FEL3210 Multivariable Feedback Control

Lecture 6: Robust stability and performance in MIMO systems [Ch.8]

Elling W. Jacobsen, Automatic Control Lab, KTH

Lecture 5: model uncertainty in frequency domain

Represent uncertainty by disc at each frequency (SISO systems)

- nominal model G is center of disc
- true system assumed to lie within disc

A disc with radius $|w_A(j\omega)|$ at a given frequency can be generated by

$$G_{p}(j\omega) = G(j\omega) + |w_{A}(j\omega)|\Delta_{A}(j\omega); \quad |\Delta_{A}(j\omega)| < 1$$

Lecture 5: robust stability (RS)

Assume $\|\Delta\|_{\infty} < 1$, then using *Small Gain Theorem*

 $RS \quad \Leftrightarrow \quad \|M\|_{\infty} \leq 1$

 necessary and sufficient condition for robust stability, i.e., stabilization of all plants within uncertainty set

Todays lecture

- MIMO systems: uncertainty represented by *perturbation matrices* Δ(s) which often will have a restricted *structure* (block-diagonal)
- RS problem with structured perturbation matrices can not be solved using H_{∞} -analysis; yields sufficient conditions only.
- Need the structured singular value μ to derive necessary and sufficient conditions for RS with structured Δ(s)
- Robust performance (RP) problems can be cast as RS problems with structured uncertainty.

Uncertainty in MIMO systems

"pull out" all sources of uncertainty into a block-diagonal matrix

$$\Delta = diag\{\Delta_i\} = egin{pmatrix} \Delta_1 & & & \ & \ddots & & \ & & \Delta_i & \ & & & \ddots \end{pmatrix}$$

− if $\|\Delta_i\|_{\infty} \le 1$ then $\|\Delta\|_{\infty} \le 1$, follows from the fact that singular values of block-diagonal matrices equals singular values of blocks

General control configuration including uncertainty

For synthesis of controller K

- the block-diagonal matrix Δ(s) includes all possible perturbations of the system, normed such that ||Δ||_∞ ≤ 1
- performance objective: minimize the gain from w to z

Control configuration for analysis

For analysis, with given controller K,

• *N* is a *lower* LFT¹ of P

$$N = \mathcal{F}_{l}(P, K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}$$

• the transfer-function z = Fw is given by an *upper* LFT of N

$$F = \mathcal{F}_{u}(N, \Delta) = N_{22} + N_{21}\Delta(I - N_{11}\Delta)^{-1}N_{12}$$

¹Linear Fractional Transformation

Configuration for analysis of RS

for analysis of robust stability we only need to consider

where $M = N_{11}$

see also lecture 5

Obtaining P, N and M - an example

The generalized plant has outputs $[y_{\Delta} z v]$ and inputs $[u_{\Delta} w u]$. From block-diagram we derive

$$P = \begin{pmatrix} 0 & 0 & W_I \\ W_P G & W_P & W_P G \\ -G & -I & -G \end{pmatrix}$$

Now $N = \mathcal{F}_{I}(P, K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}$ with $P_{11} = \begin{pmatrix} 0 & 0 \\ W_{P}G & W_{P} \end{pmatrix}$, $P_{12} = \begin{pmatrix} W_{I} \\ W_{P}G \end{pmatrix}$, $P_{21} = (-G - I)$, $P_{22} = -G$ This yields

$$N = \begin{pmatrix} -W_{I}KG(I + KG)^{-1} & -W_{I}K(I + GK)^{-1} \\ W_{P}G(I + KG)^{-1} & W_{P}(I + GK)^{-1} \end{pmatrix}$$

And finally, $M = N_{11} = -W_I K G (I + K G)^{-1}$

Definitions of robust stability and performance

•
$$NS \stackrel{def}{\Leftrightarrow} N$$
 is internally stable

• NP
$$\Leftrightarrow$$
 $\|N_{22}\|_{\infty} < 1$

•
$$RS \quad \stackrel{qer}{\Leftrightarrow} \quad F = \mathcal{F}_u(N, \Delta) \text{ is stable } orall \Delta, \|\Delta\|_\infty \leq 1$$

• *RP*
$$\stackrel{def}{\Leftrightarrow}$$
 $\|F\|_{\infty} < 1, \forall \Delta, \|\Delta\|_{\infty} \leq 1$

Next: results for testing all conditions without having to search through all possible Δ 's.

Generalized Nyquist criterion for RS

Assume M(s) and $\Delta(s)$ stable. Then the $M - \Delta$ -loop is stable if and only if det $(I - M\Delta(j\omega))$ does not encircle 0 for any Δ , any ω

$$\begin{array}{ll} \Leftrightarrow & \mathsf{det}(I - M\Delta) \neq \mathbf{0}, \ \forall \omega, \forall \Delta \\ \Leftrightarrow & \lambda_i(M\Delta) \neq \mathbf{1}, \ \forall i, \forall \omega, \forall \Delta \\ & \stackrel{\Delta \ \textit{complex}}{\Leftrightarrow} |\lambda_i(M\Delta)| < \mathbf{1}, \ \forall i, \forall \omega, \forall \Delta \end{array}$$

Thus,

$$RS \quad \Leftrightarrow \quad
ho(M\Delta) < 1, orall \omega, orall \Delta$$

- difficult condition to check in the general case. Must in principle consider all possible Δ 's an inifinite set.
- a sufficient condition is σ
 (M) < 1, ∀ω (see lecture 5), but potentially highly conservative when Δ has structure

Unstructured uncertainty - Δ full matrix

Assume Δ is a full complex matrix at each frequency. Then

$$RS \Leftrightarrow \rho(M\Delta) < 1 \ \forall \omega, \forall \Delta \iff \bar{\sigma}(M) < 1 \ \forall \omega \iff \|M\|_{\infty} < 1$$

Proof: we can always choose a full Δ such that $\rho(M\Delta) = \bar{\sigma}(M)$

- SVD of *M*: $M = U\Sigma V^H$
- choose $\Delta = VU^H$ to obtain $M\Delta = U\Sigma U^H$ $(\bar{\sigma}(\Delta) = 1)$

$$-\rho(\mathbf{M}\Delta)=\rho(\mathbf{U}\Sigma\mathbf{U}^{H})=\rho(\Sigma)=\bar{\sigma}(\mathbf{M})$$

Unstructured uncertainty - example

assume $\Delta_l(s)$ is a full matrix with $\|\Delta_l\|_{\infty} < 1$. Then

 $RS \Leftrightarrow ||M||_{\infty} < 1; \quad M = W_I KG(1 + KG)^{-1} = W_I T_I$

- simple condition, similar to SISO case for which $T_I = T$
- but, allowing full Δ may be highly conservative, e.g.,
 - independent input uncertainty: Δ_I diagonal
 - combining sources of uncertainty: ∆ block-diagonal

Combining multiple perturbations - example

• "pull out" perturbations Δ_I and Δ_O

$$\Delta = \begin{pmatrix} \Delta_I & \mathbf{0} \\ \mathbf{0} & \Delta_O \end{pmatrix}$$

from block-diagram we derive

$$M = \begin{pmatrix} -W_{l1}T_{l}W_{2l} & -W_{l1}KSW_{2O} \\ W_{1O}GS_{l}W_{2l} & W_{lO}TW_{2O} \end{pmatrix}$$

a sufficient condition for RS is ||*M*||_∞ < 1, but we seek a tight condition utilizing the information that Δ is structured.

Lecture 6: Robust Stability and Performance

Comment: lumping uncertainty into a single perturbation

- alternative to using structured ∆ is to lump all uncertainties into a single perturbation, e.g., at the output
- for SISO plants, input uncertainty may be moved to the output, and vice versa, without affecting the model set Π

$$SISO: G(I + \Delta_I) = (I + \Delta_O)G \Rightarrow \Delta_O = \Delta_I$$

but, for MIMO plants

$$MIMO: \quad G(I + \Delta_I) = (I + \Delta_O)G \quad \Rightarrow \quad \Delta_O = G\Delta_I G^{-1}$$

- we get $\max_{\Delta_I} \bar{\sigma}(\Delta_O) = \bar{\sigma}(\Delta_I)\gamma(G)$, where γ is the condition number
- diagonal Δ_I in general yields full Δ_0
- thus, be careful about moving uncertainty in MIMO systems, in particular for ill-conditioned systems.

Reducing conservatism with H_{∞} and structured Δ

- with a structured Δ the condition $\bar{\sigma}(M) < 1 \forall \omega$ is only sufficient
- reduce conservatism by introducing scaling

where $D = diag\{d_i I_i\}$ with d_i a scalar and I_i an identity matrix of the same dimension as the block Δ_i so that

$$D\Delta = \Delta D \quad \Rightarrow \quad \Delta = D\Delta D^{-1}$$

Then

$$\mathsf{RS} \quad \Leftrightarrow \quad \min_{D \in \mathcal{D}} \bar{\sigma}(D(\omega)M(j\omega)D^{-1}(\omega)) < 1, \ \forall \omega$$

where \mathcal{D} is the set of all matrices D such that $D\Delta = \Delta D$

Lecture 6: Robust Stability and Performance

FEL3210 MIMO Control

The structured singular value μ

- recall generalized Nyquist criterion for MΔ-structure: we seek the smallest structured Δ such that det(I – MΔ) = 0
- the structured singular value $\mu(M)$ is defined as

$$\mu(M)^{-1} \stackrel{\text{def}}{=} \min_{\Delta} \{ \bar{\sigma}(\Delta) | \det(I - M\Delta) = 0 \text{ for structured } \Delta \}$$

- defined for constant complex matrices, i.e., at given frequency
- μ(*M*) depends on *M* and structure of Δ, hence often written $μ_Δ(M)$

The structured singular value μ

For complex Δ

$$\mu(\boldsymbol{M}) = \max_{\boldsymbol{\Delta}, \bar{\sigma}(\boldsymbol{\Delta}) \leq 1} \rho(\boldsymbol{M}\boldsymbol{\Delta})$$

• with full Δ

$$\mu(\boldsymbol{M}) = \bar{\sigma}(\boldsymbol{M})$$

Follows since $\rho(M\Delta) \leq \bar{\sigma}(M\Delta) \leq \bar{\sigma}(M)\bar{\sigma}(\Delta)$ and we can choose $\Delta = \bar{v}\bar{u}^H$ to get $\rho(M\Delta) = \bar{\sigma}(M)$

• with repeated diagonal $\Delta = \delta I$

$$\mu(M) = \rho(M)$$

follows since there are no degrees of freedom in the optimization problem

in general

$$\rho(\mathbf{M}) \leq \mu(\mathbf{M}) \leq \bar{\sigma}(\mathbf{M})$$

Example: RS with diagonal input uncertainty

Example 8.9: decentralized PI-control of distillation process

$$G(s) = \frac{1}{\tau s + 1} \begin{pmatrix} -87.8 & 1.4 \\ -108.2 & -1.4 \end{pmatrix}; \quad K(s) = \frac{\tau s + 1}{s} \begin{pmatrix} -0.0015 & 0 \\ 0 & -0.075 \end{pmatrix}$$

Input uncertainty with diagonal Δ_l and $w_l(s) = \frac{s+0.2}{0.5s+1}$

Computing μ

- the structured singular value μ in general not directly computable
- μ -computations based on various upper and lower bounds
- commonly used upper bound

$$\mu(\boldsymbol{M}) \leq \min_{\boldsymbol{D} \in \mathcal{D}} \bar{\sigma}(\boldsymbol{D}\boldsymbol{M}\boldsymbol{D}^{-1})$$

- with $\ensuremath{\mathcal{D}}$ as defined above
 - convex optimization problem
 - equality applies when △ has 3 or fewer blocks. For more blocks usually found to be a tight bound.

Robust Performance

assume proper scaling so that performance objective is

$$\max_{w} \frac{\|\boldsymbol{z}\|_{2}}{\|\boldsymbol{w}\|_{2}} < 1 \ \forall \omega \quad \Leftrightarrow \quad \|\boldsymbol{F}(\boldsymbol{N}, \Delta)\|_{\infty} < 1, \ \forall \Delta$$

- corresponds to robust stability condition for $M\Delta_p$ -structure with $M = F(N, \Delta)$ and Δ_p a full complex perturbation!

RP cast as RS problem with structured Δ -block

Lecture 6: Robust Stability and Performance

• The robust performance problem can be formulated as a robust stability problem with structured (block-diagonal) perturbation matrix $\Delta \Rightarrow$ need μ

Summary

- S A Stable
 In Stable
- NP \Leftrightarrow $\|N_{22}\|_{\infty} < 1$ & NS
- RS \Leftrightarrow $\mu(N_{11}) < 1, \ \Delta = \Delta_{unc}$ & NS
- RP \Leftrightarrow $\mu(N) < 1, \ \Delta = diag(\Delta_{unc}, \Delta_{\rho})$ & NS

Example

8.11.3: Decoupling control of distillation column.

$$egin{aligned} G(s) &= rac{1}{75s+1} \left[egin{pmatrix} 87.8 & -86.4 \ 108.2 & -109.6 \end{pmatrix}
ight] \;; \quad \mathcal{K}(s) &= rac{0.7}{s} G^{-1}(s) \ w_l(s) &= rac{s+0.2}{0.5s+1} \;; \quad w_P &= rac{s/2+0.05}{s} \end{aligned}$$

Diagonal input uncertainty

Homework: perform similar analysis for heat-exchanger from lecture 3

Lecture 6: Robust Stability and Performance

FEL3210 MIMO Control