

Department of Biochemical and Chemical Engineering Process Dynamics and Operations Group (DYN)

Feedback Control for Optimal Plant Operation

Sebastian Engell

Process Dynamics and Operations Group Department of Biochemical and Chemical Engineering Technische Universität Dortmund Dortmund, Germany

> PSE Summer School Salvador da Bahia 2011

Process Operations

Reactive distillation column

technische universität dortmund

Feedback Control for Optimal Process Operation

2

Process Dynamics and Operations

Control Engineering Reduction

Feedback Control for Optimal Process Operation 3

Control Engineering

Standard task description:

Choose and design feedback controllers for optimal

- disturbance rejection
- setpoint tracking

for a given "plant" (i.e. inputs, outputs, dynamics, disturbances, references, model errors, limitations, ...)

"SERVO or REGULATION PROBLEM"

Feedback Control for Optimal Process Operation 4

- Servo problem formulation is mostly relevant for subordinate tasks:
 - Temperature control
 - Flow control

. . .

- Optimal solution of servo/regulation problems does not imply optimal plant operation – optimal plant operation is not necessarily a servo problem!
- Automatic (feedback) control is often considered as a necessary low level function but not as critical for economic success.

CONTROL FOR OPTIMAL PLANT OPERATION

Feedback Control for Optimal Process Operation

5

Control for Optimal Operation

- How to achieve near-optimal operation?
 - Regulatory control
 → Day 2, Lecture 1
 - Tracking of necessary conditions of optimality
 → Day 2, Lecture 2
 - Online optimizing control (DRTO)
 → Day 2, Lecture 3
- Day 1:
 - Fundamentals of dynamics
 - State estimation

