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a  b  s  t  r  a  c  t

Dynamic  real-time  optimization  (DRTO)  systems  sometimes  fail  when  solving  intrinsic  optimization
problems.  There  are  situations  where  the  solution  is infeasible  due  to the  initial  conditions,  constraint
changes  during  operation,  or even  the  presence  of conflicts  on constraint  specifications.  By using a  goal
programming  approach,  this  work  proposes  a  method  to  solve  these  infeasibilities  by reformulating  the
differential-algebraic  optimization  problem  as  a  multi-objective  dynamic  optimization  problem  with
eywords:
ynamic optimization

nfeasibility
ulti-objective optimization

path constraint  relaxations.  Three  examples  were  solved  exploring  the  characteristics  of  such  infeasibility
problems.  The  results  demonstrate  the  ability  of  the proposed  method  in identifying  and  relaxing  the
constraint  violations,  increasing  the  robustness  of  DRTO  systems.

© 2011 Elsevier Ltd. All rights reserved.

eal-time optimization
onstraint relaxation

. Introduction

Dynamic real-time optimization (DRTO) systems and nonlinear
odel predictive control (NMPC) applications have been frequently

sed to establish optimal policies for process operations (Biegler,
009; Biegler and Zavala, 2008; Kadam and Marquardt, 2007). The
ore of a DRTO system consists on solving a differential-algebraic
ptimization problem (DAOP), where the dynamic process behav-
or is described by a set of differential-algebraic equations (DAEs).
he DAOP may  have path, interior-point and end-time constraints.
oreover, the end time may  be a free variable in the optimization

roblem.
A DRTO system is usually designed to run automatically in a

losed loop mode. However, while a DRTO system seeks the solu-
ion of the optimization problem, failures may  occur if the problem
s infeasible or unbounded, has numerical difficulties, presents sys-
em errors, or even presents model-building errors. Furthermore,
t is also possible to find situations where the initial conditions,
ormally provided by some state estimator in each DRTO cycle,
re infeasible or tend inexorably to infeasibility. In all these cases,
he optimizer will fail to find a solution, shutting down the DRTO
ystem.
Academics have tried to solve infeasibility problems in different
ays. Since the 70s there have been concerns in detecting the set

f constraints that make constrained linear optimization problems

∗ Corresponding author at: PEQ-COPPE/UFRJ, Cx.P. 68502, CEP 21941-972 - Rio de
aneiro, RJ, Brazil. Tel.: +55 21 2562 8301; fax: +55 21 2562 8300.
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098-1354/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2011.07.003
(LPs) infeasible. The approach used to detect infeasibility was  direct
location using heuristics, such as the lower limit greater than the
upper limit of a variable, or the top temperature higher than the
bottom temperature in a distillation column.

In the 80s, systematic methods for detection of infeasible con-
straint sets started to appear, which identify these sources of LP
infeasibilities (Greenberg, 1993). Using ranking and elimination
approach, an Irreducibly Inconsistent System (IIS) is detected (van
Loon, 1981), where any chosen subset makes the problem feasible.
There are some cases where it is possible to find more than one IIS
in an optimization problem. This detection is a combinatorial prob-
lem procedure that increases the computational cost for finding the
IIS. The existence of multiple IIS leads us to an unanswered question
of what is the best choice of IIS to solve the optimization problem?
There is an IIS set that results in the best value of the objective
function, but it is necessary to test all IIS in order to find the best
solution. The current IIS detection methods consist of the following
filters: deletion, addition, elastic and sensitivity (Chinneck, 2008).
In addition, the combination of these filters and constraint group-
ings can speed up the infeasible set detection process. The solvers
MINOS (Chinneck, 1994) and CONOPT (Drud, 1994) have both used
this approach.

Chinneck (2004) introduced the consensus methods to detect
infeasibility of constrained nonlinear optimization problems (NLPs)
by calculating the feasible distances from the original problems
to obtain feasible vectors. The worst directions of these vectors
should not be included into the “consensus vector”, which rep-

resents the average infeasibility for the violated constraints. The
efficiency of this method is a function of the number of constraints
in the optimization problem, and is not attractive for large-scale
problems.

dx.doi.org/10.1016/j.compchemeng.2011.07.003
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:ean@petrobras.com.br
mailto:arge@peq.coppe.ufrj.br
dx.doi.org/10.1016/j.compchemeng.2011.07.003
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Fig. 1. (a) Initial infeasibility and tendency to infeasibility and (

Another approach that can be used for solving the infeasibility
roblem is the multi-objective formulation which introduces slack
ariables (si) to relax the constraints, as follows:

min
z,s

[ s1 · · · sm ]

s.t.
gi(z) ≤ si i = 1, . . . , m
si ≥ 0

here an optimal solution from the Pareto set can be obtained
y different approaches. Tamiz, Mardle, and Jones (1996).  applied
he following goal programming approach (Eq. (1)) for solving this

ulti-objective infeasibility problem.

min
z,s,�

�

s.t.
wisi ≤ �
gi(z) − si ≤ � i = 1, · · ·,  m
si ≥ 0

(1)

here z are the state variables, � is the objective function,

m
i=1wi = 1 and wi ≥ 0.
The optimal solution in the Pareto set is obtained by choosing

he weights wi according to a heuristic criterion (Yang, 2008). This
pproach identifies the infeasibility by solving the relaxed NLP.
rmediate infeasibility or intermediate tendency to infeasibility.

Some techniques are available to soften the constraints in model
predictive controllers (MPC). One of the first adopted techniques
was the conversion of the original inequality constraint, g(z) ≤ 0,
to an equality constraint, g(z) + s2 = 0, which incorporates a slack
variable, s, and requires an additional term in the objective func-
tion, a cost function, sT Q s, where Q is a positive definite matrix
(Camacho and Bordons, 1999; Jacobson and Lele, 1969). Another
technique applied to handle inequality path constraints in optimal
control problems is based on the constraint violation measure-
ment. It can be applied by adding new differential variables ẇ(t) =
[max(0, g(z(t)))]2 and end-point constraints w(tf) ≤ ε where ε is a
very small positive value (Vassiliadis, Sargent, & Pantelides, 1994).

A successful DRTO system has to be efficient and robust to find a
profitable optimal solution of the DAOP. One of the most important
issues found during the DAOP solution is problem infeasibility. The
main goal of the present work is to increase the robustness of DRTO
systems by using an efficient and automatic methodology for solv-
ing DAOP infeasibilities. We  have proposed a methodology based
on DAOP path constraint relaxation by solving a multi-objective
dynamic optimization problem (MODAOP) and dealing efficiently
with infeasibilities.

In Section 2, we discuss the types of infeasibilities in dynamic
optimization problems. Section 3 presents the proposed method-

ology to handle infeasibilities. In Section 4, we present case studies
illustrating the proposed methodology and discuss the results.
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. Infeasibilities in dynamic optimization problems

Dynamic optimization packages usually adopt the following
tandard formulations of DAOP, with constraints only on state and
ontrol variables and parameters:

min
u(t),p

�(x(tf ))

s.t.

F(ẋ(t), x(t), y(t), u(t), p, t) = 0, x(t0) = x0 t ∈ [t0, tf ]

xL ≤ x(t) ≤ xU

yL ≤ y(t) ≤ yU

uL ≤ u(t) ≤ uU

pL ≤ p ≤ pU

(2)

here �(x(tf)) is the objective function, F(•) ∈ �nx+ny is the DAE
ystem, x(t) ∈ �nx are the state variables, y(t) ∈ �ny the algebraic
ariables, u(t) ∈ �nu the control variables, and p ∈ �np the time-
ndependent model parameters. In this formulation, all inequality
onstraints appear as algebraic equations by introducing new vari-
bles bounded according to the original constraint.

Unlike stationary optimization, the feasibility of the DAOP solu-
ion also depends on the initial condition of the state variables and
he directions of their time derivatives. There are cases where a
iven state variable is feasible, but its time derivative can point to an
nfeasible region, which drives the process to constraint violation

ithout any possible control actions to avoid this, as will be shown
n case 2 (dynamic optimization of a non-isothermal semi-batch
eactor) of Section 4. This situation may  occur when the process
s close to its bounds. Moreover, the values of algebraic variables,
valuated by the optimizer startup procedure, can fall improperly
utside the operating limits or even tend inexorably to infeasibil-
ty (Fig. 1a). In addition, there are other situations in which the
rocess operation recipe is changed (e.g., changes on product spec-

fication) or when the forecast of an important disturbance requires
n abrupt change of the process constraints. At that moment the
roblem may  become infeasible (intentionally or not), see Fig. 1b.
herefore, it is necessary to deal with the infeasibilities resulting
rom these situations.

Another common issue is the presence of conflicts on con-
traint specifications. In real-time optimization, it is not rare to
nd situations where the operator establishes constraint positions
hat compete amongst themselves, resulting in an infeasible DAOP.
herefore, the tendency to initial and intermediate infeasibility, and
onflicts on constraints specifications can also be factors contribut-
ng to the failure of the dynamic optimizers.

. Solving the infeasibility problem

As mentioned in Section 1, there are usually two alternatives to
olve infeasibilities: ranking and elimination, or identification and
elaxation of the violated constraints.

The ranking and elimination approaches are not useful to detect
nfeasibility in dynamic optimization problems because the high
umber of constraints in the discrete-time domain may  result in

 very large number of IIS (each constraint in continuous-time
omain results in a number of constraints equal to the number
f discrete points). Another issue is the time correlation between
tate variables and the previous movements on the control vari-
bles, making a constraint violation in a given time sensitive to

ontrol actions in previous time instants. This behavior is similar
o that found in convolution models, where a control action at the
eginning of the time horizon has a strong influence on the state
ariables in subsequent time points far from the point in analysis,
Fig. 2. Constraints relaxation minimization using integral of slack variables.

making it more effective to change control actions earlier in time to
avoid constraint violations. This kind of behavior makes it difficult
to use these techniques for finding infeasible set of constraints.

The techniques that identify and relax constraints on LPs and
NLPs are not effective for solving infeasibilities or trends to infeasi-
bilities on the initial conditions or intermediate time points in DAOP
because they are NP-hard problems (non-deterministic polynomial
time), where the computational cost is factorial or combinatorial
because of the dynamic optimization problem complexity. Further-
more, the inherent use of heuristics to obtain the optimal solution
may lead the plant to a non-profitable or even unsafe condition.

The proposed method consists in the solution of a DAOP where
we reformulate the original problem as a multi-objective opti-
mization using a time-varying constraint relaxation technique. The
adopted strategy is the inclusion of time-varying slack variables and
a utopian goal term in the DAOP. The solution of this problem leads
to the minimum relaxation of problematic constraints. The main
characteristic of this approach is the formulation of a both soft-
and hard-constrained problem, leading to the simultaneous solu-
tion of the DAOP and the path constraints relaxation problems. In
this approach, we do not need to choose which constraints should
be relaxed unless it is clearly defined in the problem. In fact, the
optimization algorithm makes the decision of which constraints
should be relaxed, and by how much. Once the modified problem
is solved, it is also possible to diagnose the infeasibility causes of
the original DAOP.

Eq. (3) describes the mathematical formulation of the multi-
objective optimization problem by relaxing the constraints with
time-varying slack variables, s(t).

min
u,sx,sy,su,p

[
�(x(tf )),

∫ tf

0

(sx
i
(t))2dt,

∫ tf

0

(sy
j
(t))

2
dt,

∫ tf

0

(su
k
(t))2dt

]
s.t.

F(ẋ(t), x(t), y(t), u(t), p, t) = 0 , x(tf ) = x0 t ∈ [t0, tf ]

xL ≤ x(t) + sx(t) ≤ xU

yL ≤ y(t) + sy(t) ≤ yU

uL ≤ u(t) + su(t) ≤ uU

pL ≤ p ≤ pU

sx
L

≤ sx(t) ≤ sx
U

where sx(t) ∈ �Sx
sy ≤ sy(t) ≤ sy where sy(t) ∈ �Sy

(3)
L U

su
L

≤ su(t) ≤ su
U

where su(t) ∈ �Su

where i ∈ {1,. . .,nx},  j ∈ {1,. . .,ny}  and k ∈ {1,. . .,nu}.
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and, consequently, these relaxations may  affect the optimization
of the control profiles. This strategy is equivalent to optimizing a
model parameter in the optimization problem; (2) consider the
slack variables as control variables. In this case, the constraints
30 E. Almeida, A.R. Secchi / Computers an

The integral of the constraint relaxations represents the amount
f movements beyond their bounds that have to be minimized, as
hown in Fig. 2.

The basic differences between this formulation and the orig-
nal DAOP are the simultaneous usage of time-varying soft and
ard constraints, and the simultaneous solution of the optimization
roblem and constraint relaxation.

The solution of the multi-objective DAOP (Eq. (4))  is a Pareto set.
or DRTO applications, it is desirable to obtain a single optimum
alue of the objective function instead of an optimal set. In order to
btain a unique solution, we reformulated the original DAOP using

 goal programming approach as follows:

min
u,��,sx,sy,su,p

�(tf )

s.t.

F(ẋ(t), x(t), y(t), u(t), p, t) = 0, x(t0) = x0 t ∈ [t0, tf ]

d�

dt
= ��(t), �(t0) = 0

�(x(tf )) − �L ≤ �(tf )w0(
sx
i
(t)

�x
i

)2

≤ ��(t) where i ∈
{

1, · · ·,  nx
}

(
sy
j
(t)

�y
j

)2

≤ ��(t) where j ∈
{

1, · · ·,  ny
}

(
su
k
(t)

�u
k

)2

≤ ��(t) where k ∈
{

1, · · ·,  nu
}

xL ≤ x(t) + sx(t) ≤ xU

yL ≤ y(t) + sy(t) ≤ yU

uL ≤ u(t) + su(t) ≤ uU

sxL ≤ sx(t) ≤ sxU wheresx(t) ∈ �Sx
syL ≤ sy(t) ≤ syU wheresy(t) ∈ �Sy
suL ≤ su(t) ≤ suU wheresu(t) ∈ �Su

(4)

In Eq. (4),  �(tf) is the new objective function, ��(t) is the max-
mum degree of constraint violations at each time instant, �L is a
topian value of the objective function of the original DAOP and
0 is its under-attainment weight, (�z

i
)2 is the allowed variance

f the constraint violation sz
i
(t) of zi(t), z ∈ {x, y, u}, that can be

btained by statistical analysis of plant historical data, and szL and
z
U are the minimum and maximum allowed constraint violations,
espectively, based on process analysis of the DAOP.

The meaning of the new variable � is the larger of two values:
1) the integral of the worst squared relaxation weighted by the
eciprocal of the allowed variance of the constraint violation at
ach time instant or (2) the distance between the original objec-
ive function and its utopian value. All relaxations are constrained
nd the original constraints are relaxed in the infinite-dimensional
AOP. The utopian value is chosen based on its physical meaning.
or instance, if the objective is the maximization of a component
olar fraction, then the utopian value may  be 1 (�L = −1, since Eq.

4) is a minimization problem). The under-attainment weight w0
0 ≤ w0 ≤ 1) focuses on the feasibility aspect at the expense of the
riginal objective function. When the minimization of constraint
iolations is very important, small values of w0 should be used,
uch as w0 = 0.1. It is important to note that it is not necessary to
elax all variables z(t) as will be shown in the case studies in Section

, which avoids the generation of large optimization problems. If
ariables are bounded on their domains or cannot be relaxed due
o other reasons, then their constraints may  not be reformulated
y including slack variables.
Fig. 3. Constraints relaxation using slack variables as parameter or control variable.

Rewriting Eq. (4) in standard form (similar to Eq. (2)), we get the
following problem:

min
u,��,sx,sy,su,p

�(tf )

s.t.

F(ẋ(t), x(t), y(t), u(t), p, t) = 0, x(t0) = x0 t ∈ [t0, tf ]

d�

dt
= ��(t), �(t0) = 0

 �(tf ) = �(tf )w0 − �(x(tf )) + �L

 i
x(t) = ��(t) −

(
sx
i
(t)

�x
i

)2

where i ∈
{

1, · · ·, nx
}

 j
y(t) = ��(t) −

(
sy
j
(t)

�y
j

)2

where j ∈
{

1, · · ·,  ny
}

 k
u(t) = �� (t) −

(
su
k
(t)

�u
k

)2

where k ∈
{

1, · · ·, nu
}

gx(t) = x(t) + sx(t)

gy(t) = y(t) + sy(t)

gu(t) = u(t) + su(t)

xL ≤ gx(t) ≤ xU where gx(t) ∈ �Sx
yL ≤ gy(t) ≤ yU where gy(t) ∈ �Sy
uL ≤ gu(t) ≤ uU where gu(t) ∈ �Su
sxL ≤ sx(t) ≤ sxU where sx(t) ∈ �Sx
syL ≤ sy(t) ≤ syU where sy(t) ∈ �Sy
suL ≤ su(t) ≤ suU where su(t) ∈ �Su
 �(t) ≥ 0,  x(t) ≥ 0,  y(t) ≥ 0,  u(t) ≥ 0

(5)

There are two possible relaxation strategies: (1) shift the con-
straint by a constant value throughout the optimization horizon.
The disadvantage of this strategy is that the constraints are also
relaxed at time instants where the relaxations are not necessary
Fig. 4. Scheme and reactions of a batch reactor.
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Fig. 5. Optimal solution of the original probl
re relaxed only in time intervals in which the problem becomes
nfeasible. The manipulations of the slack variables follow the cri-
erion of minimum relaxation of these variables in order to make
he problem feasible, as shown in Fig. 3. This strategy is more com-

Fig. 6. Best result of the infeasible problem. Traje
rajectories of (a) CA , CB and CC , (b) T and �T.
plex but more efficient, and is used in the proposed methodology.
When using DRTO application, it is possible to replace a sequence
of small relaxations by a single relaxation in a defined interval of
the optimization horizon.

ctories of (a) CA and CB , (b) CC , (c) T and �T.
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Fig. 7. The relaxed problem solution. Trajectori

. Case studies, results and comments

In this section, we present three cases showing the features
f the proposed methodology, discussing issues such as con-
ict between specifications, initial infeasibility, tendency to initial

nfeasibility, and intermediate infeasibility. In each case, we studied
hree situations: the original problem (feasible solution), the infea-
ible problem, and the relaxed feasible problem. When solving the
riginal DAOP and the infeasible DAOP we have used the original
tandard formulation presented in Eq. (2).  In the relaxation case,
e have replaced the original DAOP by the relaxed reformulation
escribed by Eq. (5). The same relaxed formulation has been used
or all dynamic optimization packages.

In this study, the NLP is solved using the interior point method
mplemented in IPOPT (Wächter and Biegler, 2006) for the simul-
aneous approach through the package DynoPC (Lang and Biegler,
007), and a quasi-Newton method implemented in SNOPT (Gill,
urray, & Saunders, 2005) for the sequential approach through

he package DyOS (Schlegel and Marquardt, 2006). Both packages
DynoPC and DyOS) provided similar results for all case studies, and
herefore only the results using DyOS are presented. The NLP solver
nd the integrator used in DyOS runs are SNOPT (Gill et al., 2005)
nd extended LIMEX (Schlegel, Marquardt, Ehrig, & Nowak, 2004),
espectively. DyOS package has a wavelet-based mesh adaptation
trategy (Binder, Cruse, Villas, & Marquardt, 2000). We  used the

ulti-shooting direct method for solving DAOP using DyOS. The

nitial number of grid points used in all cases was 8 elements, and
he relative and absolute tolerances adopted for both NLP solver
nd integrator were 10−6.
a) CA and CB , (b) CC , (c) T, and (d) variation of T.

4.1. Case 1 – dynamic optimization of a batch reactor

Consider the following batch process (Fig. 4), where the con-
trol variable is the reaction temperature (Cervantes, Waechter,
Tutuncu, & Biegler, 2000; Ray, 1981). The initial conditions of
this process are CA = 1.0, CB = 0.0, CC = 0.0, given in mole fractions,
and T = 780 K. The production objective is to maximize the con-
centration of the desired product, component B(CB), avoiding the
production of the undesired component C(CC).

The mathematical model that describes this process is the fol-
lowing:

dCA
dt

=  −k1(T) CA

dCB
dt

= k1(T) CA − k2(T) CB

CA + CB + CC = 1

(6)

where k1(T) = k01 e[− E1/R T] and k2(T) = k02 e[− E2/R T],
k01 = 65.5 h−1 and E1/R = 5027.7 K are the kinetic parameters
of reactions 1, k02 = 1970 h−1 and E2/R = 8044.31 K are the kinetic
parameters of reactions 2, and T the reaction temperature in K.

In this work, this example was  divided in three cases: (1) the

original problem with domain constraints on concentrations, (2)
the infeasible problem due to the constraints on reaction temper-
ature and concentration of component C, and (3) problem with
constraint relaxation.
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Fig. 8. The relaxed problem solution – upper bound o

.1.1. Original problem
The original problem has a feasible solution in which the

ptimizer maximizes the concentration of B at the final time (tf) of
5 h, and is described as follows:

max
�T(t)

CB(tf )

s.t.

dCA
dt

= −k1(T)CA CA(0) = 1.0

dCB
dt

= k1(T) CA − k2(T)CB CB(0) = 0.0

CA + CB + CC = 1

0 ≤ CA, CB, CC ≤ 1

dT

dt
= �T  T(0) = 780 K

650 ≤ T(t) ≤ 850

− 15 ≤ �T(t) ≤ 15

(7)

here k1(T) = k01 e(−E1/RT) and k2(T) = k02 e(−E2/RT).
The optimal solution (Fig. 5) is obtained by imposing a piece-
ise constant profile to the control variable �T  and binding the
alue of T and its variation. A piecewise constant profile over �T
orresponds to a piecewise linear profile in T (the original manip-
lated variable). In industry, many manipulated variables present
0 K. Trajectories of (a) CC , (b) T, and (c) variation of T.

some dynamics and cannot be set directly to an arbitrary value,
or the control actions are implemented in form of limited steps
changes. Therefore the best way  to mimic  real world operation
is to represent the manipulated variables as state variables and
impose step changes their time derivatives. Higher order profiles
are not usually implemented in industry.

The optimization found a feasible solution where the final con-
centration of B was 0.5406 and the reaction temperature was
above its minimum value. Also note that the final concentration
of byproduct C, which must be as low as possible, was 0.1789.

4.1.2. Infeasible problem
In this problem, a limit of 0.1 on the maximum allowed con-

centration of undesirable byproduct C is defined. This implies a
conflict between the constraint on maximum concentration of C
and minimum reaction temperature since they cannot be satis-
fied simultaneously. In this case, the imposed constraint 0 ≤ CC ≤ 0.1
results in an infeasible problem and highlights the conflicts in con-
straint specifications.

As can be seen in Fig. 6, the optimizer attempts to reduce the
reaction temperature with its maximum rate of negative variation.
Note that the final concentration of C (0.1081) violates its upper
bound, while the reaction temperature (650 K) reaches its lower

bound during some intervals of the optimization horizon. When
using this constraint configuration it is not possible to find any
feasible solution, generating a fault in the optimizer. A profitable
solution is the relaxation of the constraints related to maximum
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oncentration of C, the minimum reaction temperature and the
aximum variation of temperature.

.1.3. Relaxed problem
In the proposed methodology, we reformulated the problem as

 multi-objective optimization problem where the first two  con-
traints mentioned above are relaxed, considering the third one
s a physical limitation of the process. The competing goals are to
aximize CB(tf) while minimizing the constraint relaxations in CC

nd T. We  formulated the multi-objective problem in its standard
orm, Eq. (5),  where we added slack variables as control variables
� , sCC, and sT with piecewise constant profiles as follows:

min
�T,��,sT ,sCC

�(tf )

s.t.

dCA
dt

= −k1(T) CA CA(0) = 1.0

dCB
dt

= k1(T) CA − k2(T) CB CB(0) = 0.0

CA + CB + CC = 1

dT

dt
= �T  T(0) = 780 K

d�

dt
= ��  �(0) = 0.0

gCC (t) = CC − sCC

gT (t) = T − sT

�(tf ) = −CB(tf )

 � = w��(tf ) − �(tf ) + �L

 � ≥ 0

 CC = ��  −
(
sCC
�CC

)2

 CC ≥ 0

 T = ��  −
(
sT
�T

)2

 T ≥ 0

0  ≤ CA, CB ≤ 1

0 ≤ gCC (t) ≤ 0.1

650 ≤ gT (t) ≤ 850

− 15 ≤ �T  ≤ 15

− 0.1 ≤ sCC ≤ 0.1

− 10 ≤ sT ≤ 10

(8)

Fig. 7 shows that the optimizer finds a feasible solution which
inimizes the relaxation of both the lower bound of the reaction

emperature and the upper bound of the concentration of compo-
ent C at the end of the batch process. The bounds of the slack
ariables were chosen based on tolerances defined by the process
nalysis of the DAOP. The standard deviation values for the relaxed
onstraints are �CC = 0.01 and �T = 1 K. The optimizer obtained a
aximum concentration of C of 0.1080 and a minimum tempera-

ure of 649.19 K, but more important was the fact that the optimizer
id not fail.

Next, an initial infeasibility problem was obtained by reducing
he upper bound of the reaction temperature to 760 K. In this case,

he problem becomes infeasible due to its inadequate initial condi-
ion. This situation is not rare in dynamic optimization problems in
eal plants, since the initial conditions of some variables cannot be
hosen freely. In this case, we modified the following constraints
ical Engineering 36 (2012) 227– 246

on the relaxed problem: −30 ≤ sT(t) ≤ 30 and 650 ≤ gT(t) ≤ 760. The
relaxed solution provides the profiles shown in Fig. 8.

An alternative scenario was obtained by not relaxing the max-
imum concentration of C. In this case, the optimizer changed the
reaction temperature profile to compensate for this condition. Note
that, in Fig. 9, there was a relaxation in the minimum reaction tem-
perature of around 7 K, which is larger than the one shown in Fig. 8b.
If this relaxation is acceptable, it may  be preferable to apply it in a
single constraint. In this case, in a first run, we could execute the
optimizer relaxing all constraints. If it is possible to have another
solution that is more convenient to the process operation, we could
perform a second run setting hard constraints on some variables,
as shown in this example using the concentration of C. This is a
clear situation of the application of the proposed methodology for
diagnosis purposes, instead of just increasing the robustness of the
DRTO system.

In a second case, there was an intermediate infeasibility prob-
lem where the lower bound of the reaction temperature was raised
from 650 K to 660 K after 10 h of batch operation. The problem
becomes infeasible within the optimization horizon, which is a
common situation found in dynamic optimization of real plants
where the recipe can be altered during the batch process. To solve
this case, we modified the following constraint on the relaxed
problem: 650 ≤gT(t) ≤ 790 for t � [0,10] and 660 ≤gT(t) ≤ 790 for
t � (10,25]. The relaxed solution provides the optimum profiles
shown in Fig. 10.

Note that the optimizer has avoided the infeasible solution due
to the recipe change after 10 h by anticipating the temperature tran-
sition. Moreover, the temperature and the maximum concentration
of C were relaxed at the end of the optimization horizon in order to
enable a feasible solution.

4.2. Case 2 – dynamic optimization of a non-isothermal
semi-batch reactor

Consider a non-isothermal semi-batch reactor with exothermic
reactions in series subject to heat removal limitations, as shown in
Fig. 11.  This system has two control variables, the feed flow rate
F of reagent B and the reactor temperature (Srinivasan, Palanki,
and Bonvin, 2003). The production objective is the maximization
of the amount of component C produced during a predefined opti-
mization horizon. We  must obey the upper bound of the heat
rate produced by the reaction along the time horizon. We  have
imposed an upper bound for the final volume in the reactor of
1.1 L. The initial conditions of the process are CA(t0) = 10.0 mol/L,
CB(t0) = 1.1685 mol/L, CC(t0) = 0.0 mol/L, V(t0) = 1.0 L, F0 = 0.5 L/h,
and T0 = 35 ◦C, and the feed concentration is CB,In = 20.0 mol/L.

The mathematical model that describes this process is the fol-
lowing:

dCA
dt

=  −k1CACB − F

V
CA

dCB
dt

= −k1CACB + F

V
(CB,In − CB)

dCC
dt

=  k1CACB − k2CC − F

V
CC

dV

dt
= F

Q = (−�H1)k1CACBV + (−�H2)k2CCV

k1 = k01e
(

E1

R(T + 273)

)
k01 = 4.0 L/(mol h),

E = 6000 J/mol, R = 8.31 J/mol  K

(9)
1

k2 = k02e
(

E2

R(T + 273)

)
k02 = 800.0 L/(mol h), E2 = 20,  000J/mol
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Fig. 9. Solution of the partially relaxed proble

here k1, E1, k2, and E2 are the kinetic parameters of reactions 1
nd 2, respectively. T is the reaction temperature in ◦C, CA, CB, and
C are the concentrations of components A, B, and C, respectively.
B,IN is the feed concentration of B, F is the feed flow rate of reactant
, V is the reaction volume, Q is the heat rate produced by the reac-
ions, �H1 = −30,000 J/mol and �H2 = −10,000 J/mol are the heat
f reactions 1 and 2, respectively.

As in the previous case, we converted the original manipu-
ated variables into differential state variables whose variations are

anipulated by the optimizer. This transformation makes the prob-
em more closely related to the ones found in industry, where feed
ow rates and temperatures are manipulated obeying a ramp pat-
ern. Thus, we add the following equations into the optimization

odel:

dF

dt
= �F  and

dT

dt
= �T  where F(t0) = F0 and T(t0) = T0 (10)

In online DRTO applications, the digital control systems (DCS)
upply the initial conditions of the real plant, which thus are not free
ariables for the optimization problem. Therefore, it is reasonable
o state that F0 and T0 are given conditions for the process operation.
n cases where the optimizer is used for planning purposes of a
atch operation, F0 and T0 can be free variables. These planning
ases are not the focus of this work.

Similar to the previous case, this example was  divided into three

ases: (1) the original problem, without constraints on compo-
ent concentrations, (2) the infeasible problem due to bounds on
eaction temperature and concentration of component C, and (3)
onstraint relaxation problem.
jectories of (a) CC , (b) T, and (c) variation of T.

4.2.1. Original problem
The original problem has a feasible solution in which the opti-

mizer maximizes the amount of product C at the final time (tf) of
0.5 h, imposing piecewise constant profiles to the control variables
�F and �T, and is formulated as follows:

max
�T(t),�F(t)

CC (tf ) V(tf )

s.t.

dCA
dt

= −k1CACB − F

V
CA CA(0) = 10.0 mol/L

dCB
dt

= −k1CACB + F

V
(CB,In − CB) CB(0) = 1.1685 mol/L

dCC
dt

= k1CACB − k2CC − F

V
CC CC (0) = 0.0 mol/L

dV

dt
= F V(0) = 1.0 L

dF

dt
= �F  F(0) = 0.50 L/h

dT

dt
= �T  T(0) = 35.0 ◦ C

Q = (−�H1)k1CACBV + (−�H2)k2CCV

0.0 ≤ Q (t) ≤ 140J/h

0.0 ≤ V(tf ) ≤ 1.1 L

20 ≤ T(t) ≤ 50 ◦ C

0.0 ≤ F(t) ≤ 1.0 L/h

− 100 ≤ �F(t) ≤ 100 L/h2

− 1000 ≤ �T(t) ≤ 1000 ◦ C/h

(11)
In this case, there are bounds for the feed flow rate and its vari-
ation, as well as the reaction temperature and its variation. The
jacket cooling duty and maximum reaction volume are also con-
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deviation for the relaxed constraints were �CB = 0.01, �T = 0.1 ◦C
and �Q = 1 kJ/h. The optimizer minimizes the constraint relaxations
to obtain a feasible solution through an algorithmic way without
using any heuristics.
Fig. 10. Solution of the relaxed problem – intermedia

trained. There are no bounds on concentrations of reactants and
roducts. The optimizer found a feasible solution at the lower tem-
erature and maximum duty bounds, as shown in Fig. 12.  Note also
hat the maximum concentration of component B in the reaction
as 1.65 mol/L.

.2.2. Infeasible problem
Now consider the case in which an upper bound of 1.3 mol/L

s set on the on the maximum allowed concentration of the unde-
irable by-product B, and a maximum duty of the cooling jacket
s defined as 136 kJ/h. In the optimization problem, this causes
he maximum concentration of B and the maximum reaction duty

 constraints to compete against each other, since they cannot
e satisfied simultaneously. Furthermore, the reaction temper-
ture range during the system operation was reduced. In this
ase, we have imposed the constraints to the original problem as
.0 ≤ CB(t) ≤ 1.3 mol/L, 50 ≤ Q(t) ≤ 136 kJ/h, and 30.0 ≤ T(t) ≤ 40.0 ◦C.
hese changes make the problem infeasible due to the conflict in
onstraint specifications (Fig. 13).

The optimizer tries to set the concentration of B to its max-
mum allowed value, thus violating the maximum cooler duty

nd reaching the lower bound of the reaction temperature. In
his configuration, it is not possible to find any feasible solu-
ion and the optimizer fails. The solution for this problem is
he relaxation of constraints related to the maximum duty,
asibility case. Trajectories of (a) CC , (b) T, and (c) �T.

minimum reaction temperature, and maximum concentration
of B.

4.2.3. Relaxed problem
Applying the proposed methodology, we reformulated the prob-

lem to a multi-objective dynamic optimization problem, with the
following competing objectives: maximization of CB at final time
and minimization of relaxations of constraints related to CB, Q and
T. We  formulated the multi-objective problem in the same way  as
described before. Results are shown in Fig. 14.  Note that the con-
straints CB and T do not need to be relaxed. The values of standard
Fig. 11. Scheme and reactions of a semi-batch reactor.
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Fig. 12. Optimal solution of original problem. T

.2.4. Solving conflicts on constraint specifications

.2.4.1. Infeasible problem. Consider the same problem where the
aximum concentration of undesirable by-product B is restricted

o 1.2 mol/L, the maximum reaction heat rate is increased to

60 kJ/h, and the operating range of the reaction temperature is
xpanded (30.0 ≤ T(t) ≤ 60.0 ◦C). This problem becomes infeasible
ecause CB is very restrictive, causing conflict and competition
etween the constraints as shown in Fig. 15.  Note the violation of
ries of (a) CA , (b) CB , (c) CC , (d) Q, (e) F and (f) T.

constraint CB, as well as control profiles that are completely differ-
ent from the original case. The optimizer could not find any optimal
solution for this problem.
4.2.4.2. Relaxed problem. Similar to the previous case, after apply-
ing the relaxation strategy, the optimizer finds a solution relaxing
only the constraint CB while keeping the bounds of Q and T in their
original positions, as shown in Fig. 16.
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Fig. 13. Best result of the infeasible problem. Trajectories of (a) C (a), (b) C , (c) C , (d) Q, (e) F, �F, (f) T and �T.
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.3. Case 3 – dynamic optimization of a continuous reactor

Consider a system with output multiplicity on steady-state

ehavior, where a defined value of the manipulated variable (input)
esults in different values of the controlled variable (output). This
ystem consists of a non-isothermal CSTR with two exothermic
rreversible reactions in series. This reactor has a cooling jacket
A B C

where the water flow rate QC is the control variable of this sys-
tem (Tlacuahuac, Moreno, & Biegler, 2008), as shown in Fig. 17.
This process has a complex nonlinear behavior, as shown by the

bifurcation diagrams of Fig. 18.  Table 1 shows the definition of the
dimensionless variables and parameters of the CSTR. Fig. 18c  is the
main diagram, representing the reaction temperature (x3) versus
cooling water flow (qC).



E. Almeida, A.R. Secchi / Computers and Chemical Engineering 36 (2012) 227– 246 239

Fig. 14. The relaxed problem solution. Trajectories of (a) CA , (b) CB , (c) CC , (d) Q, (e) F and �F, (f) T and �T.

Table  1
Dimensionless variables and parameters of the CSTR.

x1 = CA/CAf0 x2 = CB/CAf0 ı1 = V/Vc ı2 = 	Cp/	cCpc

x3 = 
 (T − Tf0/Tf0) x4 = 
 (Tc−Tf0/Tf0) S = k2(Tf0)/k1(Tf0) � = (V/Q0)k1(Tf0)


  = E1/RTf0 � = (Q0/V)t  ̨ = −�HB/−�HA  ̌ = −�HACAf0
 /	CpTf0

q = Q/Q0 qc = Qc/Q0 x1f = CAf/CAf0 x2f = CBf/CAf0

  = E2/E1 ı = UA/	CpQ0 x3f = 
 (Tf−Tf0/Tf0) x4f = 
 (Tcf−Tf0/Tf0)

�(x3) = e[x3/(1+x3/
 )] �2(x3) = e[  x3/(1+x3/
 )]
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Fig. 15. Best result of the infeasible problem – conflict on specifications. Trajectories of (a) CA , (b) CB , (c) CC , (d) Q, (e) F and �F, and (f) T and �T.
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Fig. 16. Solution of the relaxed problem – conflict on specifications. Trajectories of (a) CA , (b) CB , (c) CC , (d) Q, (e) F and �F, and (f) T and �T.
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Fig. 17. Scheme and reactions of a continuous reactor.

The mathematical model that describes this process is the fol-
owing:

dCA
dt

= Q

V
(CAf − CA) − k1(T)CA

dCB
dt

= Q

V
(CBf − CB) − k2(T)CB + k1(T)CA

dT

dt
= Q

V
(Tf − T) + k1(T)CA

(−�HA)
	Cp

(12)
+k2(T)CB
(−�HB)
	Cp

− UA

	CpV
(T − Tc)

dTc
dt

= Qc
Vc

(Tcf − Tc) + UA

	cCpcVc
(T − Tc)

Fig. 18. Bifurcation diagrams of CSTR wi
ical Engineering 36 (2012) 227– 246

where the kinetic constants are: k1(T) = k01 e(−E1/RT) and
k2(T) = k02 e(− E2/RT). Rewriting the model in a dimensionless
form results in:

dx1

d�
= q(x1f − x1) − ��(x3)x1

dx2

d�
= q(x2f − x2) − �S�2(x3)x2 + ��(x3)x1

dx3

d�
= q(x3f − x3) + ı(x4 − x3) + ˇ�[�(x3)x1 + ˛S�2(x3)x2]

dx4

d�
= ı1[qc(x4f − x4) + ıı2(x3 − x4)]

(13)

where x1 is the dimensionless concentration of reactant A, x2 is the
dimensionless concentration of reactant B, x3 is the dimensionless
reactor temperature, x4 is the dimensionless cooling jacket temper-
ature. Table 1 shows the definition of the dimensionless variables

and model parameters and Table 2 shows the values of the param-
eters used in this case.

Eq. (14) represents the dynamic optimization problem for this
process, which seeks to minimize the deviation of the state trajec-

th two Hopf bifurcation points (�).
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Fig. 19. The original problem solution. Trajectories of (a) x1, x2 and x3, (b) qC , (c, d, and e) bifurcation diagrams of the state variables for the A → C transition.
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Fig. 20. Feasible solution to the problem – conflicting spec

Table  2
Values of variables and model parameters (Tlacuahuac et al., 2008).

x1f x2f x3f x4f q  ̨ �

1.0 0.0 0.0 −1.0 1.0 1.0 8.0

�  S   ı ı1 ı2 


t
s

w
s

t
f
t
t

0  ≤ x3 ≤ 10
0.133 0.01 1.0 1.0 10.0 1.0 1000

ories from the desired values during the transitions between two
teady states of the operating region.

min
z,u

{
ISE =

∫ tf

0

∥∥z(t) − ẑ
∥∥2
dt

}
s.t.

dz

dt
= F(z, u, t), z(0) = z0

zL ≤ z(t) ≤ zU, uL ≤ u(t) ≤ uU

(14)

here z is the state variable, u is the control variable, and ẑ is the
et point of the state variable.

The case study of this kind of process usually consists on the

ransitions A → B, A → C, and B → C (Tlacuahuac et al., 2008). The
ocus in this work is the solution of the feasibility problem during
he transition A → C. Table 3 shows the operating points of these
ransitions.
ifications. Trajectories of (a) x1 and x3, (b) x2, (c) qC .

We  can write the multi-objective problem formulation that
solves the optimization and feasibility problem for this system as
follows:

min
��,x2,sx2

�(tf )

s.t.

dx1

dt
= q(x1f − x1) − ��(x3)x1

dx2

dt
= q(x2f − x2) − �S�2(x3)x2 + ��(x3)x1

dx3

dt
= q(x3f − x3) + ı(x4 − x3) + ˇ�[�(x3)x1 + ˛S�2(x3)x2]

dx4

dt
= ı1[qc(x4f − x4) + ıı2(x3 − x4)]

x(0) = {A, B, or C}
d�

dt
= ��  �(0) = 0

dISE
dt

= (x3 − xSP3 )
2

ISE(0) = 0

gx2 = x2 − sx2
 ISE(tf ) = wISE�(tf ) − ISE(tf ) + ISEL,  ISE(tf ) ≥ 0

 x2 (t) = ��(t) −
(
sx2 (t)
�x2

)2

,  x2 (t) ≥ 0

0 ≤ x1 ≤ 1

(15)
0  ≤ gx2 ≤ 0.55

0 ≤ qc ≤ 7.0

− 0.1 ≤ sx2 ≤ 0.1
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Fig. 21. The relaxed problem solution. Trajectories of (a) x1 and x3, (b) x2, (c) qC . (d, e, and f) bifurcation diagrams of the state variables for the A → C transition.

Table  3
Nominal steady states.

A B C

x1 0.0016 0.5917 0.8495
x2 0.1387 0.4249 0.1503
x3 8.5188 1.7306 0.2871
x4 2.1729 0.0013 −0.6323
Qc 2.00 1.70 2.50
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Yang, J. (2008). Infeasibility resolution based on goal programming. Computers &
46 E. Almeida, A.R. Secchi / Computers an

here ISE is the integral of the square errors (the deviation
f the reactor temperature from its set point xSP3 ). The value of stan-
ard deviation for the relaxed constraint is �x2 = 0.01.

.3.1. Original problem
In the A → C transition case, the problem demonstrated to be

easible as shown in Fig. 19.  One can notice that there is an impor-
ant overshoot in the trajectory of CB (x2). In addition, in the
ifurcation diagrams the optimizer suggests that the cooling water
ow rate goes straight to its maximum bound, cooling the reactor
s fast as possible.

.3.2. Infeasible problem
Now consider the case where an upper bound of 0.55 is defined

or the concentration of B, and the maximum cooling water flow
ate is restricted to 7.0, causing competition and conflicts between
hese constraints (Fig. 20).

.3.3. Relaxed problem
In this case, we solved the multi-objective dynamic optimiza-

ion problem as previously presented with the following competing
oals: to minimize the ISE at final time while minimizing the relax-
tion of the constraint CB. In Fig. 21,  we can see that there was

 minimal relaxation on CB and the state trajectories and control
rofiles were kept close to the original problem. As in the previ-
us example, the relaxation technique recovered the shape of the
riginal feasible problem.

. Conclusions

In this work, we proposed a method for solving infeasible
ynamic optimization problems through a path constraint relax-
tion technique. We  have applied the methodology in three
xamples of reaction systems to demonstrate the performance
f the proposed method, exploring scenarios of initial and inter-
ediate infeasibility, and situations with conflicting constraints.

he case studies have shown the effectiveness of the approach for
chieving feasible solution of optimal control problems when they
re structurally infeasible. The success of this technique can pro-
ide more robustness to DRTO systems. We  also observed that the
roposed relaxation technique results in minimal movement of the
onstraints.
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