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min
uNC

Φk =
NP−1∑

j=0

(

(yk+ j − yr
k+ j)

TQ(yk+ j − yr
k+ j) + . . .

(uk+ j − us)
TR(uk+ j − us) + ∆uT

k+ jS∆uk+ j

)

(4.12)

s. t.:

xk+1 = f(xk, uk) (4.13)

yk = h(xk)

xmin ≤ xi ≤ xmax i = 1, . . . , NP

umin ≤ ui ≤ umax i = 1, . . . , NC. (4.14)

Here f(xkuk) describes the time discrete nonlinear process model. In linear MPC a

quadratic problem has to be solved while in the upper formulation of the NMPC due to

the nonlinear equality constraints a nonlinear optimization problem has to be solved.

Most often Sequential Quadratic Programming techniques are applied. In recent years

also multiple shooting methods [MDS02, MDS03] are used successfully. Allgöwer et

al. [ABQ+99] give a very good overview about existing approaches to NMPC. This

paper also discusses different ideas to get a stable and robust NMPC scheme.

4.2 Nonlinear State Estimation

In the following section nonlinear dynamic systems of this kind are considered:

ẋ = f(x, u) +ξ(t)

x(0) = x0 +ξ0 (4.15)

y(t) = h(x) +ϕ(t).

The stochastic disturbances ξ, ξ0 andϕ are zero mean and will be considered when sto-

chastic state estimators are discussed. For deterministic observers their consideration

is not necessary.

Similar to linear observers the nonlinear observer can be described as a simulator with

an additive correction. [SZ95].

˙̂x = f(x̂, u) + K(x̂, u, y), x̂(0) = x̂0 (4.16)

It is obvious that the nonlinear observer has to fulfil the simulation and convergence

conditions similar to the linear case [Zei77]. From the combination of the simulation

condition and equation (4.16) it follows that the correction term tends to zero, i. e.

lim
t→∞

K(x̂, u, y) = 0. The differential equation of the estimation error reads as:
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Figure 4.1: Block diagram of a nonlinear observer

˙̃x = f(x̂, u)− f(x, u) + K(x̂, u, y), x̃(0) = x̂0 − x0. (4.17)

This equation demonstrates that the estimation error is not described by an

autonomous differential equation. The difficulty in the design of nonlinear observers

is to determine the correction in dependency of the states and manipulated variables.

Furthermore, the choice of the initial conditions x̂(t = 0) = x̂0 influences the conver-

gence of the observer if an approximation such as linearization is used in the observer

design.

Figure 4.1 depicts the general presentation of a nonlinear state estimator. Similar to

linear estimators the approaches to nonlinear estimator/observer design differ in the

determination of the correction function. In recent years many different techniques

were developed. They can be classified in approaches using differential geometry, ap-

proaches with guaranteed stability and methods based on approximations such as lin-

earizations.

In the following section different approaches to nonlinear state estimation are treated.

Firstly the Extended Kalman Filter (EKF) as a stochastic estimator is discussed. The Mov-

ing Horizon Estimator (MHE) is also designed for systems with disturbances given in

(4.15) but as the stochastics of these disturbances are treated as deterministical distur-

bances it is not a stochastic state estimator. Further deterministic observers described

are the Extended Luenberger Observer and the Sliding Mode Observer (SMO) .

Observers for specially structured systems [SZ95] are not considered as their use due

to the restrictions of the system structure make them seldom applicable in chemical

engineering problems.
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4.2.1 Extended Kalman Filter

The Extended Kalman Filter (EKF) is an extension of the linear Kalman Filter to non-

linear systems. It is assumed that the disturbances in equation (4.15) (ξ0, ξ and ϕ) are

stochastic variables with the following properties:

• the disturbances are zero mean, i. e. for the expectations it holds: E{ξ0} =

0,E{ξ} = 0,E{ϕ} = 0

• ξ and ϕ are not correlated cov{ξ ,ϕT} = 0

• the disturbances are described by white noise with the given covariance matrices:

P0 for the initial estimation error, Q for the model error and R for the measure-

ment disturbances.

The EKF minimizes the diagonal elements of the covariance matrix of the estimation

error P = E{(x̂ − x)(x̂ − x)T}. The mathematical derivation of the EKF can be found in

detail in [Jaz70, Gel74]. For continuous time systems the algorithm of the EKF is given

by the following equations: [Gel74]:

˙̂x = f(x̂, u) + K(y − h(x̂))

Ṗ(t) = A(t)P(t) + P(t)A(t)T + Q − P(t)H(t)T R−1H(t)P(t) (4.18)

K(t) = P(t)H(t)T R−1 P(t = 0) = P0

with:

A(t) =
∂f

∂x

∣
∣
∣
∣
x̂(t),u(t)

and H(t) =
∂h

∂x

∣
∣
∣
∣
x̂(t)

.

Free (and therefore tuning-) parameters are the elements of the constant matrices P0, Q

and R. It has to be considered that the matrices P0 and Q are symmetric, positive semi-

definite and R is symmetric and positive definite. Usually only the diagonal elements

are used to tune the EKF, i. e. each state and measurement is not correlated with the

other states and measurements, respectively.

Hence, the EKF is determined by a large number of parameters. The disadvantage is

the difficulty to isolate the effect of single parameters. For the choice of the parameters

are no fixed rules available but some hints on general relations and effects are given in

the following paragraph.

As R is the covariance matrix of the measurements the values of the elements can be

taken from the information given for the sensor. Decreasing values for the elements in

R yield in an increasing weight of the concerning measurements, i. e. the measurement

is assumed to be more reliable. For noisy measurements this choice may lead to a large

gain of the noise and therefore to unsatisfactory estimation results.
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The covariance matrix of the initial error P0 has a large influence on the initial con-

vergence behavior of the EKF [AB89]. In order to get a large space of feasible initial

estimates, the elements of P0 have to be chosen larger for worth initial conditions. The

initial convergence of the EKF stays constant if the ratio of the elements of P0 and

R remains constant. For the choice of P0 by simulation different initial values should

be considered as a large P0 for good initial condition may also yield in bad estimates

[AB89].

The covariance matrix Q effects the behavior of the estimator opposite to R. Decreasing

values of the elements of Q yield a larger weight of the model equations, i. e. the model

is assumed to be more accurate.

Even though, the tuning of an EKF is most often highly dependent on the experience

of the control engineer and is usually done by simulations. Valappil et al. [VG99] de-

veloped a method to adapt the covariance matrix Q. For systems with not too strong

nonlinearities an approach based on a linearization is derived. The second approach

uses Monte-Carlo-Simulations. Both approaches are derived for the online application.

Papastratos et al. [PHSH99] use an equation derived from an equation based on sta-

tionary states for improving the elements of Q. Indeed, the derivation of this formula

is not clear. Morad [MSM99] proposes a method based on the use of mean values for

stationary points of operation. For batch or semi-batch processes this method can not

be applied.

Nevertheless, the EKF is the most often applied state estimation technique in chemical

engineering problems. In most cases a discrete EKF is applied as usually the measure-

ments are available only at certain sample times. In [Gel74] the equations for mixed

continuous/discrete EKF and for a discrete EKF are derived. The time continuous sys-

tem (4.15) can be transformed into a discrete form by integration between two sample

times [RLR96]:

xk+1 = xk +

∫ tk+1

tk

(f(x(t), u(t)) +ξ(t))dt k = 0, 1, . . .

=: F(x̂k , uk) +ξk

x(0) = x̄0 +ξ0 (4.19)

yk = h(xk) +ϕk.

Here the manipulated variables are assumed to be constant for the integration (zero

order hold). x̄0 is an a priori estimate of the states. The equations of the discrete EKF

are similar to the continuous ones, but the continuous Matrix-Riccati-Equation (4.18) is

transformed into the algebraic Matrix-Riccati-Equation which can easily be calculated.

Therefore, the algorithm of the discrete EKF can be divided into two steps [RLR96]:
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1. Correction:

Kk = Pk,k−1HT
k,k−1

(

Hk,k−1Pk,k−1HT
k,k−1 + R

)−1

x̂k,k = x̂k,k−1 + Kk(yk − h(x̂k,k−1))

Pk,k = (I − KkHk,k−1)Pk,k−1 (4.20)

2. Prediction:

Based on the last corrected estimate (filtered state) x̂k,k, the states for the next step

are predicted by the model equations without considering disturbances:

x̂k+1,k = F(x̂k,k , uk)

Furthermore, the covariance matrix of the estimation error is predicted for the

next sample time:

Pk+1,k = Ak,kPk,kAT
k,k + Q.

In this equation, Ak,k = ∂F
∂x

∣
∣
∣
x̂k,k,uk

and Hk,k−1 = ∂h
∂x

∣
∣
∣
x̂k,k−1

, and x̂k,k−1 is the estimated

state at time tk, that is calculated from available measurements up to time tk−1.

4.2.2 Moving Horizon Estimation

Principally the EKF is an estimator which is developed by solving an optimization

problem analytically. In the sequel optimization based observers are observers based

on numerical optimization. These types of deterministic observers allow for including

constraints to states and disturbances. For nonlinear time discrete systems of the form:

xk+1 = F(xk , uk) +ξk

x(0) = x0 +ξ0 (4.21)

yk = h(xk) +ϕk.

Muske et al. [MRL93, MR94] and Robertson et al. [RLR96] developed an optimization

based observer which uses current and past measurements to calculate the estimates.

The problem of infinite dimensional estimation due to the accumulation of measure-

ments as it occurs for the Batch-Least-Squares-Estimator [Jaz70] is avoided by a recur-

sive formulation on a finite horizon.

Although disturbances similar to the EKF are considered in (4.21) the MHE is an de-

terministic observer as no assumptions on the statistics of the noise are made. Nev-

ertheless, the approach is derived from a statistical point of view. It is assumed that



58 CHAPTER 4. CONTROL AND STATE ESTIMATION OF NONLINEAR SYSTEMS

the process can be described as a Markov-process, i. e. the ξi are independent. The

measurement equation (4.21) maps the states onto the measurements. Therefore, the

conditioned probability density function of the states {x0, x1, x2, . . . , xt} for the given

measurements {y0, y1, y2, . . . , yt−1} has to be maximized in the estimation problem.

Following Jazwinski [Jaz70] the probability density function is noted

p(x0 , x1, x2, . . . , xt|y0, y1, y2, . . . , yt−1). (4.22)

As described in [Jaz70] or [Rao00] the maximization of this function can be formulated

as an optimization problem and results in the so called Batch-Least-Squares-(BLS) Es-

timator

min
ξ̂−1,k...ξ̂k−1,k ,ϕ̂0,k...ϕ̂k,k

ΨN
k = ξ̂T

−1,kP−1
0 ξ̂−1,k +

k−1∑

j=0

ξ̂T
j,kQ−1ξ̂ j,k +

k∑

j=0

ϕ̂T
j,kR−1ϕ̂ j,k. (4.23)

s. t.

x̂ j+1,k = F(x̂ j,k, u j) + ξ̂ j,k j = 0 . . . k − 1

x̂0,k = x̄0 + ξ̂−1,k

y j = h(x̂ j,k) + ϕ̂ j,k j = 0 . . . k. (4.24)

The state vector x̄0 is an a priori estimate of the initial state. Disadvantageous in this

approach is the increasing size of the optimization problem with every new measure-

ment. Consequently the size of the optimization problem has to be bounded for practi-

cal use. Jang et al. [JJM86] proposed restarting the BLS-estimator if a certain size of the

optimization problem is reached.

Alternatively Muske et al. in [MRL93, MR94] derived an approach on a moving hori-

zon. They devide the cost function (4.23) into 2 time intervals t1 = { j : 0 ≤ j ≤
k − N − 1} and t2 = { j : k − N ≤ j ≤ k}:

min
ξ̂−1,k...ξ̂k−1,k ,ϕ̂0,k...ϕ̂k,k

ΨN
k = ξ̂T

−1,kP−1
0 ξ̂−1,k +

k−N−1∑

j=1

ξ̂T
j,kQ−1ξ̂ j,k +

k−N−1∑

j=0

ϕ̂T
j,kR−1ϕ̂ j,k +

k−1∑

j=k−N

ξ̂T
j,kQ−1ξ̂ j,k +

k∑

j=k−N

ϕ̂T
j,kR−1ϕ̂ j,k. (4.25)

Due to the assumption of a Markov-process

k−1∑

j=k−N

ξ̂T
j,kQ−1ξ̂ j,k +

k∑

j=k−N

ϕ̂T
j,kR−1ϕ̂ j,k (4.26)



4.2. NONLINEAR STATE ESTIMATION 59

depends only on the state x̂k−N,k, the measurements {yk−N , . . . , yk} and the distur-

bances {ξ̂k−N,k, . . . , ξ̂k−1,k}.

Applying the optimality principle of Bellmann [Rao00] equations (4.23)-(4.24) can be

rewritten as:

min
xk−N ,ξ̂k−N,k...ξ̂k−1,k ,ϕ̂k−N,k...ϕ̂k,k

ΨN
k = Zk−N(xk−N) +

k−1∑

j=k−N

ξ̂T
j,kQ−1ξ̂ j,k +

k∑

j=k−N

ϕ̂T
j,kR−1ϕ̂ j,k.

(4.27)

The function Zk−N(xk−N) describes the arrival cost and summarizes the information of

the data in the past. This enables the formulation of the BLS-estimator as an equiva-

lent problem of finite size. Rawlings et al. [MRL93, MR94, RLR96, ABQ+99] use the

following approach:

Zk−N(xk−N) = (xk−N − x̂k−N,k)
T P−1

k−N,k−N−1 (xk−N − x̂k−N,k) . (4.28)

Pk−N,k−N−1 is taken as the covariance matrix of the estimation error known from the

time discrete Extended Kalman Filter (4.20)-(4.21) which can be calculated from the

algebraic Matrix-Riccati-equation.

Pk+1,k = Ak,k

(

Pk,k−1 − Pk,k−1HT
k,k−1

(

Hk,k−1Pk,k−1HT
k,k−1 + R

)−1
Hk,k−1Pk,k−1

)

AT
k,k + Q

(4.29)

The matrices Ak,k and Hk,k−1 are the Jacobians at the states x̂k,k and x̂k,k−1, respectively.

Ak,k =
∂F

∂xk

∣
∣
∣
∣
x̂k,k,uk

Hk,k−1 =
∂h)

∂xk

∣
∣
∣
∣
x̂k,k−1

(4.30)

The mathematical formulation of the Moving Horizon Estimator reads as:

min
ξ̂k−N−1,k...ξ̂k−1,k ,ϕ̂k−N,k...ϕ̂k,k

ΨN
k = (xk−N − x̂k−N,k)

TP−1
k−N(xk−N − x̂k−N,k) +

k−1∑

j=k−N

ξ̂T
j,kQ−1ξ̂ j,k +

k∑

j=k−N

ϕ̂T
j,kR−1ϕ̂ j,k (4.31)

subject to the equality constraints:

x̂ j+1,k = F(x̂ j,k, u j) + ξ̂ j,k j = k − N, . . . , k − 1

x̂k−N,k = x̂k−N,k−N−1 + ξ̂k−N−1,k

y j = h(x̂ j,k) + ϕ̂ j,k j = k − N, . . . , k (4.32)
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and the inequality constraints:

x̂min ≤ x̂ j,k ≤ x̂max

ξ̂min ≤ ξ̂ j−1,k ≤ ξ̂max

ϕ̂min ≤ ϕ̂ j,k ≤ ϕ̂max

j = k − N, . . . , k.

Following the notation of Muske et al. N is the length of the horizon and the num-

ber of measurements considered in the optimization equals N + 1. x̂ j,k determines the

estimate at time t = t j based on the measurements up to time t = tk. The matrices

Pk−N, Q and R are weighting matrices for the estimation error, the model error and the

measurement noise and are usually chosen similar to the EKF.

The formulation of the estimation problem by an optimization problem allows the

consideration of constraints of the estimated states and the disturbances. For the un-

constrained case it can be shown that the MHE results in the iterated EKF [Rao00].

For N = 0 (i. e. only the current measurements are taken into account) the uncon-

strained MHE equals the EKF. For linear systems the unconstrained MHE is similar to

the Kalman Filter [MRL93].

Similar to the algorithm of the EKF the calculation of the estimates by the MHE can be

devided into two steps:

1. Calculation of the estimated disturbances of the model (ξ̂ j−1,k, j = k −
N, . . . , k), the measurements (ϕ̂ j,k, j = k− N, . . . , k) and the corrected state esti-

mates (x̂ j,k, j = k − N, . . . , k) by solving the optimization problem (4.31)-(4.33)

2. Prediction of the covariance matrix of the estimation error by equation (4.29) and

the states for the next sample time x̂k+1,k = F(x̂k,k , uk) without considering dis-

turbances.

Figure 4.2 depicts the principle of the MHE for an horizon length N = 2.

Up to the third measurement the MHE performs like the BLS-estimator as the size

of the optimization problem increases with every new measurements. Based on the

current filtered state the prediction of the states for the next point of time is realized.

When the fourth measurement becomes available the horizon moves and the state

x̂k−N,k−N−1 is used as an initial value for the optimization as shown by the arrow in

figure 4.2.

The inequality constraints on states and disturbances have mostly a physical reason,

as e. g. concentrations or levels in tanks never can be less than zero. Robertson et

al. [RLR96] as well as Gesthuisen and Engell [GE98] and Rao [Rao00] showed that

the constrained MHE has a larger region of feasible initial conditions than the compa-

rable EKF by different examples. Furthermore, the MHE provides a better convergence
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Figure 4.2: Principle of the MHE

behavior for bad initial guesses, as over the length of the horizon no model approxima-

tions (e. g. linearization) are performed. Therefore, the MHE considers the nonlinear

behavior of the system within the horizon [Rao00]. This information is stored by the

EKF only in the development of the covariance matrix P which is calculated from the

linear approximation of the nonlinear system. It has to be mentioned that the compu-

tational effort is demanding. In general a nonlinear dynamic optimization problem has

to be solved.

If only the current measurement is considered and the measurement equation is linear

the problem to be solved is quadratic and called Constrained Extended Kalman Filter

(CEKF). For quadratic problems effective solvers are available. Therefore the CEKF can

easily be applied online [GE98].

4.2.3 Extended Luenberger Observer

The Extended Luenberger Observer (ELB) is the extension of the Luenberger Observer

to nonlinear systems, basically based on the approximation of the nonlinear system

at each and every point of time and the pole placement for the linearized differential

equation of the estimation error. Therefore, the design equations read as:

det

[

sI −
(

∂F

∂x

∣
∣
∣
∣
x̂k,k,uk

+ K
∂h

∂x

∣
∣
∣
∣
x̂k,k−1

)]

=
n∏

ν=1

(s − λK,ν) (4.33)

and has always to be calculated using the current estimates. As linearization is ap-

plied for the design it is obvious that for the Luenberger Observer only local stabil-

ity/convergence can be proved.


