
6 Model-based predictive control

6.1 Introduction

Model-based predictive control (MPC) has become the most popular advan-
ced control technology in the chemical processing industries. There are
many variants of MPC controllers, both in academia and in industry, but
they all share the common trait that an explicitly formulated process mo-
del is used to predict and optimize future process behaviour. Most MPC
controllers are able to account for constraints both in manipulated variables
and states/controlled variables through the formulation of the optimization
problem.
When formulating the optimization problem in MPC, it is important to

ensure that it can be solved in the short time available (i.e., the sampling
interval is an upper bound on the acceptable time for performing the calcu-
lations). For that reason, the optimization problem is typically cast into one
of two standard forms:

• Linear programming (LP) formulation. In an LP formulation, both
the objective function and the constraints are linear.

• Quadratic programming (QP) formulation. In a QP formulation, the
objective function is quadratic, whereas the constraints have to be li-
near. In addition, to ensure that there exists a unique optimal solution
that can be found quickly with effective optimization solvers, the Hes-
sian matrix in the objective function has to be positive definite15.

LP problems can be solved more efficiently than QP problems, and an
LP formulation may therefore be advantageous for very large optimization
problems. However, a QP formulation generally leads to smoother con-
trol action and more intuitive effects of changes in the tuning parameters.
The connection to ’traditional advanced control’, i.e., linear quadratic (LQ)
optimal control, is also much closer for a QP formulation than for an LP
formulation. For these reasons, we will focus on a QP formulation in the
following, and describe in some detail how a QP optimization problem in
MPC may be formulated.

15The Hessian matrix defines the quadratic term in the objective function, and is a
symmetric matrix. Positive definiteness means that all eigenvalues are positive - for a
monovariable optimization problem this implies that the coefficient for the quadratic term
in the objective function is positive.
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6.2 Formulation of a QP problem for MPC

A standard QP problem takes the form

min
v

0.5vT eHv + cTv (27)

subject to the constraints

Lv ≤ b (28)

Here v is the vector of free variables in the optimization, whereas eH is
the Hessian matrix, that was mentioned above, and which has to be positive
definite. The vector c describes the linear part of the objective function,
whereas the matrix L and the vector b describe the linear constraints. Some
QP solvers allow the user to specify separate upper and lower bounds for v,
whereas other solvers require such constraints to be included in L and b. For
completeness, we will assume that these constraints have to be included in
L and b.

The formulation of the MPC problem starts from a linear, discrete-time
state-space model of the type

xk+1 = Axk +Buk (29)

yk = Cxk (30)

where the subscripts refer to the sampling instants. That is, subscript
k + 1 refers to the sample instant one sample interval after sample k. Note
that for discrete time models used in control, there is normally no direct
feed-through term, the measurement yk does not depend on the input at
time k, but it does depend on the input at time k − 1 through the state
xk. The reason for the absence of direct feed-through is that normally the
output is measured at time k before the new input at time k is computed
and implemented.
In the same way as is common in control literature, the state x, input

u and measurement y above should be interpreted as deviation variables.
This means that they represent the deviations from some consistent set of of
variables {xL, uL, yL} around which the model is obtained16. For a stable

16We do not here specify how the model is obtained, but typically it is either the result
of identification experiments performed around the values {xL, uL, yL} or the result of
linearizing and discretizing a non-linear, physical model around the values {xL, uL, yL}.
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process, the set {xL, uL, yL} will typically represent a steady state - often the
steady state we want to keep the process at. To illustrate, if in yL represents
a temperature of 330K, a physical measurement of 331K corresponds to a
devation variable y = 1K.
A typical optimization problem in MPC might take the form

min
u

f(x, u) =
n−1X
i=0

{(xi − xref,i)TQ(xi − xref,i) (31)

+(ui − uref,i)TP (ui − uref,i)T}
+(xn − xref,n)TS(xn − xref,n)

subject to constraints

x0 = given

UL ≤ ui ≤ UU for 0 ≤ i ≤ n− 1
YL ≤ Hxi ≤ YU for 1 ≤ i ≤ n+ j (32)

In the objective function Eq. (31) above, we penalize the deviation of the
states xi from some desired reference trajectory xref,i and the deviation of
the inputs ui from some desired trajectory uref,i. These reference trajecto-
ries are assumed to be given to the MPC controller by some outside source.
They may be constant or may also vary with time (subscript i). The con-
straints on achievable inputs or acceptable states are usually not dependent
on the reference trajectories, and therefore these reference trajectories do not
appear in the constraint equations (32). Usually, the state constraints repre-
sent constraints on process measurements (giving H = C), but constraints
on other combinations of states are also possible (including constraints on
combinations of inputs and states).
In the following, this formulation of the optimization problem will be

recast into the standard QP formulation in Eqs.(27) and (28), but first a
number of remarks and explanations to the optimization problem formulation
in Eqs.(31) to (32) are needed.

• In addition to the above constraints, it is naturally assumed that the
process follows the model in Eqs. (29) and (30).

• The matrices Q,P, and S are all assumed to be symmetric. P and S
are assumed to be positive definite, whereas Q may be positive semi-
definite.
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• In many applications it may be more natural to put a weight (or cost)
on the actual measurements rather than the states. This can easily be
done by choosing Q = CT eQC, where eQ is the weight on the measure-
ments.

• One may also put constraints on the rate of change of the inputs, giving
additional constraints on the form ∆UL ≤ ui − ui−1 ≤ ∆UU .

• For the output constraints in Eq. (32) to be well defined, we must
specify how the inputs ui should behave in the interval n ≤ i ≤ n+j−1.
Typical choices for this time interval are either that ui = uref,i or
that (ui − uref,i) = K(xi − xref,i). The latter choice assumes that
a (stabilizing) state feedback controller is used in this time interval.
Note that this controller will never be used in practice (since the MPC
calculations are re-computed at each sample instant), but it is needed
to make the constraints well defined.

• If one assumes that (ui − uref,i) = K(xi − xref,i) for n ≤ i ≤ n+ j − 1,
one should also include the input constraints in the problem formulation
for the time interval n ≤ i ≤ n+ j − 1. These input constraints then
effectively become state constraints for this time interval.

• Some MPC formulations use an objective function of the form f(x, u) =Pnp
i=0(xi−xref,i)TQ(xi−xref,i)+

Pnu
i=0(ui−uref,i)TP (ui−uref,i), where

np > nu, and typically assume that ui = uref,i for nu < i < np. Note
that this corresponds to a particular choice for ’terminal state weight’
S, since xi for nu + 1 < i ≤ np will then be given by xnu+1 (and the
process model).

• It is common to introduce integral action in MPC controllers by using
the input changes at time i as free variables in the optimization, rather
than the input itself. This follows, since the actual inputs are obtained
by integrating the changes in the input. This can be done within the
same framework and model structure as above, using the model

exk+1 =

·
xk+1
uk

¸
= eAexk + eB∆uk

yk = eCexk
where ∆uk = uk − uk−1, and
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eA = · A B
0 I

¸
, eB = · 0

I

¸
, eC = £ C 0

¤
• To have a stable closed-loop system, it is necessary to have at least as
many feedback paths as integrators, i.e., one needs at least as many
(independent) measurements as inputs. When the number of inputs
exceeds the number of measurements, it is common to define ’ideal
resting values’ for some inputs. This essentially involves putting some
inputs in the measurement vector, and defining setpoints for these.

In the following, we will recast the MPC optimization problem as a stan-
dard QP problem. We will assume that ui − uref,n = K(xi − xref,n) for
n ≤ i ≤ n + j − 1. To start off, we stack the state refernces xref,i, in-
put references uref,i, input deviations vi = ui − uref,i and state deviations
χi = xi − xref,i in long (column) vectors xref , uref , v and χdev :

uref =


uref,0
uref,1
...

uref,n−2
uref,n−1

 ; xref =


xref,1
xref,2
...

xref,n−1
xref,n

 ;

v =


v0
v1
...

vn−2
vn−1

 ; χdev =


χ1
χ2
...

χn−1
χn


Wewill use the superposition principle, which states that the total effect of

several inputs can be obtained simply by summing the effects of the individual
inputs. The superposition principle is always valid for linear systems,
but typically does not hold for non-linear systems. This allows us to first
calculate the deviation from the desired state trajectory that would result,
given the initial state x0 and assuming that the nominal reference input uref
is followed. This results in the trajectory of state deviations χdev.
Repeated use of the model equation Eq. (29) then gives
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χdev =


A
A2

...
An−1

An

x0 +


B 0 · · · 0 0

AB B
. . .

...
...

...
...

. . . 0 0
An−2B An−3B · · · B 0
An−1B An−2B · · · AB B

uref − xref
= bAx0 + bBuref − xref

Thus, we have obtained a deviation from the desired state trajectory
xref , which should be counteracted using deviations vi = ui− uref,i from the
nominal input trajectory. Note that χdev is independent from the deviation
from the deviation from the input reference trajectory, i.e., independent of
v, and may therefore be calculated prior to solving the MPC optimization.
Similarly, the effect of the deviations from the nominal input trajectory on
the states is given by χv = bBv (which clearly does depend on the result of
the MPC optimization).
Introducing the matrices

bQ =

Q 0 · · · 0 0

0 Q
. . .

...
...

0 0
. . . 0 0

...
...
. . . Q 0

0 0 · · · 0 S

 , bP =

P 0 · · · 0 0

0 P
. . .

...
...

0 0
. . . 0 0

...
...
. . . P 0

0 0 · · · 0 P

 (33)

the objective function can be written as

f(x, u) = f(χdev,χv, v) = (x0 − xref,0)TQ(xo + xref,0)+
(χdev + χv)

T bQ(χdev + χv) + v
T bPv

= (x0 − xref,0)TQ(xo + xref,0) + χTdev
bQχdev+

2χTdev
bQχv + χTv

bQχv + vT bPv
which should be minimized using the vector v as free variables.
Now, the terms (x0 − xref,0)TQ(xo + xref,0) + χTdev

bQχdev will not be af-
fected by the optimization, and may therefore be removed from the objective
function.. This is because we are primarily interested in finding the inputs
that minimize the objective function, and not in the optimal value of the
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objective function. Thus, the objective function is in the form of a standard
QP problem as defined in Eqs. (27) and (28) if we define

eH = bBT bQ bB + bP (34)

cT = χTdev bAT bQ bB
It now remains to express the constraints in the MPC problem in the

form of a standard QP problem. The lower and upper constraints on the
manipulated variable from 0 ≤ i ≤ n− 1 simply become

Iv ≥

 UL...
UL

− uref (35)

−Iv ≥ −

 UU...
UU

+ uref (36)

Similarly, the constraints on the measurements/states for 1 ≤ i ≤ n
become
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H 0 · · · · · · 0

0 H
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . H 0

0 · · · · · · 0 H

χv ≥


YL
...
...
...
YL

−

H 0 · · · · · · 0

0 H
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . H 0

0 · · · · · · 0 H

 (χdev + xref)

−


H 0 · · · · · · 0

0 H
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . H 0

0 · · · · · · 0 H

χv ≥

−


YU
...
...
...
YU

+

H 0 · · · · · · 0

0 H
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . H 0

0 · · · · · · 0 H

 (χdev + xref)

m
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H 0 · · · · · · 0

0 H
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . H 0

0 · · · · · · 0 H

 bBv ≥ (37)


YL
...
...
...
YL

−

H 0 · · · · · · 0

0 H
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . H 0

0 · · · · · · 0 H

 (χdev + xref)

−


H 0 · · · · · · 0

0 H
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . H 0

0 · · · · · · 0 H

 bBv ≥ (38)

−


YU
...
...
...
YU

+

H 0 · · · · · · 0

0 H
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . H 0

0 · · · · · · 0 H

 (χdev + xref)

We found above that

xn = Anx0 +
£
An−1B An−2B · · · AB B

¤
(uref + v)

= χdev,n + xref,n +
£
An−1B An−2B · · · AB B

¤
v

The process model and the assumed control action (ui−uref,n) = K(xi−
xref,n) for the time period n ≤ i ≤ n+ j − 1 gives, after trivial, but tedious
manipulation
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xi = (A+BK)i−nxn +

(
i−n−1X
j=0

(A+BK)i

)
B(uref,n −Kxref,n)

ui − uref,n = K(xi − xref,n) = K(A+BK)i−nxn

+K

"(
i−n−1X
k=0

(A+BK)i

)
B(uref,n −Kxref,n)− xref,n

#

which combined with the above expression for xn results in


K

K(A+BK)1

...
K(A+BK)j−1

K(A+BK)j


£
An−1B An−2B · · · AB B

¤
v ≥ (39)


UL
UL
...
UL
UL

−


K
K(A+BK)1

...
K(A+BK)j−1

K(A+BK)j

 (χdev,n+ xref,n)

−




I
I
...
I
I

+

0 0 · · · 0 0

I 0
. . .

... 0
...
. . . . . . . . .

...

I
...

. . . 0 0
I I · · · I 0




K

K(A+BK)1

...
K(A+BK)j−1

K(A+BK)j

B


× £ I −K ¤ · uref,n
xref,n

¸
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−


K

K(A+BK)1

...
K(A+BK)j−1

K(A+BK)j


£
An−1B An−2B · · · AB B

¤
v ≥ (40)

−


UU
UU
...
UU
UU

+


K
K(A+BK)1

...
K(A+BK)j−1

K(A+BK)j

 (χdev,n+ xref,n)

+




I
I
...
I
I

+

0 0 · · · 0 0

I 0
. . .

... 0
...
. . . . . . . . .

...

I
...

. . . 0 0
I I · · · I 0




K

K(A+BK)1

...
K(A+BK)j−1

K(A+BK)j

B

×

£
I −K ¤ · uref,n

xref,n

¸


H(A+BK)
H(A+BK)2

...
H(A+BK)j−1

H(A+BK)j


£
An−1B An−2B · · · AB B

¤
v ≥ (41)


YL
YL
...
YL
YL

−


H(A+BK)
H(A+BK)2

...
H(A+BK)j−1

H(A+BK)j

 (χdev,n + xref,n)
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−


H(A+BK)
H(A+BK)2

...
H(A+BK)j−1

H(A+BK)j


£
An−1B An−2B · · · AB B

¤
v ≥ (42)

−


YU
YU
...
YU
YU

+


H(A+BK)
H(A+BK)2

...
H(A+BK)j−1

H(A+ BK)j

 (χdev,n + xref,n)
The overall set of constraints for the MPC problem is now obtained by

simply stacking equations (35,36,37,38,39,40,41,42). All these constraint
equations have a left hand side consisting of a matrix multiplied with the
vector of free variables in the optimization, and a right hand side which is
vector-valued (and which can be evaluated prior to the optimization. Note
that the introduction of non-zero (and possibly time-varying) reference tra-
jectories significantly complicate the expressions, in particular for the con-
straints in the period n ≤ i ≤ n+ j.

There is a slight difference between the state constraint equations and
the input constraint equations, in that Eqs. (35) and (36) include an in-
put constraint at time zero (the present time), whereas the state constraint
equations (Eqs. (37) and (38)) do not. This is because the state constraints
cannot be enforced if they are violated at time zero, since the present state
is unaffected by present and future inputs. Note also that Eqs. (39) and
(40) covers the input constraints from time n until n+ j, whereas Eqs. (41)
and (42) covers the state constraints from time n+ 1 unti n+ j. The state
constraints for time n is covered by Eqs. (37) and (38).

6.3 Step response models

In industrial practice, process models based on step response descriptions
have been very successful. Whereas step response models have no theoretical
advantages, they have the practical advantage of being easier to understand
for engineers with little background in control theory.
With a soild understanding of the material presented above, the capable

reader should have no particular problem in developing a similar MPC for-
mulation based on a step response model. Descriptions of such formulations
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can also be found in available publications, like Garcia and Morshedi’s [16]
original paper presenting ”Quadratic Dynamic Matrix Control”. Alternati-
vely, step response models may also be expressed in state space form (with a
larger number of states than would be necessary in a ”minimal” state space
model), see e.g. [28] for details.
The reader should beware that step-response models have ”finite me-

mory”, and hence should only be used for asymptotically stable processes,
that is, processes where the effect of old inputs vanish over time. Most in-
dustrially successful MPC controllers based on step response models are mo-
dified to handle also integrating processes, whereas truly unstable processes
cannot be handled. Handling unstable processes using step response mo-
dels would require more complex modifications to the controllers and model
description, and would thereby remove the step response model’s advantage
of being easy to understand.
Partly due to these reasons, MPC controllers are seldom used on unstable

processes. If the underlying process is unstable, it is usually first stabilised
by some control loops, and the MPC controller uses the setpoint of these
loops as ”manipulated variables”.
In academia, there is widespread resentment against step response models

- and in particular against their use in MPC controllers. Although there
are valid arguments supporting this resentment, these are usually of little
practical importance for asymptotically stable processes - although in some
cases the computational burden can be reduced by using a state space model
instead.
Step response identification is another matter. A step input has Laplace

transform u(s) = k
s
, and hence excites the process primarily at low frequen-

cies. The resulting model can therefore be expected to be good only for the
slow dynamics (low frequencies). If medium to high bandwidth control is
desired for an MPC application, one should make sure that any identification
experiment excites the process over the whole desired bandwidth range for
the controller.

6.4 Updating the process model

The MPC controller essentially controls the process model, by optimizing the
use of the inputs in order to remove the predicted deviation from some desired
state (or output) trajectory. Naturally, good control of the true process will
only be obtained if the process model is able to predict the future behaviour
of the true process with reasonable accuracy. Model errors and unknown
disturbances must always be expected, and therefore it will be necessary to
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update the process model to maintain good quality predictions of the future
process behaviour.

The most general way of doing this is through the use of a state estimator,
typically a Kalman filter. The Kalman filter may also be modified to estimate
unmeasured disturbances or model parameters that may vary with time.
The Kalman filter is described in advanced control engineering courses and
in numerous textbooks, and will not be described further here.
The Kalman filter is, however, a tool that is valid primarily for linear

problems, and may in some cases estimate state values that defy physical
reason. For example, a Kalman filter may estimate a negative concentration
of a chemical component in a process. In the rare cases where it is necessary
to take physical constraints (and possibly non-linearities in the model) expli-
citly into account, it is possible to use an ’MPC-like’, optimization-based
approach to the estimation problem, resulting in what is known as ’moving
horizon estimation’. To this author’s knowledge, moving horizon estimation
is not frequently used in industrial applications, and is to some extent still a
research issue. A recent overview can be found in Allgöwer et al. [3].
For asymptotically stable systems, a particularly simple model updating

strategy is possible for MPC formulations that only use process inputs and
measurements in the formulation (i.e., when unmeasured states do not ap-
pear in the objective function or in the constraints). In such cases, it would
be natural to calculate the predicted deviations from the desired output tra-
jectory (which may be called, say, ψdev), rather than the predicted deviations
from the desired state trajectory χdev. Then, the model can be ’updated’
by simply adding the present difference between process output and model
output to the model’s prediction of the future outputs. This is known as a
’bias update’, and is widespread in industrial applications. Note, however,
that the bias update

• is only appliccable to asymptotically stable systems, and may result
in poor control performance for systems with very slow dynamics, and
that

• it may be sensitive to measurement noise. If a measurement is noisy,
one should attempt to reduce the noise (typically by a simple low-pass
filter) before calculating the measurement bias.
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6.5 Feedforward from disturbances

With MPC it is very simple to include feedforward from measured distur-
bances, provided one has a model of how the disturbances affect the sta-
tes/outputs. Feedforward is naturally used to counteract the future effects
of disturbances on the controlled variables (it is too late to correct the present
value). Thus, feedforward in MPC only requires that the effect on distur-
bances on the controlled variables are taken into account when predicting
the future state trajectory in the absence of any control action. Thus, in
the formulation developed above, feedforward from disturbances results from
taking the disturbances into account when calculating χdev.
The benefit obtained by using feedforward will (as always) depend on

what bandwidth limitations there are in the system for feedback control.
Furthermore, effective feedforward requires both the disturbance and process
model to be reasonably accurate.

6.6 Feasibility and constraint handling

For any type of controller to be acceptable, it must be very reliable. For
MPC controllers, there is a special type of problem with regards to feasibility
of the constraints. An optimization problem is infeasible if there exists no
exists no set of values for the free variables in the optimization for which all
constraints are fulfilled. Problems with infeasibility may occur when using
MPC controllers, for instance if the operating point is close to a constraint,
and a large disturbance occurs. In such cases, it need not be possible to fulfill
the constraint at all times. During startup of MPC controllers, one may also
be far from the desired operating point, and in violation of some constraints.
Naturally, it is important that the MPC controller should not ’give up’ and
terminate when faced with an infeasible optimization problem. Rather, it is
desirable that the performance degradation is predictable and gradual as the
constraint violations increase, and that the MPC controller should effectively
move the process into an operating region where all constraints are feasible.
If the constraints are inconsistent, i.e., if there exists no operating po-

int where the MPC optimization problem is feasible, then the problem for-
mulation in meaningless, and the problem formulation has to be modified.
Physical understanding of the process is usually sufficient to ensure that the
constraints are consistent. A simple example of an inconsistent set of con-
straints is if the value of the minimum value constraint for a variable is higher
than the value of the maximum value constraint.
Usually, the constraints on the inputs (manipulated variables) result from

true, physical constraints that cannot be violated. For example, a valve
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cannot be more than 100% open. On the other hand, constraints on the sta-
tes/outputs often represent operational desireables rather than fundamental
operational constraints. State/output constraints may therefore often be
violated for short periods of time (although possibly at the cost of producing
off-spec products or increasing the need for maintenance). It is therefore
common to modify the MPC optimization problem in such a way that out-
put constraints may be violated if necessary. There are (at least) three
approaches to doing this modification:

1. Remove the state/output constraints for a time interval in the near
future. This is simple, but may allow for unnecessarily large constraint
violations. Furthermore, it need not be simple to determine for how
long a time interval the state/output constraints need to be removed
- this may depend on the operating point, the input constraints, and
the assumed maximum magnitude of the disturbances.

2. To solve a separate optimization problem prior to the main optimiza-
tion in the MPC calculations. This initial optimization minimizes some
measure of how much the output/state constraints need to be moved
in order to produce a feasible optimization problem. The initial op-
timization problem is usually a LP problem, which can be solved very
efficiently.

3. Introducing penalty functions in the optimization problem. This invol-
ves modifying the constraints by introducing additional variables such
that the constraints are always feasible for sufficiently large values for
the additional variables. Such modified constraints are termed soft
constraints. At the same time, the objective function is modified, by
introducing a term that penalizes the magnitude of the constraint vio-
lations. The additional variables introduced to ensure feasibility of the
constraints then become additional free variables in the optimization.
Thus, feasibility is ensured by increasing the size of the optimization
problem.

The two latter approaches are both rigorous ways of handling the feasibi-
lity problem. Approach 3 has a lot of flexibility in the design of the penalty
function. One may ensure that the constraints are violated according to a
strict list of priorites, i.e., that a given constraint will only be violated when
it is impossible to obtain feasibility by increasing the constraint violations for
less important constraints. Alternatively, one may distribute the constraint
violations among several constraints. Although several different penalty
functions may be used, depending on how the magnitude of the constraint
violations are measured, two properties are desireable:
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• That the QP problem in the optimization problem can still be solved
efficiently. This implies that the Hessian matrix for the modified pro-
blem should be positive definite, i.e., that there should be some cost
on the square of the magnitude of the constraint violations.

• That the penalty functions are exact, which means that no constraint
violations are allowed if the original problem is feasible. This is usually
obtained by putting a sufficiently large weight on the magnitude of the
constraint violations (i.e., the linear term) in the objective function.

The use of penalty functions is described in standard textbooks on opti-
mization (e.g. [13]), and is discussed in the context of MPC in e.g. [11, 42,
27].
In addition to the problem with feasibility, hard output constraints may

also destabilize an otherwise stable system controlled by an MPC controller,
see [50]. Although this phenomenon probably is quite rare, it can easily be
removed by using a soft constraint formulation for the output constraints [11].
The following section will discuss closed loop stability with MPC controllers
in a more general context.

6.7 Closed loop stability with MPC controllers

The objective function in Eq. (31) closely resembles that of discrete-time
Linear Quadratic (LQ) - optimal control. For stabilizable and detectable17

systems, infinite horizon LQ-optimal control is known to result in a stable
closed loop system. Note that the requirement for detectability does not
only imply that unstable modes must be detectable from the physical mea-
surements (i.e., that (C,A) is detectable), but also that the unstable modes
must affect the objective function, i.e., (Q1/2, A) must be detectable.
With the stabilizability and detectability requirements fulfilled, a finite

horizon LQ-optimal controller is stable provided the weight on the ’terminal
state’, S, is sufficiently large. How large S needs to be is not immediately
obvious, but it is quite straight forward to calculate an S that is sufficiently
large. In the MPC context, this can be done by designing a stabilizing
state feedback controller K (typically, one would choose the infinite horizon
LQ-optimal controller, obtained by solving a Riccati equation), and then

17Stabilizability is a weaker requirement than the traditional state controllability requi-
rement, since a system is stabilizable if and only if all unstable modes are controllable,
i.e., a system can be stabilizable even if some stable modes are uncontrollable. Similarly,
a system is detectable if all unstable modes are observable.
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calculate the S that gives the same contribution to the objective function
that would be obtained by using the controller K, and summing the terms
(xi − xref,n)TQ(xi − xref,n) from i = n to infinity. Since the controller K
results in an asymptotically stable system, this sum is finite, and hence S
is finite. The value of S can be obtained by solving a discrete Lyapunov
equation

S − (A+BK)TS(A+BK) = Q

With a sufficiently large S, obtained as described above, the remaining
requirement for obtaining closed loop stability is that constraints that are
feasible over the horizon n ≤ i ≤ n + j will remain feasible over an infi-
nite horizon (assuming no new disturbances enter). Rawlings and Muske
[36] have shown how to calculate a sufficiently large j. First arrange all
state constraints for n ≤ i ≤ n+ j (including input constraints that effecti-
vely become state constraints through the assumption that a state feedback
controller is used) on the form

eHxi ≤ eh
and diagonalize the autotransition matrix A+BK:

A+BK = TΛT−1

where Λ is a diagonal matrix (which may have complex-valued elements
if A+BK contains oscillatory modes). Then, a sufficiently large value of j
can be calculated from

a =
ehmin

σ( eH)γ(T ) kxnk
j = max

½
0,

ln a

lnλmax

¾
where ehmin is the smallest element in h, σ( eH) is the maximum singular

value of eH, γ(T ) is the condition number of T (ratio of largest to smallest
singular value), kxnk = (xTnxn)1/2, and is the magnitude of the largest element
in Λ, i.e., the largest eigenvalue of A+BK.
The problem with the above estimate of j is that it depends on xn, which

can only be predicted when the result of the optimization is available. If the

82



optimization is performed with too small a value for j, one will then have to
re-calculate the optimization with an increased j, in order to be able to give
any strict stability guarantee. In practice, a constant value for j based on
simulations will be used.
The above results on how to find values for S and j to guarantee sta-

bility, are not very useful if, e.g., a step response model is used, since the
values of the states are then unavailable. Step response-based MPC con-
trollers therefore do not have a terminal state weight S, but rather extend
the prediction of the outputs further into the future than the time horizon
over which the inputs are optimized (corresponding to np > nu in the com-
ments following Eq. (32). Although a sufficiently large prediction horizon
np compared to the ”input horizon” nu will result in a stable closed loop
system (the open loop system is assumed asymptotically stable, since a step
response model is used), there is no known way of calculating the required
np. Tuning of step-response based MPC controllers therefore typically rely
heavily on simulation. Nevertheless, the industrial success of step response-
based MPC controllers show that controller tuning is not a major obstacle
in implementations.

6.8 Robustness of MPC controllers

The main advantage of MPC controllers lie in their ability to handle con-
straints. On the other hand, they may be sensitive to errors in the process
model. There have been tales about processes which are controlled by MPC
controllers when prices are high (and it is important to operate close to
the process’ maximum throughput), but are controlled by simple single-loop
controller when prices are low (and production is lower, leading to no active
constraints). The potential robustness problems are most easily understood
for cases when no constraints are active, i.e., when we can study the objective
function in Eq. (27) with H and c from Eq. (34). We then want to minimize

f(v) = vT ( bBT bQ bB + bP )v + χTdev
bAT bQ bBv

with respect to v. The solution to this minimization can be found ana-
lytically, since no constraints are assumed to be active. We get18

v = −( bBT bQ bB + bP )−1 bBT bQ bAχdev
18Note that bQ = bQT , and that the assumptions on Q, S and P ensures that ( bBT bQ bB+ bP )

is of full rank, and hence invertible.
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Clearly, if the model contains errors, this will result in errors in bB and bA,
and hence the calculated trajectory of input moves, v, will be different from
what is obtained with a perfect model. If the Hessian matrix bBT bQ bB + bP
is ill-conditioned19, the problem is particularly severe, since a small error in
the Hessian can then result in a large error in its inverse. For a physical
motivation for problems with ill-conditioning consider the following scenario:

• The controller detect an offset from the reference in a direction for
which the process gain is low.

• To remove this offset, the controller calculates that a large process input
is needed in the low gain input direction.

• Due to the model errors, this large input actually slightly ”misses” the
low gain input direction of the true process.

• The fraction of the input that misses the low gain direction, will instead
excite some high gain direction of the process, causing a large change
in the corresponding output direction.

Now, there are two ways of reducing the condition number of bBT bQ bB+ bP :
1. Scaling inputs and states in the process model, thereby changing bB.
2. Modifying the tuning matrices bQ and bP.
Scaling inputs and states (or outputs, if the objective function uses out-

puts instead of states) is essentially the same as changing the units in which
we measure these variables. In some cases this sufficient, but some processes
have inherent ill-conditioning that cannot be removed by scaling.
In theory, one may use non-zero values for all elements in the tuning

matrices bQ and bP , with the only restriction that bQ should be positive semi-
definite20 and bP should be positive definite (and hence both should be sym-
metric). However, little is known on how to make full use of this freedom
in designing bQ and bP , and in practice they are obtained from Q ,P and S
as shown in Eq. (33), and typically Q and P are diagonal. It is common
to try to reduce the ill-conditioning of the Hessian matrix by multiplying
all elements of bP by the same factor. If this factor is sufficiently large,

19A matrix is ill-conditioned if the ratio of the largest singular value to the smallest
singular value is large. This ratio is called the condition number.
20The lower right diagonal block of bQ, corresponding to the terminal state weight S,

should be strictly positive definite (and sufficiently large).
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the condition number of the Hessian matrix will approach that of P - which
can be chosen to have condition number 1 if desired. However, increasing
all elements of bP means that the control will become slower in all output
directions, also in directions which are not particularly sensitive to model
uncertainty.
If the above ways of reducing the condition number of the Hessian matrix

are insufficient or unacceptable, one may instead modify the process model
such that the controller ”does not see” offsets in the low gain directions.
Inherent ill-conditioning (which cannot be removed by scaling) is typically
caused by physical phenomena which make it difficult to change the outputs
in the low gain direction. Fortunately, this means that disturbances will
also often have a low gain in the same output direction. It may therefore
be acceptable to ignore control offsets in the low gain output directions. In
terms of the MPC formulation above, the controller can be forced to ignore
the low gain directions by modifying bB by setting the small singular values
of bB to zero. This is known as singular value tresholding, since we remove
all singular values of bB that is smaller than some treshold. If we term
this modified matrix bB for bBm, we find that the trajectory of input moves
calculated by the (unconstrained) MPC optimization now becomes

v = −( bBTm bQ bBm + bP )−1 bBTm bQ bAχdev = −( bBTm bQ bBm + bP )−1χm
Note that the conditioning of the Hessian matrix is not improved by

setting the small singular values of bB to zero, but the vector χm does not
show any control offset in the corresponding output directions, and hence the
vector v will contain no input moves in the corresponding input directions.
Singular value tresholding is effective in improving robustness to model

errors, but it clearly causes nominal control performance (the performance
one would get if the model is perfect) to deteriorate, since the controller ig-
nores control offsets in some output directions. Removing too many singular
values from bB will result in unacceptable control performance.
6.9 Using rigorous process models in MPC

Most chemical processes are inherently nonlinear. In some cases, rigorous
dynamical models based on physical and chemical relationships are available,
and the process engineers may wish to use such a model in an MPC controller.
This would for instance have the advantage of automatically updating the
model when the process is moved from one operating point to another.
However, to optimize directly on the rigorous model is not straight forward.

The non-linearity of the model typically results in optimization problems that
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are non-convex. Optimization of non-convex problems is typically a lot more
time consuming than optimization of convex problems and the time required
to find a solution can vary dramatically with changing operating point or
initial states. This means that direct optimization of non-linear models is
usually ill-suited for online applications like MPC. Furthermore, it is often
the case that the most important ’non-linearities’ in the true system are the
constraints, which are handled effectively by MPC.
This does not mean that rigorous models cannot be utilized by MPC

controllers, but it means that one can make only partial use of such models.
The idea is to utilize these models to the extent that the available time
permits. One may then approximate the true optimization problem by a
modified, convex problem, or a series of such problems.

Predict using the rigorous model. The simplest way of (parti-
ally) accounting for non-linearity in the process model, is to calculate the
deviation from the desired state (or output) trajectory from a rigorous, non-
linear model, whereas the other parts of the optimization formulation uses a
linearized model. In this way, the calculated input trajectory v will to some
extent account for the non-linearities.

Line search If greater accuracy is needed, one may do a line search

using the non-linear model to optimize what multiple of v should be imple-
mented, i.e., perform a search to optimize (while taking the constraints into
account)

min
α
f(x, u) = min

α
f(x0, uref + αv) (43)

where α is a positive real scalar. Such line searches are a standard part of
most non-linear optimization methods, and are covered in many textbooks
on optimization e.g. in [13]. When performing the minimization in Eq.
(43) above, the full non-linear model is used to calculate future states from
(x0, uref + αv).

Iterative optimization. Even with the optimal value of α, one pro-
bably has not found the optimal solution to the original non-linear optimiza-
tion problem. Still better solutions may be found by an iterative procedure,
where the predicted deviation from the desired state trajectory xref is fo-
und using the best available estimate of the future input trajectory. That
is, for iteration number k, use the model to calculate the resulting vector
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χdev,k when the input trajectory uref +vt is applied, where vt =
Pk−1

l=0 vl, and
minimize

min
vk
f(v) = (vt + vk)

T ( bBT bQ bB + bP )(vt + vk) + χTdev,k
bAT bQ bB(vt + vk)

subject to constraints that should be modified similarly. It is also assumed
that a line search is performed between each iteration. The iterations are
initialized by setting v0 = 0, and are performed until the optimization con-
verges, or until the available time for calculations is used up. The iterative
procedure outlined above need not converge to a globally optimal solution
for the original problem, it may end up in a local minimum. Furthermore,
there is no guarantee that this is a particularily efficient way of solving the
original optimization problem (in terms of the non-linear model). It does,
however, have the advantage of quickly finding reasonable, and hopefully
feasible, input sequences. Even if the optimization has to terminate before
the optimization has converged, a ’good’ input has been calculated and is
available for implementation on the process.

Linearize around a trajectory. If the operating conditions change
significantly over the time horizon (n) in the MPC controller, the lineari-
zed model may be a reasonable approximation to the true process behaviour
for only a part of the time horizon. This problem is relatively rare when
constant reference values are used, but may be relevant when moving from
one operating point to another. It is then possible to linearize the process
around the predicted process trajectory (xref + χdev) rather than around a
constant state. One then gets a time-varying (but still linear) model, i.e., a
”new model” for each time interval into the future. Conceptually, linearizing
around a trajectory does not add much complexity compared to linearizing
around a constant state, but it does add significantly to the notational com-
plexity that is necessary in the mathematical formulation of the optimization
problem. Furthermore, analytical representations of the linearized models
are typically not available, and the linearization has to be performed by
numerically perturbing the process around the predicted process trajectory.
This can clearly add significantly to the computational burden. Linearizing
around a trajectory can be combined with iterative optimization as outlined
above - which would further add to the computational burden.
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7 Controller PerformanceMonitoring andDia-
gnosis

7.1 Introduction

It is a sad fact that many control loops in industrial processes actually de-
grade system performance, by increasing the variability in the controlled
variable rather than decreasing it. Still more control loops do actually work,
but are very far from optimal. Some causes for poor controller performance
are:

• Operating conditions have changed after the controller was tuned.
• The actual process has changed, some process modifications have been
made after the controller was tuned.

• The controller has never actually been tuned, it is still using the ma-
nufacturer’s default tuning parameters.

• A poor (or even inconsistent) control structure, causing severe inte-
ractions between control loops.

• Some equipment in the control loop may be in need of maintenance or
replacement, e.g., faulty measurements, control valves with excessive
stiction, severe fouling in heat exchangers, etc.

There are many reasons why such a situation may be allowed to last.
Often, plant operators are aware of what parts of the process are oscillating
or show large control offsets. However, this information often stays with
the operators, and they learn to cope with the process as it is. The typical
operator will lack the competence to assess whether the observed control
performance is much worse than what should be expected. When asked
a general question about whether control of the process is acceptable, they
may therefore very well confirm that the control is good even if that is not
the case.
The automation department of a large plant is normally very small. The

typical automation department is fully occupied with keeping the various
automation and control system in operation, with little time for improving
the control system. Most industrial automation engineers are therefore
also trained to keep the control system running, and have little relevant
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background for evaluating controller performance or improving controllers.
After an initial commissioning phase, most controllers are therefore ”left
alone” for long periods.
Considering the large number of control loops in an industrial plant, there

is a need for tools which ensure efficient use of what little time is available
for improving the control system, that is, tools which help the engineer to

• focus on where the control problems are most acute
• quickly assess whether significant improvements are easily achievable,
e.g. by retuning the controller

• diagnose the cause for poor control performance.

The sections below will present some of the tools and results that are
available for helping the engineer with the above tasks. We will first consider
the detection and diagnosis of oscillating control loops, and thereafter discuss
the assessment of controller performance.

7.2 Detection of oscillating control loops

For the trained human eye, detection of oscillations may seem a trivial task.
However, it is far from trivial to define and describe oscillations in a typical
signal from a process plant in such a way that it can reliably be automated
(in either on-line or off-line tools). We will here present a few tools that have
been proposed, but first present some statistical tools. It is assumed that
the signals under study are stable, as otherwise the control loops in question
will have to be taken out of service (and it should then be apparent that the
control loop needs attention).

7.2.1 The autocorrelation function

The autocorrelation function is essentially a measure of how closely the values
of a variable, when measured at different times, are correlated. For a variable
y and a data set of N datapoints, the autocorrelation function is given by

ρk =

PN−k
t=1 (yt − y)(yt+k − y)PN

t=1(yt − y)2
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The autocorrelation function is 1 for lag 0, that is, ρ0 = 1. For stable
signals, it generally decays with increasing lags, whereas it will oscillate for
systematically oscillating signals, and a periodic signal will have a periodic
autocorrelation function.
In principle, one should be able to detect oscillations directly from the

autocorrelation function. However, it need not be so straight forward if the
signal contains multiple frequencies, measurement noise, assymmetric oscil-
lations, etc. Nonlinear effects may also introduce oscillations at frequencies
that are multiples of the base oscillation frequency. Nevertheless, one of the
methods presented below will make direct use of the autocorrelation function.

7.2.2 The power spectrum

The power spectrum results from a Fourier transform of the autocorrelation
function, and in essence it is the frequency domain equivalent of the au-
tocorrelation function. If the signal oscillates at a particular frequency, the
power spectrum will have a peak at that frequency. An oscillation that does
not decay with time, will have a very large peak at that frequency in the
power spectrum. The problems of using the power spectrum for oscillation
detection are similar to those of using the autocorrelation function. Instead
of the power spectrum having a single spike at the oscillating frequency, the
signal may be so corrupted by noise and nonlinear effects that it looks more
like the back of a hedgehog.

7.2.3 The method of Miao and Seborg

Miao and Seborg[32] uses the autocorrelation function to detect oscillations.
It calculates a somewhat non-standard ’decay ratio’, as illustrated in Fig. 17.

The Miao-Seborg oscillation index is simply the ratio given by R = a/b.
Miao and Seborg propose a treshold value of R = 0.5, a larger value will
indicate (unacceptable) oscillations. Little justification is provided for this
measure. In particular, it is not explained why this measure is better than
simply comparing the magnitude of neighbouring peaks in the autocorrela-
tion function.
Nevertheless, industrial experience appears to be favourable, and oscilla-

tions are detected with reasonable reliability. Some drawbacks are

• it is somewhat complicated for on-line oscillation detection, it is better
suited for offline analysis of batches of data.
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Figure 17: Calculation of the Miao-Seborg oscillation index from the au-
tocorrelation function.

• it does not take the amplitude of oscillations into account. Some
oscillations of small amplitude may be acceptable.

• it assumes that the oscillations are the main cause of variability in
the measured variable. If a control loop experiences frequent (and
irregular) setpoint changes of magnitude larger than the amplitude of
the oscillations, it may fail to detect the oscillations.

7.2.4 The method of Hägglund

Hägglunds measure[18] may be said to be a measure for control performance
rather than an oscillation detection method. The basic idea behind the
measure is that the controlled variable in a well-functioning control loop
should fluctuate around the setpoint, and that long periods on one side of
the setpoint is a sign of poor tuning.
Hägglund’s performance monitor looks at the control error e(t) = r(t)−

y(t), and integrates the absolute value of e(t) for the period between each
time this signal crosses zero:

IAE =

Z ti

ti−1
|e(t)| dt
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where ti−1 and ti are the times of two consequtive zero crossings. Whene-
ver this measure increases beyond a treshold value, a counter is incremented,
and an alarm is raised when the counter passes some critical value. It is
shown in [18] how a forgetting factor can be used to avoid alarms from well-
functioning loops which are exposed to infrequent, large disturbances (or
setpoint changes).
Critical tuning parameters for this monitoring method are the IAE tres-

hold value and the counter alarm limit. Typical choices for the IAE treshold
value are

IAElim = 2a/ωu

IAElim = aTI/π

where a is an acceptable oscillation magnitude, ωu is the ultimate frequency
(the oscillation frequency found in a closel loop Ziegler Nichols experiment),
and TI is the integral time in a PI(D) controller. The more rigorous of the
two treshold values is the first, and ωu would be available if the loop was
tuned with e.g. Hägglund’s relay-based autotuning procedure. However,
often ωu will not be available, and the second expression for IAElim will
then have to be used - this expression is intended to work as a reasonable
approximation of the first expression for IAElim for a reasonably tuned loop.
Naturally, this may be misleading if the cause of poor control performance
is poor choice of controller tuning parameters.
The counter alarm limit is simply a tradeoff between the sensitivity of the

monitoring method and the rate of ”unnecessary” alarms. This monitoring
method is

• Simple and appliccable for on-line implementation.
• It takes oscillation amplitude into account - it is only affected by small
oscillations if the oscillation period is very long.

• Some tuning of the monitoring method must be expected. The guide-
lines for choosing IAElim may be misleading in some cases.

7.2.5 The method of Forsman and Stattin

This method also looks at the controll offset e(t) = r(t) − y(t), but it is
strictly and oscillation detection method and not a general performance mo-
nitor. Forsman and Stattin [14] proposes comparing both the areas between
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Figure 18: The oscillation detection method of Forsman and Stattin [14].

the control offset and zero and the time span that the offset has the same
sign. However, the resulting area and time span is not compared with the
immediately previous area/timespan (when the control error had opposite
sign), rather the comparison is made with the preceding period when the
control offset had the same sign. This is illustrated in Fig. 18.

The method uses two tuning constants α and γ, that both should be in
the range between 0 and 1, and simply counts the number of times hA in a
data set that

α <
Ai+1
Ai

<
1

α
and/or γ <

δi+1
δi

and the number of times hB that

α <
Bi+1
Bi

<
1

α
and/or γ <

εi+1
εi

The oscillation index is then given by h = (hA + hB)/N , where N is the
number of times in the data set that the control offset crosses zero.
Forsman and Stattin recommend closer examination of loops having h >

0.4, and if h > 0.8 a very clear oscillative pattern can be expected.
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7.2.6 Pre-filtering data

All three methods presented above may be ineffective for noisy data, and both
Miao and Seborg [32] and Forsman and Stattin [14] discuss pre-filtering the
data with a low pass filter to reduce the noise. Clearly, the filter should be
designed to give a reasonable tradeoff between noise and oscillation detection
in the frequency range of interest. The interested reader should consult the
original references for a more comprehensive treatment of this issue.

7.3 Oscillation diagnosis

Once an oscillating control loop has been detected, it is naturally of interest
to find the cause of the oscillations, in order to come up with some effective
remedy. There is no general solution to the diagnosis problem, the proposed
methods can at best handle parts of the problem. We will present a manual
diagnosis procedure proposed by Hägglund [18], and a passive procedure
(that may be automated) for detecting valve stiction proposed by Horch
[23].

7.3.1 Manual oscillation diagnosis

In [18], Hägglund proposes the manual oscillation diagnosis procedure pre-
sented in Fig. 19

The main problem with this procedure is the assumption that if the oscil-
lation (in the controlled variable) stops when the controller in a particular
loop is put in manual, then the oscillation is caused by that loop. Of-
ten, oscillations arise from multivariable interactions between loops, and the
oscillation will then stop when any one of these loops are put in manual.
Typically, the loop which receives the ”blame” for the oscillations will be
detuned (made slower). Therefore, the results of this procedure willdepend
on the order in which the loops are examined. If several loops show a similar
oscillation pattern, one should therefore first examine the loop for which slow
control is more acceptable.
The procedure is also a little short on examining other instrumentation

problems than valve friction, e.g., valve hysteresis, measurement problems,
etc. Furthermore, the procedure gives no proposals for how to eliminate
external disturbances. Clearly, the solution will be very dependent on the
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Figure 19: Hägglund’s manual oscillation diagnosis procedure.

particular process, but typically it will involve modifying the process or the
control in other parts of the process.

7.3.2 Detecting valve stiction

A commonly occuring problem with valves is that they can have a tendency
to stick due to stiction (short for ’static friction’). Once the controller applies
sufficient force to overcome the stiction and move the valve, the friction force
drops dramatically (since the ’dynamic’ friction is much smaller than the
static friction). This results in a large net force acting on the valve stem,
causing a sudden move of it. It is well known that such stiction can cause
oscillations.
Horch [23] have developed a method for detecting stiction, based on mea-

surements of the controlled variable and the controller output. The method
assumes that the controller has integral action. The integral action will
steadly increase the controller output, until the valve suddenly ”jumps” to
a new position. Persisten oscillations often result when the valve jumps to
far, so that the controller has to stop the valve movement and move it in the
opposite direction. Stopping the valve causes it to stick again, causing the
sequence of events to repeat.
When there is problems with valve stiction, the controller output signal
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typically has a sawtooth shape. The controlled variable is typically almost
like a square wave, especially if the dominant time constant of the process
(in open loop) is much shorter than the period of oscillation.
Horch found that the cross-correlation function between controller output

and controlled variable typically is an odd function21 for a system oscillating
due to stiction. On the other hand, if the oscillation is due to external distur-
bances, the cross-correlation function is normally close to an even function.
Unstable loops oscillating with constant amplitude (due to input saturation)
also have an even cross-correlation function.
For a data set with N data points, the cross-correlation function between

u and y for lag τ (where τ is an integer) is given by

ruy(τ) =

Pk1
k=k0

u(k)y(k + τ)PN
k=1 u(k)y(k)

(44)

where

k0 = 1 for τ ≥ 0
k0 = τ + 1 for τ < 0

k1 = N − τ for τ ≥ 0
k1 = N for τ < 0

Note that the denominator in Eq. (44) is merely a normalization, giving
ruy(0) = 1, it is not necessary for the stiction detection method.
Horch’ stiction detection method has been found to work well in most

cases. However, it fails to detect stiction in cases where the dominant time
constant of the (open loop) process is large compared to the observed period
of oscillation. In such cases the cross-correlation function will be approxi-
mately even also for cases with stiction. This problem is most common with
integrating processes (e.g., level control loops), but may also occur for other
processes with slow dynamics.
Horch [24] has recently proposed an alternative method for stiction de-

tection for integrating processes. Industrial experience with this alternative
method is not known. However, it is patented by ABB.

7.4 Control loop performance monitoring

7.4.1 The Harris Index
21Reflecting the 90◦ phase shift due to the interal action in the controller.
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The most popular index for monitoring controller performance has been na-
med after T. J. Harris. Control loop performance monitoring has received
much attention since his publication of an influential paper on the subject
[19], although similar ideas have been proposed earlier, by e.g., Fjeld [12].
The Harris’ index simply compares the observed variance in the controlled
variable with the best achievable variance. The observed variance is easily
calculated from on-line data. The beauty of the method lies in that only
modestly restrictive assumptions about the are necessary in order to estimate
the minimum achievable variance from available on-line data.
The necessary assumptions are:

1. The deadtime from manipulated variable u to controlled variable y
must be known or estimated.

2. The process is asymptotically stable.

3. The process does not have any inverse response22.

Assumptions 2 and 3 above may be relaxed, if a sufficiently accurate
process model is available, see Tyler and Morari [48].
When assumptions 1-3 are fulfilled, a minimum variance controller may

be used, and as the name says, this controller would achieve the minimum
variance in the output. The minimum variance controller will not be derived
here, but it is described in many textbooks on stochastic control theory. All
we need is the following observations:

• No control action can influence the controlled variable before at least
one deadtime has passed.

• The minimum variance controller will remove all autocorrelation in the
controlled variable for time lags greater than the deadtime.

Thus, if we have an impulse response model for the effect of the (unknown)
disturbance on the controlled variable with the existing controller

yk =
X
i≥0
hidk−i

22In terms of systems theory, the (discrete time) process should not have any zeros on or
outside the unit disk. This corresponds to zeros in the right half plane for continuous-time
systems.
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we know that hi is unaffected by feedback for i < δ, where δ is the
deadtime (in number of sample intervals), whereas the minimum variance
controller would achieve hi = 0 for i ≥ δ. Thus, the minimum achievable
variance in y is

σ2y,mv = (1 + h
2
1 + h

2
2 + · · ·+ h2δ−1)σ2d (45)

where we have selected h0 = 1, since this is equivalent to scaling the
disturbance variance σ2d.

7.4.2 Obtaining the impulse response model

In order to identify a model for the effect of the unknown disturbance on the
controlled variable, we must first select a model structure. We will use an
autoregressive (AR) model, where we assume that the disturbance d is a zero
mean white noise:

yk + a1yk−1 + a2yk−2 + · · · = dk
or, in terms of the backwards shift operator z−1:

(1 + a1z
−1 + a2z−2 + a3z−3 + · · · )yk = A(z−1)yk = dk

Now, the AR model is very simple, and one may therefore need a high
order for the polynomial A(z−1)in order to obtain a reasonably good model.
One therefore runs the risk of ”fitting the noise” instead of modelling system
dynamics. It is therefore necessary to use a data set that is much longer
than the order of the polynomial A(z−1). However, if a sufficiently large data
set is used (in which there is significant variations in the controlled variable
y), industrial experience indicate that acceptable models for the purpose of
control loop performance monitoring is often obtained when the order of the
polynomial A(z−1) is 15-20. The AR model has the advantage that a simple
least squares calculation is all that is required for finding the model, and
this calculation may even be performed recursively, i.e., it is appliccable for
on-line implementation.
We will here only consider off-line model identification. The expected

value of the disturbance d is zero, and thus we have for a polynomial A(z−1)
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of order p and a data set of length N with index k denoting the most recent
sample


yk−1 yk−2 · · · yk−p+1 yk−p
yk−2 yk−3 · · · yk−p yk−p−1
...

...
. . .

...
...

yk−N+p yk−N−1+p · · · yk−N+2 yk−N+1
yk−N−1+p yk−N−2+p · · · yk−N+1 yk−N


 a1...
ap



= −


yk
yk−1
...

yk−N+p+1
yk−N+p

+


dk
dk−1
...

dk−N+p+1
dk−N+p


m
Y a = −y + d

where the underbars are used to distinguish vector-valued variables from
scalar elements. The expected value of the disturbance d is zero, and thus
the model is found from a least squares solution after setting d= 0:

a = −(Y TY )−1Y Ty

After finding a, an estimate of the noise sequence is simply found from d=
Y a+y, from which an estimate of the disturbance variance σ2d can be found.
Having found the polynomial A(z−1), the impulse response coefficients hi are
found from

yk =
1

A(z−1)
dk = H(z

−1)dk

using polynomial long division. Here H(z−1) = 1 + h1z
−1 + h2z−2 +

h3z
−3 + · · · .

7.4.3 Calculating the Harris index

The Harris index is the ratio of the observed variance to the minimum achie-
vable variance. The minimum achievable variance can be calculated from
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Eq. (45) above, using the identified impukse response coefficients and the
estimated disturbance variance

σ2d =
1

N − 1
NX
i=1

¡
di − d

¢2
where d is the mean value of the disturbance, which is zero by assump-

tion.
The observed variance of the controlled variable can be computed si-

milarly. However, if there is a persistent offset in the control loop, i.e., if the
mean value of the controlled variable deviates from the reference, this should
also be reflected in a measure of control quality. Hence, a modified variance
should be used which accounts for this persistent offset

σ2y,o =
1

N − 1
NX
i=1

(yi − yref )2

If there is a persistent offset from the reference, the modified variance
σ2y,m will always be larger than the true variance σ2y, and the Harris index
becomes

HI =
σ2y,o
σ2y,mv

7.4.4 Modification to Harris’ index

Despite the theoretical elegance of the derivation of the minimum variance
controller, the minimum variance controller is generally not a realistic choice
for a controller in a real application. This is because it is sensitive to model
errors, and may use excessive moves in the manipulated variable. It does
provide an absolute lower bound on the theoretically achievable variance, but
it is nevertheless of interest to have a control quality measure which compares
the actual performance to something (hopefully) more realistic.
One such modification is to assume that the ’ideal’ controller does not

immediately remove the effect of disturbances after one deadtime has passed,
but rather that the effect of the disturbance decays as a first order function
after the deadtime has passed. If we assume that this decay is described by
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the parameter µ (0<µ<1), so that the ideal response to disturbances against
which performance is measured would be

yk,mod =
δ−1X
i=0

hidk−i +
∞X
i=δ

hδ−1µi−δ+1dk−i

which results in a modified ’benchmark variance’

σ2y,mod = σ2y,mv +
µ2

1− µ2σ
2
d

The modified contorl performance index then simply becomes

HI,mod =
σ2y,o

σ2y,mod

This modified Harris index is proposed by Horch and Isaksson [25] and
Kozub [30]. Horch and Isaksson also provide some guidelines for how to
specify the tuning factor µ. They find that if one wishes to account for
a possible error in the estimated deadtime of ±1 sample interval, and still
require a gain margin of 2 for the ’ideal closed loop’, this corresponds to
choosing µ < 0.5. It is also recommended to have a realistic attitude to how
much the dynamics of the closed loop system can be speeded up, compared
to the dynamics of the open loop process. Horch and Isaksson argue that
it is unrealistic to speed up the system by a factor of more than 2-4. If
we denote the open loop dominant time constant τ ol, and the desired closed
loop time constant is τ ol/v, then the parameter µ should be chosen as

µ = exp

µ
−vTs

τ ol

¶
where Ts is the sampling interval for the control system.

7.4.5 Comments on the use of the Harris index

Before screening for poorly performing loops using the Harris index (or pre-
ferably the modified version presented above), one should first remove any
persistently oscillationg loops, as these will certainly require attention.
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It is important to realize that the Harris index is a relative measure of
control quality. Thus, if a process is modified to improve controllability,
e.g., by installing a new measurement with less deadtime, the Harris index
may well get worse even if the actual performance improves significantly.
This is of course because the observed variances before and after the process
modifications are not compared against the same minimum variance.
The Harris index is appliccable to systems where the deadtime is the main

factor limiting bandwidth and control performance. It was mentioned earlier
that there are available modifications which allow consistent assessment of
loops controlling an unstable process, or processes with inverse response (zero
outside the unit disc). However, these modifications require much more
detailed process knowledge than the basic Harris index. Similarly, the Harris
index is not appliccable to control loops where the manipulated variable is
in saturation much of the time.
Despite these limitations, the Harris index is appliccable to many control

loops in most chemical processes.

7.4.6 Open issues in performance monitoring.

There are many open issues in performance monitoring and diagnosis. This
will probably always be the case, since one attempts to evaluate the system
behaviour without upsetting the system. Many aspects of the system beha-
viour will therefore necessarily remain unknown. Among the issues in need
of further study are

• Performance monitoring in multivariable systems. Most systems are
inherently multivariable, even if is is controlled by a set of monova-
riable control loops. Although the concept of the minimum variance
controller can be extended to multivariable systems, there are problems
regarding how to determine the ’interactor matrix’, i.e., the multiva-
riable deadtime matrix. Furthermore, in multivariable systems there
will always be tradeoffs between variance in different controlled vari-
ables, and the relevance of any multivariable performance measure will
depend critically on such tradeoffs.

• Performance monitoring for constrained systems. Model predictive
control is particularly adept at handling constrained systems. The
optimization criterion in the MPC controller will typically be designed
to reflect the designers concept of optimal performance. Poor per-
formance will then typically stem from model inaccuracies (including
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equipment in need of repair), changing noise levels, etc., and any per-
formance monitor should probably attempt to pinpoint such problems.

• Diagnosis of oscillation in multi-loop systems. Hägglunds method
presented above was critisized for not distinguishing properly between
oscillations due to disturbances that enter from outside of the system,
and oscillations due to interactions between multiple loops. Further
work is needed on this topic.

• Diagnosis of malfunctioning valves. The method of Horch is in many
cases able to detect valve problems due to stiction. However, other
types of non-ideal valve behaviour are not covered, e.g., valve hysteresis.
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