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Stability of an Equilibrium Point (Lyapunov, 1898):

Equilibrium Point defined by 

xs is called stable, if ∀ ε > 0 there exists a δ(ε) such that:

( ) 0,
!
== ss uxfx

( ) ( ) ( ) 00 ttxtxxtx ss ≥∀≤−⇒≤− εεδ

If the initial state x(t0) is sufficiently close to a stable 
equilibrium xs, then the state of the system stays close to 
xs for all times.

ε

δx(t0)

xs

x(t)

[ x(t): trajectory, evolution of the state over time]
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If in addition:

then xs is called asymptotically stable.

( ) s
t

xtx =
∞→

lim

If more than one equilibrium exists, each stable equilibrium xs has 
a domain of attraction, i.e., the trajectories x(t) that start inside the 
domain of attraction stay inside.
If a system has only one stable equilibrium xs and all trajectories
x(t) end in xs, then the system is called globally asymptotically 
stable.

ε

δx(t0)

xs

x1

x2

Asymptotic Stability
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Linearization around Equilibrium Points

Given: Nonlinear dynamic process model :

,                                            is an equilibrium point( )uxfx ,= ( ) ( )ssss uxuxf ,0, ⇔=

pn RuRx ∈∈ ,

Wanted: (approximative) behavior around (xs,us)

Approach:

for small deviations                       from (xs,us)

( ) ( ) ( ) ( )tuututxxtx ss ∆+=∆+= ,

( ) ( )( )tutx ∆∆ ,
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Taylor-Series Expansion:

( ) ( ) ( ) ( ) 
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• Higher order terms are neglected
• The derivatives are evaluated at (xs,us)
• f(xs,us) = 0

⇒

( )ssfx uxJ , ( )ssfu uxJ ,

( ) ( ) ( ) ( )
( ) ( )tuBtxA

tuuxJtxuxJtxtx ssfussfx
∆⋅+∆⋅=

∆⋅+∆⋅=∆≈
:

),(),(
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Result: Linear system, where A, B depend on (xs,us)

The validity of the approximation depends on the higher-order terms
of the Taylor-series and can often be checked by simulation:

Check ∆x for different 
∆u for the nonlinear 
system, e.g.:

→ approximation is  
valid

( ) ( )II?I 2 uxux ∆∆⋅−≈∆∆

x(t)

u(t)

xs

us

t

t∆uI = -1

∆uII = 2

∆xI = ∆x(∆uI)

∆xII = ∆x(∆uII)

Linearized System
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Then, x0 can be decomposed in the eigendirections:

where: V = (v1, v2, ...,vn) and γ = (γ1, γ2, ..., γn)T

γγγγ ⋅=⋅++⋅+⋅= Vvvvx nn22110

The trajectory of the state results as

( ) n
t

n
tt ve...vevetx n ⋅⋅++⋅⋅+⋅⋅= ⋅⋅⋅ λλλ γγγ 2211 21

Dynamic Behavior in around Stationary Points

Autonomous system:

Eigenvalues of A:

If the eigenvalues are real and distinct, n different eigenvectors
exist:  v1, v2, ..., vn

( ) 00 xtx,xAx =⋅=

{ }n,,, λλλ 21
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x1

x2

x10

x20
v1

v2 ∝ e-αt

∝ e-βt

initial values on
the eigenvectors

x1

x2
x10
x20

v1

v2

arbitrary initial values

γ2⋅v
2

γ1⋅v
1

β >> α

• If β >> α:              goes faster to zero than te ⋅−αte ⋅−β
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Shorter representation:

with the fundamental matrix:

( ) 0xetx tA ⋅= ⋅
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Stability and eigenvalues of linear systems:
• If all λi have negative real parts:  all trajectories converge to 0

⇒ the system is asymptotically stable! 0 is the only equilibrium.

• If one λi has a positive real part: all trajectories tend to infinity (in the 
direction vi)  ⇒ the system is unstable!

• If some eigenvalues have zero real parts and these are simple, and 
all other ones are negative: all trajecories converge either to 
points or to limit cycles  ⇒ the system is stable!

Role of the Eigenvalues
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Transient Behavior and Eigenvalues of Linear Systems

note: all conjugate
complex poles appear
pair-wise!

Evolution from non-zero
initial conditions
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Let xs be an equilibrium point and A(xs) the matrix obtained from
linearization at xs.

• xs is stable, if all eigenvalues of A(xs) have negative real parts:

asymptotic stability of xs ⇔ asymptotic stability of the behavior of the
linearized model around xs

• xs is unstable if one real part is positive

• if the real part of an eigenvalue is zero, no statement is possible

Note: The stability range of xs cannot be inferred from the linearized
model!

Stability of Equilibrium Points of Nonlinear Systems
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Given:             , equilibrium point xs

If a function V(x) exists such that:                                       

,

holds in a region Γ, and V(x) = Vmax, then all trajectories
with x(0) ∈ Γ end in xs, i.e., Γ is part of the domain of attraction of xs.

Difficult: find a suitable Lyapunov function V(x).

Simplest approach: (with a positive definite P)

)(xfx =

max)()(0 VxVxV s ≤≤= 0≤= x
x

V
td

dV


∂
∂

xPxxV T ⋅⋅=)(

General Stability Criterion According to Lyapunov
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