FEL3210 Multivariable Feedback Control

Elling W. Jacobsen
Automatic Control Lab, KTH

Lecture 2: Performance Limitations in SISO Systems (Ch. 5)
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Last time

Control error

e=—-Sr+ SGyd+ Tn

Aim: design controller K so that
@ |S(jw)| is small for frequencies where d and r important

@ |T(jw)| is small for frequencies where n large

approaches: loop shaping, signal based optimization, ...
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|S| < 1/|wWp| Vw & ||WpS|ls < 1 T <1/|wr|Vw & ||wrT|le <1

@ Q: can we shape S and T freely, i.e., choose any weights wp, wr?

@ A: Nol! there exist a number of fundamental constraints

e algebraic constraints
e analytic constraints

and also practical constraints such as bounds on the manipulated
variables

3/41
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|
Outline

@ Algebraic constraints

e S+ T=1
o Interpolation constraints

@ Analytic constraints

e preliminaries from analytic function theory
e RHP poles and zeros
e Bode Sensitivity Integral and extensions

@ Practical constraints: input constraints
@ Summary: a procedure for controllability analysis

@ (Exercise 1)
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N
Algebraic constraint |: S+T=1

Recall

Hence
S(jw) + T(jw) =1 Vw

It follows that, at any frequency

@ |S(jw)| > 0.50r|T(jw)| > 0.5
— cannot deal effectively with both disturbances and measurement
noise at the same frequency
— cannot choose |wp| > 1 and |wr| > 1 at the same frequency

@ [S|>>1 & [T|>>1
— amplifying disturbances implies amplification also of noise and vice
versa
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|
Algebraic constraint Il: interpolation constraints

_ 1 _ L(s)
SO =151 T =10

L(s) = G(s)K(s)

@ Let z denote a RHP zero of G(s) or K(s). Then

S(z)=1;, T(z)=0

— follows since internal stability implies that L(s) must have the same
RHP zero, i.e., L(z) =0
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|
Algebraic constraint Il: interpolation constraints

_ 1 _ L(s)
SO =151 T =10

L(s) = G(s)K(s)

@ Let z denote a RHP zero of G(s) or K(s). Then

S(z)=1;, T(z)=0

— follows since internal stability implies that L(s) must have the same
RHP zero, i.e., L(z) =0

@ Let p denote a RHP pole of G(s) or K(s). Then

S(p)=0; T(p)=1
— as above, L(p) = oo due to requirement of internal stability
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Preliminaries |: The Maximum Modulus Theorem

Maximum Modulus Thm. Suppose that Q) is a region in the complex
plane and F is an analytic function in Q and, furthermore, that F is not
equal to a constant. Then |F| attains its maximum value at the
boundary of Q.

@ Sand T are stable transfer-functions and hence analytic in the
complex RHP, for which the boundary is the jw-axis.

@ A trivial consequence is
ISllc > S(2) =1; [ITlloc > T(p) =1

However, not too useful bounds. Need to add weights to get
meaningful constraints.
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-
Lower Bound on Weighted Sensitivity from RHP zero

@ From Maximum Modulus Thm, with RHP zero z
[Wp S|l > [Wp(2)S(2)| = [wp(2)]

@ Thus, since control objective is ||[wpS||s < 1 we require

jwp(2)] <1
@ Example: consider weight
S/M + wi
wp(s) = %

— if M = o0, then wp(z) = wj/zand w; < z

— if M = 2, then wp(2) = (2/2 + w})/z and
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|
Lower Bound on Weighted Complimentary Sensitivity
from RHP pole

@ From Maximum Modulus Thm, with RHP pole p
[Wr Tlloe = |wr(p)T(p)| = [wr(p)|

@ Thus, with control objective ||wr T||., < 1 we require

jwr(p)| <1
@ Example: consider weight
M *
wr(s) = —Tf BT
wgrMr

— if Mt = oo, then wp(z) = p/wgr and wgr > p

— if My =2, then wr(p) = (2p + wi)/2w}, and
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Combined RHP pole and RHP zero - bandwidth
limitations

Assume wg =~ wgT ~ we and we require M < 2, My < 2. Then,

@ for a RHP zero
we < 2/2

@ for a RHP pole
We > 2p

Thus, can only achieve acceptable performance if 2p < z/2 or

z>4p

— poles and zeros close to eachother in the RHP are fundamentally
difficult to deal with
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Combined RHP pole and RHP zero - minimum peaks

@ Recall that S(p) = 0. Factor sensitivity function S as

g S—P
T "™ s4p
——
Sap

@ It follows that, since S(z) =1,

N Z+
Smp(2) = Sz1(2) = 2P

zZ—p

@ Maximum Modulus Thm
Z+p
zZ—p

WpSl|oo = [[WpSmplloo > [Wp(2)Smp(2)| = |Wp(2)
@ Example: wp =1
|z +pl
z—pl
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@ Similarily, T(z) = 0 and we get

p+z
p—z

WrTlloo > |wr(p)

@ Example: wr =1

Thus, combination of RHP pole and RHP zero greatly amplifies the
effect they would have alone!
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Example: Stabilization of Cart-Pendulum

Is? — g
Mz — M+ m)g) &

X(s) =

z:\/g, p=2zy/1+m/M

o With/=1andm=M:z=10, p=v20 =
[[Sllec > 9.8, T|loo > 5.8
e With/=1and m=0.1M: z=+v10, p=v11 =

1S]lcc > 42, ([ Tl[oc > 42
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RHP poles and control limitations
@ RHP poles combined with other bandwidth limitations, such as

time delays and input constraints, give similar results
@ Example: 1st order Padé approximation of time-delay

@ Real life examples:
X-29
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Fundamental trade-off between different frequencies

Plot of typical sensitivity function

I'v'lag;limc_le

Fraquency [rad's]
@ frequencies where |S| < 1: feedback improves performance
@ frequencies where |S| > 1: feedback deteriorates performance

Shall see: decreasing |S| at one frequency has to be compensated by
increasing | S| at some other frequency.
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|
Pole excess of two — max, |S| > 1

Assume loop-gain L(s) is stable and has pole excess > 2, then the
distance between L(jw) and —1 is less than 1 for some w

b Im

Lis) =2

ETEES Y]

Lijw)

1+ L(jw) <1 < |S(jw)| >1

“Proof”: arg L(jw) will be between —7/2 and —, i.e., L passes 3rd
quadrant, for some frequencies, and |L| — 0 and argL < —7 as
w — oo. Finally, for closed-loop stability L may no encircle —1.

Lecture 2: SISO performance limitations () FEL3210 MIMO Control 16/41



-
Preliminaries |l: Cauchy Integral Theorem

Cauchy’s Thm. Suppose that Q is an open, simply connected set and
I is a non-self-intersecting closed contour in ©, Then, if F is an
analytic function in Q

/rF(s)ds =0

Alternative formulation

@ Let~:[0,1] — Q be a differentiable function such that v(0) = ~(1)
@ Then

1
| Faywd = [ Feds=o
0 r
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|
The Sensitivity Integral - open-loop stable systems

Assume L(s) is stable and rational with relative degree n, > 1. Then,
for closed-loop stability, the sensitivity function S(s) = (1 + L(s))™"
must satisfy

/Ooln|8(jw)|dw:0
0

@ note: consider In|S| versus linear w-axis
@ area for |S| < 1 must be exactly matched by area for |S| > 1

o “Waterbed effect”: pushing down sensitivity at one frequency
increases sensitivity at some other frequency
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|
Sketch of proof

@ The function In|S(s)| is analytic on the RHP, hence

/Dln|8(s)|ds:/Ciln|S(s)|ds+/Coo In|S(s)|ds = 0

j/ In|S(jw)\dw:1/ In|1+ L(s)|ds
0 2 Jeo,

@ Forlarge s, In|1 + L(s)| = In|1 + as™™| ~ |as~"™|, so on Cg with

v = Eélt
1 T2 a . :
_ ~ < oIt Eialt A —
21+ L(s) /0 | e | Ejel
, /2 ,
aj it e a
- En—1 0 e'dt = — En—12

@ For n, > 1 the integral converges to zero which gives the result. .
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Making the trade-off

From Stein (IEE CS, 2003, see homepage):

Manual loop-shaping: Optimization:

Formal Design

Serious Design

- —— z
Formal Synthesi 3

Log Magnitude
Log Magnitude

1.0 15 . .
Frequency 00 05 1.0 1.5 20
Frequency
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Bode Sensitivity Integral

Theorem 5.1: assume L(s) rational with relative degree n, > 1 and
with Np RHP poles at p;. Then, for closed-loop stability, the sensitivity
function must satisfy

00 Np
/O In|S(jw)|dw = 7> Re(p)

i=1

@ Proof sketch: write 5(s) = S(s) [1; sz;; which yields integral as
above but with addition of

Np Np
s + pil ,
In das = — -
;/D s—p % TP
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Sensitivity Integral - RHP zeros

@ The Bode Sensitivity Integral applicable to all systems
@ When L(s) has a RHP zero z, the sensitivity function must also
satisfy the integral (Freudenberg and Looze, 1988)
pi+2z
pi— 2z

[e's) No
/ In[S(jw)| - w(z,w)dw =wIn] |
0 i=1

where
2z

22 + w2

— the weight w(z,w) falls off with a —2 slope from w = z, i.e.,
effectively cuts of contributions for frequencies w > z, i.e., for a
stable system

w(z,w) =

V4
/ In|S|dw ~ 0
0

Trade-off must be made over a limited frequency range
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Example: impact of RHP zero on Sensitivity

Sensitivity function for systems with loop-gains

2 —-s+5
Li=—F,; L=L
T s(s+1) 2 Ts+5
o
§1n:-‘ T T T T T
L= 'S "l
T 5
10 b | R e e e T e - sy compny oy - -
)
2 Ezual mreas
‘Em - el
£
= =3 1 1 1 1 1
-_glmj 1 B 5

z 3 P
Frequency (linear seale)
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|
Summary Fundamental Constraints

@ Forall systems: S+ T =1 Vw

@ if RHP zero at s = z then ||wpS|| < 1 require |wp(2)| < 1
-eg,.Ms<2 = wp<z/2

@ if RHP pole at s = p then ||wr T || < require |wr(p)| < 1
—eg,Mr<2 = wsr>2p

@ Sensitivity reduction at on frequency must always be traded
against a sensitivity increase at another frequency

/ In|S|dw = 0
0
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|
Summary contd

@ Combined RHP pole and RHP zero can impose much more
severe constraints than individual effects, e.g.,

Z + +z
[WeSlloe = [We(2) 5215 Wi Tloo = Iwr(2) 22
Z+ Z+
1Slloe > ZFPL 7y, 5 I2EP
z—p z—p
0o No p+z
In|S(jw)|- w(z,w)dw = 7In i
| st wiz.«) 5=

@ For similar limitations on other closed-loop transfer-functions see
S&P Table 5.1
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BENSS——.
Practical Limitations: Input Constraints

Input for perfect control e = 0
u=G'r— G 'Gyd
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|
Practical Limitations: Input Constraints

Input for perfect control e = 0
u=G'r-G'Gyd
@ Disturbances: r = 0 and |d| = 1 yields
lu =G "Gyl <1 Vw

corresponds to requiring |G| > |Gy| Vw.
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-
Practical Limitations: Input Constraints
Input for perfect control e = 0
u=G'r-G'Gyd
@ Disturbances: r = 0 and |d| = 1 yields
lu =G "Gyl <1 Vw

corresponds to requiring |G| > |Gy| Vw.
@ Setpoints: d =0 and |r| = R yields

lul=|G 'Rl <1 VYw < w,

corresponds to requiring |G| > R Vw < wy
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-
Practical Limitations: Input Constraints
Input for perfect control e = 0
u=G'r-G'Gyd
@ Disturbances: r = 0 and |d| = 1 yields
lu =G "Gyl <1 Vw

corresponds to requiring |G| > |G| Vw.
@ Setpoints: d = 0 and |r| = R yields

lu=|G 'Rl <1 Yw<uw
corresponds to requiring |G| > R Vw < wy

For acceptable control, i.e., |e| < 1, requirements are relaxed to

1G> |G| —1 Yw; |G >|R—1 Y
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-
Example

From exercise 1:

100 g 20
(5s+1)(0.5s+ 1)2 55+ 1

10

10' b IG

10" F

10k

2,

0 ; ; ;
10° 107 10" 10° 10'
w [rad/s]

|G| > |Gy| — 1 at all frequencies, but close to limit.
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-
Summary: a simple procedure for controllability
analysis

Assume system has been scaled as described above

@ Performance requirements from disturbances / setpoints:
require |SGy| < 1 or |S| < 1/|Gy|. Corresponds to bandwidth
requirement

wp > Wg
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-
Summary: a simple procedure for controllability
analysis

Assume system has been scaled as described above

@ Performance requirements from disturbances / setpoints:
require |SGy| < 1 or |S| < 1/|Gy|. Corresponds to bandwidth
requirement

wp > Wg

Similar for setpoints, require |S| < 1/|R| up to w = wy
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-
Summary: a simple procedure for controllability
analysis

Assume system has been scaled as described above
@ Performance requirements from disturbances / setpoints:
require |SGy| < 1 or |S| < 1/|Gy|. Corresponds to bandwidth
requirement
wB > Wy
Similar for setpoints, require |S| < 1/|R| up to w = wy
@ Requirement from RHP poles: RHP pole at p yields requirement

wpT > 2p
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-
Summary: a simple procedure for controllability
analysis

Assume system has been scaled as described above

@ Performance requirements from disturbances / setpoints:
require |SGy| < 1 or |S| < 1/|Gy|. Corresponds to bandwidth
requirement

wpB > Wg
Similar for setpoints, require |S| < 1/|R| up to w = wy
@ Requirement from RHP poles: RHP pole at p yields requirement

wBT > 2p
@ Limitations from RHP zeros: RHP zero at z yields approximate

limitation
wp < 2/2

Lecture 2: SISO performance limitations () FEL3210 MIMO Control 28 /41



@ Limitations from time delay: time delay 6 yields

w5<1/0
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@ Limitations from time delay: time delay 6 yields
wp < 1/9
@ Limitations from input constraints: require

|Gl > [Gal =1; |G| > |R|] -1
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@ Limitations from time delay: time delay 6 yields
wg<1/0
@ Limitations from input constraints: require
|Gl > |Gl =1 |G| >|R]-1

If any conflicts between requirements and limitations, then modify
requirements or redesign your system!

Lecture 2: SISO performance limitations () FEL3210 MIMO Control 29 /41



|
Exercise 1 — one solution
Unscaled system
. 5 . 2
G(s) = (5s+1)(0.55+ 1)2 " Ga(s) = 5577
@ Scaling: |y| < 0.1 =Dy, |d| <1=Dy,|u <2=Dy, R=?
G=D,'GD,; Gq=D,"'GgDy

100 2
(Bs+1)(05s+ 12 GelS)=

Gle) = “5sid

@ Controllability: main limitation is input constraint

Specifications should be feasible, but
relatively tight

witadis]
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@ Bandwidth requirements:

o for disturbances: wg ~ 4
o for setpoints: wg ~ 2 (rise time 1 for 7 ~ 0.5)
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@ Design for disturbance: try first with loop-gain

L S+ w G
= d
S
10*
10° i N HE : : e E
, Lt
10 . IR : : e 4
16,1
20" foon S ; . i g
10° k 4
10-1 1 1 1
107° 107 10" 10° 10"

frequency [rad/s]

w; = 0.5 gives acceptable disturbance response
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Step response:

Step Response

0.8 T T T T

0.7f .

0.6 .

0.5F .

0.4H .

Amplitude

0.3 b

0.2 b

0.1 i

0 ; ; ; n
0 2 4 6 8 10

Time (sec)

OK!
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Inverse based design gives improper controller
s+ w(s+2)?

Ki
S 5
make proper by adding poles at high frequency
1
K=K—————-—
1(0.01s+1)2

Get essentially same response
Plot of | S|

10° 107 107 10° 10" 10° 10°
frequency [rad/s]
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I
Plot of | SGy

10

0

10

10

1071 1
frequency [rad/s]

10

Lecture 2: SISO performance limitations () FEL3210 MIMO Control



@ Input usage

100 Lo

N N ,ZZZZZ;
-3 -2

10

10 10" 10
frequency [rad/s]

10

Apparent problems at high frequencies, may need to add furher

filtering poles in K at high frequencies.
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Input for step disturbance:

Step Response

1 T T T T T

0.9F 1

0.7H 1

0.5 1

Amplitude

0.4 i

0.2
o1} fﬁ ]
0 . . . . .

0 0.5 1 15 2 25 3

Time (sec)

OK!
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Bandwidth should be OK for setpoints. Step response for unit step in
reference:

Step Response

0.8f b

0.6f i

Amplitude

0.4f .

0.2H b

Time (sec)

OK!
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Corresponding input:
Step Response

500 T T T T

450

400

350

Amplitude
N
a1
o

200

150

100

50

0.2 0.4 0.6 0.8 1

Time (sec)

Unacceptable!
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Solution: add prefilter on setpoint (2-DOF controller)
B 1

025+ 1

gives sufficient damping of |KS| at high-frequencies
u:

Fr

Step Response

Amplitude
|
o
i

-0.9
a) A 1=~
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response in y:

Step Response

0.8f 1

0.6f 1

Amplitude

0.4f 1

0.2f 1

0 L L
0 1 2 3 4 5

Time (sec)

OK!
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