
1

MODEL PREDICTIVE
CONTROL

Manfred Morari
Jay H. Lee
Carlos E. Garćıa

March 15, 2002

2

Chapter 2

Modeling and Identification

Figure 2.1 depicts a computer controlled system. The controlled output sig-
nal y(t) is sampled at intervals T resulting in a sequence of measurements
{y(0), y(1), . . . , y(k), . . .} where the arguments 0, 1, . . . , k, . . . denote time mea-
sured in multiples of the sampling interval T . On the basis of this sequence the
control algorithm determines a sequence of inputs {u(0), u(1), . . . , u(k), . . .}.
The input time function u(t) is obtained by holding the input constant over a
sampling interval:

u(t) = u(k) kT < t ≤ (k + 1)T

Throughout the book, we will consider that the control task is carried out by
such a sampled-data control system.

The appropriate control action depends on the dynamic characteristics of
the plant to be controlled. Therefore, the control algorithm is usually designed
based on a plant’s model which describes its dynamic characteristics (at least
approximately). In the context of Fig. 2.1 we are looking for a plant model
which allows us to determine the sequence of outputs {y(0), y(1), . . . , y(k), . . .}
resulting from a sequence of inputs {u(0), u(1), . . . , u(k), . . .}.

In general, we are not only interested in the response of the plant to the
manipulated variable (MV) u but also in its response to other inputs, for
example, a disturbance variable (DV) d. We will use the symbol v to denote a
“general” input which can be manipulated (u), or a disturbance (d). Thus the
general plant model will relate a sequence of inputs {v(0), v(1), . . . , v(k), . . .}
to a sequence of outputs {y(0), y(1), . . . , y(k), . . .}.

Initially we will assume for our derivations that the system has only a single
input v and a single output y (Single Input - Single Ouput (SISO) system).
Later we will generalize the modeling concepts to describe multi-input multi-
output (MIMO) systems.

In this chapter we will discuss some basic modeling assumptions and in-
troduce convolution models. We will explain how these models can be used to

1

2 Modeling and Identification

Figure 2.1: Sampled-data control system

predict the response of the output to an input sequence. Finally, we will give
some advice on how to obtain the models from experiments.

2.1 Linear Time Invariant Systems

Let us consider two specific input sequences

v1(0) =
{

v1(0), v1(1), . . . , v1(k), . . .
}

v2(0) =
{

v2(0), v2(1), . . . , v2(k), . . .
}

Throughout this book, we will adopt the convention that the input sequences
are zero for negative time, i.e., v(k) = 0, for k < 0.

March 15, 2002 3

For example, v1(0) might represent a step

v1(0) = {1, 1, . . . , 1, . . .}

and v2(0) a pulse.
v2(0) = {1, 0, . . . , 0, . . .}

Let us assume that for a particular system P these two input sequences
give rise to the output sequences

y1(0) =
{

y1(0), y1(1), . . . , y1(k), . . .
}

y2(0) =
{

y2(0), y2(1), . . . , y2(k), . . .
}

respectively. Symbolically, we can also write

v1(0) P−→ y1(0)

and
v2(0) P−→ y2(0)

Let us consider now the two input sequences

v3(0) ∆= αv1(0) =
{

αv1(0), αv1(1), . . . , αv1(k), . . .
}

where α is a real constant, and

v4(0) , v1(0)+v2(0) =
{

v1(0) + v2(0), v1(1) + v2(1), . . . , v1(k) + v2(k), . . .
}

If changing the input magnitude by a factor α changes the output magni-
tude by the same factor

αv1(0) = v3(0) P−→ y3(0) = αy1(0)

and if the response to a sum of two input sequences is the sum of the two
output sequences

v1(0) + v2(0) = v4(0) P−→ y4(0) = y1(0) + y2(0)

for arbitrary choices of v1(0),v2(0) and −∞ < α < +∞, then the system P
is called linear.

Linearity is a very useful property. It has the following implication: If
we know that the input sequences v1(0),v2(0),v3(0), etc. yield the output
sequences y1(0),y2(0),y3(0) etc., respectively, then the response to any linear
combination of input sequences is simply a linear combination of the output
sequences. In other words, the process output can be obtained by superposi-
tion.

α1v1(0) + α2v2(0) + . . . + αkvk(0) + . . .
P−→ α1y1(0) + α2y2(0) + . . . + αkyk(0) + . . . , where −∞ < αi < ∞.

4 Modeling and Identification

In practice there are no truly linear systems. Linearity is a mathematical
idealization which allows us to utilize a wealth of very powerful theory. In
a small neighborhood around a fixed operating point the behavior of many
systems is approximately linear. Because the purpose of control is usually to
keep the system operation close to a fixed point, the setpoint, linearity is often
a very good assumption.

Let us now define the shifted input sequence

v1(−`) =







0, 0, . . . , 0
︸ ︷︷ ︸

`

, v1(1), v1(2), . . . , v1(k), . . .







where the first ` elements are zero. Here we have simply moved the signal
v1(0) to the right by ` time steps. If the resulting system output sequence is
shifted in the same manner

y1(−`) =







0, 0, . . . , 0
︸ ︷︷ ︸

`

, y1(1), y1(2), . . . , y1(k), . . .







and if the system property:

v(−`) P−→ y(−`)

holds for arbitrary input sequences v(0) and arbitrary integers ` then the
system is referred to as time-invariant. Time invariance implies, for example,
that if tomorrow the same input sequence is applied to the plant as today,
then the same output sequence will result. Throughout this part of the book
we will assume that linear time-invariant models are adequate for the systems
we are trying to describe and control.

2.2 System Stability

Let us perturb the input v to a system in a step-wise fashion and observe the
output y. We can distinguish the three types of system behavior depicted in
Fig. 2.2.

A stable system settles to a steady state after an input perturbation.
Asymptotically the output does not change. An unstable system does not
settle, its output continues to change. The output of an integrating system
approaches a ramp asymptotically; it changes in a linear fashion. The output
of an exponentially unstable system changes in a exponential manner.

Most processes encountered in the process industries are stable. An im-
portant example of an integrating process is shown in Fig. 2.3B.

March 15, 2002 5

0 5 10
0

2

4

6

8

10
Integrating Process

Time

Im
pu

ls
e

R
es

po
ns

e

Time

0 5 10
0

0.1

0.2

0.3

0.4

0.5

S
te

p
R

es
po

ns
e

Stable Process

0 5 10
0

50

100

150

200

250

300
Unstable Process

Time

Figure 2.2: Output responses to a step input change for stable, integrating
and unstable systems.

FC

Figure 2.3: Water tank

At the outlet of the tank a controller is installed which delivers a constant
flow. If a step change occurs in the inflow, the level will rise in a ramp-like
fashion. In case of a pulse change shown, the level changes to a different value
on a permanent basis.

Some chemical reactors are exponentially unstable when left uncontrolled.
However, for safety reasons, reactors are usually designed to be stable so that
there is no danger of runaway when the control system fails. The control
concepts discussed in this part of the book are not applicable to exponentially
unstable systems. This system type will be dealt with in the advanced part.

6 Modeling and Identification

2.3 Impulse Response Models

Let us inject a unit pulse

v(0) = {1, 0, . . . , 0, . . .}

into a system at rest and observe the response

y(0) = {h0, h1, . . . , hn, hn+1 . . .} .

We will assume that the system has the following characteristics:

• h0 = 0, i.e. the systems does not react immediately to the input

• hk = 0 for k > n, i.e. the system settles after n time steps

Such a system is called a Finite Impulse Response (FIR) system with the
matrix of FIR coefficients

H = [h1, h2 . . . , hn]T . (2.1)

Many practical systems can be approximated well by FIR systems. Con-
sider the simple examples in Fig. 2.3. In one case the outflow of the tank
occurs through a fixed opening. Therefore it depends on the liquid height in
the tank. After the pulse inflow perturbation the level returns to its original
value. The system can be approximated by an FIR system. In the other case
the outflow is determined by a pump and is constant. The pulse adds liquid
volume which permanently changes the level in the tank. This integrating
system cannot be approximated by an FIR model.

Example 2.1: Consider the following discrete time system with sampling time Ts = 1.

y(k) = 0.5y(k − 1) + v(k − 1)

Transfer function representation of this system is

G(z) =
z−1

1− 0.5z−1

Starting with y(0) = 0, response of this system to impulse v(0) = {1, 0, 0, 0, . . .} can
be obtained by recursively solving the above equation. We used MATLABTM function
impulse to generate the impulse response:

y(0) = {0, 1.0, 0.5, 0.25, 0.125, 0.0625, . . .}

March 15, 2002 7

For linear time-invariant systems, shifting the input pulse

v(0) = {0, 1, 0, . . . , 0, . . .}

will simply shift the impulse response

y(0) = {0, h0, h1, . . . , hn, hn+1 . . .} .

The dynamical behavior of an FIR system is completely characterized by
the set of FIR coefficients. The system response can be computed by super-
position as follows. Any arbitrary input

v(0) = {v(0), v(1), v(2) . . .}

can be represented as a sum of impulses

v(0) = {1, 0, 0, . . .} v(0)

+ {0, 1, 0, . . .} v(1)

+ {0, 0, 1, 0 . . .} v(2)

+ . . .

The system output is obtained by summing the impulse responses weighted
by their respective impulse strength v(i)

y(0) = {0, h1, h2 . . . , hn, 0, 0, . . .} v(0)

+ {0, 0, h1, h2, . . . , hn, 0, 0, . . .} · v(1)

+ {0, 0, 0, h1, h2, . . . , hn, 0, 0, . . .} · v(2)

+ . . .

= {0, h1v(0), h2v(0) + h1v(1), h3v(0) + h2v(1) + h1v(2), . . .}

Directly by inspection we see from this derivation that at a particular time
the output is given by

y(k) =
n

∑

i=1

hiv(k − i). (2.2)

The coefficient hi expresses the effect of an input, which occurred i intervals
in the past, on the present output y(k). In order to compute this output we
need to keep the last n inputs v(k − 1), v(k − 2), . . . , v(k − n) in memory.

2.4 Step Response Models

For a unit input step
v(0) = {1, 1, . . . , 1, . . .}

8 Modeling and Identification

injected into the system at rest, the output will be

y(0) = {0, h1, h1 + h2, h1 + h2 + h3, . . .} (2.3)
∆= {0, s1, s2, s3, . . .} (2.4)

Here we have defined the step response coefficients s1, s2, s3,

For linear time-invariant systems the shifted step

v(0) = {0, 1, 1, . . . , 1, . . .}

will give rise to a shifted step response

y(0) = {0, 0, s1, s2, s3, . . .} .

The matrix of step response coefficients

S = [s1, s2, . . . , sn]T (2.5)

is a complete description of how a particular input affects the system output
when the system is at rest. Any arbitrary input

v(0) = {v(0), v(1), v(2), . . .}

can be represented as a sum of steps

v(0) = {1, 1, 1, 1, . . .}v(0)

+{0, 1, 1, 1, . . .}(v(1)− v(0))

+{0, 0, 1, 1, . . .}(v(2)− v(1))

+ . . .

where we will define ∆v(i) to denote the input changes

∆v(i) = v(i)− v(i− 1) (2.6)

from one time step to the next. The system output is obtained by summing
the step responses weighted by their respective step heights ∆v(i)

y(0) = {0, s1, . . . , sn, sn, sn, . . .} v(0)

+ {0, 0, s1, . . . , sn, sn, sn, . . .}∆v(1)

+ {0, 0, 0, s1, . . . , sn, sn, sn, . . .}∆v(2)

+ . . .

= {0,

s1v(0),

s2v(0) + s1∆v(1), . . . ,

. . . , snv(0) + sn−1∆v(1) + sn−2∆v(2) + . . . + s1∆v(n− 1),

sn (v(0) + ∆v(1))
︸ ︷︷ ︸

v(1)

+sn−1∆v(2) + sn−2∆v(3) + . . . + s1∆v(n), . . .}

March 15, 2002 9

We see that at a particular time the output is given by

y(k) =
n−1
∑

i=1

si∆v(k − i) + snv(k − n). (2.7)

The coefficient si expresses the effect of an input change, which occurred i
intervals in the past, on the present output y(k). In order to compute this
output we need to keep the last n inputs in memory.

The step response coefficients are directly calculable from the impulse re-
sponse coefficients and vice versa.

sk =
k

∑

i=1

hi (2.8)

hk = sk − sk−1 (2.9)

Example 2.2: For the system defined in example 2.1, step response coefficients are

y(0) = {0, 1, 1.5, 1.75, 1.875, . . .}

Differencing the above step response, we will get the impulse response coefficients:

∆y = {0, 1, 0.5, 0.25, 0.125, . . .}

2.5 Multi-Step Prediction

The objective of the controller is to determine the control action such that
a desirable output behavior results in the future. Thus we need the ability
to efficiently predict the future output behavior of the system. This future
behavior is a function of past inputs to the process as well as the inputs that
we are considering to take in the future. We will separate the effects of the
past inputs from the effects of the future inputs. All past input information
will be summarized in the dynamic state of the system. Thus the future output
behavior will be determined by the present system state and the present and
future inputs to the system.

For an FIR system we could choose the past n inputs as the state x.

x(k) = [v(k − 1), v(k − 2), . . . , v(k − n)]T (2.10)

Clearly this state summarizes all relevant past input information for an FIR
system and allows us to compute the future evolution of the system when we
are given the present input v(k) and the future inputs v(k + 1), v(k + 2),

Usually the representation of the state is not unique. There are other
possible choices. For example, instead of the n past inputs we could choose

10 Modeling and Identification

the effect of the past inputs on the future outputs at the next n steps as the
state. In other words, we define state as the present output and the n − 1
future outputs – assuming that the present and future inputs are zero. The
two states are equivalent in that they both have dimension n and are related
uniquely by a linear map.

The latter choice of state will prove more convenient for predictive control
computations. It shows explicitly how the system will evolve when there is no
control action and therefore allows us to determine easily what control action
should be taken to achieve a specified behavior of the outputs in the future.
In the next sections we will discuss how to do multi-step prediction for FIR
and step-response models based on this state representation.

2.5.1 Multi-Step Prediction Based on FIR Model

Let us define the state at time k as

Ȳ (k) =
[

ȳ0(k), ȳ1(k), . . . , ȳn−1(k)
]T (2.11)

where

ȳi(k) ∆= y(k + i) for v(k + j) = 0; j ≥ 0 (2.12)

Thus we have defined the ith system state ȳi(k) as the system output at time
k + i under the assumption the system inputs are zero from time k into the
future (v(k + j) = 0; j ≥ 0). This state completely characterizes the evolu-
tion of the system output under the assumption that the present and future
inputs are zero. In order to determine the future output we simply add to the
state the effect of the present and future inputs using (2.2).

y(k + 1) = ȳ1(k) + h1v(k) (2.13)

y(k + 2) = ȳ2(k) + h1v(k + 1) + h2v(k) (2.14)

y(k + 3) = ȳ3(k) + h1v(k + 2) + h2v(k + 1) + h3v(k) (2.15)

y(k + 4) = . . . (2.16)

March 15, 2002 11

We can put these equations in matrix form
















y(k + 1)
y(k + 2)

...

...
y(k + p)

















=

















ȳ1(k)
ȳ2(k)

...

...
ȳp(k)

















︸ ︷︷ ︸

effect of past inputs from Y 0(k)

+

















h1
h2
...
...

hp

















v(k) +

















0
h1
...
...

hp−1

















v(k + 1) + +

















0
0
...
...

h1

















v(k + p− 1)

︸ ︷︷ ︸

effect of future inputs (yet to be determined)

and note that the first term is a part of the state and reflects the effect of
the past inputs. The other terms express the effect of the hypothesized future
inputs. They are simply the responses to impulses occurring at the future time
steps.

The dynamic state of the system Ȳ (k) captures all the relevant information
of the system at time k. In order to obtain the state at k +1, which according
to the definition is

Ȳ (k + 1) =
[

ȳ0(k + 1), ȳ1(k + 1), . . . , ȳn−1(k + 1)
]T with (2.17)

ȳi(k + 1) ∆= y(k + 1 + i) for v(k + 1 + j) = 0; j ≥ 0, (2.18)

we need to add the effect of the input v(k) at time k to the state Ȳ (k).

ȳ0(k + 1) = ȳ1(k) + h1v(k) (2.19)

ȳ1(k + 1) = ȳ2(k) + h2v(k) (2.20)

. . . (2.21)

ȳn−1(k + 1) = ȳn(k) + hnv(k) (2.22)

We note that ȳn(k) was not a part of the state at time k, but we know it to
be 0 because of the FIR assumption. By defining the matrix

Mi =













0 1 0 0 0
0 0 1 0 . . . 0 0
...

...
0 0 0 1
0 0 0 0



































n (2.23)

12 Modeling and Identification

we can express the state update compactly as

Ȳ (k + 1) = Mi · Ȳ (k) + Hv(k). (2.24)

This is the state update equation for finite impulse response models, as it uses
state at time k - Ȳ (k) and input moves v(k) to obtain the state at next time
step - Ȳ (k + 1). Multiplication with the matrix M in the above represents
the simple operation of shifting the vector Ȳ (k) and setting the last element
of the resulting vector to zero.

2.5.2 Recursive Multi-Step Prediction Based on Step-Response
Model

Let us define the state at time k as

Ỹ (k) =
[

ỹ0(k), ỹ1(k), . . . , ỹn−1(k)
]T (2.25)

where

ỹi(k) ∆= y(k + i) for ∆v(k + j) = 0; j ≥ 0 (2.26)

Thus, in this case, we have defined the state ỹi(k) as the system output at time
k + i under the assumption the input changes are zero from time k into the
future ∆(v(k + i) = 0; i ≥ 0). Note that because of the FIR assumption the
step response settles after n steps, i.e., ỹk+n−1(k) = ỹk+n(k) = . . . = ỹ∞(k).
Hence, the choice of state Ỹ (k) completely characterizes the evolution of the
system output under the assumption that the present and future input changes
are zero. In order to determine the future output we simply add to the state
the effect of the present and future input changes. From (2.7) we find

y(k + 1) =
n−1
∑

i=1

si+1∆v(k − i) + snv(k − n) + s1∆v(k) (2.27)

= ỹ1(k) + s1∆v(k). (2.28)

Continuing for k + 2, k + 3, . . . we find

y(k + 2) = ỹ2(k) + s1∆v(k + 1) + s2∆v(k) (2.29)

y(k + 3) = ỹ3(k) + s1∆v(k + 2) + s2∆v(k − 1) + s3∆v(k) (2.30)

y(k + 4) = . . . (2.31)

March 15, 2002 13

We can put these equations in matrix form
















y(k + 1)
y(k + 2)

...

...
y(k + p)

















=

















ỹ1(k)
ỹ2(k)

...

...
ỹp(k)

















︸ ︷︷ ︸

effect of past inputs + current bias from Ỹ (k)

+

















s1
s2
...
...
sp

















∆v(k) +

















0
s1
...
...

sp−1

















∆v(k + 1) + +

















0
0
...
...
s1

















∆v(k + p− 1)

︸ ︷︷ ︸

effect of future input changes (yet to be determined)
(2.32)

and note that the first term is a part of the state and reflects the effect of
the past inputs. The other terms express the effect of the hypothesized future
input changes. They are simply the reponses to steps occurring at the future
time steps.

In order to obtain the state at k + 1, which according to the definition is

Ỹ (k + 1) =
[

ỹ0(k + 1), ỹ1(k + 1), . . . , ỹn−1(k + 1)
]T with (2.33)

ỹi(k + 1) ∆= y(k + 1 + i) for ∆v(k + 1 + j) = 0; j ≥ 0, (2.34)

we need to add the effect of the input change ∆v(k) at time k to the state
Ỹ (k).

ỹ0(k + 1) = ỹ1(k) + s1∆v(k) (2.35)

ỹ1(k + 1) = ỹ2(k) + s2∆v(k) (2.36)

. . . (2.37)

ỹ2(k + 1) = ỹn(k) + sn∆v(k) (2.38)

We note that ỹn(k) = ỹn−1(k) because of the FIR assumption. By defining
the matrix

M =













0 1 0 0 0
0 0 1 0 . . . 0 0
...

...
0 0 0 1
0 0 0 1



































n (2.39)

we can express the state update compactly as

Ỹ (k + 1) = M · Ỹ (k) + S∆v(k). (2.40)

14 Modeling and Identification

Multiplication with the matrix M denotes the operation of shifting the vector
Ỹ (k) and repeating the last element. The recursive relation (2.40) is referred
to as the step response model of the system.

As is apparent from the derivation, the FIR and the step response models
are very similar. The definition of the state is slightly different. In the FIR
model the future inputs are assumed to be zero, in the step response model the
future input changes are kept zero. Also the input representation is different.
For the FIR model the future inputs are given in terms of pulses, for the step
response model the future inputs are steps. Because the step response model
expresses the future inputs in terms of changes ∆v, it will be very convenient
for incorporating integral action in the controller as we will show.

2.5.3 Multivariable Generalization

The model equation (2.40) generalizes readily to the case when the system has
ny outputs y`, ` = 1, . . . , ny and nv inputs vj, j = 1, . . . , nv. We define the
output vector

y(k − 1) = [y1(k − 1), . . . , yny(k − 1)]T ,

input vector ∆v(k − 1) = [∆v1(k − 1), . . . , ∆vnv(k − 1)]T and step response
coefficient matrix

Si =









s1,1,i s1,2,i . . . s1,nv ,i
s2,1,i

...
sny,1,i sny ,2,i . . . sny ,nv ,i









where s`,m,i is the ith step response coefficient relating the mth input to the
`th output. The (ny · n)× nu step response matrix is obtained by stacking up
the step response coefficient matrices

S =
[

ST
1 , ST

2 , . . . , ST
n

]T .

The state of the multiple output system at time k is defined as

Ỹ (k) =
[

ỹT
0 (k), ỹT

1 (k), . . . , ỹT
n−1(k)

]T with

ỹi(k) ∆= y(k + i) for ∆v(k + j) = 0; j ≥ 0
(2.41)

With these definitions an equivalent update equation results as in the single
variable case (2.40)

Ỹ (k + 1) = M · Ỹ (k) + S∆v(k). (2.42)

March 15, 2002 15

Here M is defined as

M =













0 I 0 0 0
0 0 I 0 . . . 0 0
...

...
0 0 0 I
0 0 0 I



































n

where the identity matrix I is of dimension ny × ny. The recursive relation
(2.42) is referred to as the step response model of the multivariable system. It
was proposed in the original formulation of Dynamic Matrix Control.

2.6 Examples

The following examples illustrate different types of step response models.

Example 2.3: SISO process with deadtime and disturbance. The step responses in
Fig. 2.4 show the effect of “side draw” (manipulated variable) and “intermediate re-
flux duty” (disturbance) on “side endpoint” in the heavy crude fractionator example
problem. The sampling time is 7 minutes and 35 step response coefficients were gener-
ated. Note the deadtimes of approximately 14 minutes in both responses. The transfer
functions used for the simulation were gsd = 5.72

(60s+1)e
−14s and gird = 1.52

(25s+1)e
−15s.

Example 2.4: SISO process with inverse response. The step response in Fig. 2.5 shows
the experimentally observed effect ref?? of a change in steam flowrate on product
concentration in a multieffect evaporator system. The long term effect of the steam
rate increase is to increase evaporation and thus the concentration. The initial decrease
of concentration is caused by an increased (diluting) flow from adjacent vaporizers. The
transfer function used for the simulation was g = 2.69(−6s+1)e−1.5s

(20s+1)(5s+1) .

The control of systems with “inverse response” is a special challenge: the controller
must not be mislead by the inverse-response effect and its action must be cautious.

Example 2.5: MIMO process. Figure 2.6 shows the response of overhead (y1) and
bottom (y2) compositions of a high purity distillation column to changes in reflux
(u1) and boilup (u2). Note that all the responses are very similar which will cause
control problems as we will see later. The transfer matrix used for the simulation was

G = 1
75s+1

�
0.878 0.864
1.082 1.096

�
.

2.7 Identification

Two approaches are available for obtaining the models needed for prediction
and control move computation. One can derive the differential equations rep-
resenting the various material, energy and momentum balances and solve these

16 Modeling and Identification

0 50 100 150 200 250
0

1

2

3

4

5

6

Time
0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time

Figure 2.4: Responses of side endpoint for step change in side draw (left) and
intermediate reflux duty (right). (n = 35, T = 7)

0 15 30 45 60 75
−0.5

0

0.5

1

1.5

2

2.5

3

Time

Figure 2.5: Response of evaporator product concentration to steam flowrate
(n = 25, T = 3).

March 15, 2002 17

0 100 200 300
0

0.5

1

u
1
 step response: y

1

Time 0 100 200 300
0

0.5

1

Time

u
2
 step response: y

1

0 100 200 300
0

0.5

1

u
1
 step response: y

2

Time 0 100 200 300
0

0.5

1

u
2
 step response: y

2

Time

Figure 2.6: Response of bottom and top composition of a high purity distilla-
tion column to step changes in boilup and reflux (n = 30, T = 10).

equations numerically. Thus one can simulate the response of the system to a
step input change and obtain a step response model. This “fundamental” mod-
eling approach is quite complex and requires much engineering effort, because
the physicochemical phenomena have to be understood and all the process
parameters have to be known or determined from experiments. The main ad-
vantage of the procedure is that the resulting differential–equation models are
usually valid over wide ranges of operating conditions.

The second approach to modeling is to perturb the inputs of the real pro-
cess and record the output responses. By relating the inputs and outputs a
process model can be derived. This approach is referred to as process identifica-
tion. Especially in situations when the process is complex and the fundamental
phenomena are not well understood, experimental process identification is the
preferred modeling approach in industry.

In this section, we will discuss the direct identification of an FIR model.
The primary advantage of fitting an FIR model is that the only parameters
to be specified by the user are the sampling time and the response length n.
This is in contrast with other techniques which use more structured models
and thus require that a structure identification step be performed first.

One of the simplest ways to obtain the step response coefficients is to step
up or step down one of the inputs. The main drawbacks are that it is not always
easy to carry out the experiments and even if they are successful the model

18 Modeling and Identification

Figure 2.7: Step response

is usually valid only in an operating region close to where the experiment was
performed. In addition, measurement noises and disturbances can significantly
corrupt the result, especially during initial transient periods.

For the experimental identification approaches, a number of issues need to
be addressed.

2.7.1 Settling Time

Very few physical processes are actually FIR but the step response coefficients
become “essentially” constant after some time. Thus, we have to determine by
inspection a time beyond which the step response coefficients do not change
appreciably and define an appropriate truncated step response model which is
FIR. If we choose this time too short the model is in error and the performance
of a controller based on this model will suffer. On the other hand, if we choose
this time too long the model will include many step response coefficients, which
makes the prediction and control computation unwieldy.

2.7.2 Sampling Time

Usually the minimum sampling interval is dictated by the control computer.
However, often this minimum sampling interval is smaller than necessary for
effective control. For example, if a process has a deadtime of ten minutes it is
unnecessary to sample the output and recompute the control action every 30
sec. Usually faster sampling leads to better closed–loop performance, but the

March 15, 2002 19

closed–loop performance of a process with a ten–minute deadtime is severely
limited by the deadtime (no reaction for ten minutes) and fast sampling does
not yield any performance gains. The following rule of thumb covers most
practical cases:

Sampling time = max {0.03× settling time, 0.3× deadtime}

For large deadtimes the sampling time is determined by the deadtime, for
small ones by the settling time. Typically step response models with about 30
step response coefficients are employed in practice (Settling Time/Sampling
Time ≈ 30). If the number of coefficients necessary to describe the response
adequately is significantly smaller or larger, then the sampling time should be
decreased or increased, respectively.

2.7.3 Choice of the Input Signal for Experimental Identifica-
tion

The simplest test is to step up or step down the inputs to obtain the step re-
sponse coefficients. When one tries to determine the impulse response directly
from step experiments one is faced with several experimental problems.

At the beginning of the experiment the plant has to be at steady state
which is often difficult to accomplish because of disturbances over which the
experimenter has no control. A typical response starting from a non–zero
initial condition is shown in Fig. 2.8 B. Disturbances can also occur during
the experiment leading to responses like that in Fig. 2.8 C.

Finally, there might be so much noise that the step response is difficult
to recognize Fig. 2.8 D. It is then necessary to increase the magnitude of the
input step and thus to increase the signal–noise ratio of the output signal.
Large steps, however, are frowned upon by the operating personnel, who are
worried about, for example, off–spec products when the operating conditions
are disturbed too much.

In the presence of significant noise, disturbances and non–steady state ini-
tial conditions, it is better to choose input signals that are more “random” in
nature. This idea of “randomness” of signals will be made more precise in the
advanced section of the book. Input signals that are more “random” should
help reduce the adverse effects due to non–steady state initial conditions, dis-
turbances and noise. However, we recommend any engineer to try to perform
a step test first since it is the easiest experiment.

2.7.4 The Linear Least Squares Problem

In order to explain the basic technique to identify an FIR model for arbitrary
input signals, we need to introduce some basic concepts of linear algebra. Let

20 Modeling and Identification

0 5 10
0

0.1

0.2

0.3

0.4

0.5
A: True Response (s2 + 3s + 2)−1

0 5 10
−0.2

0

0.2

0.4

0.6
B: Starting from Unsteady Condition

0 50 100
0

0.2

0.4

0.6

0.8
C: Unmeasured Distrubance

0 5 10
−0.2

0

0.2

0.4

0.6

0.8
D: Measurement Noise

Figure 2.8: (A) “True” step response. (B) Erroneous step responses caused
by non–steady state initial conditions and (C) unmeasured disturbances, (D)
measurement noise.

us assume that the following system of linear equations is given:

b = Ax (2.43)

where the matrix A has more rows than columns. That is, there exist more
equations than there are unknowns, the linear system is overspecified. Let us
also assume that A has full column rank. This means that the rank of A is
equal to the dimension of the solution vector x.

This system of equations has no exact solution because there are not
enough degrees of freedom to satisfy all equations simultaneously. However,
one can find a solution that makes the left hand and right hand sides “close”
to each other. One way is to find a vector x that minimizes the sum of squares
of the equation residuals. Let us denote the vector of residuals as

ρ = b−Ax (2.44)

The optimization problem that finds this solution is formulated as follows:

March 15, 2002 21

min
x

ρT ρ = min
x

(b−Ax)T (b−Ax) (2.45)

The necessary condition for optimality yields the equations1

d(ρT ρ)
dx

= −2AT (b−Ax) = 0 (2.47)

Note that the second order derivative

d2(ρT ρ)
dx2 = 2AT A (2.48)

is positive definite because of the rank condition of A, and thus the solution
of (2.47) for x

x = (AT A)−1AT b (2.49)

minimizes the objective function. This solution of a set of overspecified linear
equations is denoted as a least squares solution. The matrix (AT A)−1AT is
denoted as the generalized inverse of the matrix A. Note that in case A is
square, its generalized inverse is A−1, the exact inverse.

In some cases, it may be desirable to weigh each component of the residual
vector ρ differently in finding x. The solution that minimizes the 2-norm of
the weighted residual vector Λρ is

x = (AT ΛT ΛA)−1AT ΛT Λb (2.50)

Note that formulas (2.49) and (2.50) are algebraically correct, but are
never used for numerical computations. Most available software employs the
QR algorithm for determining the least squares solution. The reader is referred
to the appropriate numerical analysis literature for more information.

2.7.5 Linear Least Squares Identification

The standard parameter fitting algorithm employed in identification is the least
squares algorithm or one of its many variants. In the most general case it fits
a model relating one output variable of a process to multiple inputs (the same
algorithm is used for all outputs from the same test data). When many inputs
vary simultaneously they must be uncorrelated so that the individual models
can be obtained. Directly fitting an FIR model provides many advantages to an

1The derivative of the quadratic expression fT f where f = f(x) is defined as follows:

d(fT f)
dx

= 2
dfT

dx
f (2.46)

22 Modeling and Identification

inexperienced user. For example, apart from the settling time of the process,
it requires essentially no other a priori information about the process. Here we
give a brief derivation of the least squares identification technique and some
modifications to overcome the drawbacks of directly fitting an FIR model.

Let us assume the process has a single output y and a set of inputs vj, j =
1, . . . , nv. Let us also assume that the process is described by an impulse
response model as follows:

y(k) =
nv
∑

j=1

n
∑

i=1

hj,ivj(k − i) + ν(k − 1) (2.51)

where ν(k − 1) collects any effects on y not described by the model.

We assume that n is selected sufficiently large so that ν only has to ac-
count for unmeasured input effects such as noise, disturbances, and bias in the
steady-state values.

In practice, it is difficult to define the steady states for inputs and outputs
because they tend to change with time according to process disturbances.
Hence, for the purpose of identification, it is common to re-express the model
in terms of incremental changes in the inputs and outputs from sample time
to sample time:

∆y(k) =
nv
∑

j=1

n
∑

i=1

hj,i∆vj(k − i) + ∆ν(k − 1) (2.52)

(This model can be obtained directly by writing (2.51) for the times k and
k−1 and differencing.) We assume that ∆ν is independent of, or uncorrelated
to ∆v.

If we collect the values of the output and inputs over N +n intervals of time
from an on-line experiment we can estimate the impulse response coefficients
of the model as follows. We can write (2.52) over the past N intervals of time
up to the current time N + n:





















∆y(n + 1)
∆y(n + 2)

...
∆y(n + N)

︸ ︷︷ ︸

YN





















=

March 15, 2002 23





















∆v1(n) · · · ∆v1(1) ∆v2(n) · · · ∆vnv(1)
∆v1(n + 1) · · · ∆v1(2) ∆v2(n− 1) · · · ∆vnv(2)

...
...

∆v1(n + N − 1) · · · ∆v1(N) ∆v2(n + N − 1) · · · ∆vnv(N)
︸ ︷︷ ︸

ΦN





















·































h1,1
...

h1,n
h2,1

...
hnv,n

︸ ︷︷ ︸

θ































+





















∆ν(n + 1)
∆ν(n + 2)

...
∆ν(n + N)

︸ ︷︷ ︸

VN





















(2.53)

(2.54)

A natural objective for selecting θ is to minimize the square norm of the
residual vector VN . With this objective, the parameter estimation problem is
reduced to the least-squares problem discussed in the previous section:

YN = ΦNθ (2.55)

where YN is the vector of past output measurements, ΦN is the matrix con-
taining all past input measurements, θ is the vector of parameters to be iden-
tified. If the number of data points N is larger than the total number of
parameters in θ (nv · n), the following formula for the least squares estimate
of θ for N data points, that is the choice of θ that minimizes the quantity
(YN − ΦNθ)T (YN − ΦNθ), can be found from (2.49):

θ̂N = [ΦN
T ΦN]−1ΦN

T YN (k). (2.56)

In practical identification experiments, the expected variance of the error
ν(k) for each data point may vary. For example, the engineer may know that
the data points obtained during a certain time interval are corrupted by more
severe noise than others. It is logical that the errors for the data points that
are likely to be inaccurate are weighed less in calculating θ than others. This
can be easily done by finding θ that minimizes the weighted square of the
residuals. Higher weights are assigned to data points that are believed to be
more accurate. Once again, this is formulated into a least squares problem
whose objective is to minimize

(YN − ΦNθ)T ΛT
ν Λν(YN − ΦNθ) (2.57)

24 Modeling and Identification

The solution follows from:

θ̂N = [ΦN
T ΛT

ν ΛνΦN]−1ΦN
T ΛT

ν ΛνYN (k). (2.58)

It can be shown that if the underlying system is truly linear and n is large
enough so that ∆ν and ∆v are uncorrelated, this estimate is unbiased (i.e., it
is “expected” to be right or right on the average). Also, the estimate converges
to the true value as the number of data points N becomes large, under some
mild condition. Reliable software exists to obtain the least squares estimates
of the parameters θ.

A major drawback of this approach is that a large number of data points
needs to be collected because of the many parameters to be fitted. This is
required because in the presence of noise the variance of the parameters could
be so large as to render the fit useless. Often, the resulting step response will
be non-smooth with many sharp peaks. One simple approach to alleviate this
difficulty is to add a penalty term on the magnitude of the changes of the step
response coefficients, i.e. the impulse response coefficients, to be identified.
In other words, θ is found such that the quantity (YN − ΦNθ)T ΛT

ν Λν(YN −
ΦNθ) + θT ΛT

θ Λθθ is minimized where Λθ is a weighting matrix penalizing the
magnitudes of the impulse response coefficients. In other words, the weight
penalizes sharp changes in the step response coefficients. As before, this can
be formulated as a least-squares problem

[

ΛνYN
0

]

=
[

ΛνΦN
Λθ

]

θ (2.59)

yielding the solution

θ̂N = [ΦN
T ΛT

ν ΛνΦN + ΛT
θ Λθ]−1ΦN

T ΛT
ν ΛνYN (2.60)

This simple modification to the standard least-squares identification algo-
rithm should result in smoother step responses. One drawback of the method
is that the optimal choice of the weighting matrix Λθ is often unclear. Choos-
ing too large a Λθ can lead to severely biased estimates even with large data
sets. On the other hand, too small a choice of Λθ may not smooth the step
response sufficiently. Other more sophisticated statistical methods to reduce
the error variance of the parameters will be discussed in the advanced part of
this book.

The procedure above can also be used to fit measured disturbance mod-
els to be used for feedforward compensation in MPC. Designing the manip-
ulated inputs such that they are uncorrelated with the disturbance should
minimize problems when fitting disturbance models. Of course, the measured
disturbance must also have enough natural excitation, which may be hard to
guarantee.

March 15, 2002 25

We stress that process identification is the most time consuming step in
the implementation of MPC. We have presented in this section a rudimen-
tary discussion of the most basic identification technique. A more rigorous
discussion of the technique as well as the discussion of other more advanced
identification algorithms will be given in the advanced part of this book.

26 Modeling and Identification

Chapter 3

Dynamic Matrix Control -
The Basic Algorithm

Dynamic Matrix Control (DMC) was one of the first commercial implemen-
tations of Model Predictive Control (MPC). In this chapter we describe the
basic ideas of the algorithm.

3.1 The Idea of Moving Horizon Control

Consider the diagram in Fig. 3.1. At the present time k the behavior of the
process over a horizon p is considered. Using the model, the response of the
process output to changes in the manipulated variable is predicted. Current
and future moves of the manipulated variables are selected such that the pre-
dicted response has certain desirable (or optimal) characteristics. For instance,
a commonly used objective is to minimize the sum of squares of the future
errors, i.e., the deviations of the controlled variable from a desired target (set-
point). This minimization can also take into account constraints which may
be present on the manipulated variables and the outputs.

The idea is appealing but would not work very well in practice if the moves
of the manipulated variable determined at time k were applied blindly over
the future horizon. Disturbances and modelling errors may lead to deviations
between the predicted behavior and the actual observed behavior, so that
the computed manipulated variable moves may not be appropriate any more.
Therefore only the first one of the computed moves is actually implemented. At
the next time step k+1 a measurement is taken, the horizon is shifted forward
by one step, and the optimization is done again over this shifted horizon based
on the current system information. Therefore this control strategy is also
referred to as moving horizon control.

A similar strategy is used in many other non-technical situations. One

27

28 Dynamic Matrix Control - The Basic Algorithm

Figure 3.1: Moving Horizon Control

example is computer chess where the computer moves after evaluating all
possible moves over a specified “depth” (the horizon). At the next turn the
evaluation is repeated based on the current board situation. Another example
would be investment planning. A five-year plan is established to maximize the
return. Periodically a new five year plan is put together over a shifted horizon
to take into account changes which have occurred in the economy.

The DMC algorithm includes as one of its major components a technique
to predict the future output of the system as a function of the inputs and
disturbances. This prediction capability is necessary to determine the optimal
future control inputs and was outlined in the previous chapter. Afterwards
we will state the objective function, formulate the optimization problem and
comment on its solution. Finally we will discuss the various tuning parameters
which are available to the user to affect the performance of the controller.

March 15, 2002 29

+

+

Figure 3.2: Basic Problem Setup

3.2 Multi-Step Prediction

We consider the setup depicted in Fig. 3.2 where we have three different types
of external inputs: the manipulated variable (MV) u, whose effect on the
output, usually a controlled variable (CV), is described by Pu; the measured
disturbance variable (DV) d whose effect on the output is described by Pd;
and finally the unmeasured and unmodeled disturbances wy which add a bias
to the system output. The overall system can be described by

y(k) =
[

P u P d
]

[

u(k)
d(k)

]

+ wy(k) (3.1)

We assume that step response models Su, Sd are available for the system
dynamics Pu and Pd, respectively. We can define the overall multivariable
step response model

S =
[

Su Sd
]

(3.2)

which is driven by the known overall input

∆v(k) =
[

∆u(k)
∆d(k)

]

. (3.3)

Let us adopt (2.41) as the system state

Ỹ (k) =
[

ỹ0(k), ỹ1(k), . . . , ỹn−1(k)
]T (3.4)

By definition the state consists of the future system outputs

Ỹ (k) =











y(k)
y(k + 1)

...
y(k + n− 1)











(3.5)

30 Dynamic Matrix Control - The Basic Algorithm

obtained under the assumption that the system inputs do not change from the
previous values, i.e.,

∆u(k) = ∆u(k + 1) = · · · = 0
∆d(k) = ∆d(k + 1) = · · · = 0.

(3.6)

Also, the state does not include any unmeasureed disturbance information and
hence it is assumed in the definition that

wy(k) = wy(k + 1) = · · · = 0 (3.7)

The state is updated according to (2.42)

Ỹ (k) = M · Ỹ (k − 1) + S∆v(k − 1). (3.8)

The equation reflects the effect of the input change ∆v(k − 1) on the future
evolution of the system assuming that there are no further input changes.
The influence of the input change manifests itself through the step response
matrix S. The effect of any future input changes is described as well by the
appropriate step response matrix. Let us consider the predicted output over
the next p time steps














y(k + 1|k)
y(k + 2|k)
y(k + 3|k)

...
y(k + p|k)















=















ỹ1(k)
ỹ2(k)
ỹ2(k)

...
ỹp(k)















+















Su
1

Su
2

Su
3
...

Su
p















∆u(k|k) +















0
Su

1
Su

2
...

Su
p−1















∆u(k + 1|k) + · · ·+















0
0
0
...

Su
1















∆u(k + p− 1|k)

+















Sd
1

Sd
2

Sd
3
...

Sd
p















∆d(k|k) +















0
Sd

1
Sd

2
...

Sd
p−1















∆d(k + 1|k) + · · ·+















0
0
0
...

Sd
1















∆d(k + p− 1|k)

+















wy(k + 1|k)
wy(k + 2|k)
wy(k + 3|k)

...
wy(k + p|k)















(3.9)

Here the first term on the right hand side, the first p elements of the state,
describes the future evolution of the system when all the future input changes

March 15, 2002 31

are zero. The remaining terms describe the effect of the present and future
changes of the manipulated inputs ∆u(k + i|k), the measured disturbances
∆d(k + i|k), and the unmeasured and unmodeled disturbances wy(k + i|k).
The notation y(k + i|k) represents the prediction of y(k + i) made based on
the information available at time k. The same notation applies to ∆d and wy.

The values of most of these variables are not available at time k and have
to be predicted in a rational fashion. From the measurement at time k d(k) is
known and therefore ∆d(k) = d(k)− d(k− 1). Unless some additional process
information or “upstream” measurements are available to conclude about the
future disturbance behavior, the disturbances are assumed not to change in
the future for the derivation of the DMC algorithm.

∆d(k + 1|k) = ∆d(k + 2|k) = · · · = ∆d(k + p− 1|k) = 0 (3.10)

This assumption is reasonable when the disturbances are varying only infre-
quently. Similarly, we will assume that the future unmodeled disturbances
wy(k + i|k) do not change.

wy(k|k) = wy(k + 1|k) = wy(k + 2|k) = · · · = wy(k + p|k) (3.11)

We can get an estimate of the present unmodeled disturbance from (3.1)

wy(k|k) ≈ ym(k)− ỹ0(k). (3.12)

where ym(k) represents the value of the output as actually measured in the
plant. Here ỹ0(k), the first component of the state Ỹ (k), is the model predic-
tion of the output at time k (assuming wy(k) = 0) based on the information
up to this time. The difference between this predicted output and the mea-
surement provides a good estimate of the unmodeled disturbance.

For generality we want to consider the case where the manipulated in-
puts are not varied over the whole horizon p but only over the next m steps
(∆u(k|k), ∆u(k + 1|k), · · · , ∆u(k + m − 1|k)) and that the input changes are
set to zero after that.

∆u(k + m|k) = ∆u(k + m + 1|k) = · · · = ∆u(k + p− 1)|k) = 0 (3.13)

With these assumptions (3.9) becomes

Y(k + 1|k) =














ỹ1(k)
ỹ2(k)
ỹ3(k)

...
ỹp(k)















︸ ︷︷ ︸

MỸ (k)
from the memory

+















Sd
1

Sd
2

Sd
3
...

Sd
p















∆d(k)

︸ ︷︷ ︸

Sd∆d(k)
feedforward term

+















ym(k)− ỹ0(k)
ym(k)− ỹ0(k)
ym(k)− ỹ0(k)

...
ym(k)− ỹ0(k)















︸ ︷︷ ︸

Ip(ym(k)− ỹ0(k))
feedback term

32 Dynamic Matrix Control - The Basic Algorithm

+





















Su
1 0 0 · · · 0

Su
2 Su

1 0 · · · 0
...

...
.

...
Su

m Su
m−1 Su

m−2 · · · Su
1

...
...

.
...

Su
p Su

p−1 Su
p−2 · · · Su

p−m+1





















︸ ︷︷ ︸

Su

dynamic matrix















∆u(k|k)
∆u(k + 1|k)
∆u(k + 2|k)

...
∆u(k + m− 1|k)















︸ ︷︷ ︸

∆U(k)
future input moves

(3.14)

Here we have introduced the new symbols

Y(k + 1|k) =









y(k + 1|k)
y(k + 2|k)

...
y(k + p|k)









(3.15)

Su =





















Su
1 0 . . . 0

Su
2 Su

1 . . . 0
...

...
...

Su
m Su

m−1 . . . Su
1

...
...

...
Su

p Su
p−1 . . . Su

p−m+1





















(3.16)

Sd =









Sd
1

Sd
2
...

Sd
p









(3.17)

Ip =









I
I
...
I























p (3.18)

∆U(k) =









∆u(k|k)
∆u(k + 1|k)

...
∆u(k + m− 1|k)









(3.19)

March 15, 2002 33

M =











































































k

0 I 0 0
0 0 I 0 0
...

...
.

...
...

0 · · · · · · 0 I 0 · · · 0























p for p ¡ n



















0 I 0 . . . 0
0 0 I . . . 0
...

...
.

...
0 · · · · · · 0 I
...

...
...

0 · · · · · · 0 I





















































p for p ≥ n

(3.20)

With this new notation the p-step ahead prediction becomes

Y(k + 1|k) = MỸ (k) + Sd∆d(k) + Ip(ym(k)− ỹ0(k)) + Su∆U(k). (3.21)

where the first three terms are completely defined by past control actions
(Ỹ (k), ỹ0(k)) and present measurements (ym(k), ∆d(k)) and the last term
describes the effect of future manipulated variable moves ∆U(k).

This prediction equation can be easily adjusted if different assumptions are
made on the future behavior of the measured and unmeasured disturbances.
For instance, if the disturbances are expected to evolve in a ramp-like fashion
then we would set

∆d(k) = ∆d(k + 1|k) = · · · = ∆d(k + p− 1|k) (3.22)

and
wy(k + `|k) = wy(k|k) + `(wy(k|k)− wy(k − 1|k − 1)) (3.23)

3.3 Objective Function

Plant operation requirements determine the performance criteria of the control
system. These criteria must be expressed in mathematical terms so that a
control law can be obtained in algorithmic form. In DMC a quadratic objective
function is used which can be stated in its simplest form as1

min
∆u(k|k)...∆u(k+m−1|k)

p
∑

`=1

‖y(k + `|k)− r(k + `)‖2
. (3.24)

This criterion minimizes the sum of squared deviations of the predicted CV
values from a time–varying reference trajectory or setpoint r(k + `) over p

1‖x‖ denotes the norm (xT x)
1
2 of the vector x.

34 Dynamic Matrix Control - The Basic Algorithm

future time steps. The quadratic criterion penalizes large deviations propor-
tionally more than smaller ones so that on the average the output remains
close to its reference trajectory and large excursions are avoided.

Note that the manipulated variables are assumed to be constant after m
intervals of time into the future, or equivalently,

∆u(k + m|k) = ∆u(k + m + 1|k) = · · · = ∆u(k + p− 1|k) = 0,

where m ≤ p always. This means that DMC determines the next m moves,
only. The choices of m and p affect the closed–loop behavior. Moreover, m, the
number of degrees of freedom, has a dominant influence on the computational
effort. Also, it does not make sense to make the horizon longer than m + n
(p ≤ m+n), because for an FIR system of order n the system reaches a steady
state after m + n steps. Increasing the horizon beyond m + n would simply
add identical constant terms to the objective function(3.24).

Due to inherent process interactions, it is generally not possible to keep
all outputs close to their corresponding reference trajectories simultaneously.
Therefore, in practice only a subset of the outputs is controlled well at the
expense of larger excursions in others. This can be influenced transparently
by including weights in the objective function as follows

min
∆u(k|k)...∆u(k+m−1|k)

p
∑

`=1

‖Γy
` [y(k + `|k)− r(k + `)]‖2

. (3.25)

For example, for a system with two outputs y1 and y2, and constant diagonal
weight matrices of the form

Γy
` =

[

γ1 0
0 γ2

]

; ∀` (3.26)

the objective becomes

min
∆u(k|k)...∆u(k+m−1|k)

{ γ1
2

p
∑

`=1

[y1(k + `|k)− r1(k + `)]2 +

γ2
2

p
∑

`=1

[y2(k + `|k)− r2(k + `)]2 }. (3.27)

Thus, the larger the weight is for a particular output, the larger is the contri-
bution of its sum of squared deviations to the objective. This will make the
controller bring the corresponding output closer to its reference trajectory.

Finally, the manipulated variable moves that make the output follow a
given trajectory could be too severe to be acceptable in practice. This can be
corrected by adding a penalty term for the manipulated variable moves to the

March 15, 2002 35

objective as follows:

min
∆U(k)

p
∑

`=1

‖Γy
` [y(k + `|k)− r(k + `)]‖2 +

m
∑

`=1

‖Γu
` [∆u(k + `− 1)]‖2. (3.28)

Note that the larger the elements of the matrix Γu
` are, the smaller the resulting

moves will be, and consequently, the output trajectories will not be followed
as closely. Thus, the relative magnitudes of Γy

` and Γu
` will determine the

trade-off between following the trajectory closely and reducing the action of
the manipulated variables.

Of course, not every practical performance criterion is faithfully repre-
sented by this quadratic objective. However, many control problems can be
formulated as trajectory tracking problems and therefore this formulation is
very useful. Most importantly this formulation leads to an optimization prob-
lem for which there exist effective solution techniques.

3.4 Constraints

In many control applications the desired performance cannot be expressed
solely as a trajectory following problem. Many practical requirements are
more naturally expressed as constraints on process variables.

There are three types of process constraints

Manipulated Variable Constraints: these are hard limits on inputs u(k)
to take care of, for example, valve saturation constraints;

Manipulated Variable Rate Constraints: these are hard limits on the
size of the manipulated variable moves ∆u(k) to directly influence the
rate of change of the manipulated variables;

Output Variable Constraints: hard or soft limits on the outputs of the
system are imposed to, for example, avoid overshoots and undershoots.
These can be of two kinds:

• Controlled Variables: limits for these variables are specified even
though deviations from their setpoints are minimized in the objec-
tive function

• Associated Variables: no setpoints exist for these output variables
but they must be kept within bounds (i.e. corresponding rows of
Γy

` are zero for the projections of these variables in the objective
function given in (3.28).

The three types of constraints in DMC are enforced by formulating them as
linear inequalities. In the following we explicitly formulate these inequalities.

36 Dynamic Matrix Control - The Basic Algorithm

3.4.1 Manipulated Variable Constraints

The solution vector of DMC contains not only the current moves to be im-
plemented but also the moves for the future m intervals of time. Although
violations can be avoided by constraining only the move to be implemented,
constraints on future moves can be used to allow the algorithm to anticipate
and prevent future violations thus producing a better overall response. The
manipulated variable value at a future time k + ` is constrained to be

ulow(`) ≤
∑̀

j=0

∆u(k + j|k) + u(k − 1) ≤ uhigh(`); ` = 0, 1, . . . m− 1

where u(k−1) is the implemented previous value of the manipulated variable.
For generality, we allowed the limits ulow(`), uhigh(`) to vary over the horizon.
These constraints are expressed in matrix form for all projections as

[

−IL
IL

]

∆U(k) ≥





















u(k − 1)− uhigh(0)
...

u(k − 1)− uhigh(m− 1)
ulow(0)− u(k − 1)

...
ulow(m− 1)− u(k − 1)





















(3.29)

where

IL =











I 0 · · · 0
I I · · · 0
...

...
. . .

...
I I · · · I











.

(3.30)

3.4.2 Manipulated Variable Rate Constraints

Often MPC is used in a supervisory mode where there are limitations on the
rate at which lower level controller setpoints are moved. These are enforced
by adding constraints on the manipulated variable move sizes:

[

−I
I

]

∆U(k) ≥





















−∆umax(0)
...

−∆umax(m− 1)
−∆umax(0)

...
−∆umax(m− 1)





















(3.31)

where ∆umax(`) > 0 is the possibly time varying bound on the magnitude of
the moves.

March 15, 2002 37

3.4.3 Output Variable Constraints

The algorithm can make use of the output predictions (3.21) to anticipate
future constraint violations.

Ylow ≤ Y(k + 1|k) ≤ Yhigh (3.32)

Substituting from (3.21) we obtain constraints on ∆U(k)

[

−Su

Su

]

∆U(k) ≥
[

MỸ (k) + Sd∆d(k) + Ip(ym(k)− ỹ0(k))− Yhigh

−(MỸ (k) + Sd∆d(k) + Ip(ym(k)− ỹ0(k))) + Ylow

]

(3.33)
where

Ylow =











ylow(1)
ylow(2)

...
ylow(p)











; Yhigh =











yhigh(1)
yhigh(2)

...
yhigh(p)











are vectors of output constraint trajectories ylow(`), yhigh(`) over the horizon
length p.

3.4.4 Combined Constraints

The manipulated variable constraints (3.29), manipulated variable rate con-
straints (3.31) and output variable constraints (3.33) can be combined into
one convenient expression

Cu∆U(k) ≥ C(k + 1|k) (3.34)

where Cu combines all the matrices on the left hand side of the inequalities as
follows:

Cu =

















−IL
IL
−I
I

−Su

Su

















.

(3.35)

38 Dynamic Matrix Control - The Basic Algorithm

The vector C(k +1|k) on the right hand side collects all the “error” vectors on
the constraint equations as follows:

C(k + 1|k) =

























































u(k − 1)− uhigh(0)
...

u(k − 1)− uhigh(m− 1)
ulow(0)− u(k − 1)

...
ulow(m− 1)− u(k − 1)

−∆umax(0)
...

−∆umax(m− 1)
−∆umax(0)

...
−∆umax(m− 1)

MỸ (k) + Sd∆d(k) + Ip(ym(k)− ỹ0(k))− Yhigh

−(MỸ (k) + Sd∆d(k) + Ip(ym(k)− ỹ0(k))) + Ylow

























































(3.36)

3.5 Quadratic Programming Solution of the Con-
trol Problem

3.5.1 Quadratic Programs

Before the development of the DMC optimization problem, we introduce some
basic concepts of nonlinear programming. In particular, the following formu-
lation of a Quadratic Program (QP) is considered:

min
x

xT Hx− gT x

s.t. Cx ≥ c (3.37)

where

H is a symmetric matrix called the Hessian matrix;

g is the gradient vector;

C is the inequality constraint equation matrix; and

c is the inequality constraint equation vector.

This problem minimizes a quadratic objective in the decision variables x
subject to a set of linear inequalities. In the absence of any constraints the

March 15, 2002 39

solution of this optimization problem can be found analytically by computing
the necessary conditions for optimality as follows:

d(xT Hx− gT x)
dx

= 2Hx− g = 0. (3.38)

The second order derivative is
d2(xT Hx− gT x)

dx2 = 2H

which means that for an unconstrained minimum to exist, the Hessian must
be positive semi-definite.

Note that in Section 2.7.4 the general Least Squares problem was formu-
lated as an unconstrained minimization of a quadratic objective. In fact, the
problem of minimizing the sum of squares of the residual of a set of linear
equations

ρ = Ax− b

can be put in the form of this QP very simply since

min
x

ρT ρ = min
x

(Ax− b)T (Ax− b)

= min
x

xT AT Ax− 2bT Ax + bT b

Thus the QP is
min

x
xT AT Ax− 2bT Ax

yielding

H = AT A

g = 2AT b.

In order to obtain the unique unconstrained solution

x =
1
2
H−1g

H must be positive definite, which is the same condition required in Sec-
tion 2.7.4.

When the inequality constraints are added, strict positive definiteness of
H is not required. For instance, for H = 0 the optimization problem becomes

min
x

−gT x

s.t. Cx ≥ c (3.39)

which is a Linear Programming (LP) problem. The solution of an LP will al-
ways lie at a constraint. This is not necessarily true of QP solutions. Although
not a requirement, more efficient QP algorithms are available for problems
with a positive definite H. For example, parametric QP algorithms employ
the pre–inverted Hessian in its computations, thus reducing the computational
requirements [?, ?].

40 Dynamic Matrix Control - The Basic Algorithm

3.5.2 Formulation of Control Problem as a Quadratic Program

We make use of the prediction equation (3.21) to rewrite the objective

min
∆U(k)

p
∑

`=1

‖Γy
` [y(k + `|k)− r(k + `)]‖2 +

m
∑

`=1

‖Γu
` [∆u(k + `− 1)]‖2. (3.40)

and add the constraints (3.34) to obtain the optimization problem

min
∆U(k)

{

‖Γy [Y(k + 1|k)−R(k + 1)] ‖2 + ‖Γu∆U(k)‖2} (3.41)

s.t. Y(k + 1|k) = MỸ (k) + Sd∆d(k) + Ip(ym(k)− ỹ0(k)) + Su∆U(k)

Cu∆U(k) ≥ C(k + 1|k) (3.42)

where
Γu = diag {Γu

1 , · · · , Γu
m} (3.43)

and
Γy = diag

{

Γy
1, · · · ,Γ

y
p
}

(3.44)

are the weight matrices in block diagonal form, and

R(k + 1) =











r(k + 1)
r(k + 2)

...
r(k + p)











(3.45)

is the vector of reference trajectories.

We can substitute the prediction equation into the objective function to
obtain

‖Γy [Y(k + 1|k)−R(k + 1)] ‖2 + ‖Γu∆U(k)‖2 (3.46)

= ‖Γy [Su∆U(k)− Ep(k + 1|k)] ‖2 + ‖Γu∆U(k)‖2 (3.47)

= ∆UT (k)(SuT ΓyT ΓySu + ΓuT Γu)∆U(k) (3.48)

−2Ep(k + 1|k)T ΓyT ΓySu∆U(k) + ET
p (k + 1|k)ΓyT ΓyEp(k + 1|k)

Here we have defined

Ep(k + 1|k) =











e(k + 1|k)
e(k + 2|k)

...
e(k + p|k)











(3.49)

∆= R(k + 1)−
[

MỸ (k) + Sd∆d(k) + Ip(ym(k)− ỹ0(k))
]

,

which is the measurement corrected vector of future output deviations from the
reference trajectory (i.e., errors), assuming that all future control moves are

March 15, 2002 41

zero. Note that this vector includes the effect of the measurable disturbances
(Sd∆d(k)) on the prediction.

The optimization problem with a quadratic objective and linear inequal-
ities, which we have defined is a Quadratic Program. By converting to the
standard QP formulation the DMC problem becomes2:

min
∆U(k)

∆U(k)THu∆U(k)− G(k + 1|k)T ∆U(k)

s.t. Cu∆U(k) ≥ C(k + 1|k) (3.50)

where the Hessian of the QP is

Hu = SuT ΓyT ΓySu + ΓuT Γu (3.51)

and the gradient vector is

G(k + 1|k) = 2SuT ΓyT ΓyEp(k + 1|k). (3.52)

3.6 Implementation

As explained in the introduction of this chapter the implementation of DMC
is done in a moving horizon fashion. This implies that the Quadratic Program
derived above will be solved at each controller execution time. Because of
this feature, the algorithm can be configured on–line as required to take care
of unexpected situations. For example, in case an actuator is lost during
the implementation, the high and low constraint limits on that particular
manipulated variable can be set to be equal. Then the MPC problem with the
remaining manipulated variables is solved. Similarly, the weight parameters in
the objective function can also be adjusted on-line, giving the user the ability
to tune the control law. In this section we discuss the different implementation
issues associated with DMC.

3.6.1 Moving Horizon Algorithm

The constrained MPC algorithm is implemented on-line as follows.

1. Preparation. Do not vary the manipulated variables for at least n time
intervals (∆u(−1) = ∆u(−2) = . . . = ∆u(−n) = 0) and assume the
measured disturbances are zero (∆d(−1) = ∆d(−2) = . . . = ∆d(−n) =
0) during that time. Then the system will be at rest at k = 0.

2The term ET
p (k +1|k)Ep(k +1|k) is independent of ∆U(k) and can be removed from the

objective function.

42 Constrained Model Predictive Control

2. Initialization (k = 0). Measure the output ŷ(0) and initialize the model
prediction vector as3

Ỹ (k) =



ym(0)T , ym(0)T , . . . , ym(0)T
︸ ︷︷ ︸

n





T

(3.53)

3. State Update: Set k = k + 1. Then, update the state according to

Ỹ (k) = M · Ỹ (k − 1) + Su∆u(k − 1) + Sd∆d(k − 1) (3.54)

where the first element of Ỹ (k), ỹ(k|k), is the model prediction of the
output ym(k) at time k.

4. Obtain Measurements: Obtain measurements (ym(k), ∆d(k)).

5. Compute the reference trajectory error vector

Ep(k+1|k) = R(k+1)−MỸ (k)+Sd∆d(k)+Ip(ym(k)− ỹ0(k)) (3.55)

6. Compute the QP gradient vector

G(k + 1|k) = SuT (Γy)T ΓyEp(k + 1|k). (3.56)

7. Compute the constraint equations right hand side vector

C(k + 1|k) =

























































u(k − 1)− uhigh(0)
...

u(k − 1)− uhigh(m− 1)
ulow(0)− u(k − 1)

...
ulow(m− 1)− u(k − 1)

−∆umax(0)
...

−∆umax(m− 1)
−∆umax(0)

...
−∆umax(m− 1)

−Ep(k + 1|k) +R(k + 1)− Yhigh
Ep(k + 1|k)−R(k + 1) + Ylow

























































(3.57)

3If (3.53) is used for intialization and changes in the past n inputs did actually occur,
then the initial operation of the algorithm will not be smooth. The transfer from manual to
automatic will introduce a disturbance; it will not be “bumpless”.

March 15, 2002 43

8. Solve the QP

min
∆U(k)

1
2∆U(k)THu∆U(k) − G(k + 1|k)T ∆U(k)

s.t. Cu∆U(k) ≥ C(k + 1|k)
(3.58)

and implement ∆u(k|k) as ∆u(k) on the plant.

9. Go to 3.

Note that the sequence of moves produced by the moving horizon implemen-
tation of the QP will be different from the sequence of moves ∆U(k).

Example 3.1: DMC Control of a SISO process Consider a process defined by the transfer
function g = 1

36s2+12s+1 . Sampling interval used was 1, and the horizons p = 12 and
m = 4. We wish to drive the system, starting from rest, to the output setpoint -0.4.
The input constraints are −0.5 ≤ u ≤ 0.5 and |∆u| ≤ 0.05. The weighting matrices
were chosen to be γy = 1 and γu = 0.

0 5 10 15 20 25 30 35 40 45 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

y 1

Application of DMC to a SISO Process with Constraints

Time

0 5 10 15 20 25 30 35 40 45 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

u 1

Time

Figure 3.3: Application of DMC control to a SISO system with input con-
straints (p = 12, m = 4).

Implementation of the DMC algorithm was done using MATLABTM file given below

44 Constrained Model Predictive Control

%
% Implementation of DMC using MATLAB
%

% ---- Obtaining Step Response Coeff. ----
g = tf([1],[36 12 1]);
N = 60; % Settling time
delt = 1; % Time Step
Su = step(g,[1:N]*delt);

% Response to unit step change

% -------- Controller parameters ---------
M = 4;
P = 12; % Horizons
gammaY = 1*eye(P);
gammaU = 0*eye(M); % Weighting matrices

Umax = 0.5; Umin = -0.5;
dUmax= .05; dUmin= -.05; % Constraints
SET = ones(P,1)*(-0.4);

% ------ Building Working Matrices -------
bigSu = [];
for i = 1:M

bigSu = [bigSu, [zeros(i-1,1);
Su(1:P-(i-1))]

];
end
% bigSu is "Dynamic Prediction Matrix"
% See equation 3.16

% ---------- Constrainted DMC ------------
Yhat = zeros(N,1); % Initialize state
U = 0; delU = 0; % Initialize input
Y = 0; % Initialize output

Hess = bigSu’*gammaY’*gammaY*bigSu + gammaU’*gammaU;
% Hessian

IL = tril(ones(M)); % IL is part of LHS
% matrix for the constraint equation

Cu = [-IL; IL; -eye(M); eye(M)];
% LHS of constraint equation 3.34.

for i=2:101
Yhat = [Yhat(2:N); Yhat(N)] + Su*delU;

% State Update

March 15, 2002 45

Y(i,:) = Yhat(1)’;
% Note: No plant-model mismatch

Ep = SET - Yhat(2:(P+1));
% Note: No plant-model mismatch

G = bigSu’*gammaY’*gammaY*Ep;
% Gradient

ILmul = ones(M,1);

Crhs = [ILmul*[U(i-1,:)’ - Umax];
ILmul*[Umin - U(i-1,:)’];
ILmul*[-dUmax];
ILmul*[dUmin]];

deltaU = quadprog(Hess, -G, -Cu, -Crhs);
% Note that our problem is
% min ∆U’*Hess*∆U - 2G*∆U
% Cu*∆U >= Crhs
% We will use "quadprog" to solve QP
delU = deltaU(1);

U(i,:) = U(i-1,:) + delU’;
end

3.6.2 Solving the QP

In a moving horizon framework the QP in (3.58) is solved at each controller
execution time after a new prediction is obtained. The only time varying
elements in this problem are the vectors Ep(k+1|k) (or equivalently G(k+1|k))
and C(k + 1|k). That is, the Hessian Hu of the QP remains constant for
all executions. In that case, as explained above a parametric QP algorithm
which employs the pre–inverted Hessian in its computations is preferable in
order to reduce on-line computation effort. Note that in the unconstrained
case this is equivalent to the off–line computation of KMPC . Of course, in
case either Γy or Γu (or the step response coefficients) need to be updated,
or the model’s step response coefficients have changed, the Hessian must be
recomputed and inverted in background mode in order not to increase the
on–line computational requirements.

QP is a convex program and therefore is fundamentally tractable, meaning
a global optimal solution within a specified tolerance can be assured. Though
not extensively as LPs, QPs have been well studied and reliable algorithms
have been developed and coded. General-purpose QP solvers like QPSOL are
readily available but use of tailored algorithms that take advantage of specific
problem structures can offer significant computational savings.

46 Constrained Model Predictive Control

The conventional approach for solving QPs is the so called Active Set
method. In this method, one initiates the search by assuming a set of ac-
tive constraints. For an assumed active set, one can easily solve the resulting
least squares problem (where the active constraints are treated as equality
constraints) through the use of Lagrange multiplier. In general, the active
set one starts out with will not be the correct one. Through the use of the
Karush-Kuhn-Tucker (KKT) condition4, one can modify the active set iter-
atively until the correction is found. Most active set algorithms are feasible
path algorithms, in which the constraints must be met at all times. Hence, the
number of constraints can has a significant effect on the computational time.

More recently, a promising new approach called the Interior Point (IP)
method has been getting a lot of attention. The idea of the IP method is to
“trap” the solution within the feasible region by including a so called “barrier”
function in the objective function. With the modified objective function, the
Newton iteration is applied to find the solution. Though originally developed
for LPs, the IP method can be readily generalized to QPs and other more
general constrained optimization problems. Even though not formally proven,
it has been observed empirically that the Newton iteration converges within 5-
50 steps. Significant work has been carried out in using this solution approach
for solving QPs that arise in MPC, but details are out of the scope of this
book; for interested readers, we give some references at the end of the chapter.

Computational properties of QPs vary with problems. As the number of
constraints increase, more iterations are generally required to find the QP
solution, and therefore the solution time increases. This may have an impact
on the minimum control execution time possible. Also, note that the dimension
of the QP (that is, the number of degrees of freedom m · nu) influences the
execution time proportionately.

Storage requirements are also affected directly by the number of degrees of
freedom and the number of projections n · ny. For example, the Hessian size
increases quadratically with the number of degrees of freedom. Also, because
of the prediction algorithm, Ỹ (k) must be stored for use in the next controller
execution (both Ep(k + 1|k) and C(k + 1|k) can be computed from Ỹ (k)).

3.6.3 Proper Constraint Formulation

Many engineering control objectives are stated in the form of constraints.
Therefore it is very tempting to translate them into linear inequalities and to
include them in the QP control problem formulation. In this section we want
to demonstrate that constraints make it very difficult to predict the behavior of
the control algorithm under real operating conditions. Therefore, they should
be used only when necessary and then only with great caution.

4The KKT condition is a necessary condition for the solution to a general constrained
optimization problem. For QP, it is a necessary and sufficient condition.

March 15, 2002 47

First of all constraints tend to greatly increase the time needed to solve
the QP. Thus, we should introduce them sparingly. For example, if we wish an
output constraint to be satisfied over the whole future horizon, we may want to
state it as a linear inequality only at selected future sampling times rather than
at all future sampling times. Unless we are dealing with a highly oscillatory
system, a few output constraints at the beginning and one at the end of the
horizon should keep the output more or less inside the constraints throughout
the horizon. Note that even when constraint violations occur in the prediction
this does not imply constraint violations in the actual implementation because
of the moving horizon policy. The future constraints serve only to prevent the
present control move from being short-sighted.

Output constraints can also lead to an “infeasibility.” A QP is infeasible
if there does not exist any value of the vector of independent variables (the
future manipulated variable move ∆U(k)) which satisfies all the constraints
– regardless of the value of the objective function. Physically this situation
can arise when there are output constraints to be met but the manipulated
variables are not sufficiently effective – either because they are constrained
or because there is dead time in the system which delays their effect. Need-
less to say, provisions must be built into the on-line algorithm such that an
infeasibility never occurs.

Mathematically an infeasibility can only occur when the right hand side
of the output constraint equations is positive. This implies that a nonzero
move must be made in order to satisfy the constraint equations. Otherwise,
infeasibility is not an issue since ∆U(k) = 0 is feasible.

A simple example of infeasibility arises is the case of deadtimes in the
response. For illustration, assume a SISO system with θ units of deadtime.
The output constraint equations for this system will look like:





















0 0 · · · 0
...

...
0 0 · · · 0

−Su
θ+1 0 · · · 0

−Su
θ+2 −Su

θ+1 · · · 0
...

...





















∆U(k) ≥





















c(k + 1|k)
...

c(k + θ|k)
c(k + θ + 1|k)
c(k + θ + 2|k)

...





















Positive elements c(k + 1|k), · · · , c(k + θ|k) indicate that a violation is pro-
jected unless the manipulated variables are changed (∆U(k) 6= 0). Since the
corresponding coefficients in the left hand side matrix are zero, the inequalities
cannot be satisfied and the QP is infeasible. Of course, this problem can be
removed by simply not including these initial θ inequalities in the QP.

Because inequalities are dealt with exactly by the QP, the corrective action
against a projected violation is equivalent to that generated by a very tightly
tuned controller. As a result, the moves produced by the QP to correct for

48 Constrained Model Predictive Control

y
max

k
 k+H
 c

Relax the constraints between

k+1 and k+H
 c
-1

Figure 3.4: Relaxing the constraints

violations may be undesirably severe (even when feasible). Both infeasibilities
and severe moves can be dealt with in various ways.

One way is to include is a constraint window on the output constraints
similar to what we suggested above for computational savings. For each output
a time k+Hc in the future is chosen at which constraint violations will start to
be checked (Fig. 3.4). For the illustration above, this time should be picked to
be at least equal to θ+1. This allows the algorithm to check for violations after
the effects of deadtimes and inverse responses have passed. For each situation
there is a minimal value of Hc necessary for feasibility. If this minimal value is
chosen large, constraint violations may occur over a significant period of time.
In many cases, if a larger value of Hc is chosen, smaller constraint violations
may occur over a longer time interval. Thus, there is a trade-off between
magnitude and duration of constraint violation.

In general, it is difficult to select a value of Hc for each constrained output
such that the proper compromise is achieved. Furthermore, in multivariable
cases, constraints may need to be relaxed according to the priorities of the con-
strained variables. The selection of constraint windows is greatly complicated
by the fact that appropriate amount and location for relaxation are usually
time-dependent due to varying disturbances and occurrences of actuator and
sensor failures. Therefore it is usually preferred to soften the constraint by
adding a slack variable ε and penalizing this violation through an additional
term in the objective function.

minε,∆U(k)[Usual Objective] + λε2

ymin − ε ≤ y(k + `|k) ≤ ymax + ε
plus other constraints

The optimization seeks a compromise between minimizing the original per-
formance objective and minimizing the constraint violations expressed by ε2.

March 15, 2002 49

The parameter λ determines the relative importance of the two terms. The
degree of constraint violation can be fine tuned arbitrarily by introducing a
separate slack variable ε for each output and time step, and associating with
it a separate penalty parameter λ.

Finally we must realize that while unconstrained MPC is a form of linear
feedback control, constrained MPC is a nonlinear control algorithm. Thus, its
behavior for small deviations can be drastically different from that for large
deviations. This may be surprising and undesirable and is usually very difficult
to analyze a priori.

3.6.4 Choice of Horizon Length

On one hand, the prediction horizon p and the control horizon m should be
kept short to reduce the computational effort; on the other hand, they should
be made long to prevent short-sighted control policies. Making m short is
generally conservative because we are imposing constraints (forcing the control
to be constant after m steps) which do not exist in the actual implementation
because of the moving horizon policy. Therefore a small m will tend to give
rise to a cautious control action.

Choosing p small is “short-sighted” and will generally lead to an aggressive
control action. If constraint violations are checked only over a small control
horizon p this policy may lead the system into a “dead alley” from which it can
escape only with difficulty, i.e., only with large constraint violations and/or
large manipulated variable moves.

When p and m are infinity and when there are no disturbance changes
and unknown inputs, the sequence of control moves determined at time k is
the same sequence which is realized through the moving horizon policy. In
this sense our control actions are truly optimal. When the horizon lengths are
shortened, then the sequence of moves determined by the optimizer and the
sequence of moves actually implemented on the system will become increas-
ingly different. Thus the short time objective which is optimized will have less
and less to do with the actual value of the objective realized when the moving
horizon control is implemented. This may be undesirable.

In general, we should try to choose a small m to keep the computational
effort manageable, but large enough to give us a sufficient number of degrees of
freedom. We should choose p as large as possible, possibly ∞, to completely
capture the consequences of the control actions. This is possible in several
ways. Because an FIR system will settle after m+n steps, choosing a horizon
p = m + n is a sensible choice used in many commercial systems (Fig. 3.5).
Instead or in addition we can impose a large output penalty at the end of the
prediction horizon forcing the system effectively to settle to zero at the end of
the horizon. Then, with p = m+n, the error after m+n is essentially zero and

50 Constrained Model Predictive Control

k+m-1

k+m-1
 k+m+n-1

N time steps

Figure 3.5: Choosing the horizon

there is little difference between the finite and the infinite horizon objective.

3.6.5 Input Blocking

As said, use of a large control horizon is generally preferred from the viewpoint
of performance but available computational resource may limit its size. One
way to relax this limit is through a procedure called Blocking, which allows
to the user to “block out” the input moves at selected locations from the
calculation by setting them to zero a priori. Result is a reduction in the
number of input moves that need to be computed through the optimization,
hopefully without a significant sacrifice in the solution quality. Obviously,
judicious selection of blocking locations is critical for achieving the intended
effect. The selection is done mostly on an ad hoc basis, though there are some
qualitative rules like blocking less of the immediate moves and more of the
distant ones.

At a more general level, blocking can be expressed as follows:

∆U = B∆Ub (3.59)

where ∆Ub represent the reduced input parameters to be calculated through
the optimization. B is the blocking matrix that needs to be designed for a
good performance. Typically, the rows of B corresponding to the blocked
moves would contain all zeros. In general, columns of B can be designed to
represent different basis in the input space. Note that dimension of Ub, which
is less than that of U , must also be determined in the design.

March 15, 2002 51

3.6.6 Filtering of the Feedback Signal

In practice, feedback measurements can contain significant noise and other
fast-varying disturbances. Since in DMC the effect of unmeasured disturbances
is projected as a constant bias in the prediction, the high-frequency contents
of a feedback signal must be filtered out in order to obtain a meaningful long-
term prediction. For this, one can pass the feedback signal through a low-pass
filter of some sort, perhaps a first- or second-order filter, before putting it into
the prediction equation. Use of state estimation, discussed in a later chapter
of this book, allows one to model the statistical characteristics of disturbances
and noise and perform the filtering in an optimal manner.

3.7 Examples

3.7.1 SISO Systems

This section shows the effect of the various tuning parameters on closed loop
behavior. Some general guidelines will emerge. The step responses of all the
example systems are shown in Section 2.6.

Example 3.2:

Setpoint response for SISO system with deadtime.

The open-loop step response can be seen in Fig. 2.4 (left). The effects of the tuning
parameters on the setpoint response are demonstrated in Figs. 3.6, 3.7, 3.8. In general,
the control action is more aggressive, and the system response is faster as

• the horizon p is decreased.

• the number of input moves m is increased.

• the control weight (uweight) Γu is decreased.

The response is clearly most sensitive to the choice of the control weight Γu. The effect
of p and m on the response is clear-cut only when Γu = 0. For Γu = 0 we obtain an
essentially perfect response after a time period equal to the deadtime has elapsed. In
this simple example the closed loop system is stable for all choices of tuning parameters.

In Fig. 3.8 we notice some unusual behavior of the manipulated variable between 200
and 250 min. It is caused by the truncation of the step response model after 245 min.
If this behavior which is also seen in some of the other figures, is undesirable more step
response coefficients have to be used.

Example 3.3: Disturbance response for SISO systems with deadtime. We study the
disturbance response of the same system as in the last example. The open-loop step
responses for the manipulated variable and the disturbance are shown in Fig. 2.4.
In Figs. 3.9, 3.10 and 3.11 the disturbance is assumed to be measured and the step
response model for its effect on the controlled output is known to the controller. Thus

52 Constrained Model Predictive Control

0

0.5

1

0 50 100 150 200 250

m = 5, uweight = 10

TIME

p=5

p=20 or 35

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250

TIME

p=5

p=20 or 35

Figure 3.6: Setpoint response for SISO system with deadtime. Effect of horizon
length p.

0

0.5

1

0 50 100 150 200 250

p = 20, uweight = 10

TIME

m=1

m=5
m=10

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250

TIME

m=1
m=5 m=10

Figure 3.7: Setpoint response for SISO system with deadtime. Effect of num-
ber of input moves m.

March 15, 2002 53

0

0.5

1

0 50 100 150 200 250

m = 5, p = 20

TIME

uweight=0

uweight=10

uweight=50

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250

TIME

u(0)=1.59

uweight=0

uweight=10

uweight=50

Figure 3.8: Setpoint response for SISO system with deadtime. Effect of control
weight (uweight) Γu.

the controller is a combination of feedback and feedforward. The effect of the tuning
parameters is similar to what was observed for the setpoint response. Note that for the
control weight (uweight) equal to zero essentially perfect disturbance compensation is
possible because the deadtime for the disturbance effect is larger than the deadtime
for the effect of the manipulated variable.

Figures 3.12, 3.13 and 3.14 show the disturbance responses when the disturbance is
not measured and the control occurs via feedback alone. Note that even in the ideal
case when uweight = 0 the response is not very good because of the process deadtime.
By the time the control action starts to have any effect the process output deviates
significantly from the setpoint.

Both with and without feedforward action the controller tuning parameters are seen
to have the same qualitative effect as for the setpoint changes studied in the previous
example.

Example 3.4: System with inverse response. We see the open-loop step response in Fig.
2.5. The effect of the tuning parameters on the closed loop behavior is demonstrated
in Figs. 3.15, 3.16 and 3.17. Note that, though the qualitative effect of the tuning
parameters is consistent with the previous examples the system can become unstable
for parameter choices which are too aggressive. Instability manifests itself through a
steady increase of the magnitude of u without bound. For a zero weight on the control
action instability is observed for a large number of input moves (m) or small horizon
(p).

Example 3.5: Pseudo-inverse-response system. The step response of g(s) = 12.8e−s

16.7s+1 ,
shown in Fig. 3.18 (n = 100, T = 0.6) seems to have the same characteristics as
that in Fig. 2.4. The closed loop behavior as a function of the tuning parameters is

54 Constrained Model Predictive Control

0

0.5

1

0 50 100 150 200 250

m = 5, uweight = 10

TIME

p=5

p=20 or 35

-0.6

-0.4

-0.2

0

0 50 100 150 200 250

TIME

p=5
p=20 or 35

Figure 3.9: Disturbance response for SISO system with deadtime. Disturbance
measured. Effect of horizon length p.

0

0.5

1

0 50 100 150 200 250

p = 20, uweight = 10

TIME

m=1 m=5

m=10

-0.6

-0.4

-0.2

0

0 50 100 150 200 250

TIME

m=1 m=5
m=10

Figure 3.10: Disturbance response for SISO system with deadtime. Distur-
bance measured. Effect of number of input moves m.

March 15, 2002 55

0

0.5

1

0 50 100 150 200 250

m = 5, p = 20

TIME

uweight=0

uweight=10

uweight=50

-0.6

-0.4

-0.2

0

0 50 100 150 200 250

TIME

uweight=0

uweight=10

uweight=50

Figure 3.11: Disturbance response for SISO system with deadtime. Distur-
bance measured. Effect of control weight (uweight) Γu.

-0.5

0

0.5

1

1.5

0 50 100 150 200 250

m = 5, uweight = 10

TIME

p=5

p=20 or 35

-0.6

-0.4

-0.2

0

0 50 100 150 200 250

TIME

p=5
p=20 or 35

Figure 3.12: Disturbance response for SISO system with deadtime. Distur-
bance unmeasured. Effect of horizon p.

56 Constrained Model Predictive Control

-0.5

0

0.5

1

1.5

0 50 100 150 200 250

p = 20, uweight = 10

TIME

m=1 m=5

m=10

-0.6

-0.4

-0.2

0

0 50 100 150 200 250

TIME

m=1

m=5
m=10

Figure 3.13: Disturbance response for SISO system with deadtime. Distur-
bance unmeasured. Effect of number of input moves m.

-0.5

0

0.5

1

1.5

0 50 100 150 200 250

m = 5, p = 20

TIME

uweight=0

uweight=10

uweight=50

-0.6

-0.4

-0.2

0

0 50 100 150 200 250

TIME

uweight=0

uweight=10

uweight=50

Figure 3.14: Disturbance response for SISO system with deadtime. Distur-
bance unmeasured. Effect of control weights Γu.

March 15, 2002 57

-1

0

1

2

0 10 20 30 40 50 60 70

m = 5, uweight = 0

TIME

p=5

p=10 or 25

-20

-15

-10

-5

0

5

0 10 20 30 40 50 60 70

TIME

p=5

p=10 or 25

Figure 3.15: Setpoint response for inverse-response system. Effect of horizon
length p.

-1

0

1

2

0 10 20 30 40 50 60 70

p = 10, uweight = 0

TIME

m=1
m=5

m=10

-20

-15

-10

-5

0

0 10 20 30 40 50 60 70

TIME

m=1
m=5

m=10

Figure 3.16: Setpoint response for inverse-response system. Effect of number
of input moves m.

58 Constrained Model Predictive Control

-1

0

1

2

0 10 20 30 40 50 60 70

m = 5, p = 20

TIME

uweight=0

uweight=10
uweight=50

-20

-15

-10

-5

0

5

0 10 20 30 40 50 60 70

TIME

uweight=0
uweight=10

uweight=50

Figure 3.17: Setpoint response for inverse-response system. Effect of control
weight (uweight) Γu.

drastically different from that of Example 3.2. In particular, we note that just like the
inverse-response process, the closed-loop system becomes unstable when the control is
too aggressive (m too large or p too small). We remark that this unusual behavior
disappears and the system behaves qualitatively just like that of Example 3.2 when
the sampling time is reduced from T = 0.6 to T = 0.4. Thus, there are certain
system characteristics which are important for controller tuning but which are not
apparent from the step response alone. We remark here that the “system zeros” which
depend on the sampling time are responsible for the behavior and refer the reader to
Chapter ??NOTE: put in appropriate chapter ref. for a detailed discussion.

3.7.2 MIMO System: High Purity Distillation Column

Many MIMO systems behave in a similar fashion as the SISO system discussed
above, the effect of the tuning parameters and the response characteristics are
qualitatively the same. These MIMO systems do not cause any major control
difficulties beyond of what we encountered for SISO systems. High purity
distillation columns are different and can be quite challenging to control as we
will learn in this section.

We introduced the step responses of a typical high purity column in Fig.
2.6 and pointed out that they are very similar. If we perturb both manipu-
lated variables simultaneously we obtain responses of very different magnitudes
depending on the direction of the input vector u. (Fig. 3.22)

We say that in some directions (e.g., [1, 1]T) the “gain” of this MIMO

March 15, 2002 59

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60

TIME

Figure 3.18: Step response of pseudo-inverse-response system (n = 100, T =
0.6).

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

m = 5, uweight = 0

TIME

p=5
p=10 or 25

-2

0

2

4

0 5 10 15 20 25 30 35

TIME

p=5

p=10 or 25

Figure 3.19: Setpoint response for pseudo-inverse-response system. Effect of
horizon length p.

60 Constrained Model Predictive Control

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

m = 5, p = 10

TIME

uweight=0

uweight=10
uweight=50

-2

0

2

4

0 5 10 15 20 25 30 35

TIME

uweight=0

uweight=10 uweight=50

Figure 3.20: Setpoint response for pseudo-inverse-response system. Effect of
control weight (uweight) Γu.

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35

p = 10, uweight = 0

TIME

m=1

m=5
m=10

-2

0

2

4

0 5 10 15 20 25 30 35

TIME

m=1

m=5 m=10

Figure 3.21: Setpoint response for pseudo-inverse-response system. Effect of
number of input moves m.

March 15, 2002 61

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300

u = [1,1]’

TIME

y2

y1

-0.02

-0.01

0

0.01

0.02

0 50 100 150 200 250 300

u = [1,-1]’

TIME

y1

y2

Figure 3.22: Open-loop response of the outputs for two different changes in
the manipulated variables.

system is large and in some other directions (e.g., [1,−1]T) the gain is small.
Clearly this is a phenomenon specific to MIMO systems which has no analogue
in the SISO case. Figure 3.23 shows the effect of the control weight matrix on
the response. With Γu = 0 the response is quick and completely decoupled.
Increasing the weight to Γu = I decreases the action of the manipulated vari-
ables and slows down the response. The output y2 is disturbed significantly
as the manipulated variables are adjusted to follow the setpoint change for y1.

By adjusting the output matrix Γy, preference can be given to one or the
other output (Fig. 3.24).

Because of the direction dependence of the system gain the speed of re-
sponse depends strongly on the setpoint change (Fig. 3.25). A tuning which
reaches an acceptable compromise is shown later.

A setpoint change which requires only one of the outputs to change (A,B)
is difficult to accomplish and takes quite some time. The setpoint changes in C
and D are roughly equivalent to the effect of a feed composition and feedflow
disturbance, respectively. We see that for these disturbance changes the same
controller works quite well. The outputs get close to the setpoints quickly,
though it takes a very long time for the system to settle completely as can be
noticed from the input variations.

Up to now we have assumed that the model used by the controller is a
perfect description of the plant dynamics. This is unrealistic and in practice
there will always be some model-plant mismatch. Sometimes a closed loop

62 Constrained Model Predictive Control

uweight = O

0

0.2

0.4

0.6

0.8

1

0 500 1000

y1

TIME

y2

-400

-200

0

200

400

0 500 1000

u1

Figure A

u2

uweight = I

0

0.2

0.4

0.6

0.8

1

0 500 1000

y1

TIME

y2

-10

-5

0

5

10

0 500 1000

u1

Figure B

u2

Figure 3.23: Effect of control weight matrix Γu. (m = 5, p = 20, Γy = I, r =
[1, 0]T).

yweight = (100,1)

0

0.5

1

1.5

0 500 1000

y1

TIME

y2

-20

-10

0

10

20

0 500 1000

u1

Figure A

u2

yweight = (1,100)

0

0.5

1

1.5

0 500 1000

y1

TIME

y2

-20

-10

0

10

20

0 500 1000

u1

Figure B

u2

Figure 3.24: Effect of output weight matrix Γy. A : Γy = diag{100, 1}, B :
Γy = diag{1, 100}; m = 5, p = 20, Γu = I, r = [1, 0]T .

March 15, 2002 63

r = [1,0]’

0

0.2

0.4

0.6

0.8

1

0 500 1000

y1

TIME

y2

-10

-5

0

5

10

0 500 1000

u1

Figure A

u2

r = [0,1]’

0

0.2

0.4

0.6

0.8

1

0 500 1000

y1

TIME

y2

-10

-5

0

5

10

0 500 1000

u1

Figure B

u2

r = [0.88,1.12]’

0

0.5

1

1.5

0 500 1000

y1

TIME

y2

-0.5

0

0.5

1

1.5

0 500 1000

u1

Figure C

u2

r = [0.39,0.59]’

0

0.5

1

1.5

0 500 1000

y1

TIME

y2

-0.5

0

0.5

1

1.5

0 500 1000

u1

Figure D

u2

Figure 3.25: Response for different setpoint changes. (m = 5, p = 20,Γu =
Γy = I).

64 Constrained Model Predictive Control

system is very sensitive to the mismatch, sometimes not at all. This depends
both on the system itself and the control system. The objective of robust
control is to make the closed loop behavior insensitive to the model-plant
mismatch. Let us analyze two of the controllers we have designed from the
point of view of robustness. To mimic model/plant mismatch we will assume
that the gains for the effect of u1 have been increased and the gain for the
effect of u2 have been decreased by 20% respectively. Thus, the gain matrices
are related through

Gplant = Gmodel ·
[

1.2 0
0 0.8

]

Figure 3.26 shows the responses to two different setpoint changes when the
control weight is zero. This controller is clearly very sensitive to model/plant
mismatch. The sensitivity is more pronounced for certain setpoint directions
(r = (0, 1)T in A and B) than others (r = (0.4, 0.6)T in C and D).

When we introduce even a small control weight Fig. 3.27 the sensitivity
is drastically reduced but at the same time the response without mismatch
is more sluggish. This trade-off between aggressive control action and good
“nominal performance” but poor robustness on one hand and mild control
action, sluggish nominal performance, but good robustness does not surprise
us from a physical point of view.

March 15, 2002 65

reference model

0

0.2

0.4

0.6

0.8

1

0 100 200 300

. .

. .

y1

TIME

y2

-400

-200

0

200

400

0 100 200 300

u1

Figure A

u2

model error

0

5

10

15

20

0 100 200 300
. .
. .y1

TIME

y2

-400

-200

0

200

400

0 100 200 300

u1

Figure B

u2

reference model

-1

-0.5

0

0.5

1

0 100 200 300

. .

. .
y1

TIME

y2

-40

-20

0

20

40

0 100 200 300

u1

Figure C

u2

model error

-1

-0.5

0

0.5

1

0 100 200 300

. .

. .
y1

TIME

y2

-40

-20

0

20

40

0 100 200 300

u1

Figure D

u2

Figure 3.26: Responses for setpoint changes with (B&D) and without (A&C)
model/plant mismatch. r = (1, 0)T for A& B, r = (0.4, 0.6)T for C & D.
(m = 5, p = 20, Γy = I, Γu = 0),

66 Constrained Model Predictive Control

3.7.3 Effect of Constraints on DMC Performance

In this section, we will see the effects of various input and output constraints on
the performance of DMC. In all the plots, solid lines will represent response of
implementing unconstrained DMC and broken lines will represent the response
of constrained DMC.

Example 3.6: Effect of input constraints on a system with inverse response. Consider
the process g = −s+1

(s+1)(2s+1) with input constraints −1 ≤ u ≤ 1 and input rate con-
straints |∆u| ≤ 0.1. Consider sampling interval ts = 0.3. The open loop step response
of this system is similar to the system considered in Example 3.4. Let horizon and
input moves be p = m = 15, and uweight γu = 0. We had observed in Example
3.4 that under such conditions, the closed loop system is unstable. Positive effects of
constraints are shown in Fig. 3.28. The following two cases are compared:

• Input moves generated by solving unconstrained DMC are truncated to satisfy
the constraints. Unconstrained DMC is unable to reject output disturbance 0.5

s .

• Alternatively, we are able to reject the output disturbance by solving constrained
QP.

Example 3.7: Effect of output constraints on a system with inverse response. Consider
the system described in the previous example (Example 3.6). Consider that the system
has output constraints −0.3 ≤ y ≤ 0.3 and no input constraints. Figure 3.29 shows
the response of constrained and unconstrained system to step disturbance of 0.3 in the
output. At this point, the output constraints are active. Gain of the system being
positive, input move ∆u needs to be negative. However, due to the inverse response of
the system, any such move violates the constraint on y. As a result constrained DMC
does not make any move, and is unable to reject disturbance and control the system
to the setpoint.

Unconstrained DMC, on the other hand, is able to reject disturbances and control
the system at the desired setpoint. Alternately, we may use constraint relaxation, as
shown in Fig. 3.4, with Hc = 5 to control the system. The response with constraint
relaxation is similar to that of the unconstrained case (this is because once y gets inside
the feasible region, constrained and unconstrained DMC are identical in this problem).

Example 3.8: Effect of output constraints on a system with dead time Consider the
system modeled as g̃ = 1

s+1 . Let the actual system be represented by

g =
e−0.15s

s + 1

The delay term in g(s) is the source of plant-model mismatch. A sampling time of
T = 0.1 is used. The weighting matrices used are yweight γy = 1 and uweight γu = 0.4
and the horizons m = p = 1. Unconstrained DMC will result in stable performance
(robust linear control theory guarantees stability for γu ≥ 0.2).

Figure 3.30 shows the response of constrained DMC with output constraints−1 ≤ y ≤ 1
for step disturbances of magnitude 1.6, 1.72 and 1.8 respectively. As the time delay
is not incorporated in the model, constrained DMC is unstable for step disturbances
greater than 1.72 in magnitude.

March 15, 2002 67

reference model

-2

0

2

4

0 100 200 300

. .

. .

y1

TIME

y2

-100

-50

0

50

100

0 100 200 300

u1

Figure A

u2

model error

-1

0

1

2

3

4

0 100 200 300

. .

. .

y1

TIME

y2

-100

-50

0

50

100

0 100 200 300

u1

Figure B

u2

reference model

0

0.2

0.4

0.6

0.8

0 100 200 300

. .

. .

y1

TIME

y2

-10

-5

0

5

10

0 100 200 300

u1

Figure C

u2

model error

0

0.2

0.4

0.6

0.8

0 100 200 300

. .

. .

y1

TIME

y2

-5

0

5

10

0 100 200 300

u1

Figure D

u2

Figure 3.27: Responses for setpoint changes with (B&D) and without (A&C)
model/plant mismatch. r = (1, 0)T for A & B, r = (0.4, 0.6)T for C & D.
(m = 5, p = 20, Γy = I, Γu = 0.01 · I).

68 Constrained Model Predictive Control

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

y

Effect of Constraints for m=15, p=15, uweight=0

Time

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

u

Time

Unconstrained

Constrained

Figure 3.28: Response for inverse response system with input constraints.
Solving constrained DMC results in effective disturbance rejection.

0 5 10 15 20 25 30 35 40 45 50
−0.1

0

0.1

0.2

0.3

0.4

y

Time

System with Inverse Response: m=5, p=50

0 5 10 15 20 25 30 35 40 45 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

u

Time

Constrained DMC

Unconstrained DMC

Figure 3.29: Response for inverse response system with output constraints.
Controller is unable to find any input move without constraint violation. Con-
straint relaxation may be necessary.

March 15, 2002 69

−2

0

2
Step disturbance = 0.172

−2

0

2
Step disturbance = 0.16

0 1 2 3 4 5 6 7 8 9 10
−50

0

50
Step disturbance = 0.18

Time

Figure 3.30: Limit of stability for a constrained DMC with plant model mis-
match (p = m = 1).

In summary, the closed loop response of constrained linear control of a
linear system is nonlinear. Some “strange” behavior is observed when output
constraints are active or violated. Examples 3.7 and 3.8 should not be misin-
terpreted to mean that constrained DMC does not work. They exemplify the
fact that unlike linear systems (or unconstrained DMC), results of constrained
DMC are not scalable; and that one should be careful in cases where output
constraints are active or violated. Constraint relaxation may sometimes be
necessary. As most chemical systems are designed with 10 to 15% safety mar-
gin, small constraint violations can usually be accommodated for reasonable
period of time.

3.7.4 Constrained MIMO Processes

Example 3.9: Shell Oil Fractionator Example. Consider the 2 × 2 subsystem of the
Heavy Oil Fractionator. This problem will be dealt with, as an example problem at
the end this chapter (see section 3.10.1). The transfer functions representation of the
system are as follows"

y1

y2

#
=

"
4.05e−27s

50s+1
1.77e−28s

60s+1
5.39e−18s

50s+1
5.72e−14s

60s+1

#"
u1

u2

#
The input constraint are −0.5 ≤ u2 ≤ 0.5, input rate constraints |∆u2| ≤ 0.2 and
output constraints −0.5 ≤ y1 ≤ 0.5. Let m = 1 and p = 20. Let us consider two

70 Constrained Model Predictive Control

0 5 10 15 20 25 30 35 40 45
−20

−10

0

10

20

30

40

O
ut

pu
ts

Constrained MIMO System, T=4, M=1, P=20

y1
y2

0 5 10 15 20 25 30 35 40 45
−8

−6

−4

−2

0

2

4
x 10

4

Time

M
an

ip
ul

at
ed

 V
ar

u1
u2

Figure 3.31: For T = 4, the unstable zero in g11 results in divergent behavior
of the controller. (m = 1, p = 20, uweight = 0)

different sampling intervals T = 4 and T = 6. The control objective is to regulate the
system at its setpoint [0 0]T in presence of step disturbances of magnitude [1.2 −
0.5]T .

Discretizing the system at T = 4 results in unstable zero in discrete-time transfer
function g11(z). Since step disturbance of 1.2 violates constraint on y1, we apply
constraint only at y1(k + 7); because there is a deadtime of 28. Unstable zero implies
inverse response. u2 gets saturated due to constraints; constraint on y1 is also active.
Due to inverse response, the controller is unable to regulate the system at setpoint, as
seen in Fig. 3.31.

Instead, if T = 6 is chosen, there is an unstable zero in g12(z) but a stable zero in
g11(z). u2 will saturate due to constraints; thus the unstable zero of g12(z) will not
affect the process, unlike the previous case. The zero of g11(z) being stable, the system
is regulated (see Fig. 3.32). In this case, we applied constraint at y1(k + 5) (note that
6 ∗ 5 > 28, the deadtime).

Example 3.10: High Purity Distillation Column. Consider the system described in Fig.
2.6. It is evident from the transfer function that this is a highly coupled system. The
input constraints are −5 ≤ u1, u2 ≤ 10 and input rate constraints are |∆u1|, |∆u2| ≤
0.1. Let us consider performance of constrained and unconstrained DMC for a step
change in setpoint of [1 0]T , with m = 5 and p = 20.

From the steady state gain matrices, one may compute the input values that will drive
the system to setpoint are [39.9 − 39.4]. As a result, unconstrained DMC gives poor
performance once u2 saturates at its lower bound — it keeps increasing u1 causing
outputs to increase to very large values, as seen in Fig. 3.33(a). Constrained DMC, on
the other hand, yields much better performance (Fig. 3.33(b)).

March 15, 2002 71

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2
O

ut
pu

ts
Constrained MIMO System, T=6, M=1, P=20

y1
y2

0 20 40 60 80 100 120 140 160 180 200
−4

−3

−2

−1

0

1

Time

M
an

ip
ul

at
ed

 V
ar

u1
u2

Figure 3.32: For T = 6, due to constraints on u2, unstable zero in g12 does
not affect controller performance (m = 1, p = 20, uweight = 0).

0 100 200 300
−1

0

1

2

3

4

5

O
ut

pu
ts

a. Unconstrained MPC

y1
y2

0 100 200 300
−5

0

5

10

Time

M
an

ip
ul

at
ed

 V
ar

u1
u2

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5
b. Constrained MPC

y1
y2

0 100 200 300
−6

−4

−2

0

2

4

6

Time

u1
u2

Figure 3.33: comparison of the controller performance of constrained and
unconstrained DMC for highly coupled MIMO process(m = 5, p = 20,
uweight = 0.1).

72 Constrained Model Predictive Control

3.7.5 Conclusions and General Tuning Guidelines

For both SISO and MIMO systems we observe that

• the control action is more aggressive

• the system response is faster

• the closed loop system is less robust to model-plant mismatch

when

• the horizon p is decreased

• the number of input moves m is increased

• the control weight (uweight) Γu is decreased

There is generally

• a lower bound on the horizon p

• an upper bound on the number of input moves m

• a lower bound on the control weight Γu

that is, a bound on the allowed “aggressiveness” beyond which the closed loop
system becomes unstable. In some special rare cases there is no bound but
this is almost never true in practice when there is any model/plant mismatch.
The effects of m and p are significant only when the input weight Γu is zero.
The performance is most sensitive to changes in Γu.

For MIMO systems there is the additional possibility to put emphasis on
the control of one or the other output by specifying the elements in the out-
put weight matrix Γy appropriately. A relatively large element leads to tight
control of the particular output.

Finally there is the possibility of making the weights time varying. Because
there are no easy guidelines this is rarely pursued in practice.

3.8 Features Found in Other Algorithms

What we just covered is the basic form of a multivariable control algorithm
called Dynamic Matrix Control (DMC), which was one of the first MPC algo-
rithms applied to industrial processes with success. The original DMC algo-
rithm did not use QP to handle constraints; instead, it added an extra output
to the prediction to drive the input back to the feasible region whenever a

March 15, 2002 73

predicted future input came close to a constraint. This was somewhat ad hoc
and it wasn’t until the 80s that engineers at Shell Oil proposed the use of
QP to handle input and output constraints explicitly and rigorously. They
called this modified version QDMC. Currently, this basic form of DMC is still
used in a commercial package called DMC-PLUS, which is marketed by Aspen
Technology.

Besides DMC and QDMC, there are several other MPC algorithms that
have seen, and are still seeing, extensive use in practice. These include Model
Predictive Heuristic Control (MPHC), which led to popular commercial al-
gorithms like IDCOM and SMC-IDCOM marketed by Setpoint (now Aspen
Technology) and Hierarchical Constraint Control (HIECON) and Predictive
Functional Control (PFC) marketed by Adersa; Predictive Control Technology
(PCT), which was marketed by Profimatics (now Honeywell); and more recent
Robust Model Predictive Control Technology (RMPCT), which is currently
being marketed by Honeywell. These algorithms share same fundamentals
but differ in details of implementation. Rather than elaborating on the details
of each algorithm, we will touch upon some popular features not seen in the
basic DMC/QDMC method.

3.8.1 Reference Trajectories

In DMC, output deviation from the desired setpoint is penalized in the op-
timization. Other algorithms like IDCOM, HIECON, and PFC let the user
specify not only where the output should go but also how. For this, a reference
trajectory is introduced for each controlled variable (CV), which is typically
defined as a first-order path from the current output value to the desired set-
point. The time constant of the path can be adjusted according to the speed
of the desired closed-loop response. This is displayed in Fig. 3.34.

Reference trajectories provide an intuitive way to control the aggressive-
ness of control, which would is adjusted through the weighting matrix for
the input move penalty term in DMC. One could argue that the controller’s
aggressiveness is more conveniently tuned by specifying the speed of output
response rather than through input weight parameters, whose effects on the
speed of response is highly system-dependent.

3.8.2 Coincidence Points

Some commercial algorithms like IDCOM and PFC allowed the option of pe-
nalizing the output error only at a few chosen points in the prediction horizon
called coincidence points. This is motivated primarily by reduction in com-
putation it brings. When the number of input moves has to be kept small
(in order to keep the computational burden low), use of a large prediction
horizon, which is sometimes necessary due to large inverse responses, and long

74 Constrained Model Predictive Control

Past Future

Past Future

Past Future

Past Future

Setpoint

Zone

Reference
Trajectory

Funnel

Figure 3.34: Output Penalties Used in Various Formulations. Shaded regions
are violations associated with quadratic penalty.

March 15, 2002 75

dynamics, results in a sluggish control behavior. This problem can be obviated
by penalizing output deviation only at a few carefully selected points. At the
extreme, one could ask the output to match the reference trajectory value at
a single time point, which can be achieved with a single control move. Such
formulation was used, for example, in IDCOM-M, an offspring of the original
IDCOM algorithm, marketed by Setpoint.

Clearly, the choice of coincidence points is critical for performance, espe-
cially when the number of points used is small. Though some guidelines exist
on choosing these points, there is no systematic method for the selection. Be-
cause the response time of different outputs can vary significantly, coincidence
points are usually defined separately for each output.

3.8.3 The Funnel Approach

The RMPCT algorithm differs from other MPC algorithms in that it attempts
to keep each controlled output within a user-specified zone called funnel, rather
than to keep it on a specific reference trajectory. The typical shape of a funnel
is displayed in Figure 3.34. The user sets the maximum and minimum limits
and also the slope of the funnel through a parameter called ‘performance ratio,’
which is the desired time to return to the limit zone divided by the open-loop
response time. The gap between the maximum and minimum can be closed
for exact setpoint control, or left open for range control.

The algorithm solves the following quadratic program at each time:

min
yr,u

p
∑

i=1

‖y(k + i|k)− yr(k + i|k)‖2
Q +

m−1
∑

j=0

‖∆u(k + j|k)‖2
R (3.60)

or

min
yr,u

p
∑

i=1

‖y(k + i|k)− yr(k + i|k)‖2
Q +

m−1
∑

j=0

‖u(k + j|k)− ur‖2
R (3.61)

subject to usual constraints plus the funnel constraint

yf
min(k + i|k) ≤ yr(k + i|k) ≤ yf

max(k + i|k), 1 ≤ i ≤ p (3.62)

where yf
min(k+i|k) and yf

min(k+i|k) represent the upper and lower limit values
of the funnel for k+ i in the prediction horizon as specified at time k. ur is the
desired settling value for the input. Notice that the reference trajectory yr is a
free parameter, which is optimized to lie within the funnel. Typically, Q � R
in order to keep the outputs within the funnel as much as possible. Then one
can think of the above as a multi-objective optimization, in which the primary
objective is to minimize the funnel constraint violation by the output and
the secondary objective is to minimize the size of input movement (or input

76 Constrained Model Predictive Control

INCLUDE!

Table 3.1: Optimization Resulting from Use of Different Spatial and Temporal
Norms

deviation from the desired settling value in the case of (3.61)). In this case,
as long as there exists an input trajectory that keeps the output within the
funnel, the first penalty term will be made exactly zero. Typically, there will
be an infinite number of solutions that achieve this, leading to a ‘degenerate’
QP. The algorithm thus finds the minimum norm solution, which corresponds
to the least amount of input adjustment – hence the name ‘Robust’ MPCT .
However, if there is no input that can keep the output within the funnel, the
first term will be the primary factor that determines the input.

The use of funnel is motivated by the fact that, in multivariable systems,
the shape of desirable trajectories for outputs are not always clear due to the
system interaction. Thus, it is argued that an attractive formulation is to let
the user specify an acceptable dynamic zone for each output as a funnel and
then find the minimum size input moves (or inputs with minimum deviation
from their desired values) that keep the outputs within the zone – or, if not
possible, minimize the extent of violation.

3.8.4 Use of Other Norms

In defining the objective function, use of norms other than 2-norm is certainly
possible. For example, the possibility of using 1-norm (sum of absolute val-
ues) has been explored to a great extent. Use of infinity norm has also been
investigated with the aim of minimizing worst-case deviation over time. In
both cases, one gets a Linear Program, for which plethora of theories and soft-
ware exist due to its significance in economics. However, one difficulty with
these formulations is in tuning. This is because the solution of a LP lies at
the intersection of binding constraints and it can switch abruptly from one
vertex to another as one varies tuning parameters (such as the input weight
parameters). The solution behavior of a QP is much smoother and therefore
it is a preferred formulation for control.

Table 3.1 summarizes the optimization that results from various combina-
tions of spatial and temporal norms.

3.8.5 Input Parameterization

In some algorithms like PFC, the input trajectory can be parameterized using
continuous basis functions like polynomials. This can be useful if the objective
is to follow smooth setpoint trajectories precisely, such as in mechanical servo
applications, and the sampling time cannot be made sufficiently small to allow

March 15, 2002 77

this with piecewise constant inputs.

In other commercial algorithms like HIECON and IDCOM-M, only a single
control move is calculated,which would correspond to m = 1 in DMC. With
this setting, the calculation is greatly simplified. On the other hand, use of
m = 1 in DMC would limit the closed-loop performance in general. These
algorithms get around this problem by using a single coincidence point, at
which the output is asked to match the reference value exactly.

3.8.6 Model Conditioning

In multivariable plants, two or more outputs can behave very similarly in
response to all the inputs. This phenomenon is referred to as ‘ill-conditioning’
and is reflected by a gain matrix that is nearly singular. An implication is that
it can be very difficult to control these outputs independently with the inputs,
as it will require an excessive amount of input movement in order to move
the outputs in certain directions. Using an ill-conditioned process model for
control calculation is not recommended as it can lead to numerical problems
(e.g., inversion of a nearly singular matrix) and also excessive input movements
and/or even an instability.

Even though one would check the conditioning of the model at the design
stage, because control structure can change due to constraints and failures of
sensors and actuators, one must make sure at each execution time that an
ill-conditioned process model is not directly inverted in the input calculation.

In DMC, direct inversion of an ill-conditioned process model can be circum-
vented by including a substantive input move penalty term, which effectively
increases the magnitudes of the diagonal elements of the dynamic matrix that
is inverted during the least squares calculation.

In other algorithms that do not include an input move penalty in the ob-
jective function, ill-conditioning must be checked at each execution time. In
RMPCT, this is done through a method called Singular Value Threshholding,
where a procedure called ‘singular value decomposition’ is performed on the
gain matrix to determine those CV directions for which the gain is too low for
any effective control at all. Those directions with singular values lower than a
threshhold value are given up for control and only the remaining ‘high-gain’
directions are controlled. SMC-IDCOM addresses this based on the user-
defined ranking of CVs. Here, whenever an ill-conditioning is detected, CVs
are dropped from the control calculation in the order of their ranks, start-
ing from the one with the least assigned priority, until the condition number
improves to an acceptable level. When two CVs are seen to behave very simi-
larly, the user can rank the less important CV with a very low priority. Even
though the control on the dropped CV is given up, it is hoped that it would be
controlled indirectly since it behaves similarly to the other high ranked CV.

78 Constrained Model Predictive Control

3.8.7 Prioritization of CVs and MVs

In most practical control problems, it is not possible to satisfy all constraints
and also drive all outputs and inputs to their desired resting values. Hence,
priorities need to be assigned to express their relative importance. In DMC,
these priorities are determined through weight parameters, which enter into
the various quadratic penalty terms in the objective function. For large, com-
plex problems, determining proper weights that lead to an intended behavior
can be a daunting task. Even if a set of weights consistent with the control
specification is found, the weights can differ vastly in magnitude from one
another, causing a numerical conditioning problem.

Algorithms like HIECON and SMC-IDCOM attempt to address this diffi-
culty by letting the user rank various objectives in the order of their impor-
tance. For example, constraint satisfaction may be the most critical aspect,
which must be taken care of before satisfying other objectives. Also driving
the CVs to their desired setpoints may be more important than driving the
MVs to their most economic values. In these algorithms, an optimization
would be solved with the most important objective first and then remaining
degrees of freedom would be used to address the other objectives in the order
of priority. These algorithms also allow the user to rank each CV and MV
according to its priority. Hence, for constraint softening, one may specify the
order in which constraints for various CVs must be relaxed. Also, in setpoint
tracking, one can prioritize the CVs so that CVs with higher ranks are driven
to their setpoints before those with lower ranks are considered.

3.9 Some Possible Enhancements to DMC

3.9.1 Closed-Loop Update of Model State

In the conventional DMC formulation, the model is run in open-loop (i.e., by
entering known inputs only); the model prediction error is added to the pre-
diction equation, typically as a constant bias term. Hence, the model states
do not contain any effect of unmeasured inputs, or more precisely, their es-
timates based on the feedback measurements. Another possibility for using
the feedback measurements is to correct the model state directly at each time
so that the model state will also hold information about relevant effects of
unmeasured inputs. Since this information will be provided indirectly through
feedback measurements, the state can be considered as a holder of relevant
past input and measured output information in this context. The difference in
the two approaches are displayed graphically in Figure 3.35. Since the model
state gets continually corrected by the measurements in the closed-loop update
approach, it is not necessary to add another correction term in the prediction
stage.

March 15, 2002 79

Figure 3.35: Open-Loop vs. Closed-Loop Update of the Model and Corre-
sponding Prediction

For the step response model, we can modify the update equation to add
the step for feedback measurement based correction of the model state:

Model Prediction:

Ỹ (k|k − 1) = M · Ỹ (k − 1|k − 1) + S∆v(k − 1) (3.63)

where Ỹ (·|k − 1) denotes the estimate of Ỹ (·) obtained at k − 1, taking into
account all measurement information up to k − 1. Recall that this is th esole
step we took to update the model state in the previous formulation. Here we
postulate to correct the model prediction Ỹ (k|k − 1) based on the difference
between the measurement ym(k) at time k and the model prediction ỹ0(k|k−1),
the first output vector appearing in Ỹ (k|k − 1), for this time step.

Correction:

Y (k|k) = Y (k|k − 1) + K(ym(k)− ỹ0(k|k − 1)) (3.64)

The matrix K is referred to as observer gain. To make the prediction equivalent
to the earlier prediction where we added a constant bias term of size (ym(k)−
ỹ0(k|k− 1)) to the prediction equation, we should choose the observer gain as

K = I =









I
I
...
I























n (3.65)

Element by element this equation is

ỹ0(k|k) = ỹ0(k|k − 1) + [ym(k)− ỹ0] = ŷ(k)
ỹ1(k|k) = ỹ1(k|k − 1) + [ym(k)− ỹ0(k|k − 1)]

...
...

...
ỹn−1(k|k) = ỹn−1(k|k − 1) + [ym(k)− ỹ0(k|k − 1)]

Note from the first equation that the estimate of the current output is set equal
to the measurement. As before, we have added the same correction term [·]
to all future predicted outputs, ỹ1(k|k − 1), . . . , ỹn−1(k|k − 1) and therefore
y(k + 1|k − 1), . . . , y(k + n − 1|k − 1), interpreting it as a bias term which is
determined based on the present measurement and remains constant.

Substituting (3.63) into (3.64) we obtain the state estimator

Ỹ (k|k) = M · Ỹ (k − 1|k − 1) + S∆v(k − 1)

+ I
[

ym(k)−N(M · Ỹ (k − 1|k − 1) + S∆v(k − 1))
] (3.66)

80 Constrained Model Predictive Control

where

N =

[

I 0 0 . . . 0
︸ ︷︷ ︸

n

]

which allows one to compute the current state estimate Ỹ (k|k) based on the
previous estimate Ỹ (k − 1|k− 1), the previous input move ∆v(k − 1) and the
current measurement ym(k). I is referred to as the observer gain.

An advantage of the above formulation is that substantial theories exist
that enable us to design K optimally so as to account for information we may
have about the statistical characteristics of disturbances and measurement
noise. Another advantage is that it can be generalized to handle systems with
unstable dynamics. We note that running an unstable system model in open
loop would lead to an “OVERFLOW” in the computer. The noise filtering
issue will be discussed in a simplified way below. The more rigorous general
treatment of the design of K and its accompanying properties will be given in
Chapter ?? in the advanced part of the book.

3.9.2 Integrating System

Integrating dynamics are common in chemical processes. In systems with
integrating dynamics, a step response never settles down to a constant value,
and therefore, the standard finite step response based model description cannot
be used. For these systems, an equivalent assumption to a finite settling time
is that, after n steps, all stable dynamics die out and the responses of all the
outputs of integrating dynamics becomes pure ramps, as shown in Fig. 2.2(b).
The step response of such a system can be represented by

{S1, S2, . . . , . . . , Sn, Sn + (Sn − Sn−1), Sn + 2(Sn − Sn−1), . . . , . . .} (3.67)

We can define the system state as we did for stable systems:

Ỹ (k) =
[

ỹ0(k)T , ỹ1(k)T , . . . , ỹn−1(k)T]

kT (3.68)

Then, we can represent the state transition from one sample time to the next
as

Ỹ (k + 1) = M I Ỹ (k) + S∆v(k) (3.69)

where S =
[

S1 · · · Sn
]T as before and

M I =













0 1 0 0 0
0 0 I 0 . . . 0 0
...

...
0 0 0 I
0 0 −I 2I



































n (3.70)

March 15, 2002 81

where M I represents essentially the same shift operation as before except the
way the last set of elements are constructed. Note that the assumption of
pure linear rise after n steps in the step response translates into the transition
equation of

ỹn−1(k + 1) = ỹn−1(k) + (ỹn−1(k)− ỹn−2(k)) + Sn∆v(k) (3.71)

One important difference in forming the prediction equation for integrating
systems is that the effect of unmeasured disturbances should be extrapolated
as a linear rise rather than a constant bias. Hence, one may modify the
prediction equation from before to

Y(k + 1|k) =

















ỹ1(k)
ỹ2(k)

...

...
ỹp(k)

















︸ ︷︷ ︸

MI Ỹ (k)
from the memory

+

















Sd
1

Sd
2
...
...

Sd
p

















∆d(k)

︸ ︷︷ ︸

Sd∆d(k)
feedforward term

+

















wy(k|k) + (wy(k|k)− wy(k − 1|k − 1))
wy(k|k) + 2 (wy(k|k)− wy(k − 1|k − 1))

...

...
wy(k|k) + p (wy(k|k)− wy(k − 1|k − 1))

















︸ ︷︷ ︸

feedback term

+





















Su
1 0 · · · · · · 0

Su
2 Su

1 0 · · · 0
...

...
.

...
Su

m Su
m−1 · · · · · · Su

1
...

.
...

Su
p Su

p−1 · · · · · · Su
p−m+1





















︸ ︷︷ ︸

Su

dynamic matrix

















∆u(k|k)
∆u(k + 1|k)

...

...
∆u(k + m− 1|k)

















︸ ︷︷ ︸

∆U(k)
future input moves

(3.72)
where wy(k|k) = ym(k)−ỹ0(k) representing the model prediction error. Notice
that we have used two point linear extrapolation in projecting e into the future.

82 Constrained Model Predictive Control

In the above,

MI =























0 I 0 0 0
0 0 1 0 . . . 0 0
...

...
0 0 0 I
0 0 −I 2I
0 0 −2I 3I
...

...
...

...
...

...
...

































































p (3.73)

Here we assumed p > n. If not, one can simply take the first p rows.

However, there is a problem in using the above in practice: The open-
loop model prediction of the output (terms like ỹi(k)) will increase without
bound due to the integrators and eventually lead to an “OVERFLOW” in
the control computer. This problem happens not because the physical system
is actually going unstable but because the model states are not corrected by
measurements to account for various unmeasured inputs. To circumvent this,
it is necessary to update the model state directly using the measurements,
as in the closed-loop model state update discussed earlier. Let us postulate
a closed-loop update equation of the same form (3.63 and 3.64) as for stable
systems

Model Prediction:

Ỹ (k|k − 1) = M I · Ỹ (k − 1|k − 1) + S∆v(k − 1) (3.74)

Correction:

Ỹ (k|k) = Ỹ (k|k − 1) + (I + I′)(ym(k)− ỹ0(k|k − 1)) (3.75)

where

I′ =















0
I
2I
...

(n− 1)I















(3.76)

and hence

I + I′ =













I
2I
3I
...

nI













(3.77)

Here I+ I′ is referred to as the observer gain. The form of the correction term
can be motivated by examining the special situation depicted in Fig. 3.36
(the situation would be caused, for example, by an unknown step disturbance

March 15, 2002 83

Figure 3.36: Motivation for observer correction term (∆ ∆= ym(k)−ỹ0(k|k−1)).

entering the integrator). In this case, estimates ỹ`(k|k) for ` ≥ k will be exactly
equal to the true process outputs ym(k + `) if the observer (3.74,3.75) is used.

In general, there will be both stable and integrating outputs and the ob-
server gain has to be chosen either according to (3.65) or (3.77).

3.9.3 Noise Filter

Let us take another look at the correction steps for both stable systems

Ỹ (k|k) = Ỹ (k|k − 1) + I(ym(k)− ỹ0(k|k − 1)) (3.64)

and integrating systems

Ỹ (k|k) = Ỹ (k|k − 1) + (I + I′)(ym(k)− ỹ0(k|k − 1)) (3.75)

In both cases, we determine the difference between the model prediction
ỹ0(k|k−1) and the measurement ym(k) and add it either as a constant bias or
a “ramp bias” to the model prediction Ỹ (k|k− 1) to obtain the corrected pre-
diction Ỹ (k|k). This is justifiable, for example, if the difference is solely due to
a constant disturbance effect. It could, however, be solely due to measurement
noise, in which case we would not want to correct the model prediction at all.
In general, disturbances, model error, and measurement noise will contribute
to the difference, in which case a more cautious correction than implied by
(3.64) and (3.75) will be appropriate. This can be achieved by filtering the
correction term in (3.64):

84 Constrained Model Predictive Control

Ỹ (k|k) = Ỹ (k|k − 1) + IF [ym(k)− ỹ0(k|k − 1)] (3.78)

where F is a diagonal matrix

F = diag
{

f1, f2, . . . , fny

}

(3.79)

and
0 < f` ≤ 1 (3.80)

Thus, rather than correct the model prediction by the full error [ym(k) −
ỹ0(k|k − 1)] one takes a more cautious approach and utilizes only a fraction
f`. The larger the measurement noise associated with output y`, the smaller
f` should be chosen.

To understand better the effect of this noise filter on control performance,
assume that the output suddenly changes to a constant value (“output dis-
turbance”) ym(0) = ȳ and that neither the disturbance nor the manipulated
variables change (∆d(k) = 0,∆u(k) = 0). Then we find from (3.63)

Model Prediction:

Ỹ (k|k − 1) = MỸ (k − 1|k − 1) (3.81)

and from (3.78)

Ỹ (k|k) = Ỹ (k|k − 1) + IF (ym(k)− y(k|k − 1))

= MỸ (k − 1|k − 1) + IFym(k)− IFNMỸ (k − 1|k − 1)

= (I − IFN)MỸ (k − 1|k − 1) + IFym(k) (3.82)

where

N =

[

I 0 . . . 0
︸ ︷︷ ︸

n

]

(3.83)

The form suggests — and we shall rigorously prove this in the advanced
part — that Ỹ (k|k) corresponds to ym(k) passed through a first-order filter.
Indeed, the estimate Ỹ (k|k) approaches the true value ŷ with the filter time
constant:

stable system : −T/ ln(1− f`) (3.84)

where T is the sample time. In principle, for integrating systems, we could
also detune the observer gain I + I′ (3.77) by post-multiplying it by a filter
matrix F . However, this choice tends to lead to a highly oscillatory observer
response and is therefore undesirable. As we will show in the advanced

March 15, 2002 85

part, it is more desirable to introduce the filter in the following manner into
(3.75):

Ỹ (k|k) = Ỹ (k|k − 1) + (I · F + I′ · F ′)(ym(k)− ỹ0(k|k − 1)) (3.85)

where F was defined as above (3.79) and

F ′ = diag
{

f ′1, f
′
2, . . . , f

′
ny

}

(3.86)

and

f ′i =
f2

i
2− fi

(3.87)

Thus, for both stable systems (3.78) and integrating systems (3.85), we have a
single tuning parameter 0 < f` ≤ 1 for each output. The noise filtering action
decreases with increasing f`. For f` = 1, measurement noise is not filtered at
all and we recover (3.64) and (3.75).

In general, there will be both stable and integrating outputs and the filter
gain is chosen for each output either as suggested in (3.78) or in (3.85). This
leads to the following correction expression with the general filter gain KF :

Ỹ (k|k) = Ỹ k|k − 1) + KF (ym(k)− ỹ0(k|k − 1)) (3.88)

3.9.4 Bi-Level Optimization

The MPC calculation can be split into two parts for an added flexibility. First a
local steady-state optimization can be performed to obtain obtain target values
for each input and output. This can be followed by a dynamic optimization to
determine the most desirable dynamic trajectory to these target values. Even
though the local steady-state optimization can be based on an economic index,
it does not replace the more comprehensive nonlinear optimization that often
runs above the MPC layer – at a much more slower rate – in order to provide an
optimal range of inputs and outputs for the plant condition experienced during
a particular optimization cycle. The local optimization performed in MPC is
based on a linear steady state model, which may be obtained by linearizing a
nonlinear model or simply the steady-state version of the step response model
used in the dynamic optimization.

The reason for running the local optimization may vary. For example,
one may want to perform an economic optimization at a higher frequency to
account for local disturbances. Even if there is no economic objective in the
given control problem, the steady-state optimization can be helpful to deter-
mine best feasible target values for CVs and the corresponding MV settling
values.

The two-stage optimization can be formulated as below:

86 Constrained Model Predictive Control

• Step 1: Steady-State Optimization
The general form of a steady-state prediction equation is

y(∞|k) = Ks (u(∞|k)− u(k − 1))
︸ ︷︷ ︸

∆us(k)

+b(k) (3.89)

where y(∞|k) and u(∞|k) are the steady state values of the output and
input projected at time k. With only m input moves considered,

∆us(k) = ∆u(k) + ∆u(k + 1) + + ∆u(k + m− 1) (3.90)

Note that, for the step response model,

y(∞|k) = y(k + m + n− 1|k) (3.91)

and Ks = Sn. Also,

b(k) = ỹn−1(k) + Sd
n∆d(k) + (ym(k)− ỹ0(k)) (3.92)

This steady-state prediction model can be used to optimize a given
economic objective function subject to various input and output con-
straints.:

min
∆us(k)

`(u(∞|k), y(∞|k)) (3.93)

Since an economic objective function is typically linear and the prediction
equation is also linear, a Linear Program (LP) results. Alternatively, one
can also solve

min
∆us(k)

‖∆us(k)‖ (3.94)

min
∆us(k)

‖r − y(∞|k))‖Q (3.95)

In the first case, we would be looking for a minimum input change such
that all the constraints are satisfied. In the second case, we would seeking
a minimum deviation from the setpoint values that are achievable within
the given constraints. The solution sets the target settling values for the
inputs and outputs.

• Step 2: Dynamic Optimization
The dynamic prediction equation is same as before. A quadratic regula-
tion objective of the following is minimized subject to the give constraints
through QP:

[

m+n−2
∑

i=1

(y(k + i|k)− y∗(∞|k))T Q(y(k + i|k)− y∗(∞|k))

+
m−1
∑

j=0

∆uT (k + j|k)R∆u(k + j|k)



 (3.96)

March 15, 2002 87

where y∗(∞|k)) is the solution from the steady-state optimization. An
additional constraint may be added to match the settling values of the
optimized input trajectories to those computed from the steady-state
optimization:

∆u(k|k) + ∆u(k + 1|k) + + ∆u(k + m− 1|k) = ∆u∗s(k) (3.97)

This also forces y(k + m + n − 1|k) to be at the optimal steady-state
value y∗(k +∞|k).

Note that, this steady-state optimization may be performed as often as at
every sample time, that is at the same execution rate as the dynamic opti-
mization. However, it is critical to filter the noise and other high frequency
variations from the feedback signal. Otherwise, the solution from the steady-
state solution can fluctuate wildly from sample time to sample time, especially
in the case of a LP.

3.9.5 Product Property Estimation

Many CVs, such as product compositions and other property variables, cannot
be measured at a frequency, speed, accuracy, and/or reliability required for
direct feedback control to be effective. Control of these variables may be
nevertheless critical and the only recourse may be to develop and use estimates
from measurements of other process variables. Since all process variables are
driven by a same basic set of disturbances and inputs, their behavior should
be strongly correlated. The correlation can be captured, which can be used to
build an inferential estimator for the property variables.

Typically, linear regression techniques, such as least squares and partial
least squares (PLS), are used to build an estimator of the form

ŷp(k) = L







ys
1(k − δ1)

...
ys

` (k − δ`)





 (3.98)

where ŷp is the estimate of the product property variable in question and ys
i ’s

are he secondary variables used to estimate the product property. Because
different variables can have different response times to various inputs, the
regressor may need to include delayed measurement terms as shown above.
Determination of appropriate delay amounts would require significant process
knowledge or a careful data analysis. In the case that proper values for these
delays cannot be determined a priori, one may have to include several delayed
terms of a same variable in the regressor.

When direct measurements of the product property variables are available,
one may use them in conjunction with the inferential estimates. In practice,

88 Constrained Model Predictive Control

the direct measurements are typically used to correct any bias in the inferential
estimate. For example, when a measurement of yp becomes available after a
delay of θd sample steps, it can be included in the estimator in the following
way:

ŷp∗(k) = ŷp(k) + (yp
m(k − θd)− ŷp(k − θd)) (3.99)

where yp
m is the measured value of yp and ŷp∗(k) is the measurement-corrected

estimate.

In the case that the process is highly nonlinear and / or the operation range
is wide, nonlinear regression techniques such as Artificial Neural Networks can
be used in place of the least squares technique.

3.10 Application of DMC to the Case Studies

3.10.1 Control of a heavy oil fractionator using Dynamic Ma-
trix Control

This case study is intended to show how the MATLAB MPC Toolbox can be
used to design a model predictive controller for a fairly complex, practically
motivated control problem and test it through simulation. The case study is on
a heavy-oil fractionation column and involves multivariable control, constraint
handling, and optimization. The interested readers may attempt to solve the
problem using the standard step response based DMC technique we explained
in this chapter. A solution will be provided at the end of the section.

Heavy Oil Fractionator: Background

A heavy oil fractionator (Figure 3.37) splits crude oil into several streams
that are further processed downstream. Vaporizing the feed stream consumes
much energy and therefore heat integration is of paramount importance. The
fractionator shown in the figure has three heat exchangers, which are used to
recover energy from the recirculation streams. Product quality needs to be
maintained at a desired level and certain constraints have to be met.

Control Structure Description

The control structure of the fractionator consists of two levels. In the lower
level (displayed in Figure ??), liquid levels and flow rates are controlled. This
structure does not need MPC; conventional PD/PID controllers suffice.

In addition to the basic inventory and flow controls, higher level of control
is needed to assure the quality of the output streams of interest. We may
use composition measurements of the product streams obtained through on-
line analyzers. Composition analyzers, however, introduce significant delays.

March 15, 2002 89

Crude Oil

Vaporizer

Light Oil

Naphtha

Light Gas Oil

Short Residue

Heavy oil
Fractionator

Figure 3.37: Heavy Oil Fractionator

FC

FC

LC

PC

Upper reflux duty

Intermediate reflux duty

Bottoms reflux
duty

BottomsFeed

reflux drum

stri-
pper

FC
LC

(URD)

(IRD)

(BRD)

F
1

F
2

(F)
 1 s

(F)
 2 s

Q

(Q)s

Figure 3.38: Control of Heavy Oil Fractionator — Level 1: Inventory Control

90 Constrained Model Predictive Control

T

T

T

FC

A

FC

A

T

LC

PC

T

Upper reflux duty

Intermediate reflux duty

Bottoms reflux
duty Side draw

BottomsFeed

reflux drum

stri-
pper

Top draw

FC
LC

Figure 3.39: Control of Heavy Oil Fractionator — Level 2: Quality Control

Alternatively, we may use other more easily measurable variables such as tem-
peratures as an indicator for compositions of the product streams. In addition
to product quality control, this level may handle various constraints and any
optimization objective that competes with control requirements. At this level,
use of MPC may bring significant benefits. The control structure for this level
is shown in Figure 3.39

The following are the control objectives at the MPC level listed in the
order of their priority: (1) y7 should remain above the minimum level of -0.5;
(2) y1, y2 must be kept at their setpoints; (3) u3, the opening of the bypass
valve, must be minimized to maximize the heat recovery.

Input Output Transfer Functions

Models relating the MVs to the CVs and other outputs are given as below:

March 15, 2002 91

TD SD BRD URD IRD
u1 u2 u3 d1 d2

TEP y1
4.05e−27s

50s+1
1.77e−28s

60s+1
5.88e−27s

50s+1
1.2e−27s

45s+1
1.44e−27s

40s+1

SEP y2
5.39e−18s

50s+1
5.72e−14s

60s+1
6.9e−15s

40s+1
1.52e−15s

25s+1
1.83e−15s

20s+1

TT y3
3.66e−2s

9s+1
1.65e−20s

30s+1
5.53e−2s

40s+1
1.16

11s+1
1.27
6s+1

URT y4
5.92e−11s

12s+1
2.54e−12s

27s+1
8.1e−2s

20s+1
1.73
5s+1

1.79
19s+1

SDT y5
4.13e−5s

8s+1
2.38e−7s

19s+1
6.23e−2s

10s+1
1.31
2s+1

1.26
22s+1

IRT y6
4.06e−8s

13s+1
4.18e−4s

33s+1
6.53e−1s

9s+1
1.19

19s+1
1.17

24s+1

BRT y7
4.38e−20s

33s+1
4.42e−22s

44s+1
7.2

19s+1
1.14

27s+1
1.26

32s+1

The transfer functions for the actual plant are assumed to be the same as
the model, except that there can be gain variations. Structure of the variations
is shown below. They are to be incorporated into the simulation as a plant-
model mismatch.

TD SD BRD URD IRD

u1 u2 u3 d1 d2

TEP y1 4.05 + 2.11ε1 1.77 + 0.39ε2 5.88 + 0.59ε3 1.2 + 0.12ε4 1.44 + 0.16ε5
SEP y2 5.39 + 3.29ε1 5.72 + 0.57ε2 6.90 + 0.89ε3 1.52 + 0.13ε4 1.83 + 0.13ε5
TT y3 3.66 + 2.29ε1 1.65 + 0.35ε2 5.53 + 0.67ε3 1.16 + 0.08ε4 1.27 + 0.08ε5
URT y4 5.92 + 2.34ε1 2.54 + 0.24ε2 8.10 + 0.32ε3 1.73 + 0.02ε4 1.79 + 0.04ε5
SDT y5 4.13 + 1.71ε1 2.38 + 0.93ε2 6.23 + 0.30ε3 1.31 + 0.03ε4 1.26 + 0.02ε5
IRT y6 4.06 + 2.39ε1 4.18 + 0.35ε5 6.53 + 0.72ε3 1.19 + 0.08ε4 1.17 + 0.01ε5
BRT y7 4.38 + 3.11ε1 4.42 + 0.73ε2 7.2 + 1.33ε3 1.14 + 0.18ε4 1.26 + 0.18ε5

Problem Statement

The following are the five cases representing different disturbances and gain
variations.

d1 d2 ε1 ε2 ε3 ε4 ε5
Case I: 0.5 0.5 0 0 0 0 0
Case II: - 0.5 -0.5 -1 -1 -1 1 1
Case III: -0.5 -0.5 1 -1 1 1 1
Case IV: 0.5 -0.5 1 1 1 1 1
Case V: -0.5 -0.5 -1 1 0 0 0

The following constraints must be met.

• −0.5 ≤ u1, u2, u3 ≤ 0.5

• |∆u1|, |∆u2|, |∆u3| ≤ 0.05

• −0.5 ≤ y1 ≤ 0.5, y7 ≥ −0.5

• sampling time ≥ 1 min

92 Constrained Model Predictive Control

Figure 3.40: Control scenario block diagram

The input constraints are hard constraints, meaning they must be satisfied.
The output constraint can be viewed as a soft constraint, which is to be met if
possible but may be relaxed in the case that infeasibility problems arise. You
should relax the constraint for y1 before you relax the constraint for y7.

The objective is to satisfy to regulate y1 and y2, the product stream com-
positions, at their setpoints while satisfying the above constraints, for all five
simulation cases. As a secondary objective, we wish to minimize u3 in order
to maximize the heat recovery.

In addition to the standard cases, we want to test some failure scenarios.
Specifically, let us simulate the Case I when one of the actuators, u1 or u2, is
out of service and also when one of the composition sensors goes out of service.

Note that d1, d2 are unmeasured disturbances. Therefore the model for the
MPC calculation should not contain the models d1, d2. These models appear
only in the “plant” used to do the closed-loop simulation.

Our Solution Strategy

We will use the MPC toolbox in MATLAB to solve this simulation prob-
lem. The other toolboxes available with MATLAB include SIMULINK, GUI
(Graphical User Interface) etc. The block diagram representation of the prob-
lem is shown in Figure 3.40. The system has certain inputs and certain out-
puts. Out of all the measured outputs, we need to control y1 and y2. Since
these are composition variables, they are associated with significant time de-
lays. Alternatively, we may use some temperature or such other inferential
measurements (see the earlier section on Property Estimation. However, this
possibility is not considered in our solution strategy.

We can identify the following as the output variables of interest:

Controlled variables We need to control y1 and y2 at their set points.

Associate variables We need to maintain y7 above its minimum value.

Optimized variables We need to obtain the required control action with
minimal change in u3. Thus, u3 “enters” as an output variable.

March 15, 2002 93

Note that u3 is also a manipulated (input) variable. Putting down the
foregoing discussion in mathematical terms, we obtain the model









y1
y2
y7
u3









= Gu





u1
u2
u3



 (3.100)

where,

Gu =









g11 g12 g13
g21 g22 g23
g71 g72 g73
0 0 1









(3.101)

The model for actual plant is given by









y1
y2
y7
u3









= Gu





u1
u2
u3



 + Gd
[

d1
d2

]

(3.102)

We solve the control problem using the cmpc algorithm available in the
MPC toolbox5. The cmpc algorithm solves, as the name suggests, Constrained
MPC problem. The description of cmpc could be found in the MPC toolbox
manual. The syntax for using this algorithm is

[y,u,ym] = cmpc(plant, model, ywt, uwt,M,P, tend, r, ulim,ylim,...
tfilter, dplant, dmodel, dstep)

The first step in solving the problem is to obtain the step response matrices
plant and model. These two models are required to be in step response form.
We use the following MATLAB commands 6 to do this.

First, we obtain the models in transfer function form using poly2tfd func-
tion. You may refer to the MPC toolbox manual for more details. The usage of
this function to obtain the transfer function g11 is shown. The third argument
being 0 signifies continuous transfer function form and the final argument is
the time delay.

g11 = poly2tfd(4.05, [50 1], 0, 27];

5Please refer to the MPC toolbox manual for details. You may also use the GUI (Graphical
User Interface) version or SIMULINK, instead

6The commands described may be MATLAB commands or MPC Toolbox commands. In
this example, we will use the same term in describing both. We assume here that you have
MPC Toolbox installed. If not, some of these commands will not work.

94 Constrained Model Predictive Control

The resulting matrix corresponds to the transfer function 4.05 e−27s

50s+1 . We then
use the tfd2step function to get them in the required form. Before that, as
described above, we obtain all the necessary transfer functions (see Eq. 3.101).
The transfer functions are passed column-wise (and not row-wise). Scalar Ny
specifies the number of outputs (ie. number of rows).

delt = 5; % Interval size
tfin = 500; % Truncation time of step response
Ny = 4; % Number of outputs (y1, y2, y7, u3)

model = tfd2step(tfin,delt,Ny,g11,g21,g71,gu31,...
g12,g22,g72,gu32,g13,g23,g73,gu33);

You may want to see the validity of the tfd2step command by actually
computing the step response matrix yourself. One way to do this is to find the
inverse Laplace transform of a transfer function and obtain the step response
matrix. Remember that, to obtain the step response, you need to multiply the
transfer function with 1/s (output transform for a step input) before taking
the inverse Laplace transform. First few elements of model are listed below:

� model =

































































0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 1.6659
0.0000 0.0000 1.0000

















0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 2.9464
0.0000 0.0000 1.0000

















0.0000 0.0000 0.0000
0.0000 0.0945 0.0000
0.0000 0.0000 3.9306
0.0000 0.0000 1.0000















0.0000 0.0000 0.0000
0.2113 0.5443 0.8108

...
...

...































































We need two step response matrices because there can be a mismatch
between the actual plant and our model. Moreover, the disturbance models
are not to be incorporated into the model, because the disturbances are not
measured. Thus, we introduce the disturbances for the plant only and call
them dplant, whereas dmodel is an empty matrix.

Next step is to specify the weighting matrices (Γy and Γu). This is done by

March 15, 2002 95

specifying the vectors ywt and uwt respectively. Constraint limits are specified
through vectors ulim and ylim. Using these values, we call the function cmpc.

Below is a sample program for Case II. The setpoints for y1 and y2 are 0.
The lowest value of u3 that satisfies the constraints is about u3 = 0.01. Hence
a setpoint for u3 was chosen to be 0.

% Project - Control of Heavy Oil Fractionator

% ------------------ OBTAIN "MODEL" ------------------
% To Obtain Modelled Step Response Coefficient
% Model is assumed unaffected by variations in gain
E1=0; E2=0; E3=0;

c11=4.05+2.11*E1; c12=1.77+0.39*E2; c13=5.88+0.59*E3;
c21=5.39+3.29*E1; c22=5.72+0.57*E2; c23=6.90+0.89*E3;
c71=4.38+3.11*E1; c72=4.42+0.73*E2; c73=7.20+1.33*E3;

% To obtain the Transfer Functions
g11=poly2tfd(c11, [50 1], 0, 27);
g12=poly2tfd(c12, [60 1], 0, 28);
g13=poly2tfd(c13, [50 1], 0, 27);

g21=poly2tfd(c21, [50 1], 0, 18);
g22=poly2tfd(c22, [60 1], 0, 14);
g23=poly2tfd(c23, [40 1], 0, 15);

g71=poly2tfd(c71, [33 1], 0, 20);
g72=poly2tfd(c72, [44 1], 0, 22);
g73=poly2tfd(c73, [19 1]);

gu31=poly2tfd(0, [1]);
gu32=poly2tfd(0, [1]);
gu33=poly2tfd(1, [1]);

% --------- OBTAIN STEP RESPONSE MATRIX --------------
% Not all the above measured variables are controlled.
% y1 and y2 are controlled
% y7 is associated variable
% u3 is also to be optimized.
delt = 5; % Interval size
tfin = 500; % Truncation time of step response
Ny = 4; % Number of outputs (y1, y2, y7, u3)

model = tfd2step(tfin,delt,Ny,g11,g21,g71,gu31,...
g12,g22,g72,gu32,g13,g23,g73,gu33);

% --------------- SIMULATION SCENARIOS ---------------
% Case 2
E1=-1; E2=-1; E3=-1; E4=1; E5=1;

96 Constrained Model Predictive Control

d1=-0.5; d2=-0.5;
y7min=-0.5; % minimum value of y7

% ------------------ OBTAIN "PLANT" ------------------
c11=4.05+2.11*E1; c12=1.77+0.39*E2; c13=5.88+0.59*E3;
c21=5.39+3.29*E1; c22=5.72+0.57*E2; c23=6.90+0.89*E3;
c71=4.38+3.11*E1; c72=4.42+0.73*E2; c73=7.20+1.33*E3;

% To obtain the Transfer Functions
g11=poly2tfd(c11, [50 1], 0, 27);
g12=poly2tfd(c12, [60 1], 0, 28);
g13=poly2tfd(c13, [50 1], 0, 27);

g21=poly2tfd(c21, [50 1], 0, 18);
g22=poly2tfd(c22, [60 1], 0, 14);
g23=poly2tfd(c23, [40 1], 0, 15);

g71=poly2tfd(c71, [33 1], 0, 20);
g72=poly2tfd(c72, [44 1], 0, 22);
g73=poly2tfd(c73, [19 1]);

% ------- OBTAIN STEP RESPONSE MATRIX (PLANT)-----------
% Note that u3 remains the same for plant as well
% Using same value of delt
plant = tfd2step(tfin,delt,Ny,g11,g21,g71,gu31,...

g12,g22,g72,gu32,g13,g23,g73,gu33);

% -------------- OBTAIN DISTURBANCE MODEL --------------
dc11=1.20+0.12*E4; dc12=1.44+0.16*E5;
dc21=1.52+0.13*E4; dc22=1.83+0.13*E5;
dc71=1.14+0.18*E4; dc72=1.26+0.18*E5;

d11=poly2tfd(dc11, [45 1], 0, 27);
d12=poly2tfd(dc12, [40 1], 0, 27);

d21=poly2tfd(dc21, [25 1], 0, 15);
d22=poly2tfd(dc22, [20 1], 0, 15);

d71=poly2tfd(dc71, [27 1]);
d72=poly2tfd(dc72, [32 1]);

du1=poly2tfd(0, [1]);
du2=poly2tfd(0, [1]); % Disturbances don’t affect u3

dplant = tfd2step(tfin,delt,Ny,d11,d21,d71,du1,...
d12,d22,d72,du2);

dmodel=[]; % No measured Disturbances

% ---------------- CONTROLLER PARAMETERS ---------------
ywt=[10 10 0 10]; % Penalty-weights control outputs

March 15, 2002 97

uwt=[1 1 1]; % Penalty-weights for input steps
M = 10;
P = 20; % Control and Prediction Horizons
tend = 300; % End Time
r = [0 0 y7min 0]; % Set Points

% Constraints on Inputs |u(i)|<=0.5 and |del_U(i)|<=0.05
ulim = [-0.5 -0.5 -0.5 0.5 0.5 0.5 0.05 0.05 0.05];

% Constraints on Outputs -0.5<=y1<=0.5 and y7min<=y7
ylim = [-0.5 -inf y7min -0.5 0.5 inf inf 0.5];

tfilter=[]; % No data filtering required
dstep=[d1 d2];

[yp,u,ym] = cmpc(plant,model,ywt,uwt,M,P,tend,r,ulim,...
ylim,tfilter,dplant,dmodel,dstep);

% ---------------- PLOTTING THE RESULTS ----------------
figure (3); plotall (yp,u,delt);
subplot(211); legend(’y1’,’y2’,’y7’,’u3’,0);
subplot(212); legend(’u1’,’u2’,’u3’,0);

Modifying the above for the other cases is trivial. Just the values for
E1. . . E5, D1 and D2 need to be changed. The cases of u1 actuator being
stuck and no feedback for output y1 are left as an exercise. Helpful hints:

• For a stuck actuator, the respective input should be constrained to a
very small region of operation.

• If feedback filtering time delay is ∞, we get no feedback.

The control objectives are to keep y1 and y2 at their setpoints, and u3 at
minimum possible value. In case 2, constraints are satisfied with u3 value of
0 or larger. To avoid infeasibility, u3 setpoint was chosen to be 0. However,
in case 1, lower u3 values are also achievable. Therefore, this is a candidate
for bi-level optimization, wherein u3 setpoint is decided by solving a linear
optimization problem instead of fixing a priori, as done in this example.

98 Constrained Model Predictive Control

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

O
ut

pu
ts

Case 1

y1
y2
y7
u3

0 50 100 150 200 250 300
−0.6

−0.4

−0.2

0

0.2

M
an

ip
ul

at
ed

 V
ar

Time

u1
u2
u3

Figure 3.41: Response for case 1. All constraints are met and u3 controlled at
0. Although lower u3 value is feasible for this case, u3 setpoint was selected
as 0 (see case 2 in Fig. 3.42)

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

O
ut

pu
ts

Case 2

y1
y2
y7
u3

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

M
an

ip
ul

at
ed

 V
ar

Time

u1
u2
u3

Figure 3.42: Response for case 2. u3 has slight offset from its setpoint 0.

March 15, 2002 99

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1
O

ut
pu

ts
Case 3

y1
y2
y7
u3

0 50 100 150 200 250 300
−0.4

−0.2

0

0.2

0.4

M
an

ip
ul

at
ed

 V
ar

Time

u1
u2
u3

Figure 3.43: Response for case 3. System oscillates before finally settling to
the desired setpoints.

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

0.3

O
ut

pu
ts

Case 4

y1
y2
y7
u3

0 50 100 150 200 250 300
−0.1

−0.05

0

0.05

0.1

0.15

M
an

ip
ul

at
ed

 V
ar

Time

u1
u2
u3

Figure 3.44: Response for case 4. Disturbances d1 and d2 have opposite signs,
somewhat cancelling each other’s effect. Hence the system settles to steady
state faster than other cases.

100 Constrained Model Predictive Control

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

O
ut

pu
ts

Case 5

y1
y2
y7
u3

0 50 100 150 200 250 300
−0.2

0

0.2

0.4

0.6

M
an

ip
ul

at
ed

 V
ar

Time

u1
u2
u3

Figure 3.45: Response for case 5 — similar to that of case 2.

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

O
ut

pu
ts

Case 1: u
1
 Actuator Out of Service

y1
y2
y7
u3

0 50 100 150 200 250 300
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

M
an

ip
ul

at
ed

 V
ar

Time

u1
u2
u3

Figure 3.46: Response for case 1 with actuator u1 stuck. In spite of actuator
failure, DMC does a good job of controlling the system

March 15, 2002 101

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

O
ut

pu
ts

Case 1: u
2
 Actuator Out of Service

y1
y2
y7
u3

0 50 100 150 200 250 300
−0.6

−0.4

−0.2

0

0.2

M
an

ip
ul

at
ed

 V
ar

Time

u1
u2
u3

Figure 3.47: Response for case 1 with actuator u2 stuck. This case shows forte
of MPC applied to a MIMO system.

102 Constrained Model Predictive Control

0 50 100 150 200 250 300
−0.5

0

0.5

1

1.5

O
ut

pu
ts

Case 1: y
1
 Sensor Out of Service

y1
y2
y7
u3

0 50 100 150 200 250 300
−0.6

−0.4

−0.2

0

0.2

0.4

M
an

ip
ul

at
ed

 V
ar

Time

u1
u2
u3

Figure 3.48: Response for case 1 with composition sensor out of service. In
the absence of feedback, y1 is not controlled.

When y1 sensor is out of service, feedback of y1 composition is unavailable.
The controller assumes that y1 remains at its original value. Whereas in real-
ity, y1 has violated the constraints. This condition may be avoided by using
redundant sensors and / or using inferential control (using y3 . . . y6 temper-
ature measurements). Besides, the use of inferential measurements will also
improve the controller performance as there is significant dead time associated
with composition measurements. In this time, controller is unable to make any
control moves. CHECK: “Inferential Control” is beyond the scope of
this example. It will be discussed further in part 3 of this text.

