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FEL3210 Multivariable Feedback Control

Lecture 5: Uncertainty and Robustness in SISO Systems
[Ch.7-(8)]

Elling W. Jacobsen, Automatic Control Lab, KTH
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Outline

Defining robust stability and robust performance
Uncertainty descriptions
Robust stability from Nyquist
Robust stability from Small Gain Theorem
Robust performance from Nyquist
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Nominal stability and performance - NS / NP

G(s) is a model!

the closed-loop system satisfies nominal stability (NS) iff

S = (I + GK )−1 ; KS ; SI = (I + KG)−1 ; GSI

all have all poles in the complex LHP
the closed-loop system satisfies nominal performance (NP) e.g.,
if ∥∥∥∥∥∥

WPS
WT T
WuKS

∥∥∥∥∥∥
∞

< 1
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Robustness

A control system is robust if it is insensitive to differences between
the true system and the model of the system that was used to design
the controller. These differences are called model/plant mismatch or
model uncertainty
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Model uncertainty

sources of model uncertainty:
parametric uncertainty
neglected dynamics
unmodelled dynamics
(nonlinearities)

represent system not by a single model G(s), but by a model set
Π that covers all possible models within the uncertainty description

G(s) ∈ Π ∧ Gtrue(s) ∈ Π

G(s) - nominal model, Gtrue(s) - true system
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Robust stability and performance - RS / RP

let Gp(s) denote any model in the model set Π

the closed-loop system satisfies robust stability (RS) iff

Sp = (I + GpK )−1 ; KSp ; SIp = (I + KGp)−1 ; GpSI

all have all poles in the complex LHP for all Gp ∈ Π

the closed-loop system satisfies robust performance (RP) e.g., if∥∥∥∥∥∥
WPSp
WT Tp
WuSp

∥∥∥∥∥∥
∞

< 1

for all Gp ∈ Π
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This lecture

1 determining the model set Π

2 analysing RS and RP, given Π

focus on SISO systems (MIMO next time)
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Classes of uncertainty

Parametric uncertainty: model structure and order is known, but
some parameters are uncertain
Unmodelled and neglected dynamics: model does not describe
complete dynamics of system, and order of system is unknown. In
particular, dynamics at high frequencies is usually not described
completely due to lack of knowledge of system behavior at these
frequencies.
Lumped uncertainty: combine several sources of uncertainty
into a perturbation of a chosen model structure
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Lumped uncertainty descriptions

Multiplicative uncertainty:

ΠI : Gp(s) = G(s)(1 + wI(s)∆I(s)) ; ‖∆I‖∞ ≤ 1

– the uncertainty weight wI describes frequency dependence of
uncertainty

– the perturbation ∆I(s) is any stable transfer-function with
magnitude less than one for all frequencies.

Examples of allowable ∆I ’s
s − z
s + z

; e−θs ;
1

(τs + 1)n ;
0.1

s2 + 0.1s + 1
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Lumped uncertainty descriptions

Inverse multiplicative uncertainty:

ΠiI : Gp(s) = G(s)(1 + wiI(s)∆iI(s))−1 ; ‖∆iI‖∞ ≤ 1

– allows for uncertain number of RHP poles even if ∆iI(s) is required
to be stable
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Uncertainty in the frequency domain

Example: parametric uncertainty

Gp(s) =
k

τs + 1
e−θs, 2 ≤ k , τ, θ ≤ 3

At each frequency, a region of complex numbers Gp(jω) is generated
when the model parameters are varied within their uncertainty region
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Disc approximation

Approximate the uncertainty region by a circular disc at each
frequency ω, with center at nominal model G(jω)

– introduces some conservatism, i.e., include models not in the
original set.
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Disc approximation from complex perturbation

Discs with radius |wA(jω)| are generated from

ΠA : Gp(s) = G(s) + wA(s)∆A(s) ; |∆A(jω)| < 1 ∀ω

Note: ΠI can be obtained from ΠA through

|wI(jω)| =
|wA(jω)|
|G(jω)|
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100 % uncertainty

At frequencies where |wA(jω)| > |G(jω)|, or equivalently, |wI(jω)| > 1,
we have no knowledge about phase of system

– require bandwidth to be less than frequency where |wI(jω)| = 1
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Obtaining the uncertainty weight

1 Decide on a nominal model G(s)

2 Additive uncertainty: at each frequency determine the smallest
radius lA(ω) which includes all possible plants in Π

|wA(jω)| ≥ lA(ω) = max
Gp∈Π

|Gp(jω)−G(jω)|

3 Multiplicative uncertainty: at each frequency determine the largest
relative distance lI(ω)

|wI(jω)| ≥ lI(ω) = max
Gp∈Π

∣∣∣∣Gp(jω)−G(jω)

G(jω)

∣∣∣∣
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Example: multiplicative weight

Π : Gp(s) =
k

τs + 1
e−θs, 2 ≤ k , τ, θ ≤ 3

1 choose delay-free nominal model

G(s) =
k̄

τ̄s + 1
=

2.5
2.5s + 1

2 generate frequency response |Gp −G|/|G| for all allowed
parameters

3 fit upper bound

wI(s) =
4s + 0.2
1.6s + 1

s2 + 1.6s + 1
s2 + 1.4s + 1
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Choice of nominal model

Three options for choice of nominal model G(s)

1 simple model: low-order and delay-free
– (+) simplifies controller design, (÷) potentially large uncertainty

2 mean parameter model: use average parameter values
– (+) simple choice, smaller uncertainty region than with 1., (÷) not

optimal
3 central frequency response: use model that yields the smallest

uncertainty disc at each frequency
– (+) smallest uncertainty, (÷) complex procedure and high order

model
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Neglected dynamics as uncertainty

Assume full model
G(s) = G1(s)G2(s)

We want to neglect G2(s) in our nominal model. Then

lI(ω) = max
Gp

∣∣∣∣Gp −G1

G1

∣∣∣∣ = max
G2(s)∈Π2

|G2(jω)− 1|

where Π2 denotes that the neglected dynamics may be uncertain
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Example:

neglected delay G2(s) = e−θs, θ ∈ [0, θmax ]

lI(ω) =

{
|1− e−jωθmax | ω ≤ π/θmax
2 ω ≥ π/θmax

⇒ wI(s) =
θmaxs

θmax
2 s + 1
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Unmodelled dynamics as uncertainty

Unmodelled dynamics are dynamics we have neglected simply
because we have no knowledge about it, e.g., true system order.

Usually, represent unmodelled dynamics by some simple multiplicative
weight

wI(s) =
τs + r0

(τ/r∞)s + 1

Three parameters
r0 is relative uncertainty at low frequencies
at ω = 1/τ , relative uncertainty is ∼ 100%

r∞ is relative uncertainty at high frequencies
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Next...

Robust stability from Nyquist
Robust stability from Small Gain Theorem
Robust performance from Nyquist
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Robust stability (RS) from Nyquist plot
Consider SISO system with multiplicative uncertainty

ΠI : Lp = GpK = GK (1 + wI∆I) = L + wIL∆I , ‖∆I‖∞ ≤ 1

Assume open loop Lp(s) is stable, then for robust closed-loop stability
the Nyquist plot of Lp(jω) should not encircle the point −1 for any
Gp ∈ ΠI

RS ⇔ |wIL| < |1 + L|, ∀ω
m∣∣∣∣ wIL

1 + L

∣∣∣∣ < 1, ∀ω ⇔ ‖wIT‖∞ < 1

– necessary and sufficient
condition for RS
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Small Gain Theorem - Linear systems

Theorem 4.12 consider a feedback loop with a stable loop
transfer-function L(s). Then the closed-loop is stable if

‖L(jω)‖ < 1 ∀ω

where ‖ · ‖ denotes any matrix norm

”Proof”
– generalized Nyquist criterion: for closed-loop instability some
λi(L(jω)) should encircle −1, i.e., there must exist some i and ω
such that λi(L(jω)) = −A with A > 1.

– thus, ρ(L(jω)) > |A| > 1 for some ω. Hence, we can not have
closed-loop instability if ρ(L) < 1 ∀ω.

– since ρ(L) ≤ ‖L‖ for any matrix norm, the result follows

sufficient, but not necessary, condition
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RS from small gain theorem

Write closed-loop on the form

closed-loop stable if M(s) and ∆(s) stable and ‖M∆‖∞ < 1
with Gp = G(I + wI∆I) we derive

M = wIKG(I + KG)−1 = wIT

where the last equality holds for SISO systems
thus, with assumption that ∆(s) stable we get RS condition

RS ⇔ ‖wIT‖∞ < 1

same result as with Nyquist, but no need to assume Lp(s) stable
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Some Technicalities

If ‖∆‖∞ ≤ 1 (as above) then the condition

‖wIT‖∞ < 1

- is necessary and sufficient if G(s) and K (s) lack poles on the
imaginary axis.

- is only sufficient if G(s) and/or K (s) have poles on the imaginary
axis.

If ‖∆‖∞ < 1 then the condition

‖wIT‖∞ ≤ 1

is necessary and sufficient for all G(s) and K (s)

Proof: see e.g., Zhou, Doyle and Glover, p. 223
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RS for inverse multiplicative uncertainty

ΠiI : Gp = G(1 + wiI∆iI)
−1 ; ‖∆iI‖∞ ≤ 1

on M −∆-form we derive

M = (I + KG)−1wiI = wiIS

where the last equality holds for SISO systems
thus, robust stability if ∆iI stable and

RS ⇔ ‖wiIS‖∞ < 1

condition corresponds to |S| < 1
|wiI | ∀ω, thus need tight control, |S|

small, where uncertainty |wiI | large.
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Robust performance (RP) in SISO systems

Consider first nominal performance requirement

NP ⇔ ‖wPS‖∞ < 1 ⇔ |wP | < |1 + L| ∀ω

In Nyquist

”avoid −1 with some margin |wP(jω)|”
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Robust performance

Robust performance requirement

RP ⇔ ‖wPSp‖∞ < 1 ∀Sp ⇔ |wP | < |1 + Lp| ∀Lp,∀ω
With Lp = L(1 + wI∆I) = L + wIL∆I we get

RP ⇔ |wP |+ |wIL| < |1 + L|

|wP(1 + L)−1|+ |wIL(1 + L)−1| < 1 ∀ω ⇔ |wPS|+ |wIT | < 1 ∀ω
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RP condition - SISO systems

RP ⇔ max
ω

(|wPS|+ |wIT |) < 1 ∀ω

NP (|wPS| < 1) and RS (|wIT | < 1) prerequisites for RP
if NP and RS satisfied then

max
ω

(|wPS|+ |wIT |) ≤ 2 max{|wPS|, |wIT |} < 2

thus, with a factor of at most 2 we get ”RP for for free” when NP
and RS are satisfied
the H∞-norm bound∥∥∥∥(wPS

wIT

)∥∥∥∥
∞

= max
ω

√
|wPS|2 + |wIT |2 < 1

deviates from RP condition by a factor of at most
√

2.
Thus, for SISO systems the RP condition can essentially be
formulated as an H∞-problem
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Next time

MIMO systems: uncertainty ∆ is a matrix

NP and RS conditions similar to SISO case for full block
uncertainty (∆ full matrix)
need special tool for structured uncertainty (∆ structured): the
structured singular value µ
for MIMO systems: NP + RS 6⇒ RP (not even close...)
RP-conditions can not be formulated using H∞-norms: need µ
also for this
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