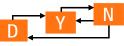


Some Basics of Linear Dynamics

Sebastian Engell

PSE Summer School Salvador da Bahia 2011



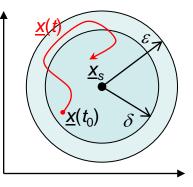
Stability of an Equilibrium Point (Lyapunov, 1898):

Equilibrium Point defined by $\underline{\dot{x}} = \underline{f}(\underline{x}_s, \underline{u}_s) = 0$

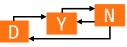
<u>*x*</u>_s is called stable, if $\forall \varepsilon > 0$ there exists a $\delta(\varepsilon)$ such that:

$$\|\underline{x}(t_0) - \underline{x}_{s}\| \le \delta(\varepsilon) \implies \|\underline{x}(t) - \underline{x}_{s}\| \le \varepsilon \quad \forall t \ge t_0$$

[<u>x(t)</u>: trajectory, evolution of the state over time]



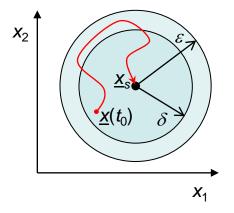
If the initial state $\underline{x}(t_0)$ is sufficiently close to a stable equilibrium \underline{x}_s , then the state of the system stays close to \underline{x}_s for all times.



Asymptotic Stability

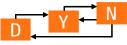
If in addition: $\lim_{t \to \infty} \underline{x}(t) = \underline{x}_s$

then \underline{x}_s is called asymptotically stable.



If more than one equilibrium exists, each stable equilibrium \underline{x}_s has a domain of attraction, i.e., the trajectories $\underline{x}(t)$ that start inside the domain of attraction stay inside.

If a system has only one stable equilibrium \underline{x}_s and all trajectories $\underline{x}(t)$ end in \underline{x}_s , then the system is called globally asymptotically stable.



Linearization around Equilibrium Points

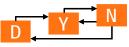
Given: Nonlinear dynamic process model :

 $\underline{\dot{x}} = \underline{f}(\underline{x}, \underline{u}), \quad \underline{f}(\underline{x}_{s}, \underline{u}_{s}) = \underline{0} \Leftrightarrow (\underline{x}_{s}, \underline{u}_{s})$ is an equilibrium point $x \in \mathbb{R}^{n}, \quad u \in \mathbb{R}^{p}$

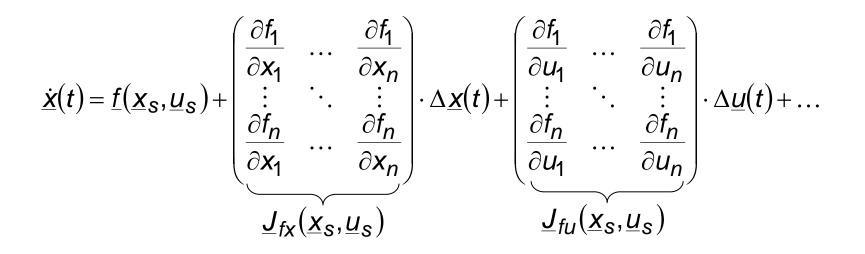
Wanted: (approximative) behavior around $(\underline{x}_s, \underline{u}_s)$

Approach:
$$\underline{x}(t) = \underline{x}_s + \Delta \underline{x}(t), \quad \underline{u}(t) = \underline{u}_s + \Delta \underline{u}(t)$$

for small deviations $(\Delta \underline{x}(t), \Delta \underline{u}(t))$ from $(\underline{x}_s, \underline{u}_s)$

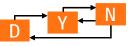


Taylor-Series Expansion:



- Higher order terms are neglected
- The derivatives are evaluated at $(\underline{x}_s, \underline{u}_s)$
- $\underline{f}(\underline{x}_s, \underline{u}_s) = \underline{0}$

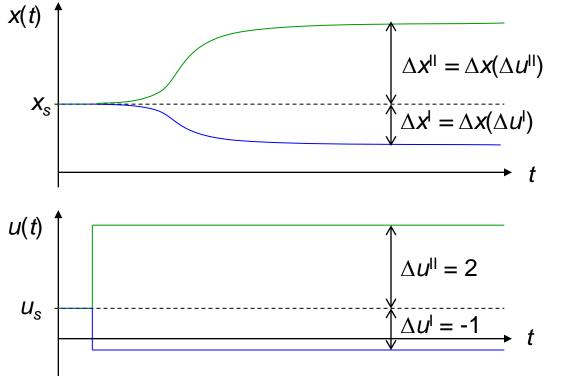
$$\underline{\dot{x}}(t) \approx \Delta \underline{\dot{x}}(t) = \underline{J}_{fx}(\underline{x}_{s}, \underline{u}_{s}) \cdot \Delta \underline{x}(t) + \underline{J}_{fu}(\underline{x}_{s}, \underline{u}_{s}) \cdot \Delta \underline{u}(t)$$
$$=: \underline{A} \cdot \Delta \underline{x}(t) + \underline{B} \cdot \Delta \underline{u}(t)$$



Linearized System

Result: Linear system, where <u>A</u>, <u>B</u> depend on $(\underline{x}_s, \underline{u}_s)$

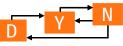
The validity of the approximation depends on the higher-order terms of the Taylor-series and can often be checked by simulation:



Check $\Delta \underline{x}$ for different $\Delta \underline{u}$ for the nonlinear system, e.g.:

$$\Delta x \left(\Delta u^{\mathsf{I}} \right)^{?} \approx -2 \cdot \Delta x \left(\Delta u^{\mathsf{II}} \right)$$

→ approximation is valid



Dynamic Behavior in around Stationary Points

Autonomous system: $\underline{\dot{x}} = \underline{A} \cdot \underline{x}, \quad \underline{x}(t_0) = \underline{x}_0$

Eigenvalues of <u>A</u>: $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$

If the eigenvalues are real and distinct, n different eigenvectors exist: $\underline{v}_1, \underline{v}_2, ..., \underline{v}_n$

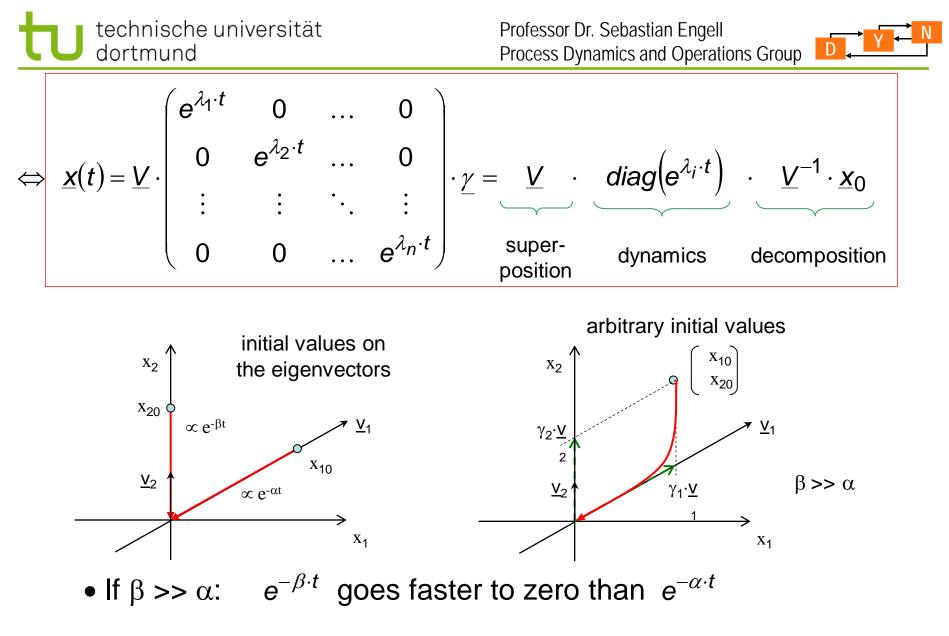
Then, \underline{x}_0 can be decomposed in the eigendirections:

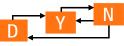
$$\underline{x}_0 = \gamma_1 \cdot \underline{v}_1 + \gamma_2 \cdot \underline{v}_2 + \ldots + \gamma_n \cdot \underline{v}_n = \underline{V} \cdot \underline{\gamma}$$

where:
$$\underline{V} = (\underline{v}_1, \underline{v}_2, ..., \underline{v}_n)$$
 and $\underline{\gamma} = (\gamma_1, \gamma_2, ..., \gamma_n)^T$

The trajectory of the state results as

$$\underline{x}(t) = \gamma_1 \cdot e^{\lambda_1 \cdot t} \cdot \underline{v}_1 + \gamma_2 \cdot e^{\lambda_2 \cdot t} \cdot \underline{v}_2 + \dots + \gamma_n \cdot e^{\lambda_n \cdot t} \cdot \underline{v}_n$$





Role of the Eigenvalues

Shorter representation: $\underline{x}(t) = e^{\underline{A} \cdot t} \cdot \underline{x}_0$

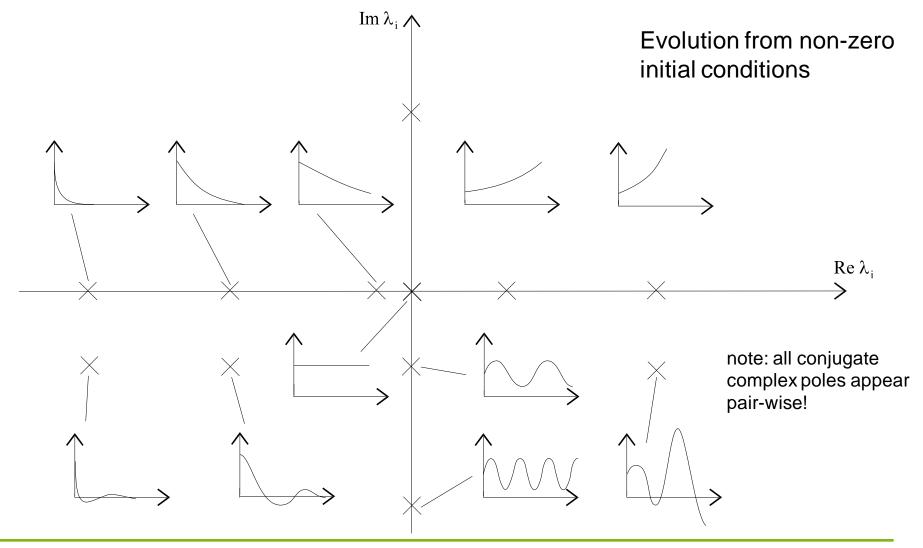
with the fundamental matrix:

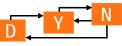
$$e^{\underline{A}\cdot t} = \underline{I} + \underline{A}\cdot t + \frac{1}{2}\cdot \underline{A}^{2}\cdot t^{2} + \dots = \underline{V}\cdot \begin{pmatrix} e^{\lambda_{1}\cdot t} & \dots & 0\\ \vdots & \ddots & 0\\ 0 & 0 & e^{\lambda_{n}\cdot t} \end{pmatrix} \cdot \underline{V}^{-1}$$

Stability and eigenvalues of linear systems:

- If all λ_i have negative real parts: all trajectories converge to $\underline{0}$ \Rightarrow the system is asymptotically stable! $\underline{0}$ is the only equilibrium.
- If one λ_i has a positive real part: all trajectories tend to infinity (in the direction \underline{v}_i) \Rightarrow the system is unstable!
- If some eigenvalues have zero real parts and these are simple, and all other ones are negative: all trajecories converge either to points or to limit cycles ⇒ the system is stable!

Transient Behavior and Eigenvalues of Linear Systems



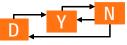


Stability of Equilibrium Points of Nonlinear Systems

Let \underline{x}_s be an equilibrium point and $\underline{A}(\underline{x}_s)$ the matrix obtained from linearization at \underline{x}_s .

- <u>x</u>_s is stable, if all eigenvalues of <u>A(x</u>_s) have negative real parts: asymptotic stability of <u>x</u>_s ⇔ asymptotic stability of the behavior of the linearized model around <u>x</u>_s
- \underline{x}_s is unstable if one real part is positive
- if the real part of an eigenvalue is zero, no statement is possible

Note: The stability range of \underline{x}_s cannot be inferred from the linearized model!



General Stability Criterion According to Lyapunov

Given: $\underline{\dot{x}} = \underline{f}(\underline{x})$, equilibrium point \underline{x}_s

If a function $V(\underline{x})$ exists such that:

$$0 = V(\underline{x}_{s}) \le V(\underline{x}) \le V_{\max} , \quad \frac{dV}{dt} = \frac{\partial V}{\partial \underline{x}} \underline{\dot{x}} \le 0$$

holds in a region Γ , and $V(\underline{x}) = V_{max}$, then all trajectories with $\underline{x}(0) \in \Gamma$ end in \underline{x}_s , i.e., Γ is part of the domain of attraction of x_s .

Difficult: find a suitable Lyapunov function $V(\underline{x})$.

Simplest approach: $V(\underline{x}) = \underline{x}^T \cdot \underline{P} \cdot \underline{x}$ (with a positive definite <u>P</u>)