

Department of Biochemical and Chemical Engineering Process Dynamics and Operations Group (DYN)

Online Optimizing Control: The Link between Plant Economics and Process Control

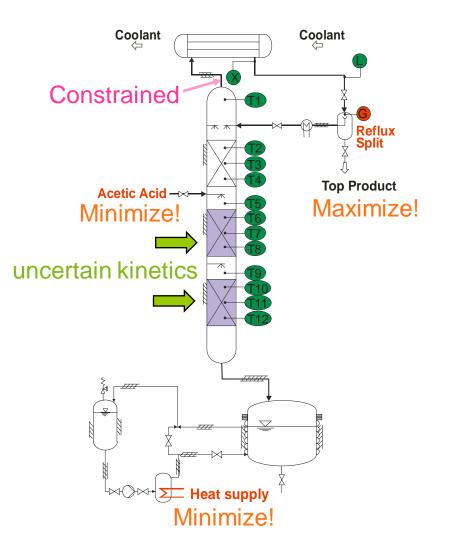
Sebastian Engell

Process Dynamics and Operations Group Department of Biochemical and Chemical Engineering Technische Universität Dortmund Dortmund, Germany

> PSE Summer School Salvador da Bahia 2011

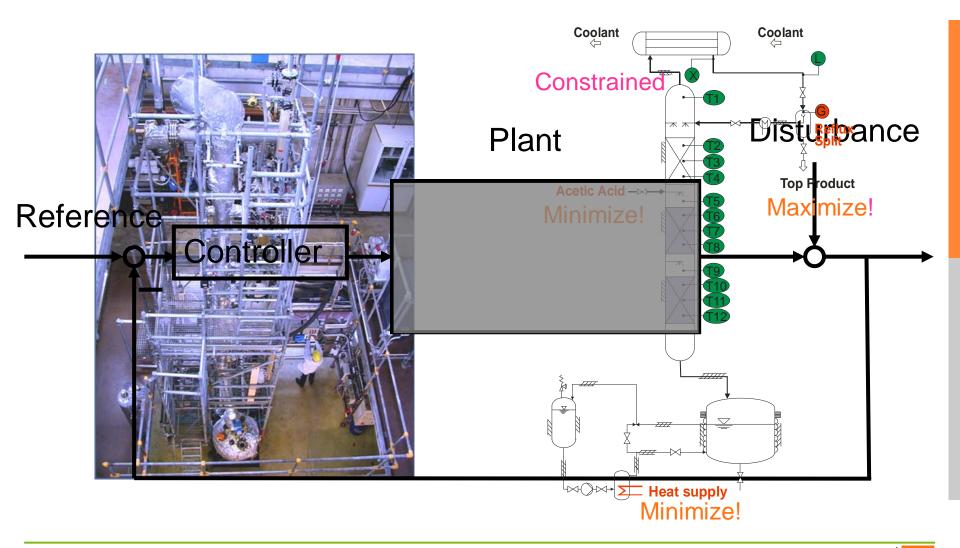
Process Operations

Reactive distillation column



Online optimizing control: The link between plant economics and process control

Control Engineering Reduction



technische universität dortmund

Online optimizing control: The link between plant economics and process control

Process Dynamics and Operations

Control Engineering

Standard task description:

Choose and design feedback controllers for optimal

- disturbance rejection
- setpoint tracking

for a given "plant" (i.e. inputs, outputs, dynamics, disturbances, references, model errors, limitations, ...)

"SERVO or REGULATION PROBLEM"

Online optimizing control: The link between plant economics and process control

- Servo problem formulation is mostly relevant for subordinate tasks:
 - Temperature control
 - Flow control
- Optimal solution of servo/regulation problems does not imply optimal plant operation – optimal plant operation is not necessarily a servo problem!
- Automatic (feedback) control is often considered as a necessary low level function but not as critical for economic success.

➡ CONTROL FOR OPTIMAL PLANT OPERATION

U technische universität dortmund

Online optimizing control: The link between plant economics and process control

Process Dynamics and Operations

Control for Optimal Operation

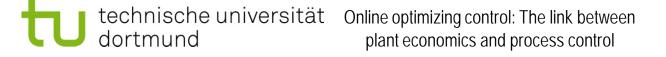
- \checkmark The gap between process control and process operations
- How to achieve near-optimal operation?
 - Regulatory control
 - Real-time optimization with regulatory control
- Direct finite-horizon optimizing control (DRTO)
- Application example: Chromatography
- Robustness
- Summary, open issues and future work

- Discussed already by Morari, Stephanopoulos and Arkun (1980)
- Skogestad (2000): "Self-optimizing control"
- Basic ideas:
 - Tracking of set-points is not always advantageous
 - Feedback control should guarantee cost effective operation in the presence of disturbances and plant-model mismatch

7

and Operations

- Stationary analysis (dynamics ignored)
- Non-linear plant behavior considered by use of rigorous nonlinear plant models



Comparison of Feedback Structures (Engell et al., 2005)

- Feedback restricts the controlled variables to an interval around the set-points (due to measurement errors)
- Computation of the worst-case profit for possible control structures and several disturbance scenarios (guaranteed plant performance)

$$\min_{\underline{u}} J(\underline{u}, \underline{d}_i, \underline{x})$$

$$s.t.: \underline{\dot{x}} = \underline{f}(\underline{u}, \underline{d}_i, \underline{x}) = 0$$

$$\underline{y} = \underline{m}(\underline{x}) = \underline{M}(\underline{u}, \underline{d}_i)$$

$$\underline{y}_{set} - \underline{e}_{sensor} < \underline{y} < \underline{y}_{set} + \underline{e}_{sensor}$$

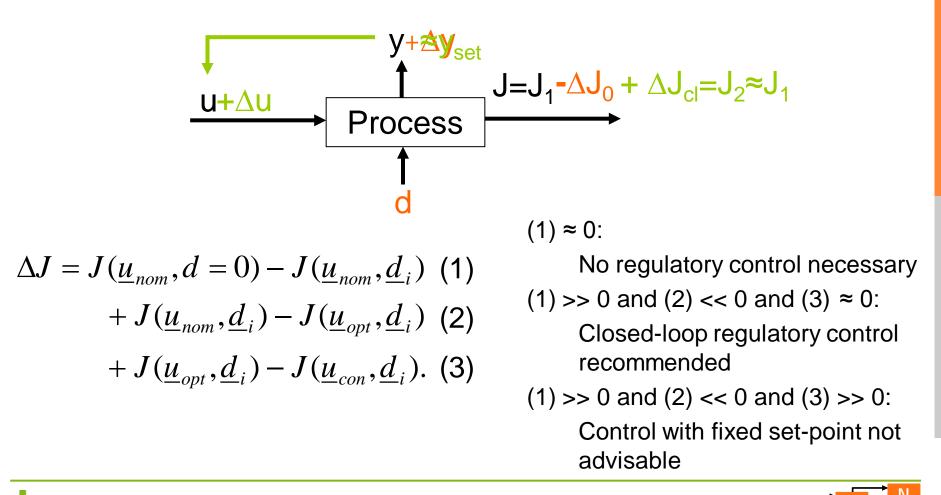
8

and Operations

 Set-points optimized separately for a set of disturbances

U technische universität Online optimizing control: The link between plant economics and process control

The Effect of Regulation on the Profit



U technische universität dortmund

Online optimizing control: The link between plant economics and process control

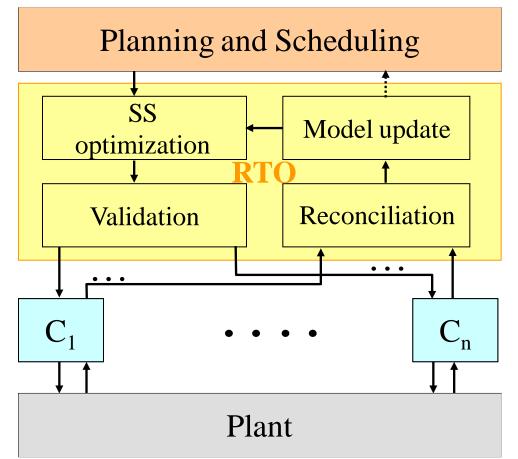
9

Process Dynamics

and Operations

RTO

 If regulatory control with fixed set-points is not good enough: RTO – real time optimization



Online optimizing control: The link between plant economics and process control

Two-layer Architecture with RTO

- Online computation of optimal setpoints using nonlinear (mostly mechanistic) steady-state models (aka RTO)
- Realization of the setpoints by servo/regulatory control, using linear models (linear MPC or standard controllers)
- Optimization can only be performed after a steady state of the plant is confirmed
- → Clear separation of concerns, but
 - Reaction to disturbances takes at least one settling time of the plant plus one settling time of the regulatory layer
 - Limited bandwidth, > 1/(*plant* settling time)



RTO performance evaluation

- Loss of performance compared to the theoretical optimum (Forbes and Marlin, 1996, Zhang and Forbes, 2000)
 - *Bias* caused by model errors
 - Variance caused by measurement errors
 - Steady-state optimization instead of dynamic optimization
- plus
 - Implementation errors (control layer does not realize the computed steady state)
- Fair comparison (Duvall and Riggs, 2000): Well-trained operators who know which variables should be at the constraints whereas the rest is controlled at fixed setpoints (→ self-optimizing control)

12

Process Dynamics and Operations

technische universität Online optimizing control: The link between plant economics and process control

Real-time Optimization – Problems and Challenges

- Steady-state detection
- Model consistency between the layers
- Handling of hard constraints
 - Propagate to the control layer \rightarrow infeasibility handling?
 - Implement as setpoints with safety margin
- Model accuracy (gradient and curvature of the cost function) → measaurement-based optimization
- Marlin and Hrymak (CPC 1996):
 - Tight integration of the design of RTO, result filtering, and implementation by feedback control necessary.
 - RTO should provide a controller design, not just setpoints.

13

and Operations

From RTO to Dynamic Optimization

- Simple idea: (strict) RTO is too slow ... hence
- Do not wait for steady state → fast sampling RTO
 - Current industrial practice: sampling times of 10-30 mins instead of 4-8 hours
 dynamic control without concern for dynamics
 - Stability enhanced by restricting the size of changes
 - Similar to gain scheduling control: Dynamic plant state is projected on a stationary point

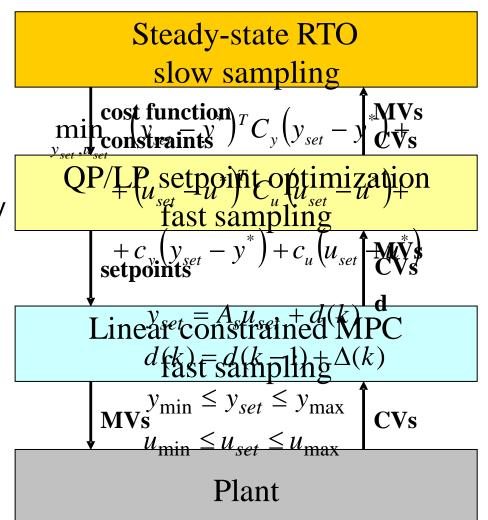
14

and Operations

Ad-hoc solution

Two layer MPC

- Optimization of the setpoints on an intermediate layer
 - based upon the same linear model as on the MPC layer
 - targets and weights provided by the RTO layer
 - disturbance estimate provided by the MPC layer
- Improvement of dynamic response (smoother transients)
- Enhanced stability (Ying and Joseph, 1999)



Online optimizing control: The link between plant economics and process control

Integration of Performance Optimization in MPC

- Idea:
 - Add a term that represents the economic cost (or profit) to a standard (range control) MPC cost criterion
 - Zanin, Tvrzska de Gouvea and Odloak (2000, 2002):

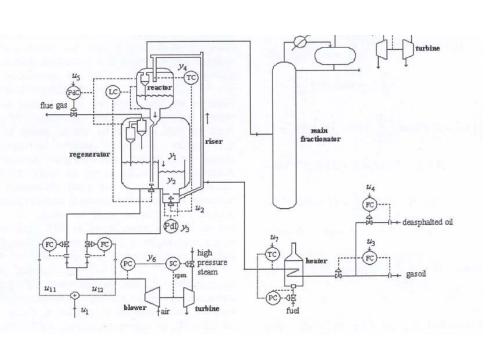
$$\begin{split} \min_{\Delta u(k+i);i=0,\dots,m-1} &\sum_{j=1}^{p} \left\| W_{1}(y(k+j)-r) \right\|_{2}^{2} \\ &+ \sum_{i=0}^{m-1} \left\| W_{2} \Delta u(k+i) \right\|_{2}^{2} + W_{3} f_{eco} \left(u(k+m-1) \right) \\ &+ \left\| W_{5}(u(k+m-1)-u(k-1)-\Delta u(k)) \right\|_{2}^{2} \\ &+ W_{6} [f_{eco} \left(u(k+m-1), y(k+\infty) \right) \\ &- f_{eco} \left(u(k), y'(k+\infty) \right)]^{2} \end{split}$$

U technische universität dortmund Online optimizing control: The link between plant economics and process control

16 Process Dynamics and Operations

Application to a Real Industrial FCC

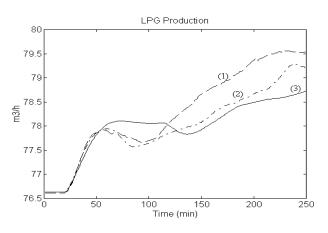
7/6 inputs, 6 outputs Economic criterion: LPG-production



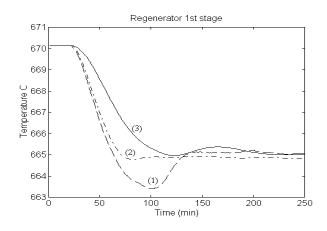
Problems: Acceptance by operators Concerns for vulnerability

technische universität

dortmund



(1) *W3*=100, (2) *W3*=1, (3) *W3*=0.1



Online optimizing control: The link between plant economics and process control 17

Control for Optimal Operation

 \checkmark The gap between process control and process operations

18

and Operations

- How to achieve near-optimal operation?
 - Regulatory control
 - Real-time optimization with regulatory control
- Direct finite-horizon optimizing control (DRTO)
- Application example: Chromatography
- Robustness
- Summary, open issues and future work

Direct Finite Horizon Optimizing Control

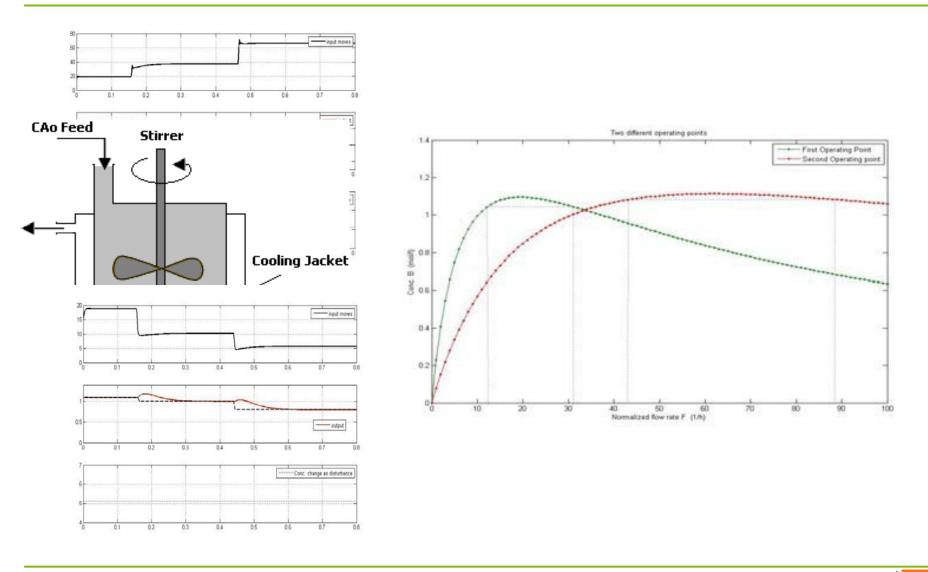
- Idea:
 - Optimize over a finite moving horizon the (main) degrees of freedom of the plant with respect to process performance rather than tracking performance using rigorous models
 - Represent the relevant constraints for plant operation as constraints in the optimisation problem and not as setpoints

19

and Operations

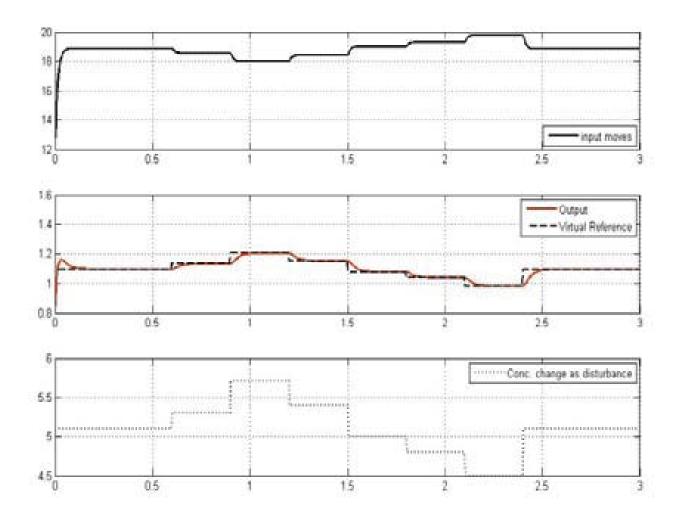
- Quality requirements are also formulated as constraints and not as fixed setpoints
- \Rightarrow Maximum freedom for economic optimization

Simple Example: CSTR with Unstable Zero Dynamics



Online optimizing control: The link between plant economics and process control

Maximum Conversion by Optimizing Control



dortmund

technische universität Online optimizing control: The link between plant economics and process control

Direct Finite Horizon Optimizing Control

- Advantages:
 - Degrees of freedom are fully used.
 - One-sided constraints are not mapped to setpoints.
 - No artificial constraints (setpoints) are introduced.
 - No waiting for the plant to reach a steady state is required, hence fast reaction to disturbances.
 - Non-standard control problems can be addressed.
 - No inconsistency arises from the use of different models on different layers.
 - Economic goals and process constraints do not have to be mapped to a control cost whereby inevitably economic optimality is lost and tuning becomes difficult.

22

and Operations

• The overall scheme is structurally simple.

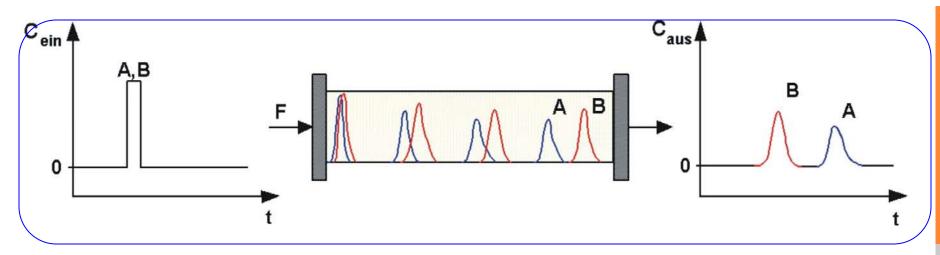
U technische universität Online optimizing control: The link between plant economics and process control

Application: SMB Chromatography

Online optimizing control: The link between plant economics and process control



Chromatography: Batch Process



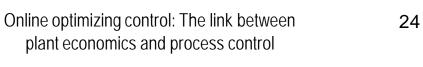
- Separation is based on different adsorption affinities of the components to a fixed adsorbent.
- Gradual separation while the mixture is moving through the column
- Fractionating of the products at the column outlet

technische universität

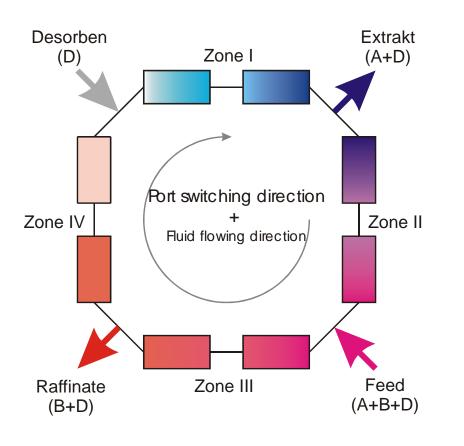
dortmund

© Simple process, high flexibility

 High operating costs, high dilution of the products, and low productivity



Simulated-Moving-Bed Process

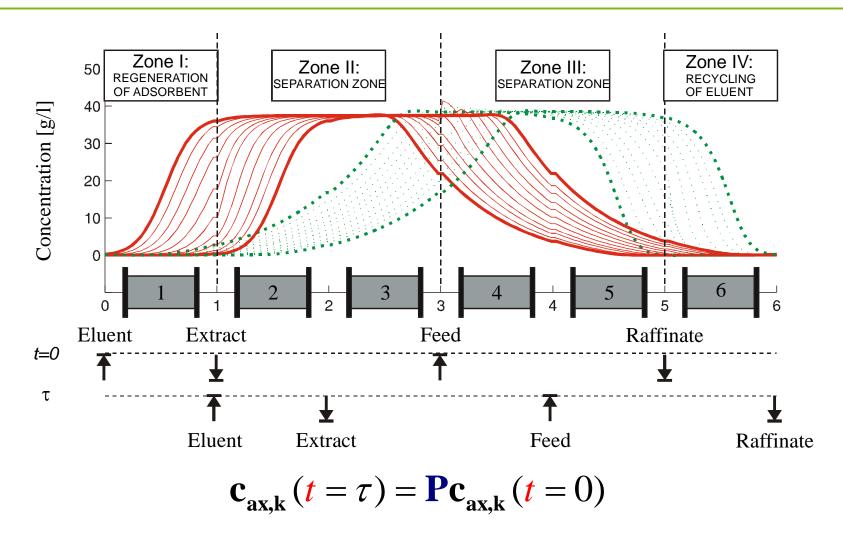


- A number of chromatographic columns are connected in series
- The inlet and outlet ports move to the next column position after each swichting period (τ)
- Quasi-countercurrent operation is achieved ("simulated") by cyclic port switching
- Continuous operation, higher productivity, and lower separation cost
- Complex dynamics, very slow reaction to changes

Online optimizing control: The link between plant economics and process control

25 Process Dynamics and Operations

SMB Dynamics



U technische universität dortmund

Online optimizing control: The link between plant economics and process control

26 Process Dynamics and Operations

SMB Optimization and Control Problem

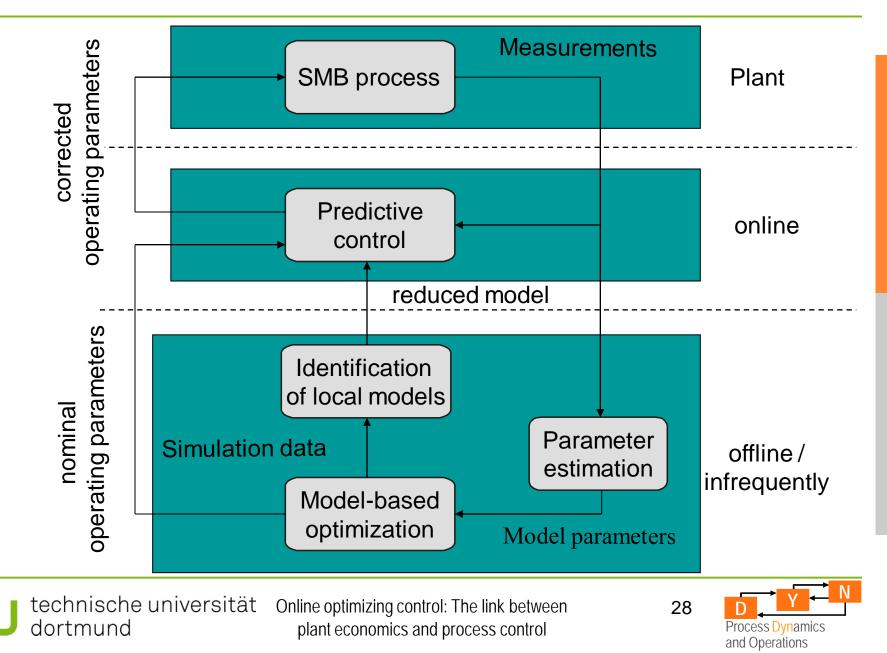
- **Goal:** Maintain specified purity at minimal operating cost
- Periodic process described by switched pde's
- Strongly nonlinear behaviour especially for nonlinear adsorption isotherms
- Drifts may lead to breakthrough of the separation fronts
 → long periods of off-spec production
- Intuitive determination of a near-optimal operating point is difficult.
- Optimal operation is at the purity limit.
- Operating cost is caused by solvent consumption and the cost of the adsorbent per (gram of) product
- Minimization of the solvent flow rate while meeting the specs for purity and recovery

27

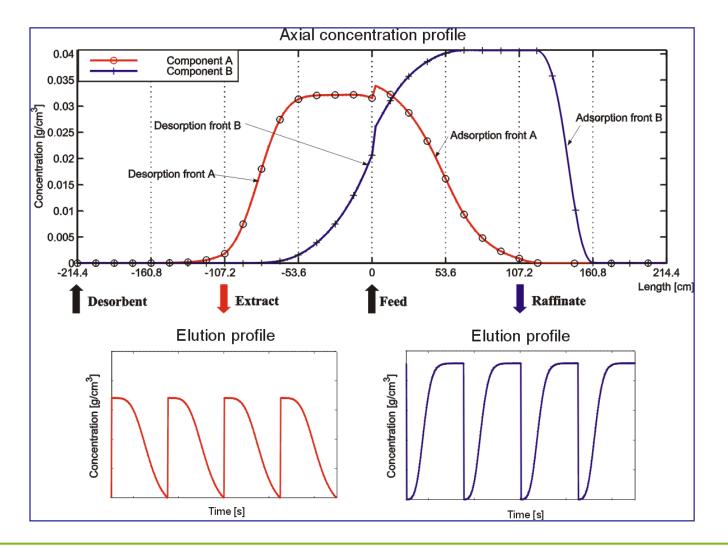
and Operations

technische universität Online optimizing control: The link between plant economics and process control

Hierarchical Control Scheme (Klatt et al.)



Low-level control: Front stabilization

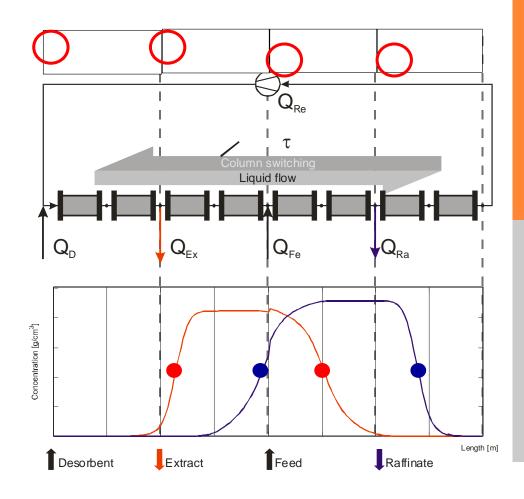


U technische universität dortmund

Online optimizing control: The link between plant economics and process control

Stabilising the concentration profile

- Front positions taken as controlled variables
- Choice of manipulated variables: β-factors
- Decoupled influence on the zones of the SMB process
- Successful application to process with linear isotherm



Online optimizing control: The link between plant economics and process control

Problems of the hierarchical approach

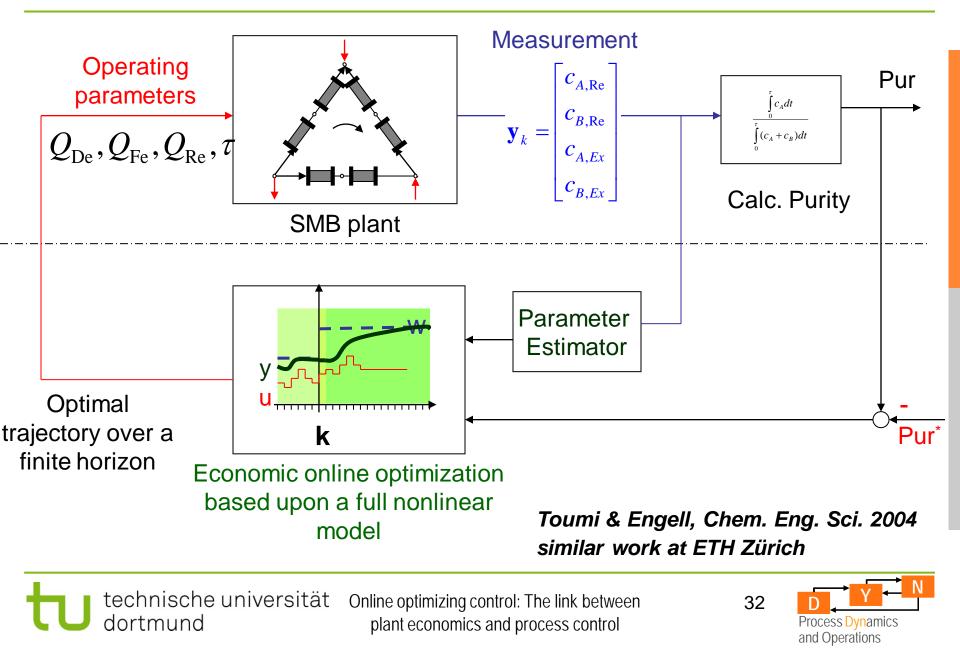
- Extension to nonlinear isotherms possible but control scheme quite complex (NN-based LPV MPC) (Wang and Engell, 2003)
- Fronts can only be detected accurately in the recycle stream, not in the product streams
- Optimality and desired purities cannot be guaranteed by front position control if the model has structural errors, e.g. in the form of the isotherm.
 - →additional purity control layer necessary
 - \rightarrow Scheme becomes very complex, optimality is lost.

31

and Operations

⇒ Use online optimization directly to control the plant!

Moving horizon optimizing control



Control by Online Optimization

$$\min \sum_{j=k+1}^{k+H_p} (\Theta(j) + \Delta \beta_j^T R_j \Delta \beta_j)$$

$$\beta_k, \beta_{k+1}, \dots, \beta_{k+H_r}$$

$$\begin{cases} x_{k+1,0} = Mx_k \\ \dot{x} = f(x, u, p) \\ y = h(x, u) \end{cases}$$

s.t. $\sum_{\substack{j=k+1\\k+H_p}}^{k+H_p} Pur_{Ex,j} + \Delta Pur_{Ex} \ge Pur_{Ex,\min}$ $\sum_{\substack{j=k+1\\j=k+1}}^{k+H_p} Rec_{Ex,j} + \Delta Rec_{Ex} \ge Rec_{Ex,\min}$ $\Delta p_j \le \Delta p_{\max}$ $j = k, ..., k + H_p$ Θ: economic criterion: solvent consumption

 β_k degrees of freedom – transformed flow rates and switching time

Rigorous hybrid process model

Purity requirements (with error feedback, log. scaled)

Recovery (with error feedback)

max. pressure loss

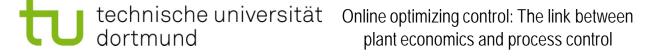
technische universität dortmund

Online optimizing control: The link between plant economics and process control

33 D Process Dynamics and Operations

Features of the Control Strategy

- The usual control variable (purity) appears as a constraint and a cost function is minimised.
- Structural plant-model mismatch handled by additive updated purity disturbance.
- To reduce plant-model mismatch, the model is adapted periodically by solving a least squares problem with respect to selected sensitive parameters.
- Numerical solution: sequential approach
 - Simulation to the cyclic steady state
 - Small number of degrees of freedom
 - Feasible path SQP-solver FFSQ
 - Optimisation stopped when the sampling period is exceeded



34 Process Dynamics and Operations

Mathematical modelling: Full model

Hybrid Dynamics

- Node Model (change in flow rates and concentration inputs)
- Synchronuous switching (new initialization of the state)
- Continuous chromatographic model (General Rate Model)

$$\frac{\partial c_i}{\partial t} + (\frac{1 - \varepsilon_b}{\varepsilon_b}) \frac{3k_{l,i}}{r_p} (c_i - c_{p,i|_{r=r_p}}) = D_{ax,i} \frac{\partial^2 c_i}{\partial x^2} - u \frac{\partial c_i}{\partial x},$$

$$(1 - \varepsilon_p) \frac{\partial q_i}{\partial t} + \varepsilon_p \frac{\partial c_{p,i}}{\partial t} - \varepsilon_p D_{p,i} [\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial c_{p,i}}{\partial r})] = 0,$$

$$q_i = f(c_{p,1}, \cdots, c_{p,nsp}).$$

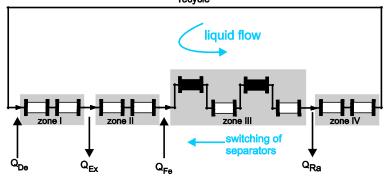
Numerical approach (Gu, 1995, Toumi)

- Finite Element discretisation of the fluid phase
- Orthogonal Collocation for the solid phase
- Stiff ordinary differential equations solved by Isodi (Hindmarsh et al.)
- ➡ Efficient and accurate process model (672 state variables for *n_{elemb}*=10, *n_c*=1,*N_{col}=8)*

Online optimizing control: The link between plant economics and process control

Reactive SMB Process

- Integration of reaction and separation can overcome equilibria and reduce energy and solvent consumption
- Fully integrated process however is severely restricted
- Hashimoto SMB-process:
 - Reaction and separation are performed in separate columns
 - Reactors remain fixed in the loop at optimal locations
 - Optimal conditions for reaction and separation can be chosen



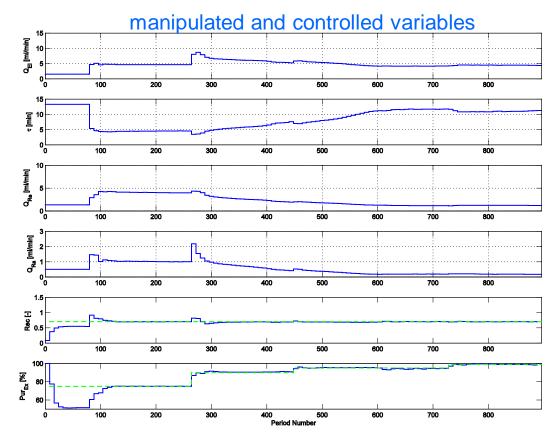
 Disadvantage: Complex valve shifting for simulated movement of reactors

U technische universität Online optimizing control: The link between plant economics and process control

36 D Y N Process Dynamics and Operations

Simulation of the Optimizing Controller

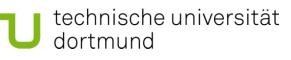
- Purity and recovery constraints enforced
- Plant/model mismatch $(H_A + 10\%, H_B 5\%)$
- Controller reduces the solvent consumption
- Satisfaction of process requirements



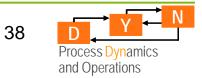
Online optimizing control: The link between plant economics and process control

Technical Details

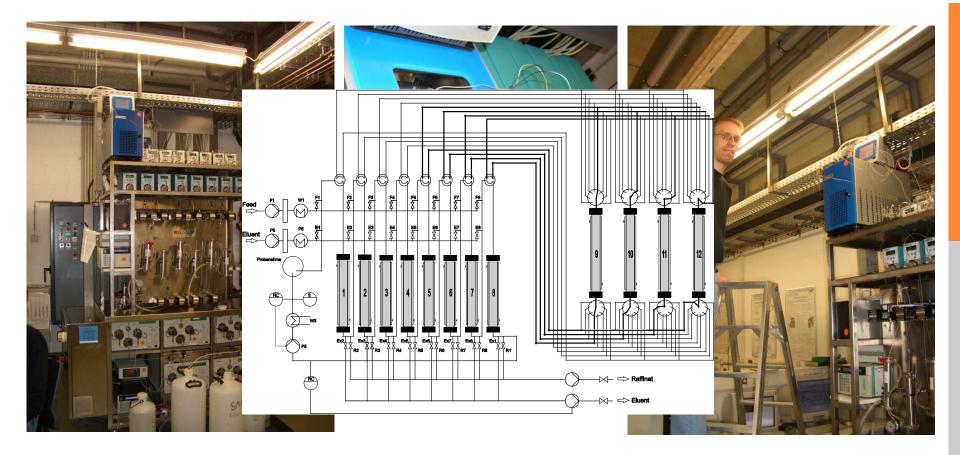
Sampling time	8 switching periods = 1 cycle			
Prediction horizon	3 cycles			
Control horizon	1 cycle			
Controller start	2 nd cycle			
# state variables	1400			
Degrees of freeedom (optimizer)	4 β-factors (corresponding to Q_{i} , τ)			
ode solver	DVODE			
Optimizer	FFSQP			
Computation time	Convergence achieved within 3 -6 switching periods			



Online optimizing control: The link between plant economics and process control



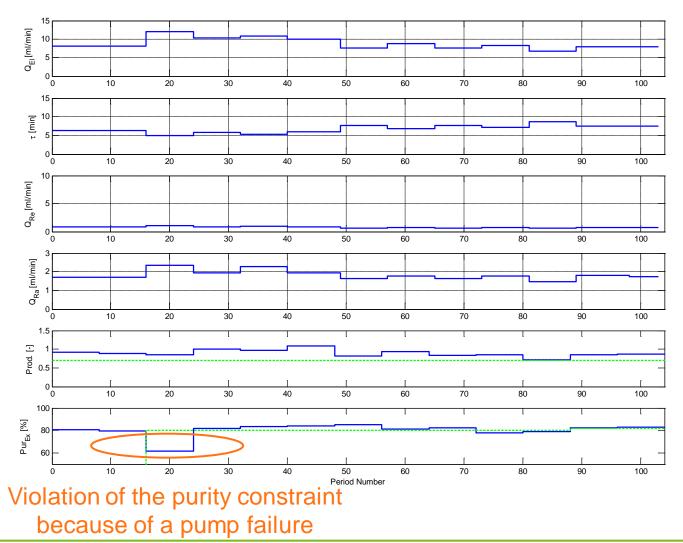
Experimental Hashimoto SMB Reactor



technische universität dortmund

Online optimizing control: The link between plant economics and process control

Experimental Results



dortmund

technische universität Online optimizing control: The link between plant economics and process control

Conclusion from the Case Study

- Direct optimizing control is feasible and gives good results!
- Numerical aspects:
 - New general-purpose NLP algorithms for dynamic problems provide sufficient speed for faster processes (Biegler et al., Bock et al.)
 - Special algorithms taylored to online control for short response times (~ s) (real-time iteration, Bock, Diehl et al.)

Main advantages

- Performance
- Clear, transparent and natural formulation of the problem, few tuning parameters, no interaction of different layers

41

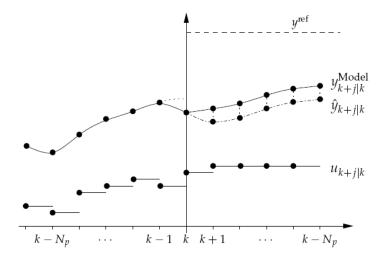
and Operations

But there is a problem ...

technische universität
dortmundOnline optimizing control: The link between
plant economics and process control

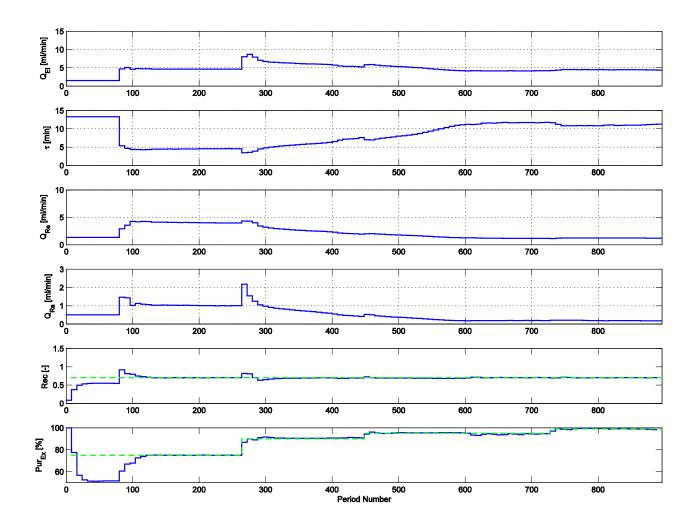
NMPC and Model Accuracy

- The idea of (N)MPC is to solve a forward optimization problem repeatedly
- Quality of the solution depends fully on the model accuracy
- Feedback only enters by re-initialization and error correction (disturbance estimation) term
- Model errors are usually taken into account by a constant extrapolation of the error between prediction and observation



Online optimizing control: The link between plant economics and process control

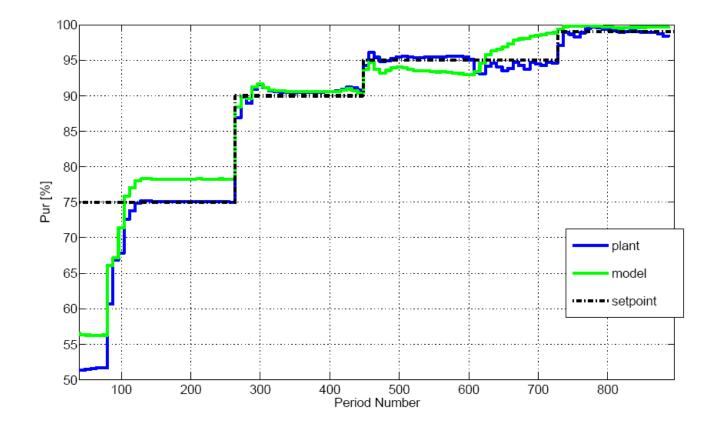
Simulation of the Optimizing Controller



dortmund

technische universität Online optimizing control: The link between plant economics and process control

Plant-model Mismatch for Hashimoto SMB



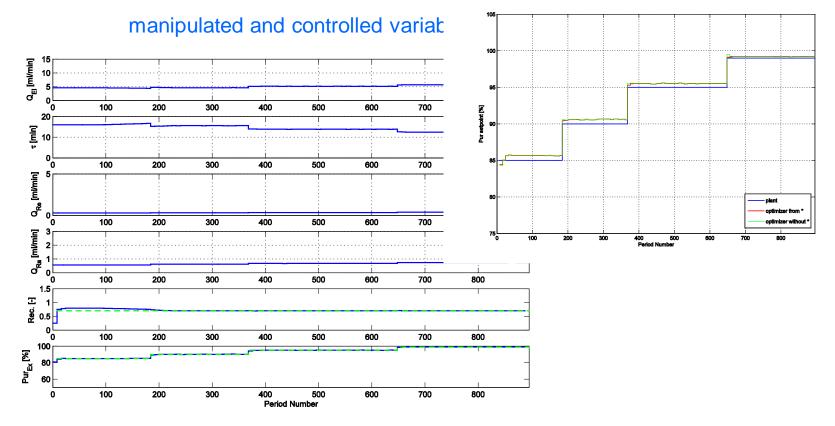
Online optimizing control: The link between plant economics and process control

Modification of the Cost Function

- Penalty term for breakthrough maintains standard operation
- Same simulation experiment as before

technische universität

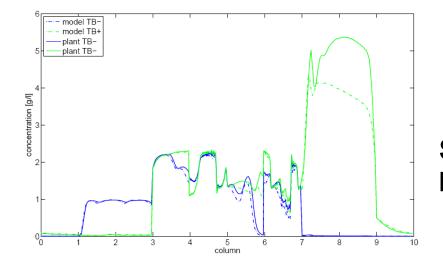
dortmund



plant economics and process control

Online optimizing control: The link between

Two Different Strategies



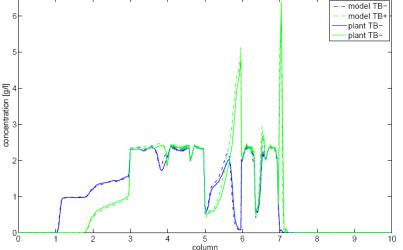
$$\min\sum_{j=k}^{k+H_p} (\Theta(j) + \Delta \beta_j^T R_j \Delta \beta_j)$$

Solvent consumption optimal but not robust against model errors

Modification of the cost function to avoid breakthough

$$\min\sum_{j=k}^{k+H_p} (\Theta(j) + \Delta \beta_j^T R_j \Delta \beta_j + \gamma \int_0^{T_j} Q_{re} (c_{A,re} + c_{B,re}) dt$$

Robust operating regime but increased solvent consumption



J technische universität dortmund

Online optimizing control: The link between plant economics and process control

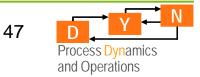
46 Process Dynamics and Operations

How to Include Robustness in Optimizing Control?

- Improve the quality of the model by parameter estimation
 - Numerical effort
 - Insufficient exitation during nominal operation
 - Structural plant-model mismatch
- Worst-case optimization for different models
 - Conservative approach, loss of performance
 - Does not reflect the existence of feedback

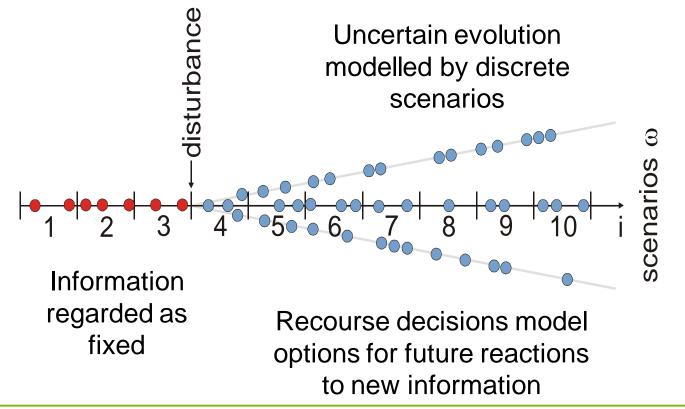
Two-stage optimization!

U technische universität Online optimizing control: The link between plant economics and process control



Two-stage Decision Problem

- Information and decision structure
 - First stage decisions $\mathbf{x} \neq \mathbf{f}(\omega)$ (here and now)
 - Second stage decisions y = f(ω) (recourse)



U technische universität dortmund

Online optimizing control: The link between plant economics and process control

Application to Robust NMPC

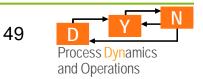
- Scenarios represent different models
- Next few inputs must work for all models
- BUT: After a difference between model and reality has been observed, the controller will react to it

Future inputs can be scenario dependent

- Decisions are divided into "here and now" and "recourse"
- Optimistic approach: Correct model is revealed

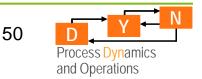
Alternatives:

- Only feasibility ensured
- Optimization of the expected performance with recourse



Control for Optimal Operation

- The gap between process control and process operations
- How to achieve near-optimal operation?
 - Regulatory control
 - Real-time optimization with regulatory control
- Direct finite-horizon optimizing control (DRTO)
- Application example: Reactive chromatography
- Robustness
- Summary, open issues and future work



Summary

The goal of process control in many cases is not setpoint tracking but optimal performance!

Direct finite horizon optimizing control

Main advantages:

- Performance (see e.g. Ochoa et al., ADCHEM 2009)
- Clear, transparent and natural formulation of the problem, few tuning parameters, no interaction of different layers
- Feasible in real applications but requires engineering
- Numerically tractable due to advances in nonlinear dynamic optimization (Biegler et al., Bock et al.)
- Modelling and model accuracy are critical issues.
- Two-stage formulation leads to a uniform formulation of uncertainty-conscious online scheduling and control problems.

51

Process Dynamics and Operations

U technische universität Online optimizing control: The link between plant economics and process control

	Steady-state performance	Dynamic performance	Stability	Numerical effort	Complexity of the formulation	Complexity for the operators	Vulnerability/ effort for safety		
Direct optimizing control	++	++	?	very high	low	high	high		
RTO + MPC	++/+	+	+	high	high	high	medium		
RTO with linear control	+	0	?	high	low	medium	medium		
Conventio- nal control	- → +	0	+	none	low	low	low		

Online optimizing control: The link between plant economics and process control

52 D

Open Issues

Modelling

- Dynamic models are expensive
- Faithful training simulators are now often available, but models too complex
- Grey box models, rigorous stationary nonlinear plus blackbox linear dynamic models?

State estimation

MHE formulations natural but computationally demanding

53

Process Dynamics and Operations

Stability

- Economic cost function may not be suitable to ensure stability
- Infinite horizon?

More Research Topics

- Measurement-based optimization in the paper
- Constraint handling in case of infeasibility
- Reduction of complexity (approximate) NCO tracking
 - Maximization of the throughput (Aske et al., IFAC ADCHEM 2009)
 - Maximizing the feed rate in batch processes online by feedback control
- Control architectures decentralization, coordination
- Key issues for real implementations:
 - Operator interface
 - Plausibility checks, safety net

U technische universität Online optimizing control: The link between plant economics and process control

