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RPN TUNING STRATEGY FOR MODEL PREDICTIVE CONTROL
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Abstract: A novel tuning strategy based on RPN for MIMO MPC is presented. The RPN indicates
how potentially difficult it  is for a given system to achieve the desired performance robustly. It
reflects both the attainable performance of a system and its degree of directionali ty. These system's
properties are the basis of the proposed RPN-MPC tuning strategy, which is applied in the
controller design of an air separation plant. Although it was only used a linear nominal model, the
results can also be applied at least at some extent for nonlinear systems with uncertainties.
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1 INTRODUCTION

Model Predictive Control (MPC) is a discrete-time
technique in which the control action is obtained by
solving open loop optimization problems at each time
step. The flexibility of this type of implementation
has been useful in addressing various implementation
issues that traditionally have been problematic. From
a practical viewpoint,  an attractive feature of MPC is
its ability to naturally and explicitly handle both
multivariable input and output constraints by direct
incorporation into the optimization. The MPC
strategy was first exploited and successfully
employed on linear plants, especially in the process
industries, where relatively slow sample times made
extensive on-line intersample computation feasible.
Recent improvements in computer power have made
MPC a viable alternative approach in a variety of
additional applications as well.

Dynamic matrix control (DMC) (Cutler and
Raemaker, 1980) is considered the most popular
MPC algorithm currently used in the chemical
process industry. It is not surprising why DMC, one
of the earliest formulations of MPC, represents the

industry standard today. A large part of DMC appeal
is drawn from an intuitive use of a finite step
response model of the process, a quadratic
performances objective over a finite prediction
horizon, and optimal manipulated input moves
computed as the solution to a least squares problem.
Another form of MPC that has rapidly gained
acceptance in the control community is Generalized
Predictive Control (GPC) (Clarke et al. 1987). It
differs from DMC in that it employs a controlled
autoregressive and integrated moving average
(CARIMA) model of the process which allows a
rigorous mathematical treatment of the predictive
control paradigm. The GPC performance objective is
very similar to that of DMC. Nevertheless, GPC
reduces to the DMC algorithm when the weighting
polynomial that modifies the predicted output
trajectory is assumed to be unity (Camacho and
Bordons, 1995). The tuning strategy proposed in this
paper is directly applicable to DMC and GPC.
Moreover, it can be easily extend to include all other
MPC control strategies.

The full dimension of the control design task consists
of two parts: control structure design and controller
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design. In (Trierweiler, 1997) and (Trierweiler and
Engell, 1997a) a new index, the Robust Performance
Number (RPN), was introduced. RPN is a
controllabili ty measure that can be used both for
control structure design and for controller design. In
this paper, we present a tuning strategy for MPC
algorithm based on RPN. The main idea of the
proposed tuning strategy is scaling the system and
weighting matrices correctly. To do that, we applied
a scaling procedure based on RPN.

The paper is structured as follows: in section 2, the
necessary background about MPC is presented. In
section 3, the RPN is shortly discussed. Section 4
presents the RPN-tuning strategy for MPC. In section
5, the RPN-MPC tuning strategy is analyzed using an
air separation plant as example.

2 BACKGROUND

A MPC algorithm employs a distinctly identifiable
model of the process to predict its future behavior
over an extended prediction horizon. A performance
objective to be minimized is defined over the
prediction horizon, usually a sum of quadratic set
point tracking error and control effort terms. This
cost function is minimized by evaluating a profile of
manipulated input moves to be implemented at
successive sampling instants over the control
horizon. The feedback behavior is achieved by
implementing only the first manipulated input move
and repeating the complete sequence of steps at the
subsequent sample time.

The various MPC algorithms propose different cost
functions for obtaining the control law. A quite
general expression for the objective function is:
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where ŷ( t+j | t ) is the predicted output j steps into
the future based upon information available at time t,
r(t+j) is the reference signal j steps into the future,

∆u(t) = (1-z-1) u(t) = u(t)-u(t-1), and
2

W
x  is the

weighted Euclidean norm of nx ℜ∈  defined as

Wxxx T
W

=2
 with nnW ×ℜ∈  positive definite.

The tuning parameters are the minimum costing
horizon (P0), the maximum costing horizon (P), the
control horizon (M), the sampling time (tS), the
controlled variable weight (Q), and the move
suppression weight (W). The weighting matrices Q
and W can be chosen as time-varying (i.e., functions
of j). Here, for simplicity, they are assumed to be
time-invariant.

Each of the above parameters has a specific role in
tuning of MPC algorithm. Using the accumulated
experience of applying predictive algorithms, a
number of engineering rules have been identified to
obtain appropriate values of the parameters for good
performance in different applications, such as:

P0 and P. The meaning of P0 and P is rather
intuitive. They mark the limits of the time in
which it is desirable for the output to follow the
reference. Thus, if a high value of P0 is taken, it is
because it is unimportant if there are errors in the
first instants which will provoke a smooth
response of the process. Note that process with
dead time there is no reason for P0 to be less than
this time delay, since the output will only begin to
evolve passed this time. Equivalently, process
with inverse response, the output will only to go
to the final response direction after passed inverse
response effect. Of course, the corresponding
inverse response time can also be used to set P0.
The maximum costing horizon P should be equal
or smaller than the open-loop settling time of the
process in samples, since nothing is gained by
costing future error in (1) that cannot be
influenced by future control actions.

M. The control horizon M should be M ≤ P. The
integer M specifies the degrees of freedom in
selecting future controls, so that, after M future
sampling intervals, the control increments are
assumed to be zero, giving a constant control
signal. A basic rule for selecting M in GPC
algorithms is to set it at least equal to the number
of unstable poles in the plant (Rawlings and
Muske, 1993). It means that for stable systems,
M = 1 can be used. Although this is a feasible
choice, it should be avoided, since the controller
will usuall y present a very poor performance. On
the other side, special care must be taken if M=P
and W=0, since in this case the MPC reduces to a
Minimum Variance controller (Grimble, 1992),
which is known to be unstable on nonminimum
phase processes.

tS. Of course, the choice of prediction horizon P
cannot be made independent of the sampling time
tS. It is appropriate to relate the sampling rate to
the closed-loop bandwidth of the feedback
system, fc , since fc is related to the speed at which
the feedback system should track the command
input. Also, the bandwidth fc is related to the
amount of attenuation the feedback system must
provide in face of plant disturbances. As a general
rule of thumb, the sampling period tS should be
chosen in the range (Santina et al. 1996)

c
S

c f
t

f 5

1

30

1 << . (2)



Preprints of DYCOPS-2001, June 4-6, 2001, Jejudo Island, Korea 285

Note that the parameters P0, P, and M have a direct
influence on the size of matrices required to compute
the optimal control, and thus on the amount of
computation involved.

Usually the weighting matrices Q and W are diagonal
matrices, whose the elements are tuned to achieve the
desired performance in closed loop and to scale the
inputs and outputs making the units of measurements
and manipulated variables comparable. Additionally,
they are also used for:

Q. It is possible to achieve tighter control of a
particular measured output by selectively
increasing the relative weighting element.

W. The role of W is to penalize excessive incremental
control actions. The larger the value of W, the
more sluggish the control will become.

The parameters W and M are strongly related to each
other. Regardless, M must be in the range
Number of RHP-polos ≤ M ≤ P, it continues to be an
important tuning parameter. For stable process, M=1
and W=0 can produce acceptable result, but quite
better performance can be achieve with M > 1 and
W > 0.

Q, W, and M can be seen as the main parameters to
be manipulated to improve the control performance.
Of course, the other parameters are also important,
but they are well determined by the process
dynamics. In section 4, it is shown how the MPC
tuning parameters should be set to achieve a given
attainable performance. The tuning methodology is
based on the Robust Performance Number (RPN)
which will now be introduced.

3 RPN – ROBUST PERFORMANCE
NUMBER

The Robust Performance Number (RPN) was
introduced in (Trierweiler 1997; Trierweiler and
Engell, 1997a) as a measure to characterize the
controllability of a system. The RPN indicates how
potentially difficult it is for a given system to achieve
the desired performance robustly. The RPN is
influenced both by the desired performance of a
system and its degree of directionality.

3.1 Definitions
The Robust Performance Number (RPN, ΓΓ) of a
multivariable plant with transfer matrix G(s) is
defined as
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where γ*(G(jω)) is the minimized condition number
of G(jω) and σ

_
([I-T] T) is the maximal singular value

of the transfer function matrix [I-T] T, being T the
(attainable) desired output complementary sensitivity
matrix, which is determined for the nominal model
G(s).

3.2 Attainable Performance
In this section, it is discussed how the attainable
closed loop performance can be characterized for
systems with RHP-zeros.

Specification of the desired performance
We specify the desired performance by the (output)
complementary sensitivity function T which relates
the reference signal r and the output signal y in the
1 degree of freedom (DOF) control configuration
(see fig. 1). For the SISO case, specifications as
settling time, rise time, maximal overshoot, and
steady-state error can be mapped into the choice of a
transfer function of the form
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where ε∞ is the tolerated offset (steady-state error).
The parameters ωn (undamped natural frequency) and
ζ (damping ratio) of (4) can be easily calculated from
the time domain specifications, as it can be seen in
Trierweiler (1997).

Fig. 1: Standard feedback configuration

For the MIMO case, a straightforward extension of
such a specification is to prescribe a decoupled or
almost decoupled response, with possibly different
parameters for each output, i.e.,
Td = diag(Td,1,...,Td,no ), where each Td,i corresponds
to a SISO time domain specification.

Factorization of systems with RHP-zeros and
RHP-poles
To satisfy the RHP-zeros and –poles constrains it is
possible to make use of the Blaschke input and
output factorization (for the definition of the
factorization and an algorithm to calculate it, see,
e.g., Havre and Skogestad (1996) or Trierweiler
(1997)).  

The attainable performance for the case when the
plant G(s) has both RHP-zeros and –poles can easily
be obtained (Trierweiler, 1997) and is given by

( ) ( )( )[ ] )( )0(  )0( )(=  ,
†
,

†
,, sBBsTIIBsBsT pIpIdzOzO −− . (5)

where BO,z(s) and BI,p(s) are the zero output and pole
input Blaschke factorization, respectively, and the
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operator B† denotes the pseudo-inverse of B , in such
way that B(0) B†(0) = I.

T(s) is different from the original desired transfer
function Td(s), but has exactly the same singular
values, being also the specified robustness properties
preserved at the plant output. The factors BO,z

†(0) and
BI,p

†(0) ensures that T(0) = Td(0) so that the steady-
state characteristics (usually Td(0) = I) are preserved.

3.3 RPN-Scaling Procedure
The scaling of the transfer matrix is very important
for the correct analysis of the controllabili ty of a
system and for controller design. In the definition of
γ*(G(jω)), L and R are frequency dependent,
however, in the design L and R usually are constant.
The following procedure based on the RPN is
recommended to be used to optimally scale a system
G.

RPN-scaling procedure:

1. Determination of the frequency ωsup

where Γ(G,T,ω) achieves its maximal
value.

2. Calculate the scaling matrices LS and RS,
such that γ(LSG(jωsup)RS) achieves its
minimal value γ*(G(jωsup)).

3. Scale the system with the scaling matrices
LS and RS, i.e., GS(s) = LS G(s) RS

The analysis and controller design should then be
performed with the scaled system GS.

4 RPN-TUNING STRATEGY

Before starting to design the controller, it is
necessary to determine how difficult the control
problem is. For it, we calculate the RPN for the
system using an attainable desired performance T,
which is a function both of nonminimum-phase
behavior of the system and of the closed loop desired
performance. The RPN is a measure of how
potentially difficult it is for a given system to achieve
the desired performance robustly. The easiest way to
design a controller is to use the process inverse. An
inverse-based controller will have potentially good
performance robustness only when the RPN is small.
Then, the first step of our tuning strategy, which is
summarized in Table 1, consists of specifying the
desired performance. The second step is the
factorization of G(s) and determination of an
attainable performance T. The third step corresponds
to the application of RPN-scaling procedure to
calculate the scaling matrices LS and RS.

The forth step is the choice of sampling time tS.
Based on (2) and on the desired performance (4), The
sampling time, tS, can be expressed as a function of
the rise time τr as follows (Santina et al., 1996):

rSr t ττ 4.006.0 << .

Table 1: MPC tuning procedure
for MIMO-systems based on RPN

1. Specification of the desired performance Td

2. Determination of an attainable performance by the
factorization of the nominal model

3. RPN-scaling procedure where the scaling matrices Ls

and Rs are determined as shown in section 3.3

4. Sampling time: rSr t ττ 4.006.0 <<

5. Two possibiliti es for costing horizon:
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6. Control horizon:   4PM ≈

7. The control action uS should be calculated  using the
following scaled objective function:
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where ŷs( t+j | t ) is the predicted output j steps into
the future based upon the scaled model GS(s), i.e.,
GS(s) = LS G(s) RS .

8. Input and output weighting matrices:
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where yZ and uZ are respectively the output and input
zero directions of the RHP-zero closest to the origin.

9. Back to the original units of the manipulated
variables, i.e., SS uRu ⋅=

In step 5, P0 , P, and r are determined. The minimum
(P0) and maximum (P) costing horizons are related to
closed loop system's dynamic. For stable process, it
can be expressed as a function of the open loop
system's dynamic. As already mentioned, the
maximum costing horizon P should be equal or
smaller than the open-loop settling time of the
process in samples, since nothing is gained by
costing future error. If the reference signal r is based
on the attainable performance (i.e., rS = LS T(s)rd(s),
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where rd is the desired reference signal), P0 can be
made 0, since the nonminimum-phase behavior is
considered in rS automatically. In this case, P ≈ t80%/tS

will usuall y give very good results. t80%  corresponds
to the time when the response of G(s) to an input step
reaches 80% of its final value. For multivariable
systems the maximal value of t80% for all outputs and
inputs should be used. When rS is not an attainable
performance, P0 and P should approximately be
equal to t10%/tS and  t90%/tS, respectively, where t10%

and t90% correspond to the time when the response of
G(s) to an input step reaches 10% and 90% of its
final value.

In step 6, the control horizon M is chosen
approximately equal to P/4. This value is a good
compromise between performance and stabili ty.
Step 7 calculates the control action uS using the
scaled objective function:
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where ŷs( t+j | t ) is the predicted output j steps into
the future based upon the scaled model GS(s), i.e.,
GS(s) = LS G(s) RS , using
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(7)
as weighting matrices. Here yZ and uZ are the output
and input zero directions of the RHP-zero closest to
the origin calculated for the scaled system GS(s).
These directions give an idea how the RHP-zero
effect is distributed on the output (yZ) and input (uZ),
respectively. The idea is to apply in less extension
the manipulated variables where the RHP-zero effect
is concentrated. In principle, if we consider yZ and uZ

equal to 1, it will produce almost the same result.
Therefore, we recommend the users to use yZ and uZ

just as guideline. The RPN factor is included in W to
penalize excessive incremental control actions. The
larger the value of RPN, the more sluggish the

control will become. The factor ( )( )sup
, ωji

sgmean

is included to make the second term independent of
the scaling matrices LS and RS.

Finally, to apply the control action to the system, the
scaled control action uS should be restored to the
original units, i.e., SS uRu ⋅=  .

5 A HEAT INTEGRATED
AIR SEPARATION PLANT

Here, it is analyzed the control structures ST_632 for
air separation unit studied in (Trierweiler and Engell ,

2000). This control structure has several RHP-zero
close to the origin and RPN=6.3. Since this control
structure is a difficult control problem and, therefore,
more indicate to show the benefits of the proposed
MPC tuning procedure.

Here, all simulations were made using the functions
MPCCON and MPCSIM of the MATLAB MPC-toolbox
(Morari and Ricker,1994). These functions use a
model in step format as the DMC algorithm. Similar
results are also obtained by the corresponding state-
space functions, i.e., SMPCCON and SMPCSIM. The
desired performance used in the simulations was: y1-
u6 (5 min rise time and 1% overshoot), y2-u3 (30
min rise time and 10% overshoot), and y3-u2 (30 min
rise time and 10 % overshoot). The attainable
performance T is considerable different from Td for
ST_632, since this control structure has RHP-zeros
close to origin.
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Fig. 2: Setpoint step in y2, P=100, M=26, Q and W as
in Table 1, and rS=LST(s)rd(s) applied to GS(s)
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Fig. 3: Setpoint step in y2 using controller parameters
P=100, M=26, Q=I, W=0, and G(s)

Fig. 2 shows the simulation of a MPC controller with
the tuning parameters based on RPN-MPC-tuning
procedure (see Table 1) to a setpoint step in y2 and
tS=1.25 min. The calculated controller parameters
was P = 100, M = 26, scaling matrices
LS = diag([240, 147, 82]) and RS = diag([1, 8.6, 8.1])
and weighting matrices Q = diag([0.97, 0.77, 0.77])
and W = diag([1.51, 1.95, 1.97]). Fig. 3 shows the
same simulation for Q=I and W=0, and the unscaled
system. The MPC tuned by RPN-tuning procedure
has a considerably better performance. Moreover, the
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control action is much smaller than for the untuned
case (cf. Figs 2 and 3).

Of course, the quite better performance of RPN tuned
MPC is strongly related to the reference signal T
which includes the nonminimum-phase behavior of
ST_632 automatically. In Fig. 4, we can see the
closed loop performance for the case when T is not
used as reference signal. Observe that already the
correct scaling can considerably improve the nominal
system performance.
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Fig. 4: Setpoint step in y2 tuned as in Fig. 2, but
without reference trajectory.

5.1 Influence of some tuning parameters
Based on simulation results, which are not shown
here, we can conclude the following points:

• Control horizon M:
The control performance for M=P for the RPN tuned
MPC presents the same performance as before
(shown in Fig. 2), while the untuned MPC with M=P
reduces to a Minimum Variance controller
producing, therefore, unlimited and unrealistic
control action on nonminimum phase processes.

• Prediction horizon P:
The RPN tuned MPC has almost the same
performance as shown in Fig. 2 for P=50 and M=12,
while the untuned MPC has decreased its
performance taking more time to reach the setpoint.

In general, we can conclude that the RPN-MPC
tuning strategy is much less sensible to the parameter
changing. In all analyzed cases, the closed loop
performance was almost the same. Moreover, the
RPN tuned MPC has always produced smooth and
smaller control action than the untuned MPC,
indicating that the unconstrained RPN-MPC tuning
procedure will also produce good results for the
constrained control problem.

5.2 Applying to a commercial DMC
To apply the proposed methodology to a commercial
MPC algorithm, it is just necessary to include the
scaling matrices into the weighting matrices as
follows:   WU,i = Wi /RS, i   and   QU,i  = Qi x LS, i

Here, WU and QU  are the weighting matrices for the
unscaled system G(s) and the subindexes i is the
element (i,i) of each matrix. Note that step 9 of
Table 1 should not be applied in this case.

6 CONCLUSIONS

The paper presented a novel tuning strategy for
MIMO MPC. The proposed MPC tuning procedure is
based on Robust Performance Number (RPN), which
can measure how difficult the control problem is. The
RPN, because of the dependency on the attainable
closed-loop performance, takes the effect of
nonminimum-phase behavior and the desired closed
loop performance into account. In addition, the
frequency dependent directionali ty of the system is
quantified correctly and is therefore used to scale the
system allowing a more robust and efficient tuning.

The performance of the RPN-MPC tuning strategy
was demonstrated for a wrong selected control
structure of an air separation plant. The controller
design was performed using a linear nominal model,
but can be extend to include nonlinearities and
uncertainties in the same way as done for the
controllabili ty analysis (see, e.g., Trierweiler and
Engell, 1997b and Trierweiler, 1997).

The RPN-MPC tuning procedure was also
successfully applied to other examples, which are
available at http://www.enq.ufrgs.br/rpn.
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