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Figure 2.4: Block diagram of a state estimator/observer

The theory on deterministic state observers was developed by Luenberger in the six-

ties [Lue64] for linear systems. Kalman [KB61] considered stochastic linear systems. In

contrast to deterministic observers the concepts for stochastic systems are called state

estimators.

These two concepts are discussed in the following for linear systems given by:

ẋ = Ax + Bu

x(0) = x0

y = Cx (2.45)

The observer is described by the system equations, an additive correction term and

certain initial conditions. The equations read as:

˙̂x = Ax̂ + Bu + K(y − Cx̂)

x̂(0) = x̂0. (2.46)

The symbol ˆ determines the estimated/observed states. The different approaches for

the observer design differs in the calculation of the matrix K as shown in the following

subsections. From the latter equation it follows that the estimates are correct for true

initial conditions x̂(t = 0) = x0, as the correction term equals zero and stays zero if

the dynamic model of the process is exact. This property of an observer is known as

simulation property.

Simulation property: For the same initial conditions x̂(t = 0) = x(t = 0) of the ob-

server and the system to be observed it holds x̂(t) = x(t) ∀ t > 0.
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As usually not all initial conditions are known, especially the unmeasured state vari-

ables are not known exactly, a second important property of an observer is the so called

convergence property:

Convergence property: If x̂(t = 0) 6= x(t = 0), than the estimation error

x̃(t) = x̂(t) − x(t) tends to zero for t → ∞.

This property is directly used as a design approach for the Luenberger observer which

is discussed in the following subsection.

2.3.1 Luenberger Observer

Following the convergence property, the estimation error x̃ = x̂ − x must tend to zero

for any initial state of the observer. This means that the corresponding differential

equation for x̃ must be stable. Hence, all eigenvalues of this differential equation have

to be stable. From (2.45 and 2.46) an autonomous differential equation for the estima-

tion error can be derived:

˙̃x = (A − KC)x̃, x̃(0) = x̂0 − x0. (2.47)

If the eigenvalues of the matrix (A − KC) are in the left half complex plane the esti-

mation error decreases exponentially. If the system is observable, the matrix K can be

used to shift the eigenvalues.

Therefore, the design equations for the Luenberger observer read as:

det [sI − (A − KC)] =
n∏

ν=1

(s − λK,ν) (2.48)

This pole placement is usually performed by a comparison of the coefficients of the

characteristic equations given by (2.48) (see also section 2.1.1).

The Kalman filter discussed in the next section determines K by the analytical solution

of an optimization problem. Matlab provides the place command for the pole place-

ment in state feedback control. Due to the duality the same command can be applied

for the design of the Luenberger observer.

2.3.2 Kalman Filter

The state space representation of the Kalman Filter(KF) is the same as introduced in

equation (2.46), but a different approach for the calculation of the gain matrix K com-

pared to the Luenberger Observer is applied. In order to derive the equations of the KF

stochastic disturbances are introduced into the model equations:
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ẋ(t) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + v(t). (2.49)

The disturbances w (process noise) and v (sensor noise) are stationary continuous-time

white Gaussian noise with zero mean. Their covariance matrices are defined by:

cov[w(t); w(τ)] = E{w(t)wT(τ)} = Qδ(t − τ)

cov[v(t); v(τ)] = E{v(t)vT(τ)} = Sδ(t − τ), (2.50)

where E(·) denotes the expectation and δ(t − τ) is the Dirac delta function (impulse at

t = τ) and the covariance matrices Q and S are positive definite.

It has to be mentioned that the stochastic behavior assumed in this approach is an

artificial one as white noise does not exist in nature, but it is helpful in engineering

[Lev95].

The goal of the Kalman Filter is to minimize the expectation of the estimation error

x̃ = x̂ − x. Hence, the cost function to be minimized reads as:

J = E

{
n∑

i=1

x̃2
i (t)

}

= E{x̃(t)T x̃(t)} = tr[E{x̃(t)x̃T(t)}]. (2.51)

Physically interpreted this cost function minimizes the sum of the error variances of

the estimation error of each state variable. If P defines the covariance matrix of the

estimation error, i. e.

P = E{x̃(t)x̃T(t)} (2.52)

the cost function reads as:

J = tr[P]. (2.53)

The analytical solution of the stated optimization problem can be written as:

K = PCS−1 (2.54)

and
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Figure 2.5: Fictitious state feedback controller for the estimation error

0 = PCTS−1CP − AP − PAT − Q. (2.55)

This solution is similar to the solution derived for the linear quadratic regulator (2.27-

2.28). By transposing the results for the controller it follows:

0 = PBTQ−1
u BP − PA − ATP − Qx (2.56)

RT = PBQ−1
u . (2.57)

From the upper equations it follows that the solution of the Kalman Filter equals the

transposed solution of the linear quadratic regulator. This is known as the duality of

controller and observer design and is based on the possibility to represent the estima-

tion problem as a state feedback control problem (see figure 2.5).

The concept of duality is also valid for the controllability and observability matrices.

It holds that every controllability result has a corresponding observability result and

vice versa [Lev95].

2.3.3 Disturbance/ Parameter Estimation

The disturbances occurring in dynamic systems are usually unknown. Additionally

parameter uncertainties are often present in such models. They can also be considered

as unknown disturbances. Hence, approaches to the estimation of such disturbances

are important for process control. In this section the extension of the concept of state

estimation to parameter estimation is discussed.

Even though the exact disturbance is not known, usually an idea of the character is

present. This can be used to extend the model equation for the estimator/observer

design. In the literature it is often assumed that the disturbances have a zero order

hold behavior, i. e. they are stepwise constant. The differential equation to describe

this behavior is:
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ḋ = Hd d(0) = d0 (2.58)

with H = 0.

But it is also possible to apply sinusodial or ramp signals and the corresponding dif-

ferential equations.

The zero order hold assumption is valid for disturbances/parameters that are constant

or change slowly with time, e. g. the overall heat transfer coefficient in batch polymer-

ization reactors.

The resulting system to be observed reads as:
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It is necessary that this extended system is observable. Then the disturbances can be

estimated from the available inputs and outputs of the system. It can be shown that it

is impossible to estimate more parameters than the number of independent measure-

ments.

Disturbance estimation is useful for deviation control of disturbances but also for mon-

itoring of processes.

2.4 Observers in Closed Loop Systems

In the foregoing sections state feedback based strategies were discussed. It was as-

sumed that the vector of dynamic states is available which is not true in technical

processes. The discussed approaches to observer/estimator design provide a possi-

bility to overcome this problem. It is left to discuss how observers can be incorporated

into a state feedback controller design and the consequences from this strategy.

The incorporation of the observer and the use of the estimated states for the controller

is depicted in figure 2.6.

Considering this structure it is at first view questionable if the eigenvalues of the closed

loop system determined by state feedback are shifted by the introduction of an ob-

server, i. e. if it is allowed to design the state feedback controller and the observer

independently. To answer this question let us consider the state space representation

of the whole system:


