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Model Predictive Control
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Features

Open-loop optimization instead of feedback control

Based upon a plant model, a number of future inputs
are optimized such that the performance over a finite
(prediction) horizon is optimized

Number of inputs considered can be smaller than the
prediction horizon, following values are kept constant

Ingredients:
Model
Cost function
Optimizer
Error feedback
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History (1)

The fathers:

Jacques Richalet et al. (1976, 1978)
Model-predictive heuristic control

Charles Cutler (Shell, first application 1973)
DMC

Linear impulse response or step response
iInput/output models obtained from plant tests

Quadratic performance criterion
No constraints

The second generation
QDMC (1983)

As before, but: WITH CONSTRAINTS on inputs
and outputs

Online solution of a quadratic program
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Typical MPC Cost Function
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Bias-update: Actual prediction error is subtracted from
the reference - steady-state accuracy for constant

model error, integrating controller
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More parameters / variants

Filtering of the reference moves - desired trajectory
more realistic

Effect similar to weights on the control moves

Variant: Minimize the error to the reference trajectory at
one point rather than minimizing the overall error

Range control: no reference tracking but only
constraints for some variables (if not critical for
performance)

Many tuning parameters, experience required

Handling of infeasibility: dropping or softening of
constraints
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Stability

Stability of classical input/output MPC schemes is not
guaranteed
Heuristic rules

Prediction horizon should be sufficiently long

Less inputs give more robust behaviour

Plant identification is the key to success

More recent developments
System identification rather than data-based models

Stability guarantees by use of state space models and
terminal constraints / penalties of an infinite prediction
horizon
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Current Developments

MPC with nonlinear models
Straightforward generalization from the linear case
Nonconvex nonlinear online optimization required

MPC with economic cost function rather than tracking

Robustness against plant-model mismatch

Minmax MPC: minimize the cost function for the worst
case disturbance

Disturbance replaces model mismatch
High effort, conservative
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