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State Estimation - Dealing with noise and model errors

Solutions

Quickies

1. No, "unobservable" only means that the error dynamics of the observer cannot be
chosen freely. The unobservable eigenvalues "λu" of the system will be eigenvalues
of the observer system.

λu stable ∀u → error converges to zero but not arbitrarily fast (∝ exp(λut))

2. Because of the separation principle: Feedback dynamics and observer dynamics can
be designed independently !(

ẋ
˙̂x

)
=

(
A BK

LC A + BK − LC

)(
x
x̂

)
.

Change of coordinates: x̂ = x + e →(
ẋ
ė

)
=

(
A + BK BK

0 A − LC

)(
x
e

)
.

In the new coordinates the system has block triangular form, thus the eigenvalues
are on the main diagonale → Set of closed loop eigenvalues = Set of eigenvalues
designed by state feedback ⊕ Set of eigenvalues designed by error dynamics

3. The observer eigenvalues should be placed such that its dynamic is faster than the
one of the dominant eigenvalues of A, respectively A + BK in a closed loop. How-
ever, the observer should not be too fast because of measurement noise as this may
lead to huge under- and overshoots of the observer system. Like for controller de-
sign, a rule of thumb is to make the error eigenvalues 10 times faster than the system
eigenvalues.
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4. For a Kalman Filter it is assumed that the system is disturbed by stochastic noise
(system noise v(t) and measurement noise w(t)). Both are white Gaussian with zero
mean:

ẋ = Ax + Bu + v(t), x(0) = x0 (1)

y = Cx + w(t)

The Kalman Filter equations are the solution of the minimization problem of the
expected error between plant and observer:

min E
[
(x − x̂)T (x − x̂)

]
˙̂x = Ax̂ + Bu + L(y − Cx̂) (2)

L = PCTR−1 error feedback gain

Ṗ = AP + PAT + Q − PCTR−1CP Riccati Differential Equation

with Q as the covariance matrix of v, R as the covariance matrix of w and P as the
covariance matrix of (x − x̂).

5. P(0), Q, R. R can often be taken from the measurement devices.
When P(0) is small, you trust your initial values; when Q/R is small you trust your
model and when R/Q is small you trust your measurements.
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Exercise - State Estimation

1. Using the rule of thumb and making the error dynamics ten times faster than the
system dynamics lead to heavy oscillations around the real state values (cf. Figure
1). The measurement noise is simply amplified by the observer gain. However, by
analyzing the system eigenvalues one can achieve a much better tuning. The eigen-
values and corresponding eigenvectors are:

D =

-0.1000 0 0

0 -5.1000 0

0 0 -1.6000

V =

0 0 0.7548

0.5547 0.7071 -0.1078

0.8321 -0.7071 -0.6470

The eigenvalues −5.1 is already quite fast in comparison to the other two and hence
there is no need to change it. The dominating eigenvalue is −0.1, so this should be
made faster. Changing the third eigenvalue −1.6 should be avoided as it is hard to
move from the point of view of component B (see the eigenvector). Changing this
eigenvalue lead directly to a high gain (e.g. double it and look at the gain), which
results in a bad noise performance as B is the noisy component. A good tuning is
[−5.1 − 1 − 1.6] (cf. Figure 2). Tuning the Kalman Filter here is equivalent to choos-
ing seven free parameters beeing R, q11, q22, q33, and p011, p022, p033. R can be
found by analyzing the measurement device (here: Band-Limited White Noise block
in Simulink). To minimize the number of parameters further, one usually choose P0
to be somehow depended on Q, e.g. Q/100 or Q ∗ 10. Then, you only have to play
with the diagonal entries of Q. A good tuning is:

R = 0.01, Q = diag([0.001, 0.00001, 0.001]), P0 = Q ∗ 200.
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Figure 1: Luenberger Observer, observer ten times faster than system
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Figure 2: Luenberger Observer, eigenvalues at [−5.1 − 1 − 1.6]
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Figure 3: Kalman Filter
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2. For almost all observer designs there will be a steady state offset between observer
and plant because of the model error:

˙̂x = Âx̂ + Bu + LC(x − x̂) Observer with wrong A matrix (3)

ẋ = Ax + Bu Plant

ė = Âx̂ − Ax̂ + LC(x − x̂) Error

By splitting the wrong system matrix into the correct matrix A and an error (distur-
bance) E, Â = A + E, it follows:

ė =Ax̂ − Ax + LC(x − x̂) + Ex̂ (4)

= (A − LC) e + Ex̂

=
(

Â − LC
)

e + Ex

Thus the steady state of the error can be written as:

e = −
(

Â − LC
)−1 Ex.

Taking the above mentioned tuning parameter values, the following results shown
in Figure 4 are obtained. Similar results can be derived for other values. An option
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Figure 4: Estimation with plant model mismatch

to achieve steady state convergence is to find a suitable observer gain that fulfill the
relation: (

Â − LC
)−1 E = 0 (5)

This can be fulfilled by decoupling the disturbance from the steady state error. To
do this, one first has to spend a few thoughts on the disturbance to estimate how it
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might look like. In this case it is obvious that the model of component A is wrong
(cf. Figure 4). If we assume that the input is known correctly, the model error must
be part of kABcA. Hence we can model the disturbance as:

E =

 −∆kAB 0 0
∆kAB 0 0

0 0 0

 .

From this it follows that the model error can be decoupled from the observer by
choosing the first column of

(
Â − LC

)−1
equals to the second column and to solve

these three equations for the three unknown entries of L. This results in:

L3 =
Â32

[
Â33

(
Â21 + Â11

)
− Â31

(
Â23 + Â13

)]
Â33

(
Â11 + Â21

)
− Â31

(
Â23 + Â13

) (6)

L2 = 10 arbitrarily

L1 = Â22 + Â12 − L2 −
(

Â32 − L3
) (

Â23 + Â13
)

Â33

Tuning the Luenberger observer in this way one obtains:
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Figure 5: Observer with a steady state error decoupled from the disturbance
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