

TU Dortmund Process Dynamics and Operations Group

Where is Dortmund?

technische universität dortmund

Facts on TU Dortmund

- Dortmund is a part of the largest metropolitan area in Germany: The Ruhr
- Universität Dortmund was founded in 1968, as a step in the transition from a region of heavy industries to one of high-tec, services, and culture initially only science, engineering and business departments
- 1980 merger with a Teachers Education College (Pädagogische Hochschule Ruhr)
- 2008 renamed Technische Universität (Technical University)
- 22.000 students, 300 professors
- 16 departments, including all engineering disciplines
- Research university
- Before 2007 predominantly 4.5 year Diploma programs
- Since 2007 (forced) transition to a Bachelor/ Master system
 - 6-7 semesters for Bachelor, 3-4 for Master, 5 years (10 semesters) overall

bci Department of Biochemical and Chemical Engineering

- The largest ChemE Department in Germany and among the largest in Europe
- Staff:
 - 14 Professors
 - ~ 120 doctoral students and post-docs, ~ 70 externally funded
 - ~ 20 doctoral students on scholarships
 - ~ 70 administrative and technical staff
- Programs:
 - Chemical Engineering 140 beginners per year
 7 + 3 semesters Bachelor/Master programs
 - Biochemical Engineering 90 beginners per year
 7 + 3 semesters Bachelor/Master programs
 - Master Program Process Systems Engineering
 - 4 semesters, 1 semester thesis work
 - Taught in English
 - Master Program Automation and Robotics/ Process Automation (interdepartmental)
 - ~ 25 Dr.-Ing./ Dr. rer nat degrees granted per year
 - technische universität dortmund

TU Dortmund Biochemical and Chemical Engineering

DYN Overview 2011

Process Dynamics and Operations

The **DYN** Team

- > 20 Dr.-Ing. candidates3 technicians, 2 part-time secretaries
- ~ 15 student assistants

Process Dynamics and Operations

Staff

- Professor: Sebastian Engell
- ~ 20 Dr.-Ing. candidates
- 0 postdocs
- 3 technicians, 2 part-time secretaries
- Teaching
 - B. Sc. Chemical Engineering / Biochemical Engineering
 - Process Dynamics and Control, Process Automation
 - Computer Programming, Control and Automation Lab
 - Master PSE / ChemE
 - Advanced Dynamics and Control, Batch Process Operations
 - PSE Lab
 - Master Automation and Robotics
 - Control Theory and Applications
 - Logic Control
 - Process Control Lab
 - Electives

DYN Overview 2011

Process Dynamics and Operations

technische universität dortmund

DYN Overview 2011

8

Process Dynamics and Operations

DYN@TUDO: Areas of Research

Process Control Methods

- General approach: Feedback control should lead to optimal operation of a production process
- Possible realizations:
 - Optimal control structure selection
 - Optimal controller tuning

- Implementation of optimal operation points by MPC (computed by RTO)
- Online optimizing control

U technische universität dortmund

Online Optimizing Control

- Optimize the plant performance online over a certain prediction horizon
- Implement specifications (equipment limits, purities, yield, ...) as constraints in the optimization problem – no set-point tracking
- Application: Control of (reactive) SMB processes

Novasep SMB plant, with reactors on top

Results at the real plant

Further research:

- Moving horizon state estimation
- Handling of model errors

Projects in Control Methods

- Robust design of linear MPC controllers (Gaurang Shah)
- Selection of control structures based upon steady-state and dynamic performance (Le Chi Pham)
- Unfalsified control with controller adaptation (Ehsan Nabati)
- Robust NMPC by multi-stage optimization (Sergio Lucia, EU Project EMBOCON)
- Hierarchical control of coupled batch processes (Katja Pelz, EU NoE HYCON II)

Applications Projects

- Dynamic modeling and control of electrochromatography (Yi Yu and Malte Behrens, EU project CAEC)
- Optimization and optimizing control of SMB processes (Malte Behrens and Roberto Lemoine, DFG)
- Modeling & control of the evolution of particle size distributions in emulsion polymerization (Ala Bouaswaig, Alireza Hosseini)
- Model-based control of complex emulsion polymerisation processes (Heiko Brandt, with BASF)
- NMPC of polymerization processes (Tiago Finkler, with Evonik)
- Continuous production of acrylic acid co-polymers (Daniel Kohlmann, EU project F3 with Rhodia and BASF)
- NMPC of reactive distillation (Elrashid Nour Eldin, funded by F3)

Continuous Annular Electrochromatography

Combination of Annular Chromatography and Electrochromatography

- A prototype is developed in the EU project CAEC
- Our contribution:
 - Dynamic modeling and simulation (2d pde)
 - Iterative optimizing control based upon gradient correction

DYN Overview 2011

14

Control of Polymerisation Processes

- Control of emulsion polymerization (with BASF)
 - First principles based predictive models
 - Batch trajectory optimization
 - State estimation
 - Batch time minimization by tracking the heat removal constraint
- Particle size distribution modeling and control
 - Development of numerical methods
 - Estimation of the growth kernel
 - Experiments in 1I scale
- Control of an industrial solution polymerization (with Evonik Industries and Leikon)

Pilot Plant 10I stainless steel reactor DCS controlled

DYN Overview 2011

Process Dynamics and Operations

Process Systems Enterprise Limited

6th Floor East 26-28 Hammersmith Grove London W6 7HA

t: +44 20 8563 0888 f: +44 20 8563 0999 w: www.psenterprise.com

12 October 2010

Ala Eldin Bouaswaig, Sebastian Engell

Process Dynamics and Operations Group Technische Universitat Dortmund 44221 Dortmund Germany

Dear Dr Bouaswaig & Prof. Engell,

PSE Model-Based Innovation Prize winner

I am delighted to inform you that your paper "WENO scheme with static grid adaptation for tracking steep moving fronts" is the winner of the 2010 PSE Model-Based Innovation Prize.

The judges were particularly impressed by the paper, summarising it as "an excellent technical work proposing a new numerical method for the efficient solution of parabolic differential equations, with a very nice integration with gPROMS through a foreign object".

DYN Overview 2011

Process Dynamics and Operations

Development and control of continuous polymerizations

- Co-polymerization of acrylic acid
- Cooperation with BASF, Rhodia in the EU Integrated Project F3

DYN Overview 2011

Process Dynamics and Operations

F3-Project (Bayer, BASF, Arkema, Rhodia, Astra Zeneca, Procter & Gamble + equipment manuf. + academia)

DYN: Lead of WP4 - Process operations

Controllability analysis and control design for prototypical applications

U technische universität dortmund

DYN Overview 2011

18

DYN@TUDO: Fields of Research

Example of Hybrid Control Design: Control of a Solar Cooling System

Competition organized by the European Network of Excellence *HYCON*

- Plant located at the University of Seville
- Online computer control
- Remote monitoring and tuning via the internet
- Main problem: inaccurate model
- Winner: DYN@TUDO
- Optimizing switching strategy
- Controller provided good and robust performance in simulation and at the real plant

Process Dynamics and Operations

Design and Verification of Logic Controllers

- Interaction of continuous dynamics with logic (discrete event) controllers leads to complex behavior (even chaotic behavior possible).
- Correct function is difficult to assess
- Critical logical controllers should be verified (proof of correctness), Inspection and common sense is not enough!
- Application of techniques from computer science
 - Abstraction of the continuous dynamics into (timed) discrete systems
 - Formal models of the controller and of the specifications
 - Composition and formal verification (UPPAAL, PHAVER) that controller and plant together do not violate the specifications
- ✓ Formal models of logic controllers described by SFC
- **!!** Abstraction of continuous models to automata models
- ! Completeness and correctness of the specification

Current Projects in Hybrid Control

- EU Project Multiform (Coordinated by TU Dortmund / DYN Christian Sonntag, Martin Hüfner, Stephan Fischer)
 - Design support for complex controlled systems using different model formalisms and computer tools
 - Tool transformations to the Compositional Interchange Format
 - Logic controller specification and verification (DC/FT Formalism)
 - Robust verification based on approximate models
 - Systems design framework
 - Case study: Pipeless plant demonstrator
- Optimal start-up of processing plants with switching controls (NN)
- Synthesis of switching controllers (Thanh Ha Tran)

DYN Overview 2011

D Process Dynamics and Operations

Logic Controller Design by Refinement

Logic Controller Design by Refinement (2)

• Systematic refinement of informal specifications into logic controllers

DC/FT view

SFC view

DYN@TUDO: Fields of Research

Production Planning and Scheduling in Batch Plants

Focus of our research:

- Online (reactive) planning and scheduling
- Dealing with uncertainties

technische universität

dortmund

Example EPS Process

- Decisions
 - Assignment of the recipes and timing of the batches (batching and batch scheduling)
 - Operation state finishing line
- Constraints
 - Capacity of the polymerization stage
 - Capacity of the finishing stage
 - Start-up / shut-down of the finishing stage
- Objective: maximize the profit
- Uncertainties
 - Future demands
 - Future capacity (reactor availability)
 - Yields

Two-stage Decision Problem

Information and decision-structure

dortmund

- First stage decisions $\mathbf{x} \neq \mathbf{f}(\omega)$ (here and now)
- Second stage decisions $y = f(\omega)$ (recourse)

Process Dynamics and Operations

Approaches

- Two-stage stochastic programming (Sand and Engell, C&CE 2004)
- Decomposition strategies EA/MILP algorithms
 - Pareto front of average profit and risk (Tometzki and Engell, Comp. & Chem. Engg., in press)

- Moving horizon scheduling based upon two-stage stochastic solution (Cui and Engell, Comp. & Chem. Engg., 2010)
- Fast scheduling using timed-automata models (Subbiah, Panek, Engell)

DYN@TUDO: Fields of Research

Locally Optimal Column Designs with External Reactor

- Knowledge-based initialization
- Profit: 1,089 ·10³ € p.a.

- Initialization by scatter search
- Profit: 1,102·10³ € p.a.
- Algorithmic Challenge: Large number of local optima!

DYN Overview 2011

Process Dynamics and Operations

Current Projects in Process Design

- Memetic (EA/NLP) algorithms for complex design problems with many local optima (Maren Urselmann)
- Detection and manipulation of cycles in biological systems (Tobias Neymann/ Sven Wegerhoff)
- Model-based coordination of the development of new production processes (SFB TR 63, Jochen Steimel)

31