ME 450 — Multivariable Robust Control

Linear Quadratic Regulator
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Continuous Dynamic Optimization

1. Distinctions between continuous and discrete systems

1- Continuous control laws are simpler
2- We must distinguish between differentials and variations in a quantity

2. The calculus of variations

If x(¢) is a continuous function of time ¢, then the differentials dx(¢) and dt
are not independent. We can however define a small change in x(¢) that is
independent of dr. We define the variation o6x(f), as the incremental
change in x(¢) when time ¢ is held fixed.

What is the relationship between dx(¢), dt, and ox(z)?
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Continuous Dynamic Optimization

Final time variation: dx(T) = 6x(T) + x(T)dT

x(t) a
dx(T)

1L

Ox(T)

o -

,/
,/
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dJ = h(x(T).T)dT — h(x(t,).t, )dt, + [ 1] (x(t).)0x ]de
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Continuous Dynamic Optimization

3. Continuous Dynamic Optimization

The plant is described by the general nonlinear continuous-time time-
varying dynamical equation

5c=f(t,x,u), ty<t<T

with initial condition x, given. The vector x has » components and the
vector u has m components.

The problem is to find the sequence u*(¢) on the time interval [¢,, 7] that
drives the plant along a trajectory x*(f), minimizes the performance

index T
J(t,)= (T, x(T))+ [ Lz, x(¢),u(t) )dt
and such that o

y(T,x(T))=0
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Continuous Dynamic Optimization

We adjoin the constraints (system equations and terminal constraint) to
the performance index J with a multiplier function A(r) &€ R” and a
multiplier constantv &R? .

I(t,) = ¢(T.x(7)) + v y(T,x(T)) + [ [L(t,x(t),u(t)) + (1) (,x,u) - x)]dt
For convenience, we define the Hamiltonian function

H(t,x,u)= L(t,x,u)+ /IT(t)f(t,x,u)
Thus,

I(t,) = o(T,x(T)) + v y(T,x(T)) + f [ (£,2(0),u(t) (7)) - (t))'c]dt
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Continuous Dynamic Optimization

We want to examine now the increment in J due to increments in all
the variables x, A, v, u and ¢. Using Leibniz’ s rule, we compute

di(t,) = (qu +1pfv)T dxl,. + (q/)t +1ptTv)dt|T +1/)T‘Tdv
+(H - A'%)dt|, - (H - X'x)dt],

T
¥ f [HTéx + H ou— X6+ (H, - )T(S/x]dz

T
We integrate by parts, fﬂTéxdt =A (5x‘ - —f/iTéxdt to obtain

di(t,) = (qb +Y V- )»T) dx|, (¢t+1/1;V+H )»Tx+)»T )dt|
+l/}T‘T dv — (H - N+ )\.TX)dtLO + A abc|t0

T
+f
4
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Continuous Dynamic Optimization

We assume that 7, and x(z,) are both fixed and given, then dt, and dx(z,)
are both zero. According to the Lagrange theory the constrained
minimum of J is attained at the unconstrained minimum of J . This is
achieved when g7 =¢ for all independent increments in its arguments.
Then, the necessary conditions for a minimum are:

Y|, =0

H -x=0=i=H, =f

H +A=0=-A=H =L +XFf.
H=L+Af =0

Two-point Boundary-value Problem

(qu +YL v —)»T)de|T +(¢t +thv+H)Tdt|T -0

The initial condition for the Two-point Boundary-value Problem is the
known value for x,. For a fixed 7, the final condition is either a desired
value of x(7) or the value of A (I) given by the last equation. This
equation allows for possible variations in the final time 7" — minimum
time problems.
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Continuous Dynamic Optimization

System Properties | SUMMARY | Controller Properties
System Model State Equation

: . O0H

x(t)=f(t,x,u) x=a7=f(t,x,u), [=t,

Performance Index Costate Equation

J(t,)= ¢(T,x(T))+j‘L(t,x(t),u(t))dt _G_0H oL rof o

ox  ox ox

Final-state Constraint

Stationary Condition
T,x\T'))=0
y(T,x(T)) oH oL 9 _,
Ju oJu ou

Hamiltonian

H(t,x,u,ﬂ.) = L(t,x,u)+ ﬂ.(t)f(t,x,u)

Boundary Condition

x(to) given

(qu +PlV - )\.T)T dx|,. + (q)t +P/ v+ H)T dt],. =0
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Continuous Dynamic Optimization

4. Linear Quadratic Regulator (LQR) Problem

The plant is described by the linear continuous-time dynamical
equation

% = A()x + B(1)u,

with initial condition x, given. We assume that the final time T is fixed
and given, and that no function of the final state y is specified. We want
to find the sequence u*(¢) that minimizes the performance index:

1 1%
J(to) = ExT(T)S(T)x(T) + 5{(XTQ(t)x + uTR(t)u)dt
Linear because of the system dynamics
Quadratic because of the performance index

Regulator because of the absence of a tracking objective---we are
interested in regulation around the zero state.
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Continuous Dynamic Optimization

We adjoin the system equations (constraints) to the performance index
J with a multiplier sequence A(¢) € R".

(1) =%xT(T)S(T)x(T)+%}[XTQ(t)x+uTR(t)w'c+)LT(A(t)x+B(t)u—jc)]dt

)

We define the Hamiltonian
H(t) = x"O(t)x + u" R(t)ux + A (A(t)x + B(t)u)

Thus, the necessary conditions for a stationary point are:
oH

X = B_A = A(t)x + B(t)u State Equation
—) = %—H =0x + AT(t))L Costate Equation
X
%—H =Ru+B'A=0= u(t) = —R_IBT)L(t) Stationary Condition
u
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Continuous Dynamic Optimization

We must solve the Two-point Boundary-value Problem
k== (£)x = B(t)R"'B" (t)Alz)

=L or s AT ()2

0x
for t,<t < T, with boundary conditions

x(to ) =X

We will solve this system for two special cases:

1- Fixed final state — Open loop control

2- Free final state — Closed loop control
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Continuous Dynamic Optimization

4.1 Fixed-Final State and Open-Loop Control
x = A(t)x + B(t)u, x(T) =7,

J(z,)= %}uTR(t)udt

If 0=0, the problem is intractable analytically. The Two-point Boundary-
value Problem is now simplified:

5c=ﬁ = Ax-BR'B" A 5c=ﬁ = Ax-BR'B" A
By . By
—AL:ﬁ:QX'FAT/I }i:ﬁ:—AT/l
0x o0x
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Continuous Dynamic Optimization

The costate equation is decoupled from the state equation, and it has
an easy solution:

A=-ATA=|Ar)=e" TIAT)

%= Ax-BR'B e TIAT)={ x(r)= &' ")x, - f e'""BR B ! "IA(T )dr

We solve now for A(T):
T

W(T) ="y, - [*"IBRB e " dTA(T) = 1y

)
T

MT) =G (1, TN~ ")) Gl T) = [e" R BT

t
Weighted Cc())ntrollability Gramian of [4,B]
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Continuous Dynamic Optimization

Summary:

T
Ge(t,,T) = [e""BR"'B e "dr

)

The inverse of the gramian G(t,,7) exits if and only if the system is
controllable.

=
=2
I

—Ggl(tO,T)(rT — eA(T_t")xO)

t
x(t) = eA(t_tO)xo - feA(T‘T)BR‘lBTeAT(T‘T))L(T)dr

Iy

u (1) = R_lBTeAT(T_t)Ggl(tO,T)(rT - eA(T_tO)xO)
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Continuous Dynamic Optimization
4.2 Free-Final-State and Closed-Loop Control
X =A(t)x + B(t)u,](to) = %xT(T)S(T)x(T) + —f(xTQ(t)x + uTR(t)u)dt

The Two-point Boundary-value Problem is:
B oH

X=—=Ax-BR"B'A
A
Wy PR N
0X
T
We need [f’ﬁ _f(m} & =0= 7 (1)=29] —7(r)s(r)
ox |, 0X |

Let us assume that this relationship holds for all ¢,<t<7T (Sweep Method)

A1) = S(¢)x(z)
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Continuous Dynamic Optimization

We differentiate the costate and use the state equation,
A = Sx + Si = Sx + S(Ax - BR™'B" Sx)
We use now the costate equation,
~(Qx + A" Sx) = Sx + S(Ax - BR™'B" Sx)
~Sx =(A"S+SA - SBR™B"S+Q)x
Since this must hold for any trajectory x,
~S=A"S+S4-SBR'B"S+0Q Ricatti Equation (RE)
The optimal control is given by,
u(t) = -R7'B" Sx(t) = -K(1)x(¢) Feedback Control!!

K(t)=R'B"S(1) Kalman Gain
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Continuous Dynamic Optimization

This expresses u as a time-varying, linear, state-variable, feedback
control. The feedback gain K is computed ahead of time via S, which is

obtained by solving the Riccati equation backward in time with terminal
condition ;.

Similarly to the discrete-time case, it is possible to rewrite the cost
function as

I(10) = 27 (1)) + - [ B Sf a

If we select the optimal control, the value of the cost function for 7)<t < T
IS just
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Steady-State Feedback

5. Steady-State Feedback for continuous-time systems

The solution of the LQR optimal control problem for continuous-time
systems is a state feedback of the form

u(t) = —K(£)x(1)

where
K(t)=R'B"S(1)
~S=A"S+SA-SBR'B"S+0

The closed-loop system is time-varying!!!
i(r) = (A - BK(1))x(7)

1 What about a suboptimal constant
feedback gain?

u(t) = -K(t)x(t) = -K _x(t)
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Steady-State Feedback

5.1 The Algebraic Riccati Equation (ARE)

—S=A"S+SA-SBR'B"S+0 RDE

Let us assume that when ¢ —-o, the sequence S(¢) converges to a
steady-state matrix S,. If S(¥) does converge, then dS/dt =0. Thus, in the
limit

0=A"S+SA-SBR'B"S+0 ARE

The limiting solution S, is clearly a solution of the ARE. Under some
circumstances we may be able to use the following time-invariant
feedback control instead of the optimal control,

u=-K_x
K_=R'B'S_
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Steady-State Feedback

1- When does there exist a bounded limiting solution S, to the Ricatti
equation for all choices of S(7)7?

2- In general, the limiting solution S, depends on the boundary
condition S(7). When is §,, the same for all choices of S(7)?

3- When is the closed-loop system (u=-K _x) asymptotically stable?

Theorem: Let (4, B) be stabilizable. Then, for every choice of S(7) there
is a bounded solution S, to the RDE. Furthermore, S, is a positive
semidefinite solution to the ARE.

Theorem: Let C be a square root of the intermediate-state weighting
matrix O, so that O=C’C=0, and suppose R>0. Suppose (4, C) is
observable. Then, (4, B) is stabilizable if and only if:

a- There is a unique positive definite limiting solution S, to the RDE.
Furthermore, S, is the unique positive definite solution to the ARE.

b- The closed-loop plant
i=(A-BK,)x

is asymptotically stable, where K_ is givenby K, =R"'B'S,
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