

Department of Biochemical and Chemical Engineering Process Dynamics and Operations Group (DYN)

Process Performance Based Control Structure Selection

Sebastian Engell, Tobias Scharf, Le Chi Pham

Process Dynamics and Operations Group Department of Biochemical and Chemical Engineering Technische Universität Dortmund Dortmund, Germany

PSE Summer School Salvador da Bahia 2011

Process Operations: Challenge

Reactive distillation column

Process Performance Based Control Structure Selection

Control Engineering Reduction

Process Performance Based Control Structure Selection

Standard control task description:

Choose and design feedback controllers for optimal

- disturbance rejection
- setpoint tracking

for a given "plant" (i.e. inputs, outputs, dynamics, disturbances, references, model errors, limitations, ...)

"SERVO or REGULATION PROBLEM"

Process Performance Based Control Structure Selection

Process Performance Optimization

- However, the purpose of good control is to optimize the performance of the process
- Tracking and disturbance rejection are means to an end, not the goal by themselves
- This should be reflected in the approach to the selection of control structures

Process Performance Based Control Structure Selection

Control Structure Selection

- Choice of manipulated and controlled variables
 - Which variables should be controlled?
 - Loop pairing (not considered here)
- Common methods:
 - Linear analysis: RGA, condition numbers, sensitivities
 - Simulation studies
 - Heuristics

This lecture:

- Choice of controlled variables for maximum profit
- Based upon rigorous non-linear plant models
- References:
 - Engell, Scharf, Völker, IFAC WC 2005
 - Engell, Pham, PSE 2009

Plant Performance Based Control Structure Selection

- Discussed by Morari, Stephanopoulos and Arkun (1980)
- Skogestad (2000): "Self-optimizing control"
- Basic ideas:
 - Demand from process engineers and managers:
 - Guarantee cost effective operation in the presence of disturbances and plant-model mismatch
 - Tracking of set-points not necessarily essential
 - Decision based on the effect on the profit J

Process Performance Based Control Structure Selection

When is regulatory control needed and sufficient ?

$$J_{2} = \underbrace{J(\underline{u}_{nom}, \underline{d}) - J(\underline{u}_{nom}, \underline{d} = \underline{0})}_{\text{Loss for open loop control}} (1)$$

$$+ \underbrace{J(\underline{u}_{opt}, \underline{d}) - J(\underline{u}_{nom}, \underline{d})}_{\text{Benfit by optimisation}} (2)$$

$$+ \underbrace{J(\underline{u}_{con}, \underline{d}) - J(\underline{u}_{opt}, \underline{d})}_{\text{(3)}} (3)$$

Loss for closed loop control compared to optimisation

(1) ≈ 0:

No closed loop control necessary

- (2) >> 0 and (3) ≈ 0:Closed loop control recommended
- (2) >> 0 and (3) >> 0:
 Control with fixed set-point not advisable, online optimization recommended

Process Performance Based Control Structure Selection

Basic Idea for Control Structure Selection

 Overall evaluation of the performance of a structure (theoretical)

$$\Delta J = \int_{-d_{1,\max}}^{d_{1,\max}} \int_{-d_{n,\max}}^{d_{n,\max}} w(d) (J(u_{nom},d) - J(u_{con},d)) dd_1 \dots dd_n$$

 Practically: Approximation by a finite set of disturbance scenarios

U technische universität dortmund

Process Performance Based Control Structure Selection

Control Structure Selection Procedure (Engell et al., 2005)

Complexity of the analysis

Process Performance Based Control Structure Selection

1. Definition of the Economic Optimization Problem

- Result of process design, starting point for control structure selection and controller design
- Determine the available degrees of freedom and choose a set of manipulated variables
- Determine the possible controlled variables
- Formulate a scalar profit function J and constraints that have to be satisfied

$$\max_{u} J(\underline{x}, \underline{u}, \underline{d}_{i})$$

s.t system model
$$\underline{h}(\underline{x}, \underline{u}) \leq 0$$

Process Performance Based Control Structure Selection

2. Definition of the Disturbances

- We distinguish between two types of disturbances:
 - Measurement errors the size of which can be estimated
 - External disturbances, e.g. errors in the assumed model, implementation errors of the controlled variables
- A priori knowledge about the disturbances is very useful as it makes the choice of the control structure more accurate.

Process Performance Based Control Structure Selection

3. Pre-selection of Control Structures

Number of possible control structures:

$$C_n^k = \binom{n}{k} = \frac{n!}{(n-k)!k!}$$

- n: degrees of freedom, k: number of measurements
 increases rapidly with the number of measurements
- Pre-screening is useful especially for large structures: RGA, SVD, RHP zeros, sensor sensitivity analysis (Engell et. al (2005))
- Common requirement for the measured variables:
 - Measurements should be sensitive to disturbances e.g. Sensor sensitivity analysis
 - Manipulated variables must affect the measurements

Process Performance Based Control Structure Selection

Pre-selection of Control Structures (2)

Condition number of a matrix A:

$$\kappa(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$$

- Matrix with large condition number -> ill-conditioned matrix
- Relative gain array (RGA)

 $\Lambda(G) = G \times (G^{-1})^T$

- G: steady-state gain matrix
- × denotes element by element multiplicatioin (Schur product)

Process Performance Based Control Structure Selection

Pre-selection of Control Structures (3)

- Generalized non-square relative gain array (NRGA):
 - Inverse is replaced by pseudo-inverse
 - The row sums of the NRGA are equal to the square of the output projections and should not be too small.
 - Consider not using outputs corresponding to the rows in the NRGA where the sum of elements is much smaller than 1.

Process Performance Based Control Structure Selection

Pre-selection of Control Structures (4)

Sensor sensitivity analysis:

$$\underline{S} = diag(\Delta \underline{u})^{-1} \frac{\partial \underline{h}}{\partial \underline{y}} diag(\underline{e}_{sensor}); \ \underline{u} = \underline{h}(\underline{y})$$

 $\Delta \underline{u} = \max_{d} (\operatorname{argmax} J(\underline{u}, \underline{d})) - \min_{d} (\operatorname{argmax} J(\underline{u}, \underline{d}))$

- *h*: the inverse of the measurement mapping
- S represents the propagation of the sensor errors to the manipulated variables
- Small singular values of S mean small influences of the sensor errors
 - ⇒ Structures with large maximal singular values are excluded

Process Performance Based Control Structure Selection

Process Dynamics and Operations

Pre-selection of Control Structures (4)

- RHP zeros:
 - The bandwidth of a feedback loop is restricted to 0.5 times the modulus of the smallest RHP zero
 - \Rightarrow rise time not smaller than the inverse of the zero.
 - Structures that yield small RHP should be excluded
- Negative elements of the RGA:
 - The system will become unstable for integral controllers when loops are opened if one of the RGA elements on the diagonal is negative at ω=0. Structures with negative elements on the diagonal should be eliminated.

Process Performance Based Control Structure Selection

4. Optimization of the Set-points

Which set-point is optimal on the average and can be tracked in the presence of these disturbances?

Multi-scenario optimisation

Optimization formulation:

$$\max_{\underline{u}_{i}, \underline{y}_{set-point}} \sum_{i=1}^{n_{dist}} J(\underline{x}, \underline{u}_{i}, \underline{d}_{i})$$

$$s.t.: \forall \underline{d}_{i}:$$

$$\underline{\dot{x}} = f(\underline{x}, \underline{u}_{i}, \underline{d}_{i}) = 0$$

$$\underline{y}_{set-point} = \underline{m}(\underline{x})$$

Process Performance Based Control Structure Selection

5. Evaluation of the Benefits for Static Disturbances

$$\begin{split} \min_{\underline{u}} J &= J(\underline{u}, \underline{d}_i, \underline{x}) \\ s.t.: \underline{\dot{x}} &= f(\underline{u}, \underline{d}_i, \underline{x}) = 0 \\ \underline{h}(\underline{x}, \underline{u}) &\leq 0 \\ \underline{y} &= \underline{m}(\underline{x}) = \underline{M}(\underline{u}, \underline{d}_i) \\ \underline{y}_{set-point} - \underline{e}_{sensor} &\leq \underline{y} \leq \underline{y}_{set-point} + \underline{e}_{sensor} \end{split}$$

Minimization: worst case profit is considered

Process Performance Based Control Structure Selection

Evaluation of the Benefits for Static Disturbances (2)

- Different levels of disturbances are considered:
 - E.g. -1; -1/3; 0; 1/3; 1 of maximum value
 - Smaller deviations more probable
- All levels of all disturbances are considered individually
- Structures are evaluated according to the average performance
- Small number of good control structures retained.

Process Performance Based Control Structure Selection

6. Performance for Dynamic Disturbances

- Option 1: Design classical controllers and simulate
 - Controller design (SISO / MIMO)
 - Comparison of the economic performance
- Difficulty:
 - For classical controllers, the performance depends on the controller type (PI, PID...) and the controller parameters used

 \rightarrow performance depends on the structure and of the design

- Alternative: Best possible performance
 - Multivariable NMPC controller

Process Performance Based Control Structure Selection

Performance for Dynamic Disturbances (2)

• Lower layer: NMPC controller tracks the set-points $P(t_k) = \min_{\mathbf{u}} \left(\int_{t=t}^{t_k + H_P} \left(\left\| y(t) - y_{set-point} \right\|_P + \left\| u(i) - u_{set-point} \right\|_Q \right) dt \right)$

s.t.:
$$\dot{x}(t) = f(x(t), u(t), d(t))$$
 (P1)
 $y(t) = m(x(t))$

Upper layer: Optimization of the weights P, Q (DFO)

$$\max_{P,Q} \int_{t=0}^{t=t_{end}} \sum_{i=1}^{n} J(\underline{x}, \underline{u}_i, \underline{d}_i) dt$$

s.t.: $P, Q \succ 0$
(P1)

Process Performance Based Control Structure Selection

Example 1: Reactive Distillation Column

- Engell, Scharf, Völker, 2005
- Process:
 - MeOH + HAc \leftrightarrows MeAc + H₂O
 - Heterogenously catalysed
 - 17 measurements
 - 2 manipulated variables
- Model:
 - Dynamic, non-linear equilibrium stage model
 - Approx. 650 algebraic, 100 differential equations

technische universität dortmund

Process Performance Based Control Structure Selection

23

Process Dynamics and Operations

Reactive Distillation (2)

- Semi-batch process
- Further investigation:
 - Quasi-steady state model
- → Heat supply

 → vapour flow
 - Liquid flow to reboiler neglected

Process Performance Based Control Structure Selection

Problem Definition for the RD Process

- 2 manipulated variables: reflux split and heat supply
- 17 possible controlled variables: temperatures on each tray, concentrations in the vapor stream, condensate flow
- Profit function:

$$\max_{\underline{u}} J(\underline{u}, \underline{x})$$

s.t.: $J = c_{MeAc} \dot{n}_{MeAc} - c_{HAc} \dot{n}_{HAc} - c_{heat} q_{heat}$
 $x_{MeAc} \ge 0.8$

Process Performance Based Control Structure Selection

Selection of Disturbances for the RD Process

- Considered disturbances:
 - Heat loss -500...500 W (of about 3000 W)
 - Reaction rate 90...110% of the nominal value
 - Subcooling of the condensate by 0...40K (boiling temp. 60°C)
 - Change in the vapour composition
 (5...11h → 90...73% MeOH in the vapour)
- Worst case Scenario:

 $\min_{\underline{d}} J = c_{MeAc} \dot{n}_{MeAc} - c_{HAc} \dot{n}_{HAc} - c_{heat} q_{heat}$

- All disturbances at upper/lower bounds
- Largest effect on the profit: Reaction rate

U technische universität dortmund

Process Performance Based Control Structure Selection

Pre-selection for the RD Process

- 17 measurements, 2 manipulated variables
 ⇒ 136 structures
- Pre-selection based on sensitivities:
- σ_{max}(<u>S</u>) 10 times larger than for the best case
- Rejection of 66 structures
 - Structures using temperatures near the bottom of the column
 - Structures using measurements with large relative error (e. g. x_{HAc})

Process Performance Based Control Structure Selection

Choice of Set-points for the RD Column

- No common set-point found for 8 structures
 - Structures that use the condensate flow
 - Only affected by the heat supply
 - Structures that use the temperatures T₇...T₉
 - Only represent drift in vapour composition

Process Performance Based Control Structure Selection

Selection of Structures

- 4 Disturbance scenarios,66 structures
 - 264 optimisations
- 7 structures can not meet the requirement on MeAc concentration
 - Structures that use adjacent measurements
- 10 structures excluded because ∆J>30%
 - Structures that use the condensate flow
 - Structures that use temperatures in the lower reactive packing

Process Performance Based Control Structure Selection

29

Process Dynamics and Operations

Combined Disturbances for the RD Process

- Non-linear process:
 - Summation of the effects of disturbances not reasonable
 - Optimisation for scenarios of all combinations of
 - Vapour composition (5h,11h)
 - Subcooling (0K,13K, 40K)
 - Heat loss (-500W, -167W, 0, 167W, 500W)
 - Reaction rate (90%, 96,7%, 100%, 103,3%, 110%)

 $\Rightarrow \Delta J_{\text{average}} < 5\%$, all structures suitable

Process Performance Based Control Structure Selection

Dynamic Analysis

- Analysis of linear controllability measures for the 41 best structures
 - No right half-plane zeros < 0.01
 - Excludes 11 structures
 - Condition number < 10 at frequencies 10⁻²...10⁻³
 - Excludes 5 structures
- For the remaining 25 structures:
 - Computation of the attainable control performance using convex optimisation for linearized models
 - Simplification of the controller using frequency response approximation

Process Performance Based Control Structure Selection

Linear Dynamic Simulation of the Controller

Set-point step of 5 mol%

Process Performance Based Control Structure Selection

Linear Dynamic Simulation of the Controller

Set-point step of 5K:

Process Performance Based Control Structure Selection

Simulated Batch Run, Controlled Variables

Process Performance Based Control Structure Selection

Simulated Batch Run, Manipulated Variables

technische universität dortmund

Process Performance Based Control Structure Selection

35

Process Dynamics and Operations

Case Study 2 : Binary Distillation Column

- Process:
 - Separation of a mixture of methanol, *n*-propanol
 - Column has 40 trays, feed tray: 21
 - 2 manipulated variables
 - 41 measurements
- Rigorous Model:
 - Dynamic, non-linear equilibrium stage model
 - Stiff DAE with 204 variables

Process Performance Based Control Structure Selection

Control Structure Selection Procedure

Process Performance Based Control Structure Selection

37

Number of combinations

Problem Statement

- 2 manipulated variables: Heat input and reflux flow rate
- Possible controlled variables: temperatures on 40 trays

Process Performance Based Control Structure Selection

Economic Optimization Problem

- Profit function: Income of top product cost of the heat input.
- Purity requirements:
 Distillate purity: 99%, bottom impurity 1%
- Problem formulation:

$$\max_{\underline{u}} J(\underline{u}, \underline{x})$$

$$s.t.: J = c_{Distillate} \dot{n}_{Distillate} - c_{heat} q_{heat}$$

$$x_{Distillate} \ge 0.99$$

$$x_{Bottom} \le 0.01$$

Control Structure Selection Procedure

Process Performance Based Control Structure Selection

2. Definition of Critical Disturbances

5 disturbances, uniformly distributed

Disturbances	Value
Feed rate	±4 l/h
Feed temperature	±5 ℃
Feed composition	±0.1
Reboiler heat input	±0.2 kW
Condenser temperature	±5 K

Process Performance Based Control Structure Selection

Control Structure Selection Procedure

Process Performance Based Control Structure Selection

Pre-selection of Control Structures

 40 possible measurements, 2 manipulated variables, number of structures:

$$C_{40}^2 = \begin{pmatrix} 2\\ 40 \end{pmatrix} = \frac{40!}{(40-2)!2!} = 780$$

- Method:
 - Generalized non-square relative gain array (NRG)
 - Negative elements of the RGA
 - Sensor sensitivity analysis (Engell et. al (2005)
 - Structures with $\sigma_{max}(\underline{S})$ smaller than 0.05 are excluded
 - \Rightarrow Screens out 702 unpromising structures out of 780

Process Performance Based Control Structure Selection

Control Structure Selection Procedure

Process Performance Based Control Structure Selection

Choice of Set-points for the Distillation Column

- Static optimization using TOMLAB with SNOPT 6.0
- All structures have common set-points
- ⇒78 structures go to the next step

Process Performance Based Control Structure Selection

Control Structure Selection Procedure

Process Performance Based Control Structure Selection

46

Process Dynamics and Operations

Combined Disturbances for the Binary Distillation Column

- Non-linear process:
 - Summation of the effects of disturbances not reasonable
 - ⇒ Optimization for scenarios of all combinations of
 - Feed rate (-4I/h, -1.3I/h, 0, +1.3I/h, +4I/h), nominal: 14I/h
 - Feed temperature (-5°C, -1.66°C, 0, +1.66°C, +5°C), nominal: 71°C
 - Feed composition (-0.1, -0.033, 0, +0.1, +0.033), nominal:
 0.32
 - Reboiler heat input (-0.2kW, -0.066kW, 0kW, +0.066kW, +0.2kW), nominal: 2.35kW
 - Condenser temperature (-5°C, -1.66°C, 0, +1.66°C, +5°C), nominal: 47.2°C

Application to the Binary Distillation Column

"Softened" cost function

 $J = H(x_{Distillate} - 0.99)c_{Distillate}\dot{n}_{Distillate}$

 $-c_{heat}q_{heat}$

- Evaluation of the performance for static disturbances
 - 12 structures are chosen for the final step

Structure	Profit
(6,35)	113.51
(7,30)	112.07
(7,33)	113.16
(7,35)	111.49
(9,30)	110.26
(10,28)	112.38
(10,29)	111.61
(10,30)	110.56
(11,31)	111.82
(11,32)	109.31
(11,35)	110.12
(17,27)	112.75

Process Performance Based Control Structure Selection

Control Structure Selection Procedure

Process Performance Based Control Structure Selection

Numerical Algorithms

- The NMPC simulation is done by MUSCOD-II (*MU*Itiple Shooting *CO*de for *D*irect Optimal Control) developed by IWR Heidelberg (Bock et al.)
 - Solves general optimal control problems with dynamics described by DAE and constraints
 - Multiple shooting: The optimization horizon is divided into subintervals, differential equations are solved independently on each subinterval by a ODE or DAE solver.
 - The resulting large but structured NLP problem is solved by an SQP algorithm

Process Performance Based Control Structure Selection

Optimization of the Weights

- Conventional optimization algorithms can not be used here:
 - Objective function results from a complex numerical procedure, expensive to evaluate
 - Convergence can be slow
- Derivatives free optimization (DFO) is more suitable
 - CONDOR (*CO*nstrained, *N*on-linear, *D*irect, parallel, multi-objective *O*ptimization using trust *R*egion method for high-computing load, noisy objective functions)
 - Can only solve problems with simple constraints
 - ⇒ P, Q are assumed to be diagonal, positive-definiteness of matrix is equivalent to positiveness of the diagonal elements

Process Performance Based Control Structure Selection

Performance for Dynamic Disturbances

- Same cost function as in step 5
- Quantitative evaluation for dynamic disturbances
 - First linear MPC is used: 3 structures are chosen
 - Next NMPC is performed: Best structure: (10, 28)

Structure	Profit
(10,28)	113.54
(10,31)	112.56
(17,27)	109.09

Process Performance Based Control Structure Selection

Dynamic Simulations (NMPC Controller)

Process Performance Based Control Structure Selection

Dynamic Simulations (NMPC Controller) (2)

a) Feed flowrate, b) Feed temperature, c) Feed composition

Process Performance Based Control Structure Selection

Summary

- Systematic, exhaustive method for control structure selection
- Measurement errors, static and dynamic performance are taken into account
- Applied to several other case studies, e.g. reactive distillation of butyl acrylate, ternary distillation

Process Performance Based Control Structure Selection

