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Abstract

In chemical process operation, the purpose of control is to achieve optimal process operation despite the presence of significant uncer-
tainty about the plant behavior and disturbances. Tracking of set-points is often required for lower-level control loops, but on the pro-
cess level in most cases this is not the primary concern and may even be counterproductive. In this paper, different approaches how to
realize optimal process operation by feedback control are reviewed. The emphasis is on direct optimizing control by optimizing an eco-
nomic cost criterion online over a finite horizon where the usual control specifications in terms of, e.g., product purities enter as con-
straints and not as set-points. The potential of this approach is demonstrated by its application to a complex process which
combines reaction with chromatographic separation. Issues for further research are outlined in the final section.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

From a process engineering point of view, the purpose
of automatic feedback control (and that of manual control
as well) is not primarily to keep the controlled variables at
their set-points as well as possible or to nicely track
dynamic set-point changes, but to operate the plant such
that the net return is maximized in the presence of distur-
bances and uncertainties, exploiting the available measure-
ments. The model used for plant design will usually not
represent the real process exactly so that an operating
regime that was optimized for the plant model does not
lead to an optimal operation of the real plant, but may
even be infeasible. Feedback control, automatic or manual,
is indispensable to handle the inaccuracies and uncertain-
ties that are present in the design process, and to make full
use of the capacity of the equipment. This has been pointed
out in a number of papers (see e.g. [1–5]) but nonetheless
almost all of the literature on automatic control and con-
troller design for chemical processes is concerned with the
task to make certain controlled variables track given set-
points or set-point trajectories while assuring closed-loop
stability. In chemical process control, however, good track-
ing of set-points is mostly of interest for lower-level control
tasks. This contributes to the attitude of managers and pro-
cess engineers to consider the choice and the tuning of con-
trollers as a necessary but uninteresting task, comparable
to the procurement and maintenance of pumps or valves
for a predefined purpose, which should be performed as
cheaply as possible.

In their plenary lecture at ADCHEM 2000, Backx et al.
[6] stressed the need for dynamic operations in the process
industries in an increasingly marked-driven economy where
plant operations are embedded in flexible supply chains
striving at just-in-time production in order to maintain
competitiveness. Minimizing operation cost while main-
taining the desired product quality in such an environment
is considerably harder than in a continuous production
with infrequent changes, and this cannot be achieved solely
by experienced operators and plant managers using their
accumulated knowledge about the performance of the
plant. Profitable agile operation calls for a new look on
the integration of process control with process operations.
In this contribution, we give a review of the state of the art
in integrated process optimization and control of continu-
ous processes and highlight the option of direct or online
optimizing control (also called one-layer approach [7] or
full optimizing control [8]).
First the idea to implement the optimal plant operation
by conventional feedback control, termed ‘‘self-optimizing
control’’ [5], is discussed in Section 2. In highly automated
plants, the goal of an economically optimal operation is
usually addressed by a two-layer structure [9] which is dis-
cussed in Section 3. On the upper layer, the operating point
of the plant is optimized based upon a rigorous nonlinear
stationary plant model (real-time optimization, RTO).
The optimal operating point is characterized by set-points
for a set of controlled variables that are passed to lower-
level controllers that keep the chosen variables as close to
these set-points as possible by manipulating the available
degrees of freedom of the process within certain bounds.
This two-layer structure has some drawbacks. As the opti-
mization is only performed intermittently at a low sam-
pling rate, the adaptation of the operating conditions is
slow. Inconsistencies may arise from the use of different
models on the different layers. These issues are partly
addressed by schemes in which the economic optimization
is integrated within a linear MPC controller on the lower
level, as discussed in Section 4.

Recent progress in algorithms for numerical simulation
and optimization enables to move from the two-layer
architecture to direct online optimizing control. In this
approach, the available degrees of freedom of the process
are directly used to optimize an economic cost functional
over a certain prediction horizon based upon a rigorous
nonlinear dynamic process model. The regulation of qual-
ity parameters, which is usually formulated as a tracking or
disturbance rejection problem, can be integrated into the
optimization by means of additional constraints that have
to be satisfied over the prediction horizon. The applicabil-
ity of this integrated approach is demonstrated for the
operation of simulated moving bed chromatographic pro-
cesses. Finally, open issues and possible lines of future
research are discussed.

2. Optimization by regulation (self-optimizing control)

The idea behind what was termed ‘‘self-optimizing con-
trol’’ by Skogestad [5] has been outlined already in [1]: a
feedback control structure should have the property that
the adjustments of the manipulated variables that are
enforced by keeping some function of the measured vari-
ables constant are such that the process is operated at the
economically optimal steady state in the presence of distur-
bances. Morari et al. [1] stated that the objective in the syn-
thesis of a control structure is ‘‘to translate the economic
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objectives into process control objectives’’, a point of view
that has thereafter found surprisingly little attention in
the literature on control structure selection. A sub-goal in
this ‘‘translation’’ is to select the regulatory control struc-
ture of a process such that steady-state optimality of pro-
cess operations is realized to the maximum extent
possible if the selected controlled variables are driven to
suitably chosen set-points. In the approach described
below, the selection is done solely with respect to the sta-
tionary process performance, the consideration of the
dynamics of the controlled loops follows as a second step.
This reflects that from a plant operations point of view, a
control structure that yields nice transient responses and
tight control of the selected variables may be useless or
even counterproductive if keeping these variables at their
set-points does not improve the economic performance of
the process. The goal of the control structure selection is
that in the steady state a similar performance is obtained
as it would be realized by optimizing the stationary values
of the operational degrees of freedom of the process for
known disturbances and parameter variations. Thus the
relation between the manipulated variables u and the dis-
turbances di, ucon = f(yset,di) which is (implicitly) realized
by regulating the chosen variables to their set-points should
be an approximation of the optimal input uopt(di). The
application of this idea to the selection of control structures
has been demonstrated in a number of application papers
[10–12].

The effect of feedback control on the profit function J in
the presence of disturbances can be expressed as [12]

DJ ¼ Jðunom; d ¼ 0Þ � Jðunom; diÞ
þ Jðunom; diÞ � Jðuopt; diÞ þ Jðuopt; diÞ � Jðucon; diÞ:

ð1Þ
Fig. 1. Schematic representation of the influence of a disturbance on the
profit for different control approaches in the presence of measurement
errors. J(unom): performance for nominal inputs, J(uopt): performance for
optimal inputs, J(ucon): performance under feedback control with and
without measurement errors.
The first term is the loss due to disturbances that would be
realized if the manipulated variables were fixed at their
nominal values. The second term represents the effect of
an optimal adaptation of the manipulated variables to
the disturbance di, and the third term is the difference of
the optimal compensation of the disturbance and the com-
pensation which is achieved by the chosen feedback control
structure. If the first term in (1) is much larger (in absolute
value) than the second one, or if all terms are relatively
small, then a variation of the manipulated variables offers
no advantage, and neither optimization nor feedback con-
trol is required for this disturbance. If the third term is not
small compared to the attainable profit for optimized in-
puts for all possible regulating structures, then online opti-
mization or an adaptation of the set-points should be
performed rather than just regulation of the chosen vari-
ables to fixed pre-computed set-points.

Eq. (1) represents the loss (which may also be negative,
i.e. a gain) of profit for one particular disturbance di and a
fixed control structure. The economic performance of a
control structure can then be measured by
DJ ¼
Z d1;max

�d1;max

Z dn;max

�dn;max

wðdÞðJðunom; dÞ � Jðucon; dÞdd1 � � � ddn;

ð2Þ

where w(d) is the probability of the occurrence of the dis-
turbance vector d, neglecting the effect of potential con-
straint violations. As feedback control is based on
measurements, errors in the measurements of the con-
trolled variables must be taken into account. A variable
may be very suitable for regulatory control in the sense that
the resulting inputs are a good approximation of the opti-
mal inputs, but due to a large measurement error or a small
sensitivity to changes in the inputs, the resulting values ucon

may differ considerably from the desired values. This was
considered in an approximative fashion by checking the
sensitivity of the profit with respect to the controlled vari-
ables in [5]. An alternative is to consider the worst case con-
trol performance for regulation of the controlled variables
to values in a range around the nominal set-point yset which
is defined by the measurement errors [12]. For a distur-
bance scenario di, the performance measure of a control
structure is

min
u

Jðu; di; xÞ

s:t: _x ¼ f ðu; di; xÞ ¼ 0;

y ¼ mðxÞ ¼ Mðu; diÞ;
yset � esensor 6 y 6 yset þ esensor;

ð3Þ

where f represents the plant dynamics. A regulatory control
structure that yields a comparatively small value of the
minimal profit is not able to guarantee the desired perfor-
mance of the process in the presence of measurement errors
and hence is not suitable. This formulation includes the
practically relevant situation where closed-loop control
leads to a worse result than keeping the manipulated vari-
ables constant at their nominal value. This will usually be
the case for small disturbances, as illustrated by Fig. 1,
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where the effect of disturbances of different magnitudes on
the performance of a process is illustrated for fixed nominal
inputs, optimized inputs, and feedback control with and
without measurement errors. For small disturbances, keep-
ing the controlled inputs at their set-points is better than
reacting to disturbed measurements of y. It is therefore
important to include scenarios with small disturbances
and not only those with very large ones into the set of dis-
turbances that are considered in the analysis of the self-
optimizing capacity of a control structure.

Application studies have shown that the profit loss that
is incurred by using regulation to fixed set-points instead of
steady-state optimization can be quite low for well-chosen
control structures. For example in [10] a performance loss
of less than 5% is reported for the Tennessee Eastman
benchmark problem [13].

The analysis described above and the control structure
selection process that follows from it so far are limited to
disturbances or variations of the plant behavior that persist
over a very large period of time compared to the plant
dynamics. The inclusion of disturbances with a higher
bandwidth into the analysis as well as the integration with
the dynamic aspects of control structure selection is still an
open issue.

3. Real-time optimization (RTO)

A well-established approach to create a link between
regulatory control and optimization of the economics of
the unit or of the plant under control is real-time optimiza-
tion (RTO) (see e.g. [9], and the references therein). An
RTO system is a model based, upper-level control system
that is operated in closed loop and provides set-points to
the lower-level control systems in order to maintain the
process operation as close as possible to the economic opti-
mum. The general structure of an RTO system is shown in
Fig. 2. Its hierarchical structure follows the ideas put for-
ward already in the 1970s, e.g. by Findeisen, et al. [14].
Planning and Scheduling

SS optimization Model update

Validation Reconciliation

C1 Cn

Plant

RTO

Fig. 2. Hierarchical control structure with real-time optimization (RTO),
C1� � �Cn denote the local regulatory controllers.
The planning and scheduling system provides produc-
tion goals (e.g. demands of products, quality parameters),
parameters of the cost function (e.g. prices of products,
raw materials, energy costs) and constraints (e.g. availabil-
ity of raw materials), and the process control layer provides
plant data on the actual values of all relevant variables of
the process. This data is first analyzed for stationarity of
the process and, if a stationary situation is confirmed, rec-
onciled using material and energy balances to compensate
for systematic measurement errors. The reconciled plant
data is used to compute a new set of model parameters
(including unmeasured external inputs) such that the plant
model represents the plant as accurately as possible at the
current (stationary) operating point. Then new values for
critical state variables of the plant are computed which
optimize an economic cost function while meeting the con-
straints imposed by the equipment, the product specifica-
tions, and safety and environmental regulations as well as
the economic constraints imposed by the plant manage-
ment system. These values are filtered by a supervisory sys-
tem (which usually includes the plant operators) (e.g.
checked for plausibility, mapped to ramp changes, clipped
to avoid large changes, etc. [15]) and forwarded to the pro-
cess control layer which uses these values as set-points and
implements appropriate moves of the operational degrees
of freedom (manipulated variables). For a discussion of
the implementation of the optimal steady states by linear
model-predictive controllers see the paper by Rao and
Rawlings [16].

As the RTO system employs a stationary process model
and the optimization is only performed if the plant is
approximately in a steady state, the time between succes-
sive RTO steps must be large enough for the plant to reach
a new steady state after the last commanded move. Thus
the sampling period must be several times the largest
time-constant of the controlled process. Reported sampling
times are usually on the order of magnitude of several (4–8)
hours or once per day.

The introduction of an RTO system provides a clear
separation of concerns and of time-scales between the
RTO system and the process control system. The RTO sys-
tem optimizes the plant economics on a medium time-scale
(shifts to days) while the control system provides tracking
and disturbance rejection on shorter time-scales from sec-
onds to hours. Often the control system is again divided
into separate layers in order to handle different speeds of
responses and to structure the system into smaller modules.
This separation of concerns however may be misunder-
stood by the plant management leading to the erroneous
conclusion that dynamics do not matter and that the hard-
and software on the process control layer is a necessary
piece of equipment that is necessary to run the process
but it is the RTO system that helps to earn money.

In [17,18], a performance metric for RTO systems, called
design cost, was introduced where the profit obtained
by the use of the RTO system is compared to an estimate
of the theoretical profit obtained from a hypothetical
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delay-free static optimization and immediate implementa-
tion of the optimal set-points without concern for the plant
dynamics. The cost function consists of three parts:

• the loss in the transient period before the layered system
consisting of the RTO system and the process control
layer has reached a new steady state,

• the loss due to model errors in the steady state,
• the loss due to the propagation of stochastic measure-

ment errors to the optimized set-points.

The last contribution to the loss calls for a filtering of
the changes before they are applied to the real plant to
avoid inefficient moves [19,20]. The issue of model fidelity
was discussed in detail in [18,21]. In general, the use of a
rigorous model is recommended. Adequacy of a model
requires that the gradient and the curvature of the profit
function are described precisely whereas its absolute value
is not critical [22,23]. As parameter estimation is a core part
of an RTO system, the commanded set-point changes have
an influence on the model accuracy and hence on the close-
ness to the true optimum. Yip and Marlin [24] made the
very interesting proposal to include the effect of set-point
changes on the accuracy of the parameter estimates into
the RTO optimization.

The issue of (steady-state or iterative) optimization with
inaccurate models has been addressed since long in the lit-
erature. Roberts and co-workers proposed several algo-
rithms that combine parameter re-estimation with the use
of empirical gradients obtained from small perturbations
of the plant operation to account for structural plant-
model mismatch [25–27]. Cheng and Zafiriou [28] proposed
a modification of the FFSQ optimization algorithm [29] for
steady-state optimization on the RTO layer such that the
observed plant performance is taken into account when
the search direction and the step size are computed but
avoids the use of empirical gradients. Convergence to the
optimum can be assured even for considerable structural
plant-model mismatch, resulting from the use of simplified
process models that do not satisfy the conditions for a suf-
ficiently accurate model as formulated in [22].

Compared to running a plant with fixed set-points for the
regulatory control layer, the introduction of the RTO layer
significantly increases the complexity of the control system
and causes additional costs in design, implementation and
maintenance. Thus the question arises, whether it pays off
or not. Duvall and Riggs [30], in the evaluation of the per-
formance of their RTO scheme for the Tennessee Eastman
Challenge Problem pointed out: ‘‘RTO profit should be com-

pared to optimal, knowledgeable operator control of the pro-

cess to determine the true benefits of RTO. Plant operators,
through daily control of the process, understand how process

set-point selection affects the production rate and/or operat-

ing costs’’. In particular, they state that the operators would
most likely know which variables should be kept at their
bounds but they will not be able to optimize set-points
within their admitted ranges according to the disturbances
encountered. This comparison therefore is quite similar to
the comparison with a well chosen, ‘‘self-optimizing’’ regu-
latory control structure without RTO. In the example, a sig-
nificant improvement by RTO was found.

Quoting the famous Dutch soccer player and coach
Johan Cruyff, ‘‘every advantage is also a disadvantage’’.
The advantage of the RTO/MPC structure is that it pro-
vides a clear separation between the tasks of the control
and the optimization layer. This separation is performed
with respect to time-scales as well as to models. Rigorous
nonlinear models are used only on the steady-state optimi-
zation layer. Such models nowadays are often available
from the plant design phase, so the additional effort to
develop the model sometimes is not very high. The control
algorithms are based upon linear models (or no models at
all if conventional controllers are tuned in simulations or
on-site) which can be determined from plant data. As
pointed out by, e.g., Backx et al. [6]) and Sequeira et al.
[31] this implies however that the models on the optimiza-
tion layer and on the control layer will in general not be
fully consistent, in particular their steady-state gains may
differ.

The main disadvantage of the RTO approach is the
delay of the optimization which is inevitably encountered
because of the steady-state assumption. After the occur-
rence of a disturbance the optimization has to be delayed
until the controlled plant has settled into a new steady
state. To detect whether the plant is in a steady state itself
is not a simple task (see e.g. [32]).

Suppose a step disturbance occurs in some unmeasured
external input to the plant. Then first the control system
will regulate the plant (to the extent possible) to the set-
points that were computed before the disturbance
occurred. After all control loops have settled, the RTO
optimizer can be started, and after the results have been
computed (which may also require a considerable amount
of time, depending on the complexity of the model used)
and validated, the control layer can start to regulate the
plant to the new set-points. Thus it will take several times
the settling time of the control layer to drive the plant
to the new optimized mode of operation. In the first phase,
the control system will try hard to maintain the previously
optimal operating conditions even if without fixing the con-
trolled variables to their set-points the operation of the
plant would have been more profitable. If the disturbance
persists for one sampling period of the RTO system plus
one settling time of the regulatory layer, it can be estimated
that the use of the RTO system on the average recovers
about half of the difference between the profit obtained
by the regulatory system alone (with fixed set-points) and
an online-optimizing controller that implements the opti-
mal set-points within the settling time of the regulatory
control layer. The combined RTO/regulatory control
structure will work satisfactorily for infrequent step
changes of feeds, product specifications or product quanti-
ties but it will provide no benefit for changes that occur at
time scales below the RTO sampling period.
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Marlin and Hrymak [9] listed several areas for improve-
ment of RTO systems. Two important ones are also
addressed in the remainder of this paper: the integration
with the process control layer, and the extension to
dynamic operation. They pointed out that instead of send-
ing set-points to the control layer, an ideal RTO system
should output a design (i.e. tuning parameters or even a
choice of the control structure) of the control system that
leads to an optimized performance under the current
long-term operating conditions.

4. Reducing the gap between regulation and RTO

4.1. Frequent RTO

As a consequence of the drawback that RTO is applied
with rather long sampling periods, several authors have pro-
posed schemes that use smaller sampling times on the opti-
mizing layer. For example, Sequeira et al. [31] proposed to
change the set-points for the regulatory layer in much
shorter intervals (in the case study presented they used 1/
50 of the settling time of the plant) and to perform a ‘‘real-
time evolution’’ of the set-points by heuristic search (used
here to reduce the computation time) based upon the sta-
tionary process model and the available measurements. To
avoid overshooting behavior, the steps of the decision vari-
ables are bounded in each step. In the example shown, this
scheme outperforms steady-state RTO with regulatory con-
trol especially for non-stationary disturbances and in the
first phase after a disturbance occurs, which is not too sur-
prising. The idea that a ‘‘step in the right direction’’ should
be better than to wait until the process has settled to a new
steady state is certainly convincing, however the approach
suffers from neglecting the dynamics of the plant. Basak
et al. [33] discussed an online optimizing control scheme
for a complex crude distillation unit. They proposed to per-
form a steady-state optimization of the unit for an economic
cost function under constraints on the product properties
with respect to the operational degrees of freedom and a
model parameter update at a sampling rate of 1–2 h and to
apply the computed manipulated values directly to the
plant. If the update of the manipulated variables is based
solely on information on the plant inputs and the economics,
such a scheme will react to disturbances only via the model
parameter update. If dynamic variables enter the optimiza-
tion, the resulting dynamics of the controlled plant will be
unpredictable from the stationary behavior. The idea to per-
form updates of the operating point using a stationary
model more frequently than every few settling times of the
plant but to limit the size of the changes that are applied
to the plant such that quasi-stationary transients are realized
is also used in industrial practice. This leads to the imple-
mentation of the optimal set-point changes by ramps rather
than steps or, in other terms, of a nonlinear integral control-
ler, causing slow moves of the overall system.

If a fast sampling RTO scheme is used, it will, at least
for very short sampling times, interact with the regulatory
control layer causing uncontrolled effects because the sepa-
ration of the time scales does no longer hold. The assump-
tion that a steady-state optimization performed at an
instationary operating point yields the right move of the
set-points is similar to the basic idea of gain scheduling
control. In both cases, a projection of the actual dynamic
state on a corresponding stationary point that is defined
by the values of the measured, actuated or demanded vari-
ables during transients is performed and the control move
is computed under the (in principle wrong) assumption that
the plant actually is in this steady state. Fast sampling
RTO thus shares the potential of stability problems with
gain scheduling controllers which usually can only be
avoided if ‘‘slow’’, quasi-stationary set-point changes are
realized (see e.g. [34,35]).

4.2. Integration of steady-state optimization

into model-predictive control

In order to narrow the gap between the low frequency
nonlinear steady-state optimization performed on the
RTO layer and the relatively fast linear MPC layer, the
so-called LP-MPC and QP-MPC two-stage MPC struc-
tures are frequently used in industry [36–41]. A detailed
analysis of their properties was given by Ying and Joseph
[42]. The extended structure is shown in Fig. 3.

The task of the upper MPC layer is to compute the set-
points (targets) both for the controlled variables and for
the manipulated inputs for the lower MPC layer by solving
a constrained linear or quadratic optimization problem,
using information from the RTO layer and from the
MPC layer. The optimization is performed with the same
sampling period as the lower-level MPC controller. At each
sampling instant, the minimization

min
yset ;uset

½ðyset � y�ÞT Cyðyset � y�Þ þ ðuset � u�ÞT Cuðuset � u�Þ

þ cyðyset � y�Þ þ cuðuset � u�Þ� ð4Þ
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Subject to yset ¼ ASuset þ dðkÞ;
dðkÞ ¼ dðk � 1Þ þ DðkÞ; ð5Þ
ymin 6 yset 6 ymax;

umin 6 uset 6 umax

is performed.
The steady-state gain AS and the disturbance estimate

are provided by the MPC layer whereas the nominal set-
points y* and u* are provided by the RTO layer. This struc-
ture addresses the following issues:

• A faster change of the set-points after the occurrence of
disturbances is realized;

• The inconsistency of the nonlinear steady-state model
on the RTO layer and the linear steady-state model used
on the MPC layer is reduced;

• Large set-point changes that may drive the linear con-
trollers unstable are avoided;

• The distribution of the offsets from the desired targets
that are realized by the MPC controller is explicitly con-
trolled and optimized.

The plant model and the disturbance estimate used on
the intermediate optimization layer is the same as that used
(and eventually updated) on the MPC layer, thus avoiding
inconsistencies, whereas the weights in the cost function
and the linear constraints are chosen such that they
approximate the nonlinear cost function and the con-
straints on the RTO layer around the present operating
point. As long as this approximation is good, optimal oper-
ations are ensured.

A simpler approach to the integration of steady-state
optimization and model-predictive control is to optimize
those tuning parameters of a dynamic matrix controller
(DMC) or a QDMC controller that determine the steady-
state behavior of the controller (set-points of the regulated
variables, targets of the manipulated variables, weights on
the deviations of the regulated variables from the set-points
and on the deviations of the of the manipulated variables
from the targets) such that the profit obtained is maximized
over a number of disturbance scenarios as proposed by
Kassidas et al. [43]. In the parameter optimization, a full
nonlinear steady-state plant model is used. Note that this
optimization is only performed once (off-line), and only
the usual computations of the DMC or QDMC controller
moves employing linear plant models have to be performed
online. The approach was compared to rigorous steady-
state optimization (similar to what a RTO layer working
together with a zero-offset controller would yield) of the
purity set-points and to a controller that controls the plant
to fixed pre-computed purity set-points (also optimized
over the various disturbance scenarios) for a simple distil-
lation example. The optimization approach led to a consid-
erable variation of the controlled outputs over the different
scenarios, while when the process is regulated to fixed
set-points, this variation is mapped to the manipulated
variables. The optimally tuned DMC controller imple-
ments a compromise between these extremes and realizes
about 70% of the average additional profit that results
for rigorous optimization. Even better results can be
expected for examples where the optimal operation is
mostly determined by the constraints.
4.3. Integration of nonlinear steady-state optimization

in the linear MPC controller

Zanin et al. [7,44] reported the formulation, solution
and industrial implementation of a combined MPC/opti-
mizing control scheme for a fluidized-bed catalytic cracker,
FCC. The plant has seven manipulated inputs and six con-
trolled variables. The economic criterion is the amount of
LPG produced. The optimization problem that is solved
in each controller sampling period is formulated in a mixed
manner: range control MPC with a fixed linear plant model
(imposing soft constraints on the controlled variables by a
quadratic penalty term that only becomes active when the
constraints are violated) plus a quadratic control move
penalty plus an economic objective that depends on the val-
ues of the manipulated inputs at the end of the control
horizon:

min
DuðkþiÞ; i¼0;...;m�1

Xp

j¼1

kW 1ðyðkþ jÞ� rÞk2
2þ
Xm�1

i¼0

kW 2Duðkþ iÞk2
2

þW 3fecoðuðkþm�1ÞÞþkW 4ðuðkþm�1Þ

�uðk�1Þ�DuðkÞÞk2
2þW 5½fecoðuðkþm�1Þ;yðkþ1ÞÞ

� fecoðuðkÞ;y0ðkþ1ÞÞ�2: ð6Þ

The value of the economic objective feco is computed using
a nonlinear steady-state process model. As only the first
move of the controller is implemented, penalty terms are
added that penalize the deviation of the first values of the
manipulated variables from their final values within the
control horizon in order to prevent that the economically
optimal control move is always ‘‘shifted to infinity’’. Sev-
eral variants for this penalty term were investigated. The
different components of the cost function were weighted
such that the economic criterion and the MPC part have
a similar influence on the values of the overall cost.

This combined optimizing/LMPC controller was imple-
mented and tested at a real Petrobras FCC with a sampling
rate of 1 min, a control horizon of two steps and a predic-
tion horizon of 20 steps. An impressive performance is
reported, both in terms of the economic performance and
of the smoothness of the transients, pushing the process
to its limits. The integrated control scheme performed sub-
stantially better than the conventional scheme where the
operators chose set-points based on their experiences that
were then implemented by a conventional MPC scheme.
The final weights of the different contributions to the cost
function were determined by experiments. Simulations also
showed that the one-layer approach compared favorably to
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a two-layer approach in which the economic optimization
provided set-points for a linear MPC scheme in terms of
dynamic response. Nonetheless, the optimizing controller
was not implemented in daily operation. The reasons will
be discussed below. A similar control scheme was experi-
mentally validated in [45] for a paste dryer.
Fig. 4. Simulated moving bed principle.
5. Direct finite horizon optimizing control

5.1. General ideal

For demanding applications, the replacement of linear
MPC controllers by nonlinear model-predictive control is
a promising option and industrial applications have been
reported in particular in polymerization processes [46–
49]. If nonlinear model-based control is used to implement
optimal set-points or optimal trajectories at a plant, it is
only a small step to replace the traditional quadratic cost
criterion that penalizes the deviations of the controlled
variables from the reference values and the input variations
by an economic criterion. Constraints on outputs (e.g.
strict product specifications) as well as process limitations
can then be included directly in the optimization problem.
This approach has several advantages over a combined
steady-state optimization/linear MPC scheme:

• Fast reaction to disturbances, no waiting for the plant to
reach a steady state is required;

• Regulation of constrained variables to set-points which
implies a safety margin between these set-points and
the constraints is avoided, the exact constraints can be
implemented for measured variables and only the model
error has to be taken into account for unmeasured con-
strained variables;

• Over-regulation is avoided, no variables are forced to
fixed set-points and all degrees of freedom can be used
to optimize process performance;

• No inconsistency arises from the use of different models
on different layers;

• Economic goals and process constraints do not have to
be mapped to a control cost whereby economic optimal-
ity is lost and tuning is difficult;

• The overall scheme is structurally simple.

An important point in favor of using an economic cost
criterion and formulating restrictions of the process and
the product properties as constraints is that this reduces
the need for tuning of the weights in less explicit formula-
tions. Exxon’s technology for NMPC employs a combina-
tion of criteria that represent reference tracking, operating
cost and control moves [48].

In the next section, it will be demonstrated that direct
online optimizing control can successfully be applied to
control problems that are hard to tackle by conventional
control techniques. Other application studies have been
reported, e.g. by Singh et al. [50] and Johansen and Sbar-
baro [51] for blending processes and by Busch et al. [52]
for a waste-water treatment plant.
5.2. Case study: control of reactive simulated moving bed

chromatographic processes

5.2.1. Process description

Chromatographic separations are a widespread separa-
tion technology in the fine chemicals, nutrients and phar-
maceutical industry. Chromatography is applied for
difficult separation tasks, in particular if the volatilities of
the components are similar or if the valuable components
are sensitive to thermal stress. The separation of enantio-
mers (molecules that are mirror images of each other) is
an example where chromatography is the method of
choice. The standard chromatographic process is a batch
separation where pulses of the mixture that has to be sep-
arated are injected into a chromatographic column fol-
lowed by the injection of pure solvent. The components
travel through the column at different speeds and can be
collected at the end of the column in different purified frac-
tions. In batch mode, the adsorbent is not used efficiently
and the process usually leads to highly diluted products.

The goal of a continuous operation of chromatographic
separations with a counter-current movement of the solid
phase and the liquid phase led to the development of the
simulated moving bed (SMB) process by Broughton, [53].
It is gaining increasing attention in industry due to its
advantages in terms of productivity and solvent consump-
tion [54,55]. An SMB process consists of several chromato-
graphic columns connected in series which constitute a
closed loop. An effective counter-current movement of
the solid phase relative to the liquid phase is achieved by
periodically and simultaneously moving the inlet and the
outlet lines by one column in the direction of the liquid
flow (see Fig. 4).

After a start-up phase, SMB processes reach a periodic
or cyclic steady state (CSS). The length of a cycle is equal
to the duration of a switching period times the number of
columns, but relative to the port positions, the profiles
are repeated every switching period. Fig. 5 shows the con-
centration profiles of a binary separation along the col-



Fig. 5. Concentration profiles of an SMB process. The figure shows the
concentration profiles at different instances during one switching period.
At the end of the period, the ports are switched.
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umns plotted for different time instants within a switching
period.
5.2.2. Control of SMB processes

Classical feedback control strategies are not directly
applicable to SMB processes due to their mixed discrete
and continuous dynamics, spatially distributed state vari-
ables with steep slopes, and slow and strongly nonlinear
responses of the concentrations profiles to changes of the
operating parameters. A summary of different approaches
to control of SMB processes can be found in [56,57].

Klatt et al. [58] proposed a two-layer control architec-
ture similar to the RTO/MPC scheme where the optimal
operating trajectory is calculated at a low sampling rate
by dynamic optimization based on a rigorous process
model. The model parameters are adapted using online
measurements. The low level control task is to keep the
concentrations in the columns near the values at the opti-
mal cyclic steady state despite disturbances, plant degrada-
tion and plant/model mismatch. This is achieved by
controlling the positions of the four concentration fronts
in the process. The controller is based on input/output
models that are identified using simulation data produced
by the rigorous process model near the optimal cyclic
steady state [58,59]. A disadvantage of this two-layer con-
cept is that keeping the front positions at the values
obtained from the rigorous optimization does not guaran-
tee the product purities if structural plant/model mismatch
occurs. To ensure the specified product purities, an addi-
tional purity controller is required, and the overall scheme
becomes quite complex without actually ensuring optimal
operation because the lower-level controllers change the
optimized inputs in a suboptimal fashion.
5.2.3. Online optimizing control

As the progress in efficient numerical simulation and
optimization enabled a dynamic optimization of an SMB-
process within one switching period, a direct finite hori-
zon optimizing control scheme that employs the same
rigorous nonlinear process model that is used for process
optimization in the two-layer structure was proposed and
applied to a 3-zones reactive SMB process for glucose
isomerization [60,61]. The key feature of this approach is
that the production cost is minimized online over a finite
horizon while the product purities are considered as con-
straints, thus a real online optimization of all operational
degrees of freedom is performed, and there is no tracking
of pre-computed set-points or reference trajectories. In
[62], this control concept was extended to the more com-
plex processes VARICOL [63,64] and PowerFeed [65]
where the ports are switched asynchronously and the flow
rates are varied in the subintervals of the switching period.
These process variants offer an even larger number of
degrees of freedom that can be used for the optimization
of the process economics while satisfying the required
product purities. In the optimizing control scheme pro-
posed in [60,61], the states of the process model are deter-
mined by forward simulation starting from measurements
in the recycle stream and in the product streams.

A different optimization-based approach to the control
of SMB processes was proposed by Erdem et al., [66–68].
In their work, a moving horizon online optimization is per-
formed based on a linear reduced-order model that is
obtained from linearizing a rigorous model around the
periodic steady state. The state variables of the model are
estimated by a Kalman Filter that processes the product
concentration measurements. Due to the use of repetitive
MPC [69] where the sampling time is equal to the switching
time, the switching period has to be kept fixed which may
cause a loss of performance compared to the optimization
of all available degrees of freedom.

5.2.4. The Hashimoto reactive SMB process

The integration of chemical reactions into chromato-
graphic separations offers the potential to improve the
conversion of equilibrium limited reactions. By the simulta-
neous removal of the products from the reaction zone, the
reaction equilibrium is shifted to the side of the products.
This combination of reaction and chromatographic separa-
tion can be achieved by packing the columns of the SMB
process uniformly with adsorbent and catalyst, which leads
to the reactive SMB (SMBR) process. The SMBR process
can be advantageous in terms of higher productivity in
comparison to a sequential arrangement of reaction and
separation units [70]. However, for equilibrium reactions
of the type A M B, a uniform catalyst distribution in the
SMBR promotes the backward reaction near the product
outlet which is detrimental to the productivity. Further
on, the renewal of deactivated catalyst is difficult when it
is mixed with adsorbent pellets, and the same operating
conditions must be chosen for separation and reaction
what may lead to either suboptimal reaction or suboptimal
separation. The Hashimoto SMB process [71,72] over-
comes the disadvantages of the SMBR by performing
separation and reaction in separate units that contain
only adsorbent or only catalyst. In this configuration, the
conditions for reaction and for separation can be chosen
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Fig. 6. Four-zone Hashimoto reactive SMB process. White: separation
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separately and the reactors can constantly be placed in
some of the separation zones of the SMB process by appro-
priate switching. The structure of a Hashimoto SMB pro-
cess is shown in Fig. 6. The dynamics of this class of
processes is highly complex.

5.2.5. Optimizing controller application

The example application that will briefly be described in
the sequel is the racemization of Tröger’s Base (TB) in com-
bination with a chromatographic separation in order to
produce of the enantiomer TB – that is used for the treat-
ment of cardiovascular diseases. More details can be found
in [73,74]. The solvent is an equimolar mixture of acetic
acid that acts as the catalyst for the reaction and 2-propa-
nole that increases the solubility of the mixture. The
adsorption of the Tröger’s Base system to the solid phase
can be described by an adsorption isotherm that is of
multi-component Langmuir type:

qi ¼
H icp;i

1þ
P

kbi;kcp;k
; k ¼ þ;�: ð7Þ

Here cp,i denotes the concentration of component i in the
pores of the particle phase and qi the adsorbed fraction.
The reaction takes place in plug flow reactors that are oper-
ated at 80 �C whereby the catalyst is thermally activated. In
the chromatographic columns that have a temperature of
25 �C the catalyst is virtually deactivated. In the simulation
run shown below, a four-zone Hashimoto process with
eight chromatographic columns, two reactors, and a col-
umn distribution as shown in Fig. 6 is considered. The
objective of the optimizing controller is to minimize the sol-
vent consumption QDe for a constant feed flow and a given
purity requirement in the presence of a plant/model mis-
match. The inevitable mismatch between the model and
the behavior of the real plant is taken into account by feed-
back of the difference of the predicted and the measured
product purities. A regularization term is added to the
objective function to obtain smooth trajectories of the in-
put variables. The controller has to respect the purity
requirement for the extract flow which is averaged over
the prediction horizon, the dynamics of the Hashimoto
SMB model and the maximal flow rate in zone I due to lim-
ited pump capacities. In order to guarantee that at least
70% of the mass of the components fed to the plant leaves
the plant in the extract product stream (averaged over the
prediction horizon), an additional productivity require-
ment was added. The resulting mathematical formulation
of the optimization problem is

min
bIi
;bIIi

;bIIIi
;bIVi

XHP

i¼1

QDei
þ DbiRDbi

s:t:
~xk

smb ¼ xk
smb þ

R s
t¼0

fsmbðxsmbðtÞ;bðtÞÞdt;

xkþ1
smb ¼ P~xk

smb;

(

PHP

i PurEx;i

HP

P ðPurEx;min � DPurExÞ;
PHP

i mEx;i

H P

P 0:7mFe � DmEx;

QI 6 Qmax;

QDe;QEx;QFe;QRe P 0;

ð8Þ

where the purity error DPurEx and the mass error DmEx are
calculated according to

DPurEx ¼ PurEx;plant;i�1 � PurEx;model;i�1;

DmEx ¼ mEx;plant;i�1 � mEx;model;i�1:
ð9Þ

The model of the plant consists of rigorous dynamic mod-
els of the individual columns of the plant and the node
equations (represented by the function fsmb) and the port
switching (represented by the permutation matrix P). The
degrees of freedom of the optimization problems are the
transformed flow rates bI–bIV in the four zones of the pro-
cess which depend on the ratios of the flow rates of the li-
quid phase in the zones to the effective solid flow rate that
is defined by the switching period s [58]. HP denotes the
prediction horizon. The chromatographic columns are de-
scribed by the general rate model [75] which accounts for
all important effects of a radially homogeneous column,
i.e. mass transfer between the liquid and the solid phase,
pore diffusion, and axial dispersion. The partial differential
equations are discretized using a Galerkin approach on fi-
nite elements for the bulk phase and orthogonal colloca-
tion for the particle phase [76]. The reactors consist of
three columns in series. Each column is discretized into
12 elements, yielding an overall model with 1400 dynamic
states. For the solution of the optimization problem, the
feasible path solver FFSQ [29] is applied. It first searches
for a feasible operating point and then minimizes the objec-
tive function. The number of iterations of the SQP solver
was limited to 5 because the optimizer can perform at least
this number of iterations within one cycle of the process
(eight switching periods), as required for online control.
If convergence is not achieved within five iterations, the
best feasible solution obtained is applied.

In the simulation scenario, a model/plant mismatch was
introduced by disturbing the initial Henry coefficients H+

and H� of the model by +5% and �4%. The parameters
of the controller are displayed in Table 1.



Table 1
Controller parameters

Sampling time 1 cycle = 8 periods
Prediction horizon, HP 5 cycles = 40 periods
Control horizon, HC 1 cycle = 8 periods
Regularization, R [0.7 0.7 0.7 0.7]
Number of finite elements per column 12
Model order 1400
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The performance of the controller is illustrated by
Fig. 7. The controller manages to track the purity reference
and to keep the productivity above its lower limits, while it
improves the economical operation of the plant by reduc-
ing the solvent consumption. The optimizing controller
has been implemented at a medium scale SMB plant using
a PLC-based process control system and an additional PC
for optimization and parameter estimation [102]. A photo-
graph of the setup is shown in Fig. 8. The reactors are in a
heated bath on top of the SMB plant. An experimental
result where a significant disturbance – a pump failure –
occurred exactly when the controller was switched on is
shown in Fig. 9.
Fig. 8. Experimental SMB-plant with external reactors (in the heated bath
on the top, left).
5.3. Numerical aspects

In the example described above, a relatively simple
numerical approach using direct simulation, computation
of the gradients by perturbation and a feasible path SQP
algorithm for the computation of the optimal controls
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Fig. 7. Simulation of the optimizing controller of the Hashimoto reactive SMB process. The controller was started at period 80. s denotes the switching
period, Prod the productivity. The dashed lines represent the set-points.
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Fig. 9. Experimental result with the optimizing controller – the controller was started at period 17 and a pump failure occurred during periods 17–24 [102].
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was used. By using more advanced numerical techniques,
much shorter computation times can be realized. Diehl
et al. [77] proposed a scheme for the solution of nonlinear
model-predictive control problems with large plant models
where the multiple shooting method [78] with a tailored
SQP algorithm is used and only one iteration of the SQP-
problem is performed in each sampling interval. Moreover,
the steps performed in the algorithm are ordered such that
a new output is computed fast immediately after a new
measurement have become available and the remainder
of the computations is done thereafter, thus reducing the
reaction time to disturbances considerably. A further
improvement of the speed of the solution of the optimiza-
tion problem is presented in [79]. The maximum time
needed for the solution of a quadratic NMPC problem
for a distillation column modeled by a rigorous DAE
model of order 106 + 159 and prediction and control hori-
zons of 36 sampling intervals is reported to be less than 20 s
for a Pentium 4 computer. Diehl et al. [80] proved conver-
gence of the real-time iteration scheme to the optimal solu-
tion for general cost functions.

An alternative to the multiple shooting approach is to
apply full discretization techniques where similar progress
has been reported [81,82]. Jockenhövel et al. [83] reported
the application of conventional NMPC with a quadratic
cost criterion to the Tennessee Eastman challenge problem
with 30 dynamic and 149 algebraic states, 11 control vari-
ables, several constraints on state variables, and control
and prediction horizons of 60 steps. Using full discretiza-
tion and an interior point method, a reliable solution well
within the sampling time of 100 s is achieved. It can thus
be concluded that online optimizing control is computa-
tionally feasible nowadays for models with several hundred
state variables and for sufficiently long prediction horizons.
The complexity of rigorous models no longer is a strong
reason not to employ them in optimization-based control
schemes.

6. Open issues

6.1. Modeling

In a direct optimizing control approach accurate
dynamic nonlinear process models are needed. While non-
linear steady-state models are nowadays available for many
processes because they are created and used extensively in
the process design phase, there is still a considerable effort
required to formulate, implement and validate nonlinear
dynamic process models. The recent trend towards the
use of training simulators may partly alleviate this prob-
lem. Training simulators are increasingly ordered together
with new plants and are available before the real plant
starts production. The models inside the training simulator
represent the plant dynamics faithfully even for states far
away from the nominal operating regime (e.g. during
start-up and shut-down) and can be used also for optimiza-
tion purposes. Such rigorous models may however include
too much detail from a control point of view. It does not
seem to be necessary to include dynamic phenomena that
affect the behavior only on time scales much longer than
the prediction horizon or shorter than the sampling time
of the controller. The appropriate simplification of nonlin-
ear models still is an unresolved problem [84,85]. The alter-
native approach to use black-box or grey-box models as
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proposed frequently in nonlinear model-predictive control
[59,86–88] may be effective for regulatory control where
the model only has to capture the essential dynamic fea-
tures of the plant, but seems to be less suitable for optimiz-
ing control where the optimal plant performance is aimed
at and hence the best stationary values of the inputs and
of the controlled variables have to be computed accurately
by the controller.

6.2. Stability

Optimization of a cost function over a finite horizon in
general neither assures optimality of the complete trajec-
tory beyond this horizon nor stability of the closed-loop
system. Closed-loop stability has been addressed exten-
sively in the theoretical research in nonlinear model-predic-
tive control. The theoretical discussion has led to a clear
understanding of what is required to ascertain the stability
of a nonlinear model-predictive control scheme and clearly
pointed out the deficiencies of less sophisticated schemes.
Stability results so far have been proven for regulatory
NMPC where stability means convergence to the desired
equilibrium point. Stability can be assured by proper
choice of the cost function within the prediction horizon
and the addition of a cost on the terminal state and the
restriction of the terminal state to a suitable set [89,90]. If
the cost function within the prediction horizon is an eco-
nomic cost function, a bounded cost over the horizon will
however in general not ensure boundedness of the devia-
tion of the state vector from an equilibrium state because
economic cost functions often involve only very few pro-
cess variables, mostly input streams and mass flows leaving
the physical system. Moreover, in direct optimizing control
there is no fixed equilibrium state.

A possible approach towards optimizing control with
guaranteed stability is to compute the optimal steady state
online first and then the optimal moves over the control
horizon. In this case, the cost function can be extended
by a terminal cost that penalizes the distance of the state
at the end of the prediction horizon from the optimal
steady state and – if necessary by a (small) quadratic pen-
alty term on the deviation of the state (or of suitable out-
puts) from the terminal state within the prediction
horizon. If a suitable constraint on the terminal state is
added, this should provide a stabilizing control scheme.
It has been demonstrated recently that algorithms of this
type are computationally feasible even for very large non-
linear plant models [91]. By the choice of the weighting
terms, a compromise can be established between optimiz-
ing process performance over a limited horizon at a fast
sampling rate and long-term performance under the
assumption that no major disturbance occurs in the future.
This leads to a hierarchical scheme similar to the RTO/
MPC scheme where the upper layer provides the terminal
state and the terminal region and the lower layer now is
‘‘cost-conscious’’ and no longer purely regulatory. In con-
trast to the RTO/MPC-scheme, the optimization criteria as
well as the models used on both layers are consistent in this
structure.

An alternative approach to guaranteeing stability of an
optimizing controller was applied in [51] to a linear process
with a static nonlinearity at the output, based on an aug-
mented control Lyapunov function.

6.3. State estimation

For the computation of economically optimal process
trajectories based upon a rigorous nonlinear process
model, the state variables of the process at the beginning
of the prediction horizon must be known. As not all states
will be measured in a practical application, state estimation
is a key ingredient of a directly optimizing controller. The
state estimation problem is of the same complexity as the
optimization problem, unless simple approaches as predict-
ing the state by simulation of a process model are
employed. The natural approach is to formulate the state
estimation problem also as an optimization problem on a
moving horizon [92–94]. The estimation of some important
but variable or unknown model parameters can be
included in this formulation. A control scheme where
NMPC is combined with moving horizon estimation has
recently been realized in [95]. But still experience with the
application of moving horizon state estimation is quite lim-
ited to date. Simpler and computationally less demanding
schemes as the constrained extended Kalman filter (CEKF)
may provide a comparable performance and are more easy
to implement (but not easier to tune) [48,96]. As accurate
state estimation is at least as critical for the performance
of the closed-loop system as the exact tuning of the opti-
mizer, more attention should be paid to the investigation
of the performance of state estimation schemes in realistic
situations with non-negligible model-plant mismatch.

6.4. Measurement-based optimization

In the scheme described in Section 5, feedback of the
measured variables is only realized via the updates of the
state and of the parameters and by a bias term in the for-
mulation of the constraints and possibly in the cost crite-
rion. As discussed in the Section on RTO, a near-optimal
solution requires that the gradients provided by the model
and the second derivatives are accurate. However in such a
scheme there is no feedback present to establish optimality
despite the presence of model errors. This can be addressed
by the solution of a modified optimization problem [25,26]
or by taking the presence of model errors into account in
the local search [28]. As shown by Tatjewski, [97], optimal-
ity can be achieved in the presence of structural or para-
metric plant-model mismatch even without parameter
updating by correcting the optimization criterion based
on gradient information derived from the available mea-
surements. This idea was extended to handling constraints
and applied to batch chromatography in [98] and might be
explored in the continuous case as well. An alternative way
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to implement measurement-based optimization is to for-
mulate the optimization problem (partly) as the tracking
of necessary conditions of optimality which are robust
against model mismatch [99–101].

6.5. Reliability and transparency

As discussed above, relatively large nonlinear dynamic
optimization problems can nowadays be solved in real-
time, so this issue does no longer prohibit the application
of a direct optimizing control scheme to complex units. A
practically very important limiting issue however is that
of reliability and transparency. It is hard, if not impossible
to rule out that a nonlinear optimizer does not provide a
solution which at least satisfies the constraints and gives
a reasonable performance. While for RTO an inspection
of the commanded set-points by the operators usually will
be feasible, this is less likely in a dynamic situation. Hence
automatic result filters are necessary as well as a backup
scheme that stabilizes the process in the case where the
result of the optimization is not considered safe. But
the operators will still have to supervise the operation of
the plant, so a control scheme with optimizing control must
be structured into modules which are not too complex. The
concept of adding a cost term that represents steady-state
optimality as described above provides a possible solution
for the dynamic online optimization of larger complexes
based on decentralized optimizing control of smaller units.
The co-ordination of the units is performed by the steady-
state real-time optimization that sends the desired terminal
states plus adequate penalty terms to the lower-level con-
trols. These penalty terms must reflect the sensitivity of
the global optimum with respect to local deviations, i.e.
how an economic gain on the local level within the optimi-
zation horizon is traded against a global loss due to not
steering the plant to the globally optimal steady state. Still,
acceptance by the operators and plant managers will be a
major challenge. Good interfaces to the operators that dis-
play the predicted moves and the predicted reaction of the
plant and enable comparisons with their intuitive strategies
are believed to be essential for practical success.

6.6. Effort vs. performance

The gain in performance by a more sophisticated con-
trol scheme always has to be traded against the increase
in cost due to the complexity of the control scheme – a
complex scheme will not only cause cost for its implemen-
tation but it will need more maintenance by better qualified
people than a simple one. If a carefully chosen standard
regulatory control layer leads to a close-to-optimal opera-
tion, there is no need for optimizing control. If the distur-
bances that affect profitability and cannot be handled well
by the regulatory layer (in terms of economic performance)
are slow, the combination of regulatory control and RTO
is sufficient. In a more dynamic situation or for complex
nonlinear multivariable plants, the idea of direct optimiz-
ing control should be explored and implemented if signifi-
cant gains can be realized in simulations. Similar to any
NMPC controller that is designed for reference tracking,
a successful implementation will require careful engineering
such that as many uncertainties as possible are compen-
sated by simple feedback controllers and only the key
dynamic variables are handled by the optimizing controller
based on a rigorous model of the essential dynamics and of
the stationary relations of the plant without too much
detail.
7. Conclusions

This survey paper points out that process control should
be seen as a means to optimize plant operations rather than
to just track pre-computed set-points. Appropriate selec-
tion of the control structure and real-time optimization
(RTO) provide significant contributions to plant profitabil-
ity. Recent progress in numerical optimization algorithms
as well as in NMPC theory and technology has rendered
the application of online dynamic optimization based upon
rigorous models to complex plants feasible. Using an eco-
nomic cost function in the MPC computations instead of
a function that penalizes the distance to the desired set-
points or trajectories which are assumed as given and fixed
offers new exiting possibilities. Several application studies
have already demonstrated the feasibility and the potential
of this approach. Industrial implementations will continue
to require a considerable engineering effort in particular
because of the issues of robustness and transparency. The
structuring of a control system in hierarchical layers and
subsystems of reduced complexity will remain a key ingre-
dient of solutions which are accepted in industrial practice,
but the distribution of the functionalities between the lay-
ers can be re-thought due to the possibilities of direct opti-
mizing control.
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[95] M. Diehl, P. Kühl, H.G. Bock, J.P. Schlöder, B. Mahn, J. Kallrath,
Combined nonlinear model predictive control and moving horizon
estimation for a copolymerization process, in: Proc. ESCAPE 16/
PSE 2006, Computer-Aided Chemical Engineering, vol. 21B, Else-
vier, 2006, pp. 1527–1532.

[96] R. Gesthuisen, K.-U. Klatt, S. Engell, Optimization-based state
estimation – a comparative study fort the batch polycondensation of
PET, in: Proceedings of ECC 2001 Porto, 2001, pp. 1062–1067.

[97] P. Tatjewski, Iterative optimizing set-point control – the basic
principle redesigned, in: 15th IFAC World Congress, Barcelona,
2002, Paper T-Th-E16-3.
[98] W. Gao, S. Engell, Iterative set-point optimisation of batch
chromatography, Comp. Chem. Eng. 29 (2005) 1401–1410.

[99] B. Srinivasan, D. Bonvin, E. Visser, S. Palanki, Dynamic optimi-
zation of batch processes II. Role of measurements in handling
uncertainty, Comp. Chem. Eng. 27 (2002) 27–44.

[100] C. Chatzidoukas, C. Kiparissides, B. Srinivasan, D. Bonvin,
Optimisation of grade transitions in an industrial gas-phase
olefin polymerization fluidized bed reactor via NCO tracking, in:
16th IFAC World Congress, Prague, 2005, Paper Mo-A06-
TO/2.

[101] J.V. Kadam, M. Schlegel, B. Srinivasan, D. Bonvin, W. Marquardt,
Dynamic real-time optimization: from off-line numerical solution to
measurement-based implementation. in: 16th IFAC World Con-
gress, Prague, 2005, Paper Fr-M06-TO/1.

[102] A. Küpper, S. Engell, Optimizing control of the Hashimoto SMB
process: experimental application, in: IFAC Symposium DYCOPS
2007, submitted for publication.


	Feedback control for optimal process operation
	Introduction
	Optimization by regulation (self-optimizing control)
	Real-time optimization (RTO)
	Reducing the gap between regulation and RTO
	Frequent RTO
	Integration of steady-state optimizationinto model-predictive control
	Integration of nonlinear steady-state optimizationin the linear MPC controller

	Direct finite horizon optimizing control
	General ideal
	Case study: control of reactive simulated moving bed chromatographic processes
	Process description
	Control of SMB processes
	Online optimizing control
	The Hashimoto reactive SMB process
	Optimizing controller application

	Numerical aspects

	Open issues
	Modeling
	Stability
	State estimation
	Measurement-based optimization
	Reliability and transparency
	Effort vs. performance

	Conclusions
	Acknowledgements
	References


