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Advanced Process Control - Tutorial 4 WS 10/11

State Estimation - Extended Kalman Filter

Exercise - Discrete extended Kalman filter

Consider a continuously stirred tank reactor (CSTR) with a reaction

A
kAB=⇒ B

2B
kBC

⇋
kCB

C.
(1)

Assume that the total volume entering is equal to the volume leaving the system: V̇in =

V̇out = V̇ = const. The input of the system is the concentration of component A at the

reactor inlet (cA0) , the measured outputs are the concentrations of component B (cB) and

C (cC). The component balances are:

d

dt
cA =

V̇

VR

(cA0 − cA) − kABcA (2)

d

dt
cB = −

V̇

VR

cB + kABcA + kCBcC − kBCcB
2 (3)

d

dt
cC = −

V̇

VR

cC + kBCcB
2 − kCBcC (4)

where all parameters other than kAB are known. In this tutorial, a discrete Extended Kalman

Filter (EKF) shall be designed to observe the unmeasurable concentrations A and the un-

known parameter kAB. It is assumed that the initial conditions are:

x0 = [cA cB cC kAB]T0 = [0.1 0.1 0.1 0.1]T

The covariance matrix R is known:

R = diag([0.012, 0.012])

The system is fully observable in the region of attainable states.
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Tasks: Download the zip-file Tutorial 5, unpack it and store the files in one folder (e.g.

Tutorial 5).

1. How does the measurement matrix look like?

2. Transform the system equations to a discrete-time system by applying the finite dif-

ference approach:

d x(t)

dt
≈

xk − xk−1

tk − tk−1

=
xk − xk−1

∆t

where ∆t refers to the integration step width.

3. Implement the discretized model in the m-file model_discret, which will act as your

observer model in the following.

xk = f(xk−1, ∆t)

4. The discretized model is used to predict the system states, however an EKF needs to

correct the states a linearized version of the model at the the sampling points. Please

derive the Jacobian of the discrete model with respect to the states and implement it

in model_discret as well.

A =
∂f

∂x

∣

∣

∣

∣

xk−1

5. Open the m-file A4_Nonlinear_System_Euler.m. Add the measurement matrix and

tune your observer by choosing suitable tuning parameters P0 and Q. Please do not

change the sampling time and integration step width.

6. Increase the integration step width to 1. What can be observed? What must been

changed in order to get back to a better performance?

7. Now open the m-file A5_Nonlinear_System_Continuous.m. In this simulation file,

the observer uses the continuous equation between two measurements. Apply the best

tuning of your observer you got so far. How is the performance of this observer?
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Discrete Kalman filter:

Consider the following nonlinear dynamic system:

ẋ = f(x, u) + w(t) (5)

x(0) = x0 + w(0) (6)

y(t) = h(x) + v(t) (7)

w and v are assumed to be

• mean-free: E(w) = E(v) = 0

• uncorrelated: E(wi, wj) = E(vi, vj) = 0 ∀i 6= j and

• distributed according to a normal distribution with covariance matrices Q (w(t)), R

v(t)) and P0 (w(0))).

The time continuous system can be transformed into a discrete form by integration between

two sample times:

xk+1 = xk +

∫ tk+1

tk

(f(x(t), u(t)) + w(t))dt k = 0, 1, · · · (8)

:= F (x̂k, uk) + wk (9)

yk = h(xk) + v(k) (10)

Instead of the continuous Matrix-Ricatti-Equation (see lecture notes) an algebraic Matrix-

Riccati-Equation for the covariance matrix of the estimation error can be derived which can

easily be solved. Therefore, the algorithm of the discrete EKF can be devided into two steps:

1. Correction or Measurement update

Kk = Pk,k−1 CT
k,k−1

(

Ck,k−1Pk,k−1C
T
k,k−1 + R

)

−1
(11)

x̂k,k = x̂k,k−1 + Kk (yk − h(x̂k,k−1)) (12)

Pk,k = (I − KkCk,k−1) Pk,k−1 (13)

2. Prediction or Time update

Based on the last corrected estimate (filtered state) x̂k,k, the states for the next step

are predicted by the model equations without considering disturbances:

x̂k+1,k = F (x̂k,k, uk) (14)

Furthermore, the covariance matrix of the estimation error is predicted for the next

sample time:

Pk+1,k = Ak,kPk,kA
T
k,k + Q (15)

with:

Ak,k =
∂F

∂x

∣

∣

∣

∣

x̂k,k,uk

Ck,k−1 =
∂h

∂x

∣

∣

∣

∣

x̂k,k

(16)
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The variable x̂k,k−1 represents the estimated state at time tk, that is calculated from

available measurements up to time tk−1.

Notations:

Q can be interpreted as a weighting factor for the model accuracy. Decreasing the values of

the elements of Q yield a larger weight of the model equations, i.e. the model is assumed to

be more accurat.

R can be interpreted as a weighting factor for the reliability of the measurement. Decreasing

the values of the elements of R yield in an increasing weight of the concerning measurements,

i.e. the measurement is assumed to be more reliable.

The covariance matrix of the initial error P0 has a large influence on the initial convergence

behaviour of the EKF and can be interpreted as a weighting factor of the initial guess, i.e.

small values of the elements of P0 imply a high accuracy of estimate.
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