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 Motivation
 Modelling of the Process: CSTR and PFR Jacket 

Models
 System Analysis
 State Estimation by Extended Kalman Filter 

• Tuning of the Estimator
• Influence of the Model of the Jacket

 Oscillation Calorimetry
• Traditional data analysis
• Advanced data analysis by an extended model + EKF

 Summary
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Motivation
 Online monitoring of conversion (heat of reaction) in 

(semi-)batch processes is very important in process 
monitoring and control and can be performed by 
calorimetry.

 The heat transfer coefficient is not known a priori
or varies over the batch run.

 In heat flux calorimetry, there are often errors in the 
estimates of the heat of reaction due to a wrong heat 
transfer coefficient.

 Estimation of heat of reaction and heat transfer 
coefficient is needed.

 Possible approaches:
• State and parameter estimation by nonlinear filtering
• Oscillation calorimetry
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Motivation

 In practice the following difficulties occur:
• The jacket of technical reactors normally behaves like a 

Plug Flow Reactor (PFR), but is modelled as a CSTR,
• The heat transfer coefficient (k) changes with the batch 

time, especially in semi-batch processes,
• The flow rate through the jacket influences the dynamic 

behaviour of the system significantly.

 These aspects have to be considered in the design of 
the estimator.



Calorimetry with kA estimation D
NYDD
NNYY

Process Dynamics
and Operations

Modelling: Jacket as CSTR
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 Reaction calorimetry and state estimation 
approaches are based on the same physical 
model.
• Balances for the reactor and the jacket (CSTR)
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Modelling: Jacket as PFR

• Balances for the reactor and the jacket (PFR)
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CSTR-Model: Pseudo States
 Model for state and parameter estimation:

• We assume that the level in the reactor hR
is known. 

• The model is extended by pseudo dynamics for the 
unknown parameters.
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CSTR-Model: Observability Analysis

 Observability of the CSTR-model:
• The nonlinear observability map is given by:
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• The system is globally observable, if
can be solved uniquely in terms of the state 
vector x for                   . 

( )uxqO ,1−

UuXx ∈∈ ,
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Observability Analysis
• The inversion of the nonlinear observability map 

yields:
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⇒The given system is globally observable for all

• It can be shown that this result holds also for the 
PFR-model if it is discretized by orthogonal 
collocation with TJ=TJ,out .

00and ≠⇔≠≠ RJR VATT
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System Analysis
 Dynamic behaviour of the system

• eigenvalues of the linearised system

 fG = scaling factor, mflow = normalised jacket flow rate
 Eigenvalues depend strongly on the jacket mass flow!
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State Estimation: Extended Kalman Filter
 Algorithm:

• Notation:
estimated state at t=tk+1 based on

measurements up to t=tk

• Correction:

• Prediction:

• Only (at best) local stability!
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Tuning of the EKF
 Simulation of a reactor (V=10 l) with a PFR-jacket
 Estimator based on CSTR-model for the jacket

 For a constant covariance matrix Q:
Performance depends on the jacket mass flow rate.



Calorimetry with kA estimation D
NYDD
NNYY

Process Dynamics
and Operations

Tuning of the EKF
 Adaptation of the covariance matrix of the model 

error Q to the mass flow rate through the jacket:
JmQ ~3,3
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Influence of the Model of the Jacket
 Simulation of a system with a PFR-jacket
 EKF estimation for with CSTR or PFR-model

 Large reactors or low flow rate of the coolant:
Results are poor if a CSTR model of the jacket is used.
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Summary

 For simultaneous estimation of the heat of reaction 
and the heat transfer coefficient in a CSTR, it has 
been shown that:
• the real behaviour of the jacket (CSTR or PFR) must 

be taken into account,
• the estimator dynamics have to be adapted to the 

dynamic behaviour of the reactor,
• adaptation of Q similar to the change of the 

eigenvalues by the jacket mass flow rate results in 
satisfactory estimations.
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Recap: Calorimetry

Energy balances:

Reactor: (1)

Jacket:   (2)

 In case kA is known and constant, Eq. (1) is
sufficient.

 Otherwise, Equation (2) has to be added.
 The model can be exploited by

• Direct Inversion
• Extended Kalman Filter
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Calorimetry – Results at a Pilot Scale Reactor
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Heat Balance Calorimetry: Limitations

Energy balances:

Reactor: (1)

Jacket: (2)

 Eq. (2) can only be exploited for
sufficiently large | TJ,in – TJ | !
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Temperature Oscillation Calorimetry (TOC)
 Many, especially small (laboratory) reactors are operated at large 

jacket flowrates  temperature difference in the jacket is too small..
 Idea:

Add a sinosoidal signal to the reactor temperature TR

 Compute kA from the frequency response between the two 
harmonic signals
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TOC: Formulae by Tietze (1996)
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 kA computation:

 QR computation: From reactor heat balance
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Drawbacks of the Method by Tietze

 The method works well in a stationary situation where 
the temperatures are approximately constant and kA 
does not change fast.

 Good estimation of the amplitudes is difficult in transient 
situations
 Large deviations, slow convergence
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Typical Signals in TOC
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New Approach to TOC

Alternative evaluation schemes by Wolfgang Mauntz:
 Representation of the signal by sine plus drift
 Least-squares estimate in moving data window
 Use reactor heat balance + its time derivative (2nd 

order)

 Moving horizon estimator



Calorimetry with kA estimation D
NYDD
NNYY

Process Dynamics
and Operations

Comparison of Different Schemes
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Experimental Reactor
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New TOC: Experimental Results
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Experimental Results: Polymerization

Results obtained with TOC and 2nd order model in the EKF for
a co-polymerization of styrene and butyl acrylate in the 1l reactor
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Summary and Conclusions
 Reaction calorimetry is a widely used method to estimate 

conversion in (semi-)batch processes
 EKF can estimate QR and kA simulataneously
 If the jacket is not behaving as a CSTR (low flow rates, large 

reactors), a PFR model of the jacket should be used in the 
estimator

 If the temperature difference between the jacket inlet and outlet 
is small (high jacket flow rate compared to the volume), 
traditional calorimetry fails

 Temperature Oscillation Calorimetry is
a solution to this problem

 Data analysis using a second order
derivative model in a EKF performs
very well also in transient situations

 The exitation signal can be optimized  triangular shape
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