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Motivation

Online monitoring of conversion (heat of reaction) in
(semi-)batch processes is very important in process
monitoring and control and can be performed by
calorimetry.

The heat transfer coefficient is not known a priori
or varies over the batch run.

In heat flux calorimetry, there are often errors in the
estimates of the heat of reaction due to a wrong heat
transfer coefficient.

Estimation of heat of reaction and heat transfer
coefficient is needed.

Possible approaches:

State and parameter estimation by nonlinear filtering
Oscillation calorimetry
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Motivation

In practice the following difficulties occur:

The jacket of technical reactors normally behaves like a
Plug Flow Reactor (PFR), but is modelled as a CSTR,

The heat transfer coefficient (k) changes with the batch
time, especially in semi-batch processes,

The flow rate through the jacket influences the dynamic
behaviour of the system significantly.

These aspects have to be considered in the design of
the estimator.
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Modelling: Jacket as CSTR

Reaction calorimetry and state estimation
approaches are based on the same physical
model.

Balances for the reactor and the jacket (CSTR)

1

(\/R,in _vR,out)

dTR vR in 1 : :
- ' T i _T + T e
dt Ag ( . R’OUt) pRCp,RABhR@QR'IOSS)

Vessel : dn =
dt

HOR (T-T,)
pRCp,RABhR
dT 1 .
Jacket : dtJ _ o (m\]cp,J (TJ’in —T\,,out)R —T, ))
J¥p,J
technische universitat Calorimetry with kA estimation 3 RA- |
dortmund Process Dynamics

and Operations



Modelling: Jacket as PFR

- Balances for the reactor and the jacket (PFR)
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Vessel : d:R = : (\/'R,in —V'R,Out) /L/ B
. ° Tout M e N \,_
dTR _VR,in (T = )+ J\_C{ “r :
dt - AB R,in R,out : . ]
1 - . ] Hmox ]
Q source Q oss ) . M
pch,RABhR@ " ) s He ||
T -T | i
pRCp,RABhR ( R J) - - ]
jacket: o -y, (T, -T,(t2)) S et

ot oz p,c,,b " \ _\%;//

T, (t’o):TJ,in Tin M T R VRout

technische universitat
dortmund

Calorimetry with kA estimation

Process Dynamics
and Operations




CSTR-Model: Pseudo States

Model for state and parameter estimation:

We assume that the level in the reactor hy
IS known.

The model is extended by pseudo dynamics for the
unknown parameters.

dT, _ vR,in (TR,in _TR,out)+ 1 @(TR —T, )

dt Ag PrCo r A~ p.C, R Agh,
dT 1 _

dtJ T myc,, 5T _TJ’O‘“)R -T,))
@%)_,

dt
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dt
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CSTR-Model: Observability Analysis

Observability of the CSTR-model:
The nonlinear observability map is given by:

Tq
_Y1_ T,
Y, Vein 1 : : KA
= . |7 —\T in -T ou )+ Q source_Q oss ) (T -T )
Y1 Ag <R’ o pRCp,RABhR( ¢ A ) pRCp,RABhR Y
y 1,
e (mJCp,J (TJ,in _TJ,out)+ kA(TR _TJ ))
| MyCp.s _
The system is globally observable, if g5'(x,u)
can be solved uniquely in terms of the state
vector x for xe X, ueU.
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Observability Analysis

The inversion of the nonlinear observability map
yields:

TR:yl
TJ =Y,

. V..
QR = pRCpRVF{Sﬁ _%(TR,in _TR,out )} + (mJCp,J Y2 B mJCp,J (TJ,in _TJ,out ))

B

k J CpiY2—MyC, (TJ,in =T out ))

The given system is globally observable for all
T, #T, and A0V, %0

It can be shown that this result holds also for the

PFR-model if it is discretized by orthogonal
collocation with T,=T, ;.
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System Analysis

= Dynamic behaviour of the system
+ eigenvalues of the linearised system

Eigenvalue 1 Eigenvalue 2
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= fs = scaling factor, my,, = normalised jacket flow rate
= Eigenvalues depend strongly on the jacket mass flow!

technische universitat Calorimetry with kA estimation m

dortmund Process Dynamics
and Operations



State Estimation: Extended Kalman Filter

Algorithm:

Notation:
X1k €estimated state at t=t,., based on
measurements up to t=t,

Correction:
Ky = Pk,k—lHkT,k—l(Hk,k—lpk,k—lHI-<r,k—1 T R)_l
)A(k,k = )A(k,k—l T Kk(yk - h()’zk,k—l))
Pk,k = (I - K, Hk,k—l)Pk,k—l

Prediction:

)A(k,k+1 = F()A(k,k , Uk)

of oh
Rk = Ak PkkAkk+Q with A, = 8X and H,, , =—
)A(k,k—l
Only (at best) local stability!
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Tuning of the EKF

Simulation of a reactor (V=10 ) with a PFR-jacket
Estimator based on CSTR-model for the jacket
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For a constant covariance matrix Q:
Performance depends on the jacket mass flow rate.
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Tuning of the EKF

Adaptation of the covariance matrix of the model
error Q to the mass flow rate through the jacket:
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Influence of the Model of the Jacket

Simulation of a system with a PFR-jacket
EKF estimation for with CSTR or PFR-model
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Large reactors or low flow rate of the coolant:
Results are poor if a CSTR model of the jacket is used.
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Summary

For simultaneous estimation of the heat of reaction
and the heat transfer coefficientin a CSTR, it has
been shown that:

the real behaviour of the jacket (CSTR or PFR) must
be taken into account,

the estimator dynamics have to be adapted to the
dynamic behaviour of the reactor,

adaptation of Q similar to the change of the
eigenvalues by the jacket mass flow rate results in
satisfactory estimations.
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Recap: Calorimetry

Energy balances:

dTl’ . .
R__ (Qr +kA(T7 —Tr) + Qmisc) (1)

Reactor: dt Cp R

dr; 1 |
Jacket: = 5 (kA (Ty — Tr) + m cp (Trin —T1)) (2)
dQr _,  d(kA)
dt dt

= In case KA is known and constant, Eq. (1) is
sufficient.
= Otherwise, Equation (2) has to be added.
= The model can be exploited by
» Direct Inversion
+ Extended Kalman Filter
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Calorimetry — Results at a Pilot Scale Reactor
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Heat Balance Calorimetry: Limitations

Energy balances:

. dTl’ 1 . :
Reactor: R _ (Qr ~KkA(T; —Tg) + Qmss) (1)
dt Cp.Rr
d1l'y 1 :
Jacket: = (=kA(Ts = Tr) +m cp (Tyin —T1))2)
dt CF_J

dQr_ ,  d(kA)
dt dt

= Eq. (2) can only be exploited for
sufficiently large | T;;, —T; | !
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Temperature Oscillation Calorimetry (TOC)

Many, especially small (laboratory) reactors are operated at large
jacket flowrates = temperature difference in the jacket is too small..

ldea:
Add a sinosoidal signal to the reactor temperature T

0 10.000 time [s] 25.000

Compute kA from the frequency response between the two
harmonic signals
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TOC: Formulae by Tietze (1996)

0 10.000 time [s] 25.006° I e
) _ Cpw
KA computation: kA = =
tan (arccog [WfD

Qg computation: From reactor heat balance
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Drawbacks of the Method by Tietze

The method works well in a stationary situation where

the temperatures are approximately constant and kA
does not change fast.

Good estimation of the amplitudes is difficult in transient
situations

—> Large deviations, slow convergence
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Typical Signals in TOC
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New Approach to TOC

Alternative evaluation schemes by Wolfgang Mauntz:
Representation of the signal by sine plus drift
Least-squares estimate in moving data window

Use reactor heat balance + its time derivative (2nd
order)

dT'p 1 . .
= kA(T; —T
o Cp,R{QR+ (T'y — Tr))
dogt 1 [M(dﬂ B dTRﬂ
dt Cp.r di di
Moving horizon estimator
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Comparison of Different Schemes
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Experimental Reactor
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(a) Photograph (b) Sketch

Figure 5.10: The 1 [ reactor setup
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New TOC: Experimental Results
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Experimental Results: Polymerization

i L]

D.06

-
=]
niin nen

=
T
| UL

= 1 1 1 1 1
2000 4000 2000 6000 ?[]EE[]] a00o 9000 10000
time [z

QO meas est

Results obtained with TOC and 2nd order model in the EKF for
a co-polymerization of styrene and butyl acrylate in the 1l reactor
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Summary and Conclusions

Reaction calorimetry is a widely used method to estimate
conversion in (semi-)batch processes

EKF can estimate Qi and kA simulataneously

If the jacket is not behaving as a CSTR (low flow rates, large
reactors), a PFR model of the jacket should be used in the
estimator

If the temperature difference between the jacket inlet and outlet
Is small (high jacket flow rate compared to the volume),

traditional calorimetry fails 78 —

Temperature Oscillation Calorimetry is 7 " ™
a solution to this problem i —
Data analysis using a second order L
derivative model in a EKF performs “q ]

0 100 200 time[s] 400 500

very well also in transient situations
The exitation signal can be optimized - triangular shape
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