothing is gained by
costing future eror in (1) that cannot be
influenced by future control adions.

M. The ontrol horizon M should be M<P. The
integer M spedfies the degrees of freedom in
seleding future wntrols, so that, after M future
sampling intervals, the ontrol increments are
assumed to be zeo, giving a nstant control
signa. A basic rule for sdleding M in GPC
algorithmsisto set it at least equal to the number
of unstable poles in the plant (Rawlings and
Muske, 1993. It means that for stable systems,
M =1 can be used. Although this is a feasible
choice, it should be aroided, since the controller
will usually present a very poa performance On
the other side, spedal care must be taken if M=P
and W=0, sincein this case the MPC reduces to a
Minimum Variance ontroller (Grimble, 1992,
which is known to be unstable on nonminimum
phase processes.

ts, Of course, the choice of prediction horizon P
cannot be made independent of the sampling time
ts It is appropriate to relate the sampling rate to
the dosed-loop hkandwidth of the feeadbadk
system, f., sincef. isrelated to the speed at which
the feadbadk system should tradk the command
input. Also, the bandwidth f; is related to the
amount of attenuation the feedbadk system must
provide in faceof plant disturbances. As a general
rule of thumb, the sampling period ts should be
chosen in the range (Santina @ al. 1996

1 1
T <tg<—. 2
30f, ° 5f, (@)

Preprints of DYCOPS-2001, June 4-6, 2001, Jejudo | land, Korea 284



Note that the parameters Py, P, and M have a direct
influence on the size of matrices required to compute
the optimal control, and thus on the amount of
computation involved.

Usually the weighting matrices Q and W are diagonal
matrices, whose the elements are tuned to achieve the
desired performance in closed loop and to scale the
inputs and outputs making the units of measurements
and manipulated variables comparable. Additionally,
they are also used for:

Q. It is possible to achieve tighter control of a
particular measured output by selectively
increasing the relative weighting element.

W. Therole of Wisto penalize excessive incremental
control actions. The larger the value of W, the
more sluggish the control will become.

The parameters W and M are strongly related to each
other. Regardlesss, M must be in the range
Number of RHP-polos< M < P, it continues to be an
important tuning parameter. For stable process, M=1
and W=0 can produce acceptable result, but quite
better performance can be achieve with M>1 and
W> 0.

Q, W, and M can be seen as the main parameters to
be manipulated to improve the control performance.
Of course, the other parameters are also important,
but they are well determined by the process
dynamics. In section 4, it is shown how the MPC
tuning parameters should be set to achieve a given
attainable performance. The tuning methodology is
based on the Robust Performance Number (RPN)
which will now be introduced.

3 RPN — RoBUST PERFORMANCE
NUMBER

The Robust Performance Number (RPN) was
introduced in (Trierweiler 1997, Trierweiler and
Engell, 1997a) as a measure to characterize the
controllability of a system. The RPN indicates how
potentialy difficult it is for a given system to achieve
the desired performance robustly. The RPN is
influenced both by the desired performance of a
system and its degree of directionality.

3.1 Definitions

The Robust Performance Number (RPN, I') of a
multivariable plant with transfer matrix G(s) is
defined as

RPNéFSUp G, T,w)=sup{r (G, 7)} (3a)

wlr

A . . D* . 1
r(G.T)=Ja{)1 - T(iw)|T( Jw))ﬁ (€ ,w))+m

where vy (G(ja)) is the minimized condition number
of G(je) and G([I-T] T) isthe maximal singular value
of the transfer function matrix [I-T] T, being T the
(attainable) desired output complementary sensitivity
matrix, which is determined for the nominal model
G(s).

3.2 Attainable Performance

In this sdion, it is discussed how the dtainable
closed loop performance can be daraderized for
systems with RHP-zeros.

Specification of the desired performance

We spedfy the desired performance by the (output)
complementary sensitivity function T which relates
the reference signal r and the output signal y in the
1 degree of freedom (DOF) control configuration
(see fig. 1). For the SISO case, spedfications as
settling time, rise time, maximal overshoot, and
steady-state eror can be mapped into the choice of a
transfer function of the form

A 1-¢,

Td = "
%%é +2¢ i+1
n wﬂ

where &, is the tolerated offset (steady-state etror).
The parameters w, (undamped natural frequency) and
{ (damping ratio) of (4) can be eaily cdculated from
the time domain spedfications, as it can be seen in
Trierweiler (1997).

T
— ——

4)

S G S
L= | L |

Fig. 1. Standard feedbadk configuration

For the MIMO casg, a straightforward extension of
such a spedficaion is to prescribe adecoupled or
amost demupled response, with possbly different
parameters for eadh output, i.e,
Tg=diag(Tq 1, Tano ) Where eab Tgy; corresponds
to a SISO time domain spedfication.

Factorization of systems with RHP-zeros and
RHP-poles

To satisfy the RHP-zeros and —pdes constrains it is
possble to make use of the Blaschke input and
output fadorization (for the definition of the
fadorizaion and an agorithm to cdculate it, see
e.g., Havre and Skogestad (1996) or Trierweiler
(1997)).

The atainable performance for the cae when the
plant G(s) has bath RHP-zeros and —pdes can easily
be obtained (Trierweiler, 1997) and is given by

T(5)=Bo,(9) B, (O [ (1 -T, ()8, (0 B, ,(9)]. (B)

where Bo () and B, ((s) are the zeo output and pde
input Blaschke fadorizaion, respedively, and the
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operator B denotes the pseudo-inverse of B, in such
way that B(0) B'(0) = 1.

T(9) is different from the original desired transfer
function Ty(s), but has exadly the same singular
values, being also the spedfied robustness properties
preserved at the plant output. The fadors Bo,'(0) and
B,'(0) ensures that T(0) = T4(0) so that the steady-
state charaderistics (usually T4(0) = 1) are preserved.

3.3 RPN-Scaling Procedure

The scding of the transfer matrix is very important
for the corred anaysis of the cntrollability of a
system and for controller design. In the definition of
V(G(w), L and R are frequency dependent,
however, in the design L and R usually are mnstant.
The following procedure based on the RPN is
recommended to be used to oimally scde asystem
G.

RPN-scaling procedure:

1. Determination of the frequency wy,
where (G, T,«w) achieves its maximal
value.

2. Cdculate the scding matrices Ls and R,
such that y(LsG(jwyp)Rs) adiieves its
minimal valuey (G(j ap))-

3.  Scde the system with the scaling matrices
Ls and Rs, i.e., Gs(S) = LSG(S) Rs

The analysis and controller design should then be
performed with the scded system Gs,

4 RPN-TUNING STRATEGY

Before starting to design the crntroller, it is
necessary to determine how difficult the cntrol
problem is. For it, we cdculate the RPN for the
system using an attainable desired performance T,
which is a function both of nonminimum-phase
behavior of the system and of the dosed loop cesired
performance The RPN is a measure of how
potentially difficult it is for a given system to achieve
the desired performance robustly. The eaiest way to
design a mntroller is to use the processinverse. An
inverse-based controller will have potentially good
performance robustness only when the RPN is small.
Then, the first step of our tuning strategy, which is
summarized in Table1, consists of spedfying the
desired performance The seomond step is the
fadorizaion of G(s) and determination of an
attainable performance T. The third step corresponds
to the @plicaion of RPN-scding procedure to
cdculate the scding matrices Ls and Re.

The forth step is the doice of sampling time ts
Based on (2) and on the desired performance (4), The
sampling time, ts, can be expressed as a function of
the rise time 1, as follows (Santina & &., 1996:
0.06r, <tg<0.4r,.

Table 1: MPC tuning procedure
for MIMO-systems based on RPN

1. Spedficdion of the desired performance Ty

2. Determination of an attainable performance by the
fadorizaion of the nominal model

3. RPN-scding procedure where the scding matrices Lg
and R; are determined as shown in sedion 3.3

4. Samplingtime: 0.06r, <tg <0.4r,
5. Two passhiliti es for costing horizon:

(A)P= tiﬂ, P, =0, andrg(s)=LT(s)ry(s)
s

(B)P ztiﬂ,PO ::tltﬂ, and rs(s)= Lsry (5)
IS S

6. Control horizon: M = P/4

7. The oontrol adion us should be cdculated using the
following scded oljedive function:

P
Io= Y [9sl+ i10)-r+ g+

=R
M 2
Z||Aus(t+ i —1]|W
]:

where y( t+j |t ) isthe predicted output j stepsinto
the future based upon the scded model G4s), i.e.,
Gs(S) = LSG(S) Rs.

8. Input and output weighting matrices:

Q:; and

\/1"' Yz.s

W= \/(1+ uzjs)loglo(RPN +1) mean(

)

where y, and u are respedively the output and input
zero dredions of the RHP-zero closest to the origin.

gis'j (wsup)

9. Badk to the original units of the manipulated
variables, i.e,, u=Rg [lig

Instep 5 Py, P, and r are determined. The minimum
(Pg) and maximum (P) costing torizons are related to
closed loop system's dynamic. For stable process it
can be expressed as a function of the open loop
system's dynamic. As drealy mentioned, the
maximum costing horizon P should be eua or
smaller than the open-loop settling time of the
process in samples, since nothing is gained by
costing future aror. If the reference signa r is based
on the dtainable performance (i.e., rs= LsT(S)rq(s),
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where ry is the desired reference signal), Py can be
made O, since the nonminimum-phase behavior is
considered in rg automatically. Inthis case, P = tgg/ts
will usually give very good results. tgy, corresponds
to the time when the response of G(s) to an input step
reates 80% of its fina value. For multivariable
systems the maximal value of tgqy for al outputs and
inputs should be used. When rg is not an attainable
performance Py and P should approximately be
equal to tig/ts and top/ts, respedively, where tiop,
and tgqy, correspond to the time when the response of
G(s) to an input step readies 10% and 90% of its
fina value.

In step 6, the ntrol horizon M is chosen
approximately equal to P/4. This value is a good
compromise between performance and stability.
Step 7 cdculates the ntrol adion us using the
scded oljedive function:

P
3= 3 15:6+ i 1)-rle+ i) +
=R
M° 2 ®)
Z"Aus (t+ i -1),
J:

where §/s( t+j | t) isthe predicted output j steps into
the future based upon the scded model Gg(9), i.e.,
G4(s) =LsG(s) Rs, using

Q:; and

\/1"' Yz.s

W = \/(1+ uz's)loglo(RPN +1) mean(| g5’ (‘*’sup)

)

()
as weighting matrices. Here y, and u; are the output
and input zero dredions of the RHP-zero closest to
the origin cdculated for the scded system G49).
These diredions give a1 idea how the RHP-zero
effect is distributed on the output (y») and input (uz),
respedively. The ideais to apply in less extension
the manipulated variables where the RHP-zero effed
is concentrated. In principle, if we @nsider y, and uy
equa to 1, it will produce dmost the same result.
Therefore, we recommend the users to use y; and u,
just as guideline. The RPN fador isincluded in W to
penalize ecessve incremental control adions. The
larger the value of RPN, the more duggish the

)

is included to make the second term independent of
the scding matrices Lsand Re.

control will become. The fador mean(| gl (a)sup)

Finally, to apply the mntrol adion to the system, the
scded control adion ug should be restored to the
origina units, i.e., u=Rg g .

5 A HEAT INTEGRATED
AIR SEPARATION PLANT

Here, it is analyzed the control structures ST_632 for
air separation wnit studied in (Trierweiler and Engell,

2000). This control structure has svera RHP-zero
close to the origin and RPN=6.3. Since this control
structure is a difficult control problem and, therefore,
more indicate to show the benefits of the propaosed
MPC tuning procedure.

Here, al simulations were made using the functions
MPCCON and MPcsIM of the MATLAB MPC-toolbox
(Morari and Ricker,1994). These functions use a
model in step format as the DMC algorithm. Similar
results are dso oktained by the wrresponding state-
space functions, i.e., SMPCCON and sMPCSIM. The
desired performance used in the simulations was: y1-
u6 (5 min rise time and 1% overshoaot), y2-u3 (30
min risetime and 1% overshoat), and y3-u2 (30 min
rise time and 10 % overshoot). The dtainable
performance T is considerable different from Ty for
ST_632, since this control structure has RHP-zeros
closeto origin.

Controlled variables

0 50 100 150 200

100 . 150 200
Time [min]

Fig. 2: Setpoint step in y,, P=100, M=26, Q and W as
inTable 1, and r=LsT(S)ry(s) applied to G4(s)

Controlled variables

0 50 100 150 200

0 50 100 150 200
Time [min]

Fig. 3: Setpoint step in y, using controller parameters
P=100, M=26, Q=I, W=0, and G(s)
Fig. 2 shows the simulation of a MPC controller with
the tuning parameters based on RPN-MPC-tuning
procedure (see Table 1) to a setpoint step in y, and
t=1.25 min. The calculated controller parameters
was P =100, M=26, scaling matrices
Ls=diag([240, 147, 82]) and Rs = diag([1, 8.6, 8.1])
and weighting matrices Q = diag([0.97, 0.77, 0.77])
and W = diag([1.51, 1.95, 1.97]). Fig. 3 shows the
same simulation for Q=1 and W=0, and the unscaled
system. The MPC tuned by RPN-tuning procedure
has a considerably better performance. Moreover, the
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control adion is much smaller than for the untuned
case (cf. Figs 2 and 3).

Of course, the quite better performance of RPN tuned
MPC is grongly related to the reference signal T
which includes the nonminimum-phase behavior of
ST_632 automatically. In Fig. 4, we can see the
closed loop performance for the ase when T is not
used as reference signal. Observe that arealy the
corred scding can considerably improve the nominal
system performance.

Controlled variables

15

1t

05}

0

-0.5
0 200
2000 - H,. -~
1000} , R T
OF— — — — e == ] — Uy =
-1000 L/ — - U
-2000 [ ) ) )
0 50 100 150 200

Time [min]
Fig. 4. Setpoint step in y, tuned as in Fig. 2, but
without referencetrgedory.

5.1 Influence of some tuning parameters
Based on simulation results, which are not shown
here, we @an conclude the following points:

e Control horizon M:

The ontrol performance for M=P for the RPN tuned
MPC presents the same performance & before
(shown in Fig. 2), whil e the untuned MPC with M=P
reduces to a Minimum Variance ontroller
producing, therefore, unlimited and unredistic
control adion on nonminimum phase processes.

¢ Prediction horizon P:

The RPN tuned MPC has amost the same
performance & $own in Fig. 2 for P=50 and M=12,
while the untuned MPC has deaessed its
performancetaking more time to read the setpoint.

In general, we @n conclude that the RPN-MPC
tuning strategy is much less snsible to the parameter
changing. In all analyzed cases, the dosed loop
performance was amost the same. Moreover, the
RPN tuned MPC has always produced smooth and
smaller control adion than the untuned MPC,
indicating that the unconstrained RPN-MPC tuning
procedure will also produce good results for the
constrained control problem.

5.2  Applying to a commercial DMC

To apply the propcsed methoddogy to a commercial
MPC agorithm, it is just necessary to include the
scding matrices into the weighting matrices as
follows: Wy;i=W,/Rs; and Qu; = QiXLs;

Here, W, and Qy are the weighting matrices for the
unscaded system G(s) and the subindexes i is the
element (i,i) of ead matrix. Note that step9 of
Table 1 should not be gplied in this case.

6 CONCLUSIONS

The paper presented a novel tuning strategy for
MIMO MPC. The propased MPC tuning procedure is
based on Robust Performance Number (RPN), which
can measure how difficult the mntrol problemis. The
RPN, because of the dependency on the attainable
closed-loop performance, tekes the effed of
nonminimum-phase behavior and the desired closed
loop performance into acount. In addtion, the
frequency dependent diredionality of the system is
guantified corredly and is therefore used to scde the
system alowing a more robust and efficient tuning.

The performance of the RPN-MPC tuning strategy
was demonstrated for a wrong selected control
structure of an air separation plant. The cntroller
design was performed using a linea nominal model,
but can be extend to include nonlineaities and
uncertainties in the same way as done for the
controll ability analysis (see e.g., Trierweller and
Engell, 1997 and Trierweiler, 1997).

The RPN-MPC tuning procedure was aso
successfully applied to ather examples, which are
avail able & http://www.eng.ufrgs.br/rpn.
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