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Introduction
 Important product qualities are not measureable online 

but they are needed for control purposes.
 Measurements are often available at different 

sampling intervals.
 Analytic measurements cause time delays.

⇒ State estimation can provide additional online 
information.

 Numerous approaches are available: Which one 
should be applied?

 How can offline analyses be incorporated in state 
estimation?
• Black Box Modelling (Neural Nets, …)
• Extended approaches are necessary to consider 

measurements with different sampling intervals.
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Introduction: Application of State Estimation
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Nonlinear State Estimation

 Basic principle of state estimation
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Approaches to Nonlinear State Estimation

 Process model is given as ODE-system or system of 
difference equations

 The estimator must fulfill:
• Simulation condition: 

if then
• Convergence condition:

for all inputs u(t) and for all inital errors. 

( ) ( )
( ) ( )kk

kkkkk

xHyxhy
ytuxFxytuxfx

ˆˆˆˆ
,,,ˆˆ,,,ˆˆ 1

==
== +



( ) ( )00 ˆ ttxttx === ( ) ( ) 0ˆ tttxtx >∀=

( ) ( )( ) 0ˆlim =−
∞→

txtx
t



Nonlinear state estimation:
Application to PET

D
NYDD
NNYY

Process Dynamics
and Operations

Observability

 Theory:
• Assume a linear system: 
• The state variables of the system (A, C) can be divided into two 

groups:
- Observable states: 

The error dynamics can be prescribed arbitrarily by choice of 
the observer gains and are independent of the states and the 
known inputs.

- Unobservable states: 
the error dynamics are given by the (unobservable) 
eigenvalues of the system.

• Definition: A linear system is said to be observable, if the matrix 
Q = [CT, ATCT, (AT)2CT, ... (AT)n-1CT] has rank n. In this case, all 
states are observable. 

pn yxCxyBuAxx ℜ∈ℜ∈=+= ,, with
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Observability of Nonlinear Systems

 Theory:
• Assume a nonlinear system: 
• Definition:

A nonlinear system is said to be globally observable, if all initial 
states x0∈X0 can be computed from observations of the output 
y(t) over an arbitrary interval of time. The states are then called 
observable.

• Definition:
A nonlinear system is said to be locally observable at x1∈X0, if 
initial states x0∈X0 in the neighborhood of x1 are observable.

• To check global observability a unique solution for the nonlinear 
observability map has to be found.

• Local observability can be checked using the linearized model 
(see conditions for linear models).
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State and Parameter Estimation

 Observers can be extended to the
estimation of unknown process parameters.

 The parameters are assumed to be additional state variables 
with dummy dynamics.

 Observability in general becomes worse if more parameters 
must be estimated.

 The number of unknown parameters which can be estimated 
is restricted by the number of measurements!
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Approaches to Nonlinear State Estimation
 Gain Scheduled Observer (Luenberger observer with gains 

that depend on the estimated states and the inputs)

• Observer equations:

• Low effort for design

• Performance and stability only are guaranteed close to a fixed 
(slowly varying) operating point.
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Approaches to Nonlinear State Estimation

 Sliding Mode Observer:
• For nonlinear systems of the form:

• Number of measurements ≥ number of unmeasured 
nonlinearities

• Observer equation:

• P,D,G are weighting matrices which have to be determined in 
an iterative manner (an implicit Ljapunov equation has to be 
solved).
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Sliding Mode Observer

• Large effort for design
• Guaranteed global stability
• Convergence in 2 steps:

1. Movement to the switching plane:     .
2. Sliding on the switching plane until the desired state is reached.
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Extended Kalman Filter
 Extension of the model equations by stochastic errors (zero 

mean and given variance)

 Filter minimizes the variance of the estimation error:

 For nonlinear time discrete (sampled) systems the solution 
is a 2-step-algorithm:
• Correction of the predicted states and estimated covariance 

matrix
after a new measurement was obtained

• Prediction of the states and the covariance matrix of the 
estimation error up to the next time step by nonlinear forward 
simulation
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EKF Algorithm
 Notation: Estimated state at t=tk+1 based on measurements up to t=tk

 Correction:

 Prediction:

 Constraints on states and disturbances cannot be considered.
 Only (at best) local stability!
 The critical part is the update of the covariance matrix based on the 

linearized state equations.
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Batch Estimation
 Suppose k values of the process inputs and of the measured 

variables are available. Then the estimation of the corresponding 
states can be formulated as an optimization problem:

 In this formulation, there are no assumptions on the statistics of the 
errors.

 No linearization is performed!
 Nonlinear optimization problem!
 Computational effort increases with k  reduce to a finite horizon!
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Moving Horizon State Estimation
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 Further motivation for a deterministic observer based 
on numerical optimization:
• Possiblity of imposing constraints on states and 

disturbances
 Moving Horizon Estimator (MHE):

• Takes measurements over a finite horizon 
in the past into account

• No approximation of the nonlinear system 
within this horizon

• Model: Discrete-time nonlinear system
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Moving Horizon State Estimator

 The Moving Horizon Estimator can be formulated as:
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Minimize the error

Model equations

Physical or other constraints
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Constrained Extended Kalman Filter (CEKF)
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 For a horizon of N=0 the MHE becomes the 
Constrained EKF

 CEKF equations:

 Quadratic problem for linear measurement function
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plus additional constraints on errors and states
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Case-Study: Polycondensation of PET
 Polycondensation of 

polyethylenterephtalate (PET)
• The mass transfer of a reaction 

byproduct from the melt to the 
gas phase determines the 
progress of the poly-
condensation process.

• No measurements of mass 
transfer coefficients under 
industrial process conditions 
available

• Process realized in a jacketed 
10 l stainless steel reactor 
controlled by a DCS 
(Contronic-P, ABB)

heating-
system

water

water

nitrogen

sample

vacuum-
system

reactor
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PET Polycondensation

 Batch process, polymerization in the melt
 Main chemical reaction:

 The reverse reaction is 8 times faster than the 
forward reaction 

 The removal of ethyleneglycol (EG) determines 
the speed of the polymerization

+
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PET Polycondensation
 Main and side reactions:

• -[OH] + -[OH]  -[E]- + EG (polymerisation)
• -[E]- -[COOH] + -[CO2C2H3]  (thermal degradation)
• -[COOH] + EG -[OH] + H2O
• -[COOH] + -[OH] -[E]- + H2O
• -[OH] -[COOH] + CH3CHO
• -[CO2C2H3] + -[OH] -[E]- + CH3CHO

 Mathematical modelling yields a system of differential 
equations for the concentrations of hydroxy group -[OH], 
ethylene glycol EG, carboxyl group -[COOH], acetaldehyde 
CH3CHO, vinyl group -[CO2C2H3], ester group -[E] and water 
H2O
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Model Reduction
 Model of 7th order too complex, several unknown mass 

transfer parameters
 Simplification by:

• Neglecting the side reactions
• Estimation of the thermal degradation by steady state 

assumption as this reaction has slow dynamics 
compared to the main reaction

 Resulting model of 3rd order includes dynamics of
• Concentrations  of hydroxygroup -[OH] and 

ethylene glycol EG and
• A parameter which characterizes the 

mass transfer of EG: aβ
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Estimation Problem 

 Problems:
• Online measurement of the degree 

of polymerisation not possible

• Removal of the volatile reaction-
product ethylene glycol crucial, but 
no infomation on the mass transfer 
coefficient is available

 Available data:
Measurements of

• temperature
• stirrer torque
• stirrer speed
• pressure

 Solution
• Computation of the degree of polymerisation  based on available 

process data
• Design of an estimator based on a simple reaction model for 

- concentration of the most important end groups 
- mass transfer coefficient for the removal of ethylene glycol
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Example: PET-Poly-Condensation
 Computation of the degree of polymerization

Inputs: Temperature, stirrer torque, stirrer speed
a) Semi-empirical model

Parameters C1, C2 and a calculated by nonlinear regression 
from data of analysis of samples

b) Neural net
Inputs: Ratio of stirrer torque and

stirrer speed, temperature
Output: Degree of polymerisation

Training data: Laboratory analysis of samples

27000exp1

C

an Tn
MCP 














 −⋅=



Nonlinear state estimation:
Application to PET

D
NYDD
NNYY

Process Dynamics
and Operations

Estimation of the Degree of Polymerization
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PET Polycondensation Model
 Simplified model:

Measurement equation: where

 Goal: Estimation of the mass transfer coefficient in 
order to find dependencies on process conditions 
(stirrer speed, temperature)
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Thesis by Paul Appelhaus

Results after careful
tuning

EKF Parameters:
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Comparison EKF-MHE, Simulation

• 20 % initial error in all 
states

• Constraints:
xEG≥0, xOH≥0, βa ≥0

• better convergence of 
the MHE
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Comparison EKF-MHE

 MHE (N=3), experimental data

• constraints
xEG≥0, xOH≥0, 
βa ≥0
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Results PET Polycondensation

 Comparison EKF - MHE (N=3), experimental data
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Estimation of the Mass Transfer Coefficient

 Different estimation 
methods gave similar 
results.

 Additional information about 
the process is provided.

 Estimation results enabled 
to improve process 
operation.

⇒ Development of improved 
trajectories of stirrer speed 
and reaction temperature
• Result: reduction of 

batch time by 10-15 %
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Summary EKF vs. MHE vs. CEKF

 EKF:
• Simple
• Often good results 
• Tuning is not straightforward, requires insight and trial-

and-error
• Instability may occur

 MHE:
• Uses full nonlinear model ⇒ better convergence
• Constraints on states and disturbances can be imposed
• Numerically demanding
• Tuning also an issue

 CEKF: 
• Good compromise between performance and effort
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