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Multivariable Systems

Consider a MIMO systems with m inputs and l outputs

u
G

y

all signals are vectors

u =


u1
u2
...

um

 ; y =


y1
y2
...
yl


the l ×m transfer-matrix G(s) = C(sI − A)−1B + D has elements

Gij(s) =
yi(s)

uj(s)

the system is said to be interactive is some input affects several
outputs, i.e., G(s) can not be made diagonal.
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Poles

The pole polynomial of a system with transfer-matrix G(s) is the
least common denominator of all minors of all orders of G(s). The
poles of the system are the zeros of the pole polynomial

The system is input-output stable if and only if the poles of G(s) are
strictly in the complex left half plane.

Note:
– poles of G(s) are also poles of some Gij(s)

– poles = eigenvalues of A in the state-space description.
– poles can only be moved by feedback
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Zeros

Definition: zi is a zero of G(s) if the rank of G(zi) is less than the
normal rank of G(s)

The zero polynomial of G(s) is the greatest common divisor of all
the numerators for the maximum minors of G(s), normed so that they
have the pole polynomial as the denominator. The zeros of the system
are the zeros of the zero polynomial.

Note:

– need only check the determinant for square systems, but make
sure denominator equals pole polynomial!

– zeros usually computed from state-space description.
See S&P, Ch. 4.

– zeros are invariant under feedback and can only be moved by
parallell interconnections
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Example

G(s) =

(
2

s+1
1

s+2
s+3
s+1

2
s+2

)

minors are all elements and the determinant

det G(s) =
1− s

(s + 1)(s + 2)

LCD: (s + 1)(s + 2), thus poles are s = −1, s = −2
maximum minor, with pole polynomial as denominator, is the
determinant, thus zero at s = 1

Note: there is in general no relation between the zeros of G(s) and the
zeros of its elements.
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Zero and Pole Directions

If z is a zero of G(s) then

G(z)uz = 0 · yz

where uz and yz are the zero input and output directions,
respectively
If p is a pole of G(s) then

G(p)up =∞ · yp

where up and yp are the pole input and output directions,
respectively

– Note that up = BHq and yp = Ct where q and t are the
corresponding left and right eigenvectors of A
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A Trivial Example

G(s) =

(
s−1
s+1 0
0 s+1

s−1

)

For zero at s = 1

uz = yz =

[
1
0

]
For pole at s = 1

up = yp =

[
0
1

]
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The Closed Loop System

from block diagram

e = −Sr + SGdd − Tn

where
S = (I + GK )−1 ; T = GK (I + GK )−1

similar to SISO case, e.g., want magnitude of S(jω) “small” for
reference tracking and disturbance rejection
need scalar measure for size of S and T

Lecture 3:MIMO Systems () FEL3210 MIMO Control 9 / 41



Sidestep: transfer-functions from block diagrams

To derive transfer-function from an input to an output
1 start from output and move against the signal flow towards input
2 write down the blocks, from left to right, as you meet them
3 when you exit a loop, add the term (I + L)−1 where L is the loop

transfer-function evaluated from exit
4 parallell paths should be treated independently and added

together
Also useful, the “push through” rule

A(I + BA)−1 = (I + AB)−1A
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Vector (spatial) Norms

The p-norm for a constant vector

‖x‖p = (Σi |xi |p)
1/p

Most common
p = 1: sum of absolute values of elements
p = 2: Euclidian vector length
p =∞: maximum absolute value of elements

Signal perspective: spatial norms essentially ”sum up channels”
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Induced Matrix Norms

Consider the static system y = Ax
The maximum amplification from input x to output y

‖A‖ip = max
x 6=0

‖Ax‖p
‖x‖p

‖ · ‖ip - the induced p-norm

p = 1: ‖A‖i1 = maxj (Σi |aij |) (maximum column sum)

p =∞: ‖A‖i∞ = maxi (Σj |aij |) (maximum row sum)

p = 2: ‖A‖i2 = σ̄(A) =
√
ρ(AHA) (maximum singular value)
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Temporal (signal) Norms

The temporal p-norm, or the Lp-norm, of a signal e(t) is defined as

‖e(t)‖p =

(∫ ∞
−∞

Σi |ei(τ)|pdτ
)1/p

p = 1: ‖e(t)‖1 =
∫∞
−∞ Σi |ei (τ)|dτ

p = 2: ‖e(t)‖2 =
√∫∞
−∞Σi |ei (τ)|2dτ

p =∞: ‖e(t)‖∞ = supτ (maxi |ei (τ)|)

Signal perspective: temporal norms ”sum up in time”
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(Induced) System Norms

System gains for LTI system y = G(s)u

‖u‖2 ‖u‖∞
‖y‖2 ‖G(s)‖∞ ∞
‖y‖∞ ‖G(s)‖2 ‖g(t)‖1

The L2-gain for LTI systems equals the H∞-norm

‖G(s)‖∞ = sup
ω
σ̄(G) = sup

u 6=0

‖y(t)‖2
‖u(t)‖2

– supω picks out worst frequency, σ̄(·) picks out worst direction
– ”popular” for two reasons: applicable with Small Gain Theorem, and

maximum singular value generalizes the concept of frequency
dependent gain
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The Small Gain Theorem

Small Gain Theorem. Consider a system with a stable loop
transfer-function L(s). Then the closed-loop system is stable if

‖L(jω)‖ < 1 ∀ω

where ‖ · ‖ denotes any matrix norm satisfying the multiplicative
property ‖AB‖ ≤ ‖A‖ · ‖B‖

The maximum singular value σ̄(L) satisifies the multiplicative
property
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MIMO Frequency Domain Analysis
frequency response (in phasor notation)

y(ω) = G(jω)u(ω)

gain for SISO system:

|y(ω)|
|u(ω)|

=
y0

u0
= |G(jω)|

– gain depends on frequency ω only

gain for MIMO system: define gain as

‖y(ω)‖2
‖u(ω)‖2

– gain depends on frequency ω and on direction of input u(ω)
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Static Example

G(0) =

(
1 −0.9
2 −2.1

)

u =

(
1
1

)
⇒ y =

(
0.1
−0.1

)
:
‖y‖2
‖u‖2

= 0.1

u =

(
1
−1

)
⇒ y =

(
1.9
4.1

)
:
‖y‖2
‖u‖2

= 3.2

gain varies with at least a factor 32 with input direction

Lecture 3:MIMO Systems () FEL3210 MIMO Control 17 / 41



Example cont’d

gain as a function of input direction

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

∠  u

||y
||

2/||
u|
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Maximum and Minimum Gains (for fixed ω)

Maximum gain:

max
u 6=0

‖y(ω)‖2
‖u(ω)‖2

= σ̄ (G(jω))

σ̄ – the maximum singular value

Minimum gain:

min
u 6=0

‖y(ω)‖2
‖u(ω)‖2

= σ (G(jω))

σ – the minimum singular value

Thus,

σ (G(jω)) ≤ ‖y(ω)‖2
‖u(ω)‖2

≤ σ̄ (G(jω))
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Singular Value Decompositon – SVD

Let G = G(jω) at a fixed ω. SVD of G

G = UΣV H

Σ = diag(σ1, σ2, . . . σk ), k = min(l ,m)

– σ̄ = σ1 > σ2 > . . . > σk = σ – singular values
U = (u1,u2, . . . ,ul)

– ui - orthonormal output singular vectors (output directions)
V = (v1, v2, . . . , vm)

– vi - orthonormal input singular vectors (input directions)

Thus, input-output interpretation

Gvi = σiui

input in direction vi gives output in direction ui with gain σi
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SVD of Example

G(0) =

(
1 −0.9
2 −2.1

)
SVD yields

U =

(
−0.42 −0.91
−0.91 0.42

)
; Σ =

(
3.20 0

0 0.093

)
; V =

(
−0.70 −0.71
0.71 −0.70

)

thus, moving inputs in opposite directions has large effect and
moves outputs in the same direction

Lecture 3:MIMO Systems () FEL3210 MIMO Control 21 / 41



The Condition Number

γ(G) =
σ̄(G)

σ(G)

a condition number γ(G) >> 1 implies strong directional
dependence of input-output gain: ill-conditioned system
to compensate for ill-conditioning, controller must also have widely
differing gains in different directions; sensitive to model uncertainty
scaling dependent ill-conditioning may not be a problem, e.g.,

G =

(
100 0

0 1

)
has γ = 100, but can be reduced to 1 by scaling inputs/outputs
minimized condition number

γ∗(G) = min
D1,D2

γ (D1GD2)
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SVD generalizes the concept of gain, but not phase

singular values generalize the concept of gain
but, no similar definition of phase for singular values
however, phase can be generalized if we instead consider the
eigenvalues λi of G

Guxi = λiuxi

argλi gives phase lag for eigenvector direction uxi

eigenvalues of G useful for analysis of closed-loop stability
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Generalized Nyquist Theorem

Theorem 4.9 Let Pol denote the number of open-loop RHP poles in
the loop gain L(s). Then the closed-loop system (I + L(s))−1 is stable
iff the Nyquist plot of det(I+L(s))

(i) makes Pol anti-clockwise encirclements of the origin, and
(ii) does not pass through the origin

Proof: note that det(I + L(s)) = c φcl (s)
φol (s)

and apply Argument
Variation Principle
plot of det (I + L(jω)) for ω ∈ [−∞,∞] is the generalized version of
the Nyquist plot.
note that the critical point is 0 with this definition.
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Eigenvalue loci

the determinant can be written

det(I + L) =
∏

i

(1 + λi(L))

change in argument (phase) as s traverses the Nyquist contour

∆ arg det [1 + L(jω)] =
∑

i

∆ arg (1 + λi(jω))

thus, can count the total number of encirclements of the origin
made by all the graphs of 1 + λi(jω), or equivalently, the
encirclements of −1 made by all λi(jω)

the Nyquist plot of λi(L) are called eigenvalue loci
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Why not eigenvalues for gain?

eigenvalues are ”gains” for the special case that the inputs and
outputs are completely aligned (same direction); not too useful for
performance.

also, generalization of gain should satisfy matrix norm properties

– ‖G1 + G2‖ ≤ ‖G1‖+ ‖G2‖ - triangle inequality

– ‖G1G2‖ ≤ ‖G1‖‖G2‖ - multiplicative property

the maximum eigenvalue ρ(G) = |λmax (G)| (spectral radius) is not
a norm
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Singular values for performance

Recall that the control error for setpoints is given by

e = Sr

hence
σ (S(jω)) ≤ ‖e(ω)‖2

‖r(ω)‖2
≤ σ̄ (S(jω))

thus, to keep error “small” for all directions of setpoint r we require
σ̄ (S(jω)) small
more generally, introduce a frequency-dependent performance
weight wP(s) such that performance requirement is

‖e‖2
‖r‖2

≤ 1
|wP(jω)|

∀ω ⇐ σ̄(S) ≤ 1
|wP |

∀ω ⇔ ‖wPS‖∞ < 1
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Introduction to Multivariable Control Design

diagonal (decentralized control)

K (s) = diag (k1(s) k2(s) . . . km(s))

– no attempt to compensate for directionality in G(s)

decoupling control
K (s) = k(s)G−1(s)

– full compensation for directionality in G(s)

“cheap” disturbance compensation, e = SGdd

σ̄(SGd ) = 1 ∀ω ⇒ SGd = U1 s.t. σ̄(U1) = σ(U1) = 1

yields K (s) = G−1(s)Gd (s)U−1
1 (s)

– does in general not provide decoupling
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General Control Problem Formulation

Design aim: find controller K that minimizes some norm of the
transfer-function from w to z

1 signal based approach, e.g., w = [r d n]T and z = [e u]T

2 shaping the closed-loop, e.g., minimize ‖ [wPS wT T ]T ‖. Identify
z and w so that z = (wPS wT T )w

See S&P on how to derive P for the two cases
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Including uncertainty in the formulation

minimize norm of transfer-function from w to z in the presence of the
uncertainty ∆(s) with bound ‖∆‖∞ ≤ 1

more on this later
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The role of uncertainty - control of heat-exchanger

qh

Vc

Vh

Th

Tc qc

Problem: control temperatures TC and TH using flows qC and qH .
Model: (

Tc
TH

)
=

1
100s + 1

(
−18.74 17.85
−17.85 18.74

)(
qC
qH

)
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Singular values of plant

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

frequency [rad/min]

max and min singular values of G

High-gain direction:

v̄ =

(
1
−1

)
⇒ ū =

(
1
1

)
Low-gain direction:

v =

(
1
1

)
⇒ u =

(
1
−1

)
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Step Responses
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Decentralized control

Employ controller

C(s) =

(
c1(s) 0

0 c2(s)

)
and use inverse based loop shaping for each loop,

ci(s) =
ωc

s
1

gii(s)
; ωc = 0.1
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Singular values of decentralized controller
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same gain in all directions, no compensation for directionality in G
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Singular values of sensitivity function
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poor performance in some directions
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Decoupling control

Employ decoupler
C(s) =

ωc

s
G−1(s)

Compensates for plant directionality by employing high (low) gain
in low-gain (high-gain) direction of plant.
Yields for sensitivity

S =
s

s + ωc
I

i.e., same sensitivity in all directions.
Excellent (nominal) performance, but is it robust?
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Singular values of sensitivity function
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Good performance in all directions
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Impact of uncertainty

Assume model is uncertain such that

Gp = G(I + ∆); ∆ =

(
0.1 0
0 −0.1

)
Corresponds to 10% input uncertainty:

qH = 1.1qHc qC = 0.9qCc

Note: all variables are deviations from nominal values, so
uncertainty is on the change of the flows
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Singular values of Sp
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small uncertainty completely ruins performance (but no problems with
stability)
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Program

Next lecture: inherent limitations in MIMO control (Ch.6)

Lectures 5-8:
– modeling uncertainty, analysis of robust stability (Ch. 7-8)
– analysis of robust performance (Ch.8)
– design/synthesis for robust stability and performance (Ch.9-10)
– LMI formulations of robust control problems, control structure

design, course summary

Lecture 3:MIMO Systems () FEL3210 MIMO Control 41 / 41


