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Advanced Process Control - Tutorial 4 WS 10/11

State Estimation - Extended Kalman Filter

Solutions

Exercise - Discrete extended Kalman filter

1.

C =

(

0 1 0 0

0 0 1 0

)

2. Transform the system to a discrete-time system by applying the finite difference

approach: The system can be rewritten as:

xk+1 = xk + ∆t ·













V̇
VR

cA0 −
V̇

VR
xk,1 − xk,4xk,1

xk,4xk,1 −
V̇

VR
xk,2 − kBCx2

k,2 + kCBxk,3

kBCx2
k,2 −

V̇
VR

xk,3 − kCBxk,3

0













with

xk = [cA, cB, cC, kAB]T .

The implementation can be found in the solution m-file of model_discret.

3. Jacobian of the discretized system:

A =













1 −
V̇

VR
∆t − xk,4∆t 0 0 −xk,1∆t

xk,4∆t 1 −
V̇

VR
∆t − 2kBCxk,2∆t kCBxk,3∆t xk,1∆t

0 2kBCxk,2∆t 1 −
V̇

VR
∆t − kCB∆t 0

0 0 0 1













The implementation can be found in the solution m-file of model_discret.
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4. Q might be:

Q =











1e − 6 0 0 0

0 1e − 6 0 0

0 0 1e − 6 0

0 0 0 1e − 6











To reduce the number of adjustable parameters it is suitable to chose P0 to be de-

pendent on Q:

P0 = Q ∗ 200.

This results in an observer behavior as depicted in Figure 1:
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Observer using discretized equations
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Figure 1: Performance of a discrete Kalman Filter

The tuning is quite good as the observer converges quickly to the real state values.

Thereby the convergence might also be achieved by even smaller entries of Q, but

the error dynamic would not be that fast. On the other hand, greater entries of Q

lead to faster observer reactions by what the measurement noise gets amplified and

the state trajectories are fluctuating around their values.

5. The issue in having only discrete measurements (which is in principle the case for all

measurements) is, that no continuous measurement update of the observer system

is possible. Between two sampling points the state values depend only on the simu-

lation of the model (prediction), therewith plant model mismatch as well as numer-

ical errors have an influence on the observer behavior. The choice of the numerical

method which is used to solve the differential equations is therefore an important
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point. Here the simple forward difference method (explicit Euler) was applied to

the system to discretize between to sample points and to integrate the equations.

For such a simple method two things have to be kept in mind:

• The numerical error decreases with decreasing integration step width until the

machine accuracy is reached, but the computation time increases as the solu-

tion is calculated at more points.

• The numerical error increases with greater prediction periods, i.e. the error be-

tween model and plant increases between two sampling points. The greater

the sampling time, the greater the numerical error. Therefore a smaller sam-

pling time and therewith a more frequent correction makes tuning much easier.

However, in most cases you cannot choose the sampling rate as it depends on

the speed of your analytic devices.

That the numerical error plays a role can be observed when the integration step

width is changed from 0.1 to 1. The obtained observer performance using the above

given tuning is shown in Figure 2. The simulation crash is due to the fact that the
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Observer using discretized equations
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Figure 2: Performance of a discrete Kalman Filter with increased integration step width

explicit Euler uses only the gradient at time point k to calculate the state value at

point k + 1 by multiplying the gradient with the step width. When the step from k

to k + 1 is to large, some of the concentration become negative, leading finally to the

simulation crush.

This numerical error is not corrected by the observer with the tuning found above.
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The ratios Q(2, 2)/R(1, 1), Q(3, 3)/R(2, 2) are less than one, meaning that we trust

the model more than the measurements as it is assumed that the model noise is

"smaller" than the measurement noise. Therefore the correction done by the ob-

server is too weak to compensate the bad numerical solution at point k + 1. Chang-

ing the tuning to Q(2, 2)/R(1, 1), Q(3, 3)/R(2, 2) > 1 make the observed states

follow the measured values (cf. Figure 3). The observer becomes more noise, but

still it’s performance is quite good. Q might be:

Q =











1e − 5 0 0 0

0 1e − 3 0 0

0 0 1e − 3 0

0 0 0 1e − 5











P0 = Q ∗ 200

.
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Observer using discretized equations
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Figure 3: Performance of a discrete Kalman Filter with increased integration step width

Conclusion: The numerical method and its integration step width have a direct in-

fluence on the estimates. For this reason it is in theory the best to use the continuous

equations between two samples. This is, of course not possible, but one should think

about higher order methods to integrate the system.

6. As mentioned above, the numerical method has a strong influence on the observer

behavior. Therefore the performance can be improved by using higher order meth-

ods for numerical simulation than explicit Euler as they are implemented in MAT-

LAB (e.g. ode45, based on Runge-Kutta of 4th order): Instead of discretizing the
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system, the continuous equations are implemented and solved between two sample

times (they are solved numerically at discrete points by MATLAB). The measure-

ments are used to correct the observer before again the system is simulated till the

next sample point. The performance is depicted in Figure 4. Q might be:
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Observer using continuous equations
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Figure 4: Kalman Filter performance using the continuous equations between two sam-

pling points

Q =











1e − 6 0 0 0

0 1e − 6 0 0

0 0 1e − 6 0

0 0 0 1e − 6











P0 = Q ∗ 200

.
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