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Abstract: In this contribution, a systematic procedure for control structure selection based
on rigorous models is presented. The basic idea is that a feedback controller that regulates
certain measurable quantities to their set-points should steer the process towards its economic
optimum in the presence of disturbances and model uncertainties. This part of the analysis
is performed for the stationary behaviour of the regulated process, dynamic aspects are
considered in a second step where the dynamic controllability of the economically superior
structures is assessed. The stationary analysis is performed for rigorous nonlinear plant
models. The methodology is applied to a reactive distillation process.Copyright c©2005 IFAC
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1. INTRODUCTION

Control structure selection deals with the choice of
measured and manipulated variables that are used for
feedback control. This selection is of particular im-
portance in chemical process control, where a con-
siderable number of degrees of freedom and of mea-
surements is available and the choice of the controlled
and of the manipulated variables and of the controller
structure is by no means trivial. Most of the available
literature in this area focuses on the dynamic controlla-
bility analysis based upon linear process models. The
state of the art is well described in the recent book
(Seferlis and Georgiadis, 2004). Several authors have
also investigated the issue of control structure selec-
tion from the point of view of the performance and
operability of the controlled plant rather than focussing
on the ability of the control structure to regulate the
chosen variables well. Several important aspects of the
control of chemical processes were discussed in the
early contribution by (Morariet al., 1980). Shinnar and
co-authors developed the concept of partial control in
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a series of papers, evolving around the example of the
operation of catalytic crackers (Arbelet al., 1995b),
(Arbel et al., 1995a), (Arbel et al., 1996), (Arbelet
al., 1997), (Shinnaret al., 2000). In their approach,
the final choices were strongly influenced by their
knowledge about how the operators would run the type
of plants under consideration what allowed them, for
example, to justify a control structure that was not
recommended by the RGA analysis.
In many contributions, engineering insight and simu-
lations are used to arrive at a suitable control structure
for a given plant. A recent representative is (Al-Arfaj
and Luyben, 2002).
Skogestad (Skogestad, 2000) advocated to choose the
regulated variables such that a profit function is max-
imized in the presence of disturbances by keeping the
controlled variables close to their set-points. This ap-
proach was applied to the Tennesee Eastmann Process
(Larssonet al., 2001), as well as to others (Larssonet
al., 2003).
A different approach is taken in (Schenket al., 2002).
Here the choice of the control structure as well as the
computation of the controller parameters is included
in the optimization of the plant design, leading to
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a large mixed-integer dynamic optimization problem.
The structure of the individual controllers is fixed a
priori, e.g. as PI controllers. Despite the admirable
progress in the solution of large mixed-integer opti-
mization problems in recent years, convergence prob-
lems are usually encountered and a suitable initializa-
tion is crucial for the success of this approach.
We therefore propose a stepwise approach, were first
promising control structures are found from a station-
ary analysis, followed by dynamic controllability anal-
ysis (without assuming a fixed control structure), and
finally the computation and testing of fixed-structure
controllers. In this paper, the focus is on the stationary
analysis. We proceed along the same line of thinking
as (Skogestad, 2000) but refine the approach in several
respects. In general, we aim at the replacement of in-
formed judgements by objective criteria and optimiza-
tion wherever possible.
The paper is structured as follows: First the general
idea is presented. Then the realization of the approach
by the solution of a sequence of optimization problems
is described in detail. The method is then applied to a
reactive distillation process and conclusions for further
research are drawn.

2. CONTROL STRUCTURE SELECTION FOR
OPTIMAL PLANT PERFORMANCE

From a process engineering point of view, the purpose
of automatic feedback control (as well as that of man-
ual control) is not to keep some variables at their set-
points as well as possible or to nicely track set-point
changes but to establish a close-to-optimal operation
of the plant under the presence of disturbances and
while the model used for plant design does not rep-
resent the real process exactly so that an operating
regime that was optimized for the plant model will
not lead to an optimal operation of the real plant.
While an online optimization of the available degrees
of freedom based upon a full nonlinear model in order
to maximize the profit over a finite horizon is nowa-
days possible for slow processes see e. g. (Engell and
Toumi, 2004), in industrial practice usually feedback
(or manual) control of selected variables is preferred to
counteract the effect of disturbances and plant-model
mismatch because of the simplicity and reliability even
of multivariable controllers compared to online opti-
mization.
From a process optimization point of view, the pur-
pose of feedback control is to set the process inputs if
disturbances or plant-model mismatch are encountered
such that a (fictitious) online optimizing controller is
approximated. In other words, the goal is to establish
a relation between the manipulated variablesu and the
disturbancesd such that the functionucon = f (y

set
,di)

which is (implicitly) realized by regulating the chosen
variables to their set-points is an approximation of the
optimal inputuopt(di). The effect of feedback control

on the profit function J under the presence of distur-
bances can be expressed as

∆J = J(unom,d = 0)−J(unomdi) (1)

+J(unom,di −J(uopt,di)

+J(uopt,di)−J(ucon,di).

The first term is the loss that is encountered if the
manipulated variables are fixed at their nominal val-
ues, the second term represents the effect of an op-
timal adaptation of the manipulated variables to the
disturbancedi , and the third term is the difference of
the optimal compensation of the disturbance and the
compensation which is achieved by the chosen feed-
back control structure. If the first term in (1) is much
larger than the second one, or if all terms are com-
paratively small, then a variation of the manipulated
variables offers no advantage, and neither optimization
nor feedback control are required for this disturbance.
If the third term is not small compared to the attainable
profit for optimized inputs for all possible regulating
structures, then online optimization or an adaptation
of the set-points should be performed rather than just
regulation of the chosen variables to fixed set-points.
Equation (1) represents the loss (which may also be
negative, i.e. a gain) of profit for one particular distur-
bancedi and a fixed control structure. To evaluate the
performance of a control structure, the expected value
of (1) should be used:

∆J =

d1,maxZ

−d1,max

...

dn,maxZ

−dn,max

w(d)(J(unom,d) (2)

−J(ucon,d))dd1...ddn

wherew(d) is the probability of the occurrence of the
disturbanced. In practice,w(d) is usually not known,
we therefore approximate (2) by a weighted sum over
a set of disturbance scenarios.
In regulating control, errors of the measurements of the
controlled variables must be taken into account. E.g.
quality parameters often cannot be determined very
accurately online in process control. A variable may
be very suitable for regulatory control in the sense
that the resulting inputs are a good approximation of
the optimal inputs in the nominal case, but due to
a large measurement error and/or a small sensitivity
to changes in the inputs, the resulting valuesucon
may differ considerably from the desired values. We
take this into account by considering the worst case
control performance for regulation to values in a range
around the nominal set-pointy

set
that is defined by the

measurement errors. So for each disturbance scenario
di , the performance measure of a control structure (i.e.
a selection of measured and manipulated variables) is:
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Fig. 1. Schematic representation of the influence of
a disturbance on the profit for different control
approaches and measurement errors

min
u

J(u,di ,x) (3)

s.t. : ẋ = f (u,di ,x) = 0

y = m(x) = M(u,di)

y
set
−esensor≤ y≤ y

set
+esensor,

where f represents the plant dynamics. A control
structure that yields a comparatively small value of the
minimal profit is not able to avoid a poor performance
of the process under the presence of measurement er-
rors and hence is not suitable.
Note that this formulation also represents the realistic
situation where closed-loop control leads to a worse
result than keeping the manipulated variables constant
at their nominal value. This may happen for small
disturbances, as illustrated by figure 1. It is therefore
important to include scenarios with small disturbances
and not only those with very large ones into the set
of disturbances considered in the analysis. In the next
section, we describe how the general idea presented
in this section is realized by a step-by-step procedure
which provides a number of potential control struc-
tures which are suitable from the point of view of
profitable operation of the controlled process. Whether
these structures are also suitable from the point of
view of the dynamics of the closed-loop system is then
checked using tools from linear control theory.

3. CONTROL STRUCTURE SELECTION
PROCEDURE

3.1 Definition of the optimization problem

The investigation starts with an analysis of the degrees
of freedom of the process which are available during
plant operation. These degrees of freedom are the same
for online optimization and for regulatory control. The
profit function J has to be defined and constraints of
the process must be formulated mathematically.

3.2 Selection of disturbances

The second step is to define the disturbance scenarios.
In contrast to (Skogestad, 2000) we distinguish be-
tween disturbances (including plant-model mismatch)
and measurement errors. The size of the measurement

errors usually can be estimated, e.g. from the manufac-
turers’ data-sheets. Worst case disturbances are com-
puted by performing a minimization of the profit that
is obtained by optimal adaptation of the manipulated
variables:

dmax= argmin(max
u

J(u,d)). (4)

As mentioned before, smaller disturbances are also
considered, as the worst case is not typical for the day-
to-day operation of the process and the performance
of a control structure can be qualitatively different for
large and for small disturbances due to the effect of
measurement errors. Each disturbance scenariodi is
investigated individually in an optimization (eq. 3).
The results of different control structures are compared
using a weighted sum of the values of the objective
function for the chosen scenarios.

3.3 Pre-selection of controlled variables

In this approach, the resulting worst case profit is com-
puted for each control structure and each disturbances
scenario. As the number of structures increases rapidly
with an increasing number of measurements and ma-
nipulated variables, as given by

Ck
n =

(
n
k

)
=

n!
(n−k)! k!

(5)

with n = dim(y) andk = dim(u),

an a priori exclusion of unsuitable variables is very
useful or even necessary for larger problems. Usually
the key problem is the selection of the controlled vari-
ables because the number of available measurements
is larger than the number of manipulated variables. A
set of measured variables is unsuitable for control if
the resulting inputs under closed-loop control are too
sensitive to the sensor errors. The sensor errors usually
are small compared to the absolute values, so a linear
analysis is justified here. Let

ucon = h(y
set

,d) (6)

denote the dependency of the manipulated variables on
the measurements (h is the inverse of the measurement
mappingy = M(u,d). Then the sensitivity ofu for
small measurement errors is given by the Jacobian of
h, and the normalized matrix

S= diag(∆u)−1 ∂h
∂y

diag(esensor) (7)

where

∆u = max
d

(argmaxJ(u,d)) (8)

−min
d

(argmaxJ(u,d))

represents the normalized propagation of the sensor
errors to the manipulated variables. Small singular val-
ues ofS indicate a small influence of the sensor errors.
Therefore structures with a large maximal singular



value of S are excluded, because for these structures
either some measurement error is comparatively large
or the sensitivity of some measurements to the inputs
is small or the measurements are not independently
influenced by the inputs such that the mappingM is
ill-conditioned.

3.4 Selection of the set-points for regulatory control

A simple choice of the set-points of the regulated vari-
ables would be to choose them as the values which
result for optimal operation under nominal conditions
(i.e. no plant-model mismatch, no disturbances). This
however underestimates the potential of feedback con-
trol. We therefore determine the set-pointsy

set
by op-

timization over the set of disturbance scenarios.
The optimal set-point results from solving

max
yset

n

∑
i=1

J(ui,con,di) (9)

s.t.:∀di :

ẋ = f (ui,con,x,di) = 0

y
set

= m(x) = M(ui,con,di)

umin≤ ui,con≤ umax

xmin≤ x≤ xmax.

Note that the constraints on the inputs and on the state
variables in (9) may be infeasible, indicating that this
control structure is unsuitable for regulatory control
to a fixed set-point because there exists no set-point
that can be attained for all disturbances considered for
the given constraints on the process inputs and process
states.

3.5 Quantitative evaluation of the benefits of the
control structures

For all scenariosdi , the optimization problems (3) are
solved and the weighted sum of the values is deter-
mined. This yields the expected worst-case profit for
each structure. In addition, maximization instead of
minimization in (3) over the possible sensor errors may
be performed. If the results of the two computations
are close to each other, the selected variables constrain
the process efficiently, whereas a large difference in-
dicates that constraining this set of variables does not
constrain the inputs very strongly. Some of the vari-
ables then are not efficient to control the process.

3.6 Dynamic analysis

Steps 3.1-3.5 yield an ordered set of control struc-
tures which are attractive with respect to the expected
profit for stationary or slowly varying disturbances. It
is however possible (if not likely) that some of these
structures are not suitable for dynamic operation. Dy-
namic controllability is therefore assessed in the next
step using linear techniques. The approach used is

described in detail in (Engellet al., 2004). The key
idea is that after using performance indices to exclude
e.g. structures with small right half plane zeros, the
attainable dynamic performance is computed over all
stabilizing linear time-invariant controllers. The corre-
sponding controllers are of high order. For a detailed
analysis of the resulting dynamic performance, these
controllers are approximated by low-order controllers
with prescribed structure by the method described in
(Müller et al., 1995) and then tested in simulations
with the rigorous dynamic model.

4. EXAMPLE: REACTIVE DISTILLATION

The methodology described above is applied to the re-
active distillation column for the production of methyl
acetate shown in figure 2. The column with an inner
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Fig. 2. Reacitve Distillation Column

diameter of 100mm is operated at our university as a
pilot plant. Its height is about six meters. The column
has three packings of one meter height each. The upper
packing is used for separation, while the two lower
packings include an ion exchange resin to catalyze the
chemical reaction of methanol (MeOH) and acetic acid
(HAc) to methyl acetate (MeAc) and water:

MeOH+HAc MeAc+H2O.

The reaction is an equilibrium reaction and the re-
sulting mixture is difficult to separate. By integrating
reaction and distillation, pure methyl acetate can be
obtained at the top (Agredaet al., 1990) and (Huss
et al., 2003). In our case, the re-boiler is filled with
methanol at the beginning of the batch and the by-
product water accumulates in the re-boiler. We assume
that the trajectory of the acetic acid flow over the
batch run is given as the result of an optimization as
described in (Engell and Fernholz, 2003) while the
reflux ratio and the heat supply are operating degrees



of freedom. Measurable variables are four tempera-
tures in each packing, the distillate flow, and the molar
fractions in the distillate stream. For a conventional
square control structure, there are

(
dim(y)
dim(u)

)
=

(
17
2

)
=

17!
(17−2)!2!

= 136

possibilities to control two measured variables by the
two available manipulated variables.
The objective function for this process describes the
earnings from the main product minus the costs of
methanol and heating:

J = cMeAcṅMeAc−cMeOHṅMeOH−cheatqheat. (10)

As the acetic acid stream is not manipulated, its cost
is not included here. To guarantee the required quality
of the main product, the molar fraction of MeAc in the
top product is constrained to values not less than 0.8.
For the control structure selection, we consider the
batch process as quasi-stationary. This corresponds to
an infinitely large re-boiler and a constant composition
of the vapour entering the column. The vapour compo-
sition used in the analysis corresponds to the batch run
at three hours after the start of the regular operation.
The variation over the batch is taken into account as a
disturbance in the control structure selection process.
For the final validation of the control performance, a
rigorous dynamic simulation of the batch process is
performed.
To reduce the number of 136 structures, the influ-
ence of the sensor errors was investigated first. The
result was that 66 structures can be discarded because
σmax(S) is more than 10 times larger than in the best
case. The excluded structures use measurements with
large relative sensor errors, e. g. the molar fraction of
acetic acid in the top product, or measured variables in
the lower part of the column, which are only weakly
affected by the disturbances. The disturbance scenar-
ios were chosen by a worst case analysis. We consider
an additional heat loss in the heat-supply system of
500W, a reduction of the reaction rate by 10% and sub-
cooling of the condensate by 40K. An additional sce-
nario describes the change in the vapour composition
during the batch run. The methanol fraction changes
from 93% at 3h to 70% at 12h of the optimal trajectory
of the batch.
The nominal operating point is defined by a heating
power of 3250W, a reflux ratio of 0.63 and a feed of
acetic acid of0.0387mol

s , the profit at this point is set
to 100 percent.
As result of the optimization referring to (9) five struc-
tures are excluded from the further investigation, be-
cause no common set-point could be found.
During the minimizations (3) the hard constraints on
the product quality are omitted and the control struc-
ture is required to keep meet this constraint. Seven
structures can not guarantee a required quality of 77%
MeAc. Only 77% are specified as a sensor error of 3
mol% is assumed for the concentration measurement.
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Fig. 3. Response of the controlled variables on a step
in the set-points
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Fig. 4. Performance in non-linear simulations

The errors of the temperature sensors is assumed to be
0.3K and the flow can be measured with an accuracy
of 1%.
17 additional structures are excluded because the aver-
age profit decreases to approx. 75%. For the remaining
41 structures the dynamic behaviour is evaluated sim-
ilar to (Dadheet al., 2002).
First the zeros of the transfer function of each struc-
ture are calculated. Small zeros in the right half plane
denote a large rise time. Here rhp zeros with absolute
values smaller than 0.01 are not acceptable. Eleven
of the 41 structures are rejected by this criterium.
Another five structures are discarded by the investi-
gation of the condition number. A condition number
smaller than ten in the area of the crossover frequency
(10−2...10−3) is requested for suitable structures. The
next step is to calculate the optimal control perfor-
mance (Völker and Engell, 2004) and to design a con-
troller for the most promising structure, which uses the
measurementsxMeAcandT5. The responses of the ideal
and the real controller for a linearized model on a set-
point-step is shown in the figure 3. The temperature
andxMeAc are scaled such that 5K and 5% are mapped
to one, respectively. The figure shows that the real
controller achieves nearly the same performance as the
ideal one and there are only small couplings between
the controlled variables. Also the settling time of two
hours is very good for this system. Figure 4 shows the
control performance during a final test in a non-linear
simulation of the batch run. The first hour is used for
the start-up of the plant. Then closed-loop control is
applied and the controlled variables are adjusted to



their setpoints. These setpoints can be kept for more
than 10 hours, until the controlled temperature drifts
away. At this moment the fraction of methanol in the
reboiler is less then 10%, what usually denotes the end
of the batch. The manipulated variables also reflect this
situation, as they reach their upper bounds. Over the
complete batch the profit grows continuously.
For the worst case disturbance of a 20% decrease in the
reaction rate the profit for closed-loop control drops
to 95%. This is clearly more than the 80%, which are
achieved by applying the nominal open-loop input val-
ues in this case. Even if disturbances are considered,
that are larger than supposed during the optimizations,
the controller is able to maintain the controlled vari-
ables at their set-points.

5. CONCLUSIONS AND FUTURE WORK

A methodology for control structure selection was
presented that takes the steady state economy into
account as well as the dynamic behaviour. The method
was successfully applied to the example of a reactive
distillation column.
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