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Last time

Control error
e = −Sr + SGdd + Tn

Aim: design controller K so that
|S(jω)| is small for frequencies where d and r important

|T (jω)| is small for frequencies where n large

approaches: loop shaping, signal based optimization, . . .
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Shaping S and T

|S| < 1/|wp| ∀ω ⇔ ‖wPS‖∞ < 1 |T | < 1/|wT | ∀ω ⇔ ‖wT T‖∞ < 1

Q: can we shape S and T freely, i.e., choose any weights wP , wT ?

A: No! there exist a number of fundamental constraints
algebraic constraints
analytic constraints

and also practical constraints such as bounds on the manipulated
variables
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Outline

Algebraic constraints
S + T = 1
Interpolation constraints

Analytic constraints
preliminaries from analytic function theory
RHP poles and zeros
Bode Sensitivity Integral and extensions

Practical constraints: input constraints
Summary: a procedure for controllability analysis

(Exercise 1)
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Algebraic constraint I: S+T=1

Recall
S =

1
1 + L

; T =
L

1 + L
Hence

S(jω) + T (jω) = 1 ∀ω

It follows that, at any frequency

|S(jω)| > 0.5 or |T (jω)| > 0.5
– cannot deal effectively with both disturbances and measurement

noise at the same frequency
– cannot choose |wP | > 1 and |wT | > 1 at the same frequency

|S| >> 1 ⇔ |T | >> 1
– amplifying disturbances implies amplification also of noise and vice

versa
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Algebraic constraint II: interpolation constraints

S(s) =
1

1 + L(s)
; T (s) =

L(s)

1 + L(s)
L(s) = G(s)K (s)

Let z denote a RHP zero of G(s) or K (s). Then

S(z) = 1 ; T (z) = 0

– follows since internal stability implies that L(s) must have the same
RHP zero, i.e., L(z) = 0

Let p denote a RHP pole of G(s) or K (s). Then

S(p) = 0 ; T (p) = 1

– as above, L(p) =∞ due to requirement of internal stability
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Preliminaries I: The Maximum Modulus Theorem

Maximum Modulus Thm. Suppose that Ω is a region in the complex
plane and F is an analytic function in Ω and, furthermore, that F is not
equal to a constant. Then |F | attains its maximum value at the
boundary of Ω.

S and T are stable transfer-functions and hence analytic in the
complex RHP, for which the boundary is the jω-axis.
A trivial consequence is

‖S‖∞ ≥ S(z) = 1 ; ‖T‖∞ ≥ T (p) = 1

However, not too useful bounds. Need to add weights to get
meaningful constraints.
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Lower Bound on Weighted Sensitivity from RHP zero

From Maximum Modulus Thm, with RHP zero z

‖wPS‖∞ ≥ |wP(z)S(z)| = |wP(z)|

Thus, since control objective is ‖wPS‖∞ < 1 we require

|wP(z)| < 1

Example: consider weight

wP(s) =
s/M + ω∗B

s

– if M =∞, then wP(z) = ω∗B/z and ω∗B < z

– if M = 2, then wP(z) = (z/2 + ω∗B)/z and ω∗B < z/2
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Lower Bound on Weighted Complimentary Sensitivity
from RHP pole

From Maximum Modulus Thm, with RHP pole p

‖wT T‖∞ ≥ |wT (p)T (p)| = |wT (p)|

Thus, with control objective ‖wT T‖∞ < 1 we require

|wT (p)| < 1

Example: consider weight

wT (s) =
MT s + ω∗BT
ω∗BT MT

– if MT =∞, then wP(z) = p/ω∗BT and ω∗BT > p

– if MT = 2, then wT (p) = (2p + ω∗BT )/2ω∗BT and ω∗BT > 2p
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Combined RHP pole and RHP zero - bandwidth
limitations

Assume ωB ≈ ωBT ≈ ωc and we require M < 2,MT < 2. Then,
for a RHP zero

ωc < z/2

for a RHP pole
ωc > 2p

Thus, can only achieve acceptable performance if 2p < z/2 or

z > 4p

– poles and zeros close to eachother in the RHP are fundamentally
difficult to deal with
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Combined RHP pole and RHP zero - minimum peaks

Recall that S(p) = 0. Factor sensitivity function S as

S = Smp
s − p
s + p︸ ︷︷ ︸

Sap

It follows that, since S(z) = 1,

Smp(z) = S−1
ap (z) =

z + p
z − p

Maximum Modulus Thm

‖wPS‖∞ = ‖wPSmp‖∞ ≥ |wP(z)Smp(z)| = |wP(z)
z + p
z − p

|

Example: wP = 1

‖S‖∞ ≥
|z + p|
|z − p|
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Similarily, T (z) = 0 and we get

‖wT T‖∞ ≥ |wT (p)
p + z
p − z

|

Example: wT = 1

‖T‖∞ ≥
|z + p|
|z − p|

Thus, combination of RHP pole and RHP zero greatly amplifies the
effect they would have alone!
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Example: Stabilization of Cart-Pendulum

X (s) =
ls2 − g

s2(Mls2 − (M + m)g)
F (s)

z =

√
g
l
, p = z

√
1 + m/M

With l = 1 and m = M: z =
√

10, p =
√

20 ⇒

‖S‖∞ > 5.8, ‖T‖∞ > 5.8

With l = 1 and m = 0.1M: z =
√

10, p =
√

11 ⇒

‖S‖∞ > 42, ‖T‖∞ > 42
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RHP poles and control limitations

RHP poles combined with other bandwidth limitations, such as
time delays and input constraints, give similar results
Example: 1st order Padé approximation of time-delay

e−θs ≈
1− θ

2s
1 + θ

2s
⇒ z =

2
θ

Real life examples:
X-29 JAS 39 Gripen
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Fundamental trade-off between different frequencies

Plot of typical sensitivity function

frequencies where |S| < 1: feedback improves performance
frequencies where |S| > 1: feedback deteriorates performance

Shall see: decreasing |S| at one frequency has to be compensated by
increasing |S| at some other frequency.
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Pole excess of two → maxω |S| > 1

Assume loop-gain L(s) is stable and has pole excess ≥ 2, then the
distance between L(jω) and −1 is less than 1 for some ω

|1 + L(jω)| < 1 ⇔ |S(jω)| > 1

“Proof”: arg L(jω) will be between −π/2 and −π, i.e., L passes 3rd
quadrant, for some frequencies, and |L| → 0 and arg L ≤ −π as
ω →∞. Finally, for closed-loop stability L may no encircle −1.
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Preliminaries II: Cauchy Integral Theorem

Cauchy’s Thm. Suppose that Ω is an open, simply connected set and
Γ is a non-self-intersecting closed contour in Ω, Then, if F is an
analytic function in Ω ∫

Γ
F (s)ds = 0

Alternative formulation
Let γ : [0,1]→ Ω be a differentiable function such that γ(0) = γ(1)

Then ∫ 1

0
F (γ(t))γ′(t)dt =

∫
Γ

F (s)ds = 0
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The Sensitivity Integral - open-loop stable systems

Assume L(s) is stable and rational with relative degree nr > 1. Then,
for closed-loop stability, the sensitivity function S(s) = (1 + L(s))−1

must satisfy ∫ ∞
0

ln |S(jω)|dω = 0

note: consider ln |S| versus linear ω-axis
area for |S| < 1 must be exactly matched by area for |S| > 1
“Waterbed effect”: pushing down sensitivity at one frequency
increases sensitivity at some other frequency
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Sketch of proof

The function ln |S(s)| is analytic on the RHP, hence∫
D

ln |S(s)|ds =

∫
Ci

ln |S(s)|ds +

∫
C∞

ln |S(s)|ds = 0

i.e.,

j
∫ ∞

0
ln |S(jω)|dω =

1
2

∫
C∞

ln |1 + L(s)|ds

For large s, ln |1 + L(s)| ≈ ln |1 + as−nr | ≈ |as−nr |, so on CE with
γ = Eejt

1
2

ln |1 + L(s)| ≈
∫ π/2

0
| a
Enr

e−jnr t |Ejejtdt =

− aj
Enr−1

∫ π/2

0
ejtdt = − aj

Enr−1
π

2

For nr > 1 the integral converges to zero which gives the result.
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Making the trade-off

From Stein (IEE CS, 2003, see homepage):

Manual loop-shaping: Optimization:
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Bode Sensitivity Integral

Theorem 5.1: assume L(s) rational with relative degree nr > 1 and
with NP RHP poles at pi . Then, for closed-loop stability, the sensitivity
function must satisfy

∫ ∞
0

ln |S(jω)|dω = π

NP∑
i=1

Re(pi)

Proof sketch: write Ŝ(s) = S(s)
∏

i
s+pi
s−pi

which yields integral as
above but with addition of

NP∑
i=1

∫
D

ln
|s + pi |
|s − pi |

ds = −jπ
NP∑
i=1

pi
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Sensitivity Integral - RHP zeros

The Bode Sensitivity Integral applicable to all systems
When L(s) has a RHP zero z, the sensitivity function must also
satisfy the integral (Freudenberg and Looze, 1988)∫ ∞

0
ln |S(jω)| · w(z, ω)dω = π ln

Np∏
i=1

∣∣∣∣pi + z
p̄i − z

∣∣∣∣
where

w(z, ω) =
2z

z2 + ω2

– the weight w(z, ω) falls off with a −2 slope from ω = z, i.e.,
effectively cuts of contributions for frequencies ω > z, i.e., for a
stable system ∫ z

0
ln |S|dω ≈ 0

Trade-off must be made over a limited frequency range
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Example: impact of RHP zero on Sensitivity

Sensitivity function for systems with loop-gains

L1 =
2

s(s + 1)
; L2 = L1

−s + 5
s + 5
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Summary Fundamental Constraints

For all systems: S + T = 1 ∀ω
if RHP zero at s = z then ‖wPS‖∞ < 1 require |wP(z)| < 1

– e.g., MS < 2 ⇒ ωB < z/2

if RHP pole at s = p then ‖wT T‖∞ < require |wT (p)| < 1
– e.g., MT < 2 ⇒ wBT > 2p

Sensitivity reduction at on frequency must always be traded
against a sensitivity increase at another frequency∫ ∞

0
ln |S|dω = 0
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Summary cont’d

Combined RHP pole and RHP zero can impose much more
severe constraints than individual effects, e.g.,

‖wPS‖∞ ≥ |wP(z)
z + p
z − p

| ; ‖wT T‖∞ ≥ |wT (z)
p + z
p − z

|

‖S‖∞ ≥
|z + p|
|z − p|

; ‖T‖∞ ≥
|z + p|
|z − p|

∫ ∞
0

ln |S(jω)| · w(z, ω)dω = π ln
Np∏
i=1

∣∣∣∣pi + z
p̄i − z

∣∣∣∣
For similar limitations on other closed-loop transfer-functions see
S&P Table 5.1
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Practical Limitations: Input Constraints

Input for perfect control e = 0

u = G−1r −G−1Gdd

Disturbances: r = 0 and |d | = 1 yields

|u| = |G−1Gd | < 1 ∀ω

corresponds to requiring |G| > |Gd | ∀ω.
Setpoints: d = 0 and |r | = R yields

|u| = |G−1R| < 1 ∀ω < ωr

corresponds to requiring |G| > R ∀ω < ωr

For acceptable control, i.e., |e| < 1, requirements are relaxed to

|G| > |Gd | − 1 ∀ω ; |G| > |R| − 1 ∀ω
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Example

From exercise 1:

y =
100

(5s + 1)(0.5s + 1)2 u +
20

5s + 1
d

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

ω [rad/s]

|G|
|G

d
|

|G| > |Gd | − 1 at all frequencies, but close to limit.
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Summary: a simple procedure for controllability
analysis

Assume system has been scaled as described above
Performance requirements from disturbances / setpoints:
require |SGd | < 1 or |S| < 1/|Gd |. Corresponds to bandwidth
requirement

ωB > ωd

Similar for setpoints, require |S| < 1/|R| up to ω = ωr

Requirement from RHP poles: RHP pole at p yields requirement

ωBT > 2p

Limitations from RHP zeros: RHP zero at z yields approximate
limitation

ωB < z/2
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Limitations from time delay: time delay θ yields

ωB < 1/θ

Limitations from input constraints: require

|G| > |Gd | − 1 ; |G| > |R| − 1

If any conflicts between requirements and limitations, then modify
requirements or redesign your system!
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Exercise 1 – one solution

Unscaled system

Ĝ(s) =
5

(5s + 1)(0.5s + 1)2 ; Ĝd (s) =
2

5s + 1

Scaling: |y | < 0.1 = Dy , |d | < 1 = Dd , |u| < 2 = Du, R =?

G = D−1
y ĜDu ; Gd = D−1

y ĜdDd

G(s) =
100

(5s + 1)(0.5s + 1)2 ; Gd (s) =
2

5s + 1
Controllability: main limitation is input constraint

10
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10
0
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|G|
|G

d
|

Specifications should be feasible, but
relatively tight
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Bandwidth requirements:
for disturbances: ωB ≈ 4
for setpoints: ωB ≈ 2 (rise time 1 for τ ≈ 0.5)
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Design for disturbance: try first with loop-gain

L =
s + wI

s
Gd

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

10
4

frequency [rad/s]

|L|

|G
d
|

wI = 0.5 gives acceptable disturbance response

Lecture 2: SISO performance limitations () FEL3210 MIMO Control 32 / 41



Step response:

0 2 4 6 8 10
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OK!
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Inverse based design gives improper controller

K1 =
s + wI

s
(s + 2)2

5
make proper by adding poles at high frequency

K = K1
1

(0.01s + 1)2

Get essentially same response
Plot of |S|
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Plot of |SGd |:
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Input usage
|u| = |KSGd |

10
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0

frequency [rad/s]

Apparent problems at high frequencies, may need to add furher
filtering poles in K at high frequencies.
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Input for step disturbance:

0 0.5 1 1.5 2 2.5 3
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OK!
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Bandwidth should be OK for setpoints. Step response for unit step in
reference:

0 1 2 3 4 5
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OK!
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Corresponding input:

0 0.2 0.4 0.6 0.8 1
0
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Unacceptable!
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Solution: add prefilter on setpoint (2-DOF controller)

Fr =
1

0.2s + 1
gives sufficient damping of |KS| at high-frequencies
u:
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response in y :
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OK!
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