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Stability of an Equilibrium Point (Lyapunov, 1898):

Equilibrium Point defined by x =f(xg,us )=0

X, is called stable, if V &> 0 there exists a &&) such that:
x(tg)-xs|<(e) = [x(t)-xs[<e Vixty

[ X(1): trajectory, evolution of the state over time]

If the initial state x(t,) is sufficiently close to a stable
equilibrium x, then the state of the system stays close to
X for all times.
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Asymptotic Stability

t—o0

If in addition: lim x(t)= x Xo /'

then x. is called asymptotically stable.

If more than one equilibrium exists, each stable equilibrium x. has
a domain of attraction, I.e., the trajectories x(t) that start inside the

domain of attraction stay inside.

If a system has only one stable equilibrium x. and all trajectories
X(t) end in X, then the system is called globally asymptotically
stable.
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Linearization around Equilibrium Points

Given: Nonlinear dynamic process model :

x =f(x,u), f(xs,us)=0< (Xs,Us) isan equilibrium point

xeR" ueRPF

Wanted: (approximative) behavior around (x,U.)

Approach: x(t) = xg + Ax(t), u(t)=ug + Au(t)

for small deviations (Ax(t),Au(t)) from (x.,u.)
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Taylor-Series Expansion:

oo o
Xy O ou;  du,
x(t)=f(xg,ug)+| @ . i |LAx(t)+] ¢ o i [LAu(t)+...
Xy X ou;  du,
g ~ J & ~ J
Jx (xs,gs) Jfy (XS’QS)
e Higher order terms are neglected
e The derivatives are evaluated at (X.,U)
* i(Xs:Us) = 0
= X(t) ~ AX(t) = Jgx (Xs,Ug ) - AX(t)+ I gy (Xs,Ug ) - Au(t)

= A-Ax(t)+B-Au(t)
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Linearized System

Result: Linear system, where A, B depend on (x.,U.)

The validity of the approximation depends on the higher-order terms
of the Taylor-series and can often be checked by simulation:

x() 1

AX'= Ax(Au")  Check Ax for different
O R 20— Au for the nonlinear
system, e.g.:

! Ax(Au')Z—Z-Ax(Au”)

| L
Aut =2 — approximation is
A SR valid
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Dynamic Behavior in around Stationary Points

Autonomous system: Xx=A-x, X(tg)=Xg

Eigenvalues of A: 0,29, 0}

If the eigenvalues are real and distinct, n different eigenvectors
exist: vy, Vo, ..., V,

Then, x, can be decomposed in the eigendirections:

Xg=y1-VityoVo+...+yn-Vp=V -y

where: V = (V4, V,, ...,V) and y = (Y1, Y2, -y ¥0)'

The trajectory of the state results as
x(t)=r1 et vty -e®tivy 1oy ety
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s x(t)=V y=V dlag(ei't) V1.xg
N v J ~ J - ~ J/
0 0 g/t Super- dynamics  decomposition
position
o arbitrary initial values
initial values on «
X2 the eigenvectors X2 [ XloJ
20
y2-¥//, Vi
2
Vo1 3"1‘2 p>>a
X1

o If B >>

oL.

e 1 goes faster to zero than e %!
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Role of the Eigenvalues
At

Shorter representation: x(t)=e”" -xg
with the fundamental matrix:
gh! 0
At _ 1 2 12 _ X -1
e =1l+At+— A -t°+... =V : . 0 |-V
2 At
0O 0 e~

Stability and eigenvalues of linear systems:

e If all A, have negative real parts: all trajectories convergeto 0
= the system is asymptotically stable! O is the only equilibrium.

e If one A, has a positive real part: all trajectories tend to infinity (in the
directionv;) = the system is unstable!

e If some eigenvalues have zero real parts and these are simple, and
all other ones are negative: all trajecories converge either to
points or to limit cycles = the system is stable!
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Transient Behavior and Eigenvalues of Linear Systems

ImA, A\
Evolution from non-zero

initial conditions

| B B
N\

Re A,
>
A / A
note: all conjugate
< S B m < complex poles appear
/ \ > 2 / pair-wise!
/[ /i N\
/ —
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Stability of Equilibrium Points of Nonlinear Systems

Let X, be an equilibrium point and A(X,) the matrix obtained from
linearization at x..

e X. Is stable, if all eigenvalues of A(x,) have negative real parts:

asymptotic stability of x, << asymptotic stability of the behavior of the
linearized model around x,

e X. IS unstable if one real part is positive

e if the real part of an eigenvalue is zero, no statement is possible

Note: The stability range of x, cannot be inferred from the linearized
model!

Basics of Linear Dynamics



technische universitat Professor Dr. Sebastian Engell o]

-

dortmund Process Dynamics and Operations Group —

General Stability Criterion According to Lyapunov

Given: x =f(x), equilibrium point X,

If a function V(x) exists such that:

0=V(Xs)=<V(X)<Vpax ,

holds in a region I', and V(X) = V.. then all trajectories
with x(0) € T" end In X, I.e., " is part of the domain of attraction of x..

Difficult: find a suitable Lyapunov function V(X).

Simplest approach: V(x)=x'-P-x  (with a positive definite P)
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