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Elements of Linear System Theory

3.1 System Descriptions [4.1] o

Let f(u) be a liner operator, u; and us two independent
variables, and «; and a» two real scalars, then

(3.1) flaiuy + agug) = aq f(u1) + as f(u2)

3.1.1 State Space Representation

(3.2) t(t) = Az (t) + Bu(t)
(3.3) y(t) = Cx(t) + Du(t)
o [l BIE] o [2f

o |



Elements of Linear System Theory

fSystem (3.2)—(3.3)) is not a unique description of the T
input-output behaviour of a linear system. Define new

states ¢ = Sz, i.e. = = S~1¢. Equivalent state-space
realization (i.e., with same input-output behaviour):

35) A,=SAS™', B,=S8B, C,=CS™', D,=D
Dynamical system response x(t) for t > ¢
t
(3.6) 2(t) = A1) 5 (2) +/ eA=7) Bu(r)dr
to

For a system with disturbances d and noise n:

(3.7) r = Ax + Bu+ Ed
u3.8) y=Cx+Du+ Fd+n J
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Elements of Linear System Theory

- N

At — (At)F
(3.9) eM =T+ 5
k=1

Let A, = SAS~! = A = diag{\;} be diagonal then
el = S~ diag(e*)1S

where Vi is the mode associated with eigenvalue \;(A).

o |
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Elements of Linear System Theory

f3.1 .2 Impulse response T

The impulse response matrix is

o t<0

With initial state x(0) = 0, the dynamic response to an
arbitrary input u(t) is

@11 y(t) = g(t) = ult) = /O g(t — Tyu(r)dr

where x denotes the convolution operator.

o |
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Elements of Linear System Theory

f3.1 .3 Transfer function repro%sentation (Laplace) T
(3.12) G(s) = / g(t)e *dt
0

Laplace transforms of (3.2) and (3.3) become for 2(0) = 0
sx(s) = Ax(s) + Bu(s) =

(3.13) = 2(s) = (sI — A" Bu(s)
y(s) = Cx(s) + Du(s) =

_ -l
3.44) = y(s) = (C(s] Al B+ D) u(s)
G(s)

where G(s) is the transfer function matrix.

|
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Elements of Linear System Theory

e

(3.15)G(s) =

-

quivalently,

1

Jot(s] — A) [Cadj(s] — A)B + Ddet(sl — A)]

From Appendix A.2.1

n n

(3.16)  det(sI — A) = | [ Xi(sI — A) =] [ (s = Mi(A))

1=1 1=1

o |



Elements of Linear System Theory
|73

Inverse system. For a square G(s) we have

-

1.4 State-space realizations [4.1.6]

' A-BD"'C|BD™!

3.17 G2
8.17) -D~'c | D!

If D=0, set D =¢<I. Be careful not to introduce RHP zeros
with this modification.

Improper systems cannot be represented in state space form.

o |
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Elements of Linear System Theory

. N

ealization of SISO transfer functions.

Bn-1s"" 4+ Bis + o
s+ ap_18" L4 -+ ais +ag

y(s) = G(s)u(s) corresponds to

(3.18) G(s) =

Y (t) + a1y H(E) + -+ @y () + aoy(t) =

Br—1u™ " (t) + - - + S1u(t) + Bou(t)
(3.19)

where y"~1(t) and v"~1(t) represent n — 1’th order
derivatives, etc.

o |
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Elements of Linear System Theory

fWrite this as

yn _ (_an_lyn—l + 5n_1un—1) 4.,

S (—a,ly/ + 5111/) + <—CLOy + ﬂ()U)

\ J/

V
x/
n
o _J/
VO

2
n—1

With the notation & = 2/(t) = dx/dt, we get

T

T, = —agr1 + Bou
Tn_1 = —ai1x1+ o, + C1u

1 = —ap-1T1 + 22+ Bn_1u

-

|
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Elements of Linear System Theory

fcorresponding to the realization (observer canonical form) T

—ap—1 1 0 --- 0 O ' Bn-1
—ap_o 0 1 0 0 Bn—2
B20)A=| * ° | p=| °
—as 0 0 1 0 B
—a; 0 0 --- 0 1 B
—a 0 0 -~ 0 O By |
C=[1 00 --- 0 0]

Example: To obtain the state-space realization of G(s) = ==~

s+a’
first bring out a constant term by division to get
S —a —2a

G(s) = = + 1
S+ a S+ a

LThus D = 1. Then (3.20) yields A = —a, B = —2a and C = 1.J

Lecture 3 —p. 11/77



Elements of Linear System Theory

-

Example: Ideal PID-controller

-

1 2 1
821) K(s)= K. (1+— +7ps) = KCT]TDS + 718 +
T1S TrS

=- Improper =- no realization

Proper PID controller

TDS

(3.22) K(s) = K.(1+ 1 +

), e <0.1
718 14+ emps

Four common realizations

1
3.23) D =K. e

B : N
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Elements of Linear System Theory

F. Diagonalized form (Jordan canonical form) T

(3.24)A:[8 _1], B:[Kf/(ge/;{p)]’ C=[1 -1]

€ETD

2. Observability canonical form

(3.25) A:[O 11], B:[%], C=[1 0]

0 —=5 V2
1 1 K
(3.26) where 1 = K.(— — . = 02
T €7D €TH

o |
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Elements of Linear System Theory

fS. Controllability canonical form

€ETD

(3.27) A:[(l) 01], B =

[é] . O=[m 2]

4. Observer canonical form in (

3.20)

(3.28) A:[_$ (1)] B:[&], C=[1 0]

0

(3.29) where

ETITD

Note: Transfer function offers more immediate insight.

o

-

|

Lecture 3 —p. 14/77



Elements of Linear System Theory

f3.2 State controllability and state observability T

State controllability. The dynamical system & = Az + Bu, or
equivalently the pair (A, B), is said to be state controllable
if, for any initial state x(0) = x¢, any time ¢; > 0 and any final
state x1, there exists an input u(¢) such that z(¢;) = x;.
Otherwise the system is said to be state uncontrollable.

1. The pair: (A, B) is state controllable if and only if the
controllability matrix

2|

(3.30) C=|B AB A?B ... A"1B]

has rank n (full row rank). Here n is the number of
states.

o |
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Elements of Linear System Theory

fz. From (3.6) one can verify that for x(t;) = 1 T

3.31)  wu(t) = —BLeA O3 (1) YA gy — 1)

where W,(t) is the Gramian matrix at time ¢,
t T
(3.32) We(t) = / eATBBT e Tdr
0

Thus (A, B) Is state controllable if and only if W,(¢) has
full rank (and thus is positive definite) for any ¢t > 0. For

a stable system (A is stable) check only P 2 We(o0),

©,0)
(3.33) pa / eATBBT A T 47
0

|

Lecture 3 —p. 16/77



Elements of Linear System Theory

fP may also be obtained as the solution to the Lyapunov T
equation

(3.34) AP + PAY = —BB'

3. Let p; be the 'th eigenvalue of A and ¢; the
corresponding left eigenvector, ¢/' A = p;q’. Then the

system is state controllable if and only if ¢/* B # 0, Vi.
Example:

A= [_02 :i] B = H C=[1 0], D=0

The transfer function

G(s)=C(sI —A) 1B = !

s+4

Lhas only one state. J
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Elements of Linear System Theory

f 1. The controllability matrix has two linearly dependent T
rOWS:

C=[B AB]= E :ﬂ

2. The controllability Gramian is singular

0.125 0.125
0.125 0.125

3. p1 =—2and py = —4, ¢; = [0.707 —0.707]" and
g2 = [0 1]T.
¢’B=0, ¢'B=1

the first mode (eigenvalue) is not state controllable.

o |
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Elements of Linear System Theory

fControIIabiIity IS a system-theoretic concept important for T
computation and realizations; but no practical insight:

1. It says nothing about how the states behave, e.g. it
does not imply that one can hold (as t — oo) the states
at a given value.

2. Required inputs may be very large with sudden
changes.

3. Some states may be of no practical importance.

4. Existence result which provides no “degree of
controllability”.

o |
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Elements of Linear System Theory

fDefinition State observability. The dynamical system T
& = Az 4+ Bu, y = Cx + Du (or the pair (A, C)) is said to be
state observable if, for any time ¢; > 0, the initial state
z(0) = z¢ can be determined from the time history of the
input «(¢) and the output y(¢) in the interval [0, ¢1]. Otherwise
the system, or (A, C), is said to be state unobservable.

1. (A, C) is state observable if and only if the observability

matrix )
- C
CA
(3.35) o2| ~

has rank n (full column rank).

o |
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Elements of Linear System Theory

fz. For a stable system the observability Gramian T
(3.36) 0= / e TCT CeAT dr
0

must have full rank n (and thus be positive definite). @
can also be found as the solution to the following
Lyapunov equation

(3.37) ATo+QA=—-C"C

3. Let p; be the 7'th eigenvalue of A and ¢; the
corresponding eigenvector, At; = p;t;. Then the system
Is state observable if and only if Ct; # 0, Vi.

Observability is a system theoretical concept but may not
give practical insight.

Lecture 3 —p. 21/77



Elements of Linear System Theory

Kalman’s decomposition
By performing an appropriate coordinate transformation,
any system can be reduce to a decomposition indicating

-

the state that are or aren’t controllable and/or observabile.

oy
9
T3

T4

y=|Ch

A1l

L1
L2
L3

B, -
0
B3

L4 |

0

|
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Elements of Linear System Theory

__________________________________

A state-space realization (A, B,C, D) of G(s) is said to be a
minimal realization of GG(s) If A has the smallest possible
dimension (i.e., the fewest number of states). The smallest
dimension is called the McMillan degree of GG(s). A mode is
hidden if it is not state controllable or observable and thus
not appear in the minimial realization. The state-space

Lrealization is minimal if and only if (A, B) is controllable and
(A, C) Is observable.
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Elements of Linear System Theory
3.3 Stability [4.3] -

Definition
A system is (internally) stable if none of its components
contains hidden unstable modes and the injection of
bounded external signals at any place in the system results
In bounded output signals measured anywhere in the
system. “internal”, i.e. all the states must be stable not only
iInputs/outputs.
Definition
State stabilizable, state detectable and hidden unstable modes. A
system is state stabilizable if all unstable modes are state
controllable. A system is state detectable if all unstable
modes are state observable. A system with unstabilizable
or undetectable modes is said to contain hidden unstable
Lmodes.
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Elements of Linear System Theory

3.4 Poles [4.4] N

Definition

Poles. The poles p; of a system with state-space description
(3.2)—(3.3) are the eigenvalues \;(A),i =1,...,n of the
matrix A. The pole or characteristic polynomial ¢(s) is

defined as ¢(s) 2 det(sI — A) =[];_,(s —pi). Thus the poles
are the roots of the characteristic equation

(3.38) b(s) 2 det(sI — A) = 0

o |
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Elements of Linear System Theory

f3.4.1 Poles and stability T

Theorem 1 A linear dynamic system i = Ax + Bu Is stable
if and only if all the poles are in the open left-half plane
(LHP), that is, Re{)\;(A)} < 0,Vi. A matrix A with such a
property is said to be “stable” or Hurwitz.

3.4.2 Poles from transfer functions

Theorem 2 The pole polynomial ¢(s) corresponding to a
minimal realization of a system with transfer function G(s),
Is the least common denominator of all non-identically-zero
minors of all orders of G(s).

o |
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Elements of Linear System Theory

fExample: T

1 s—1 s
839)  Gls) = 1.25(s + 1)(s + 2) [ -0 5_2]

The minors of order 1 are the four elements all have
(s +1)(s 4+ 2) in the denominator.
Minor of order 2

(s—1)(s—2)+6s 1
(3404let Gi(s) = 1.252(s +1)2(s +2)2  1.252(s + 1)(s + 2)

Least common denominator of all the minors:
(3.41) d(s) = (s+1)(s+2)

LMinimaI realization has two poles: s = —1; s = —2. J
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Elements of Linear System Theory

fExample: Consider the 2 x 3 system, with 3 inputs and 2 T
outputs,

1
5+D)s+2)E-1)

G(s) =

(s —1)(s +2) 0 (s —1)? ]
—(s+1)(s+2) (s—1)(s+1) (s—1)(s+1)
Minors of order 1:

1 s —1 —1 1 1
s+1 (s+1)(s+2) s—1 s+2 s+2

(3.42) * [

(3.43)

Minor of order 2 corresponding to the deletion of column 2:

o |
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Elements of Linear System Theory

fM2 _ (s—=1D(s+2)(s=1)(s+1)+(s+1)(s+2)(s— 1) _ T
(s+1)(s+2)(s—1))?

2
(s+1)(s+2)
The other two minors of order two are

- 1
(3.45) My = (S—|—1)<S—|—2)27 Mz = (3—|—1)(S-|—2)

Least common denominator:

(3.44) _

(3.46) d(s) = (s+1)(s+2)%(s — 1)

The system therefore has four poles: s = —1, s = 1 and two
Lat s = —2. Note MIMO-poles are essentially the poles of the
elements. A procedure is needed to determine multiplicity.
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Elements of Linear System Theory

-

3.5 Zeros [4.5]

# SISO system: zeros z; are the solutions to G(z;) = 0.

-

In general, zeros are values of s at which G(s) loses rank.

Example

s+ 2
2475+ 12

Compute the response when

o |
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Elements of Linear System Theory

- N

1
Liult)y = - n
s?Y  — sy(0) —y(0) +7sY — Ty(0) +12Y =1
Y 4+ TsY +12Y +1=1
= Y(s) =0

Assumption: ¢(s) has a zero z, g(z) = 0.
Then for input u(t) = uge** the output is y(¢t) = 0, ¢t > 0.
(with appropriate initial conditions)

o |
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Elements of Linear System Theory

f3.5.1 Zeros from state-space realizations [4.5.1] T

The state-space equations of a system can be written as:

3a7) Pls) | | = 2 O P(s)

The zeros are then the values s = z for which the

- A -B

C

D

polynomial system matrix P(s) loses rank, resulting in zero

output for some non-zero input

- A —-B |
C D

o

|
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Elements of Linear System Theory

fThe zeros are the solutions of T
et 2l — A —B _ 0
C D
MATLAB
zero = tzero(A,B,C,D)



Elements of Linear System Theory

f3.5.2 Zeros from transfer functions [4.5.2] T

Definition Zeros. z; IS a zero of G(s) if the rank of G(z;) Is
less than the normal rank of GG(s). The zero polynomial is
defined as z(s) = [[.Z;(s — z;) where n, is the number of
finite zeros of G(s).

Theorem The zero polynomial z(s), corresponding to a
minimal realization of the system, is the greatest common
divisor of all the numerators of all order-r minors of G(s),
where r is the normal rank of G(s), provided that these
minors have been adjusted in such a way as to have the
pole polynomial ¢(s) as their denominators.

o |
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Elements of Linear System Theory

fExample T

S4f51 2(54— 1)]

(3.48) G(s) = ! [

s+ 2

The normal rank of G(s) is 2.

Minor of order 2: det G(s) = 2(3(;)22);18 =254,
Pole polynomial: ¢(s) = s + 2.

Zero polynomial: z(s) = s — 4.

Note Multivariable zeros have no relationship with the zeros
of the transfer function elements.

o |
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Elements of Linear System Theory
fExample

1 s—1 S
(3.49) Gls) = 1.25(s +1)(s + 2) [ -6 s— 2]

Minor of order 2 is the determinant

(s—1)(s—2)+65 1
(3.504let G(s) = 1.252(s +1)2(s +2)2  1.252(s +1)(s +2)

o(s) = 1.25%(s + 1)(s + 2)

Zero polynomial = numerator of (3.50
=- No multivariable zeros.

o




Elements of Linear System Theory

fExample T

1 s—2
(8-51) G(S):[Z+1 Z+2]

# The normal rank of G(s) Is 1

# no value of s for which G(s) = 0 = G(s) has no zeros.



Elements of Linear System Theory
f3.6 More on poles and zeros[4.6] T

3.6.1 Directions of poles and zeros

Let G(s) = C(sI — A)"'B+ D.

Zero directions. Let G(s) have a zero at s = z. Then G(s)
loses rank at s = z, and there exist non-zero vectors «, and
Yy, such that

(3.52) G(2)u, =0, ylG(z)=0

u, = Input zero direction

y, = output zero direction

Yy, gives information about which output (or combination of
outputs) may be difficult to control.

o |
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Elements of Linear System Theory

~ Pole directions. Let (i(s) have a pole at s — p. Then G(p)is
infinite, and we may write

(3.53) G(p)up = oo, ny(p) = 00

u, = Input pole direction
y, = output pole direction.

SVD:
G(z/p) =ULVH

u, = last column in V, y, = last column of U
(corresponding to the zero singular value of G(z))
up, = first column in V, y, = first column of U
(corresponding to the infinite singular value of G(p))

o |
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Example
Plant in (3.48) has a RHP-zero at = = 4 and a LHP-pole at
p=—2.

Glz) = G(4):1[3 4]

6|45 6
- 1[0.55 —().83] [9.01 o] [0.6 —O.8]H
608 055 || 0 0||08 06
250 uz:[_0'80] yz:[_0'83]
0.60 0.55

For pole directions consider

I | -3+ 4
U3.55) G(p+€):G(—2+e):€—2[ 4‘56 2(_3+€)]

|

Lecture 3 — p. 40/77



Elements of Linear System Theory

fThe SVD as ¢ — 0 yields T
H
1 [-055 —083][9.01 0][ 06 —038
Glm2te =72 [ 0.83 —0.55] [ 0 0] [—0.8 —0.6]
e B [ 0.60 ] - [—0.55]
18.96) 27 1 —0s0] 77| 083

Note Locations of poles and zeros are independent of input
and output scalings, their directions are not.

o |
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f3.6.2 Remarks on poles and zeros [4.6.2] T

1. For square systems the poles and zeros of G(s) are
“essentially” the poles and zeros of det G(s).
This fails when zero and pole in different parts of the
system cancel when forming det G(s).

[ (s+2)/(s+1) 0
(8.57) G(s) = _ 0 (5+1)/(s+2)]

det G(s) = 1, although the system obviously has poles
at —1 and —2 and (multivariable) zeros at —1 and —2.

2. System (3.57) has poles and zeros at the same
locations (at —1 and —2). Their directions are different.
L They do not cancel or otherwise interact. J
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Elements of Linear System Theory

fB. There are no zeros if the outputs contain direct T
information about all the states; that is, if from y we can
directly obtain z (e.g. C' =1 and D = 0);

4. Zeros usually appear when there are fewer inputs or
outputs than states

5. Moving poles. (a) feedback control (G(I + KG)~!) moves
the poles, (b) series compensation (GK, feedforward
control) can cancel poles in G by placing zeros in K
(but not move them), and (c) parallel compensation
(G + K) cannot affect the poles in G.

o |
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fG. Moving zeros. (a) With feedback, the zeros of T
G(I + KG)~! are the zeros of G plus the poles of K. ,
i.e. the zeros are unaffected by feedback. (b) Series
compensation can counter the effect of zeros in G by
placing poles in K to cancel them, but cancellations are
not possible for RHP-zeros due to internal stability (see

Section

3./

. (c) The only way to move zeros is by

parallel compensation, y = (G + K)u, which, if y is a
physical output, can only be accomplished by adding an
extra input (actuator).

|
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fExample. Effect of feedback on poles and zeros. T
SISO plant G(s) = z(s)/¢(s) and K (s) = k.

L(s) kG(s) kz(s) _ chl(S)

(3.58) T(s) = L+ L(s)  1+kG(s) o(s)+kz(s)  ouls)

Note the following:
1. Zero polynomial: z,(s) = z(s)

= zero locations are unchanged.
2. Pole locations are changed by feedback.

For example,
(3.59) k=0 = oq(s) = o(s)
(3.60) k—oo = ¢qls) — 2(s).2(s)

where roots of z(s) move with k to infinity (complex pattern)

L(cf. root locus) J

Lecture 3 — p. 45/77



Elements of Linear System Theory

f3.7 Internal stability of feedback systems [4.7] T

Note: Checking the pole of S or T is not sufficient to
determine internal stability

Example (Figure [1). In forming L = GK we cancel the term
(s — 1) (a RHP pole-zero cancellation) to obtain

k S
61 L=GK == and S=((I+L)!=
(3.61) S,an (I + L) oy

S(s) is stable, i.e. transfer function from d, to y is stable.
However, the transfer function from d, to « is unstable:

1 ]‘C(S + 1)
(3.62) w=—-K(I+GK) 'd,=— d,
(s —1)(s+ k)
o |
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K G
r ;l_-?_ | k(s+1) l+u> s—1 lJF Y

s(s—1) + s+1 +

Figure 1: Internally unstable system



Elements of Linear System Theory

- N

Ya dy
> — K Aq_gl_
_I_
-I—?‘ G <
dy Yyu

Figure 2: Block diagram used to check internal stability of

feedback system
For internal stability consider

(3.63) u=(I+KG)'d,— K(I+GK) 'd,
. (3.64) y=G(I+KG)  'd,+ (I +GK)™\d, o
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Fheorem 4.4 The feedback system in Figure [2/is internally T
stable if and only if all four closed-loop transfer matrices in
(3.63) and (3.64) are stable.

Theorem 4.5 Assume there are no RHP pole-zero
cancellations between G(s) and K(s). Then the feedback
system in Figure 2 is internally stable if and only if one of the

four closed-loop transfer function matrices in (3.63) and (3.64
IS stable.

o |
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- N

mplications of the internal stability requirement

1. IfG(s) has a RHP-zero at z, then L = GK,
T=GK(I+GK)™',SG=(I+GK)"'G, L; = KG and
Tr = KG(I + KG)~! will each have a RHP-zero at .

2. If G(s) has a RHP-pole atp, then L = GK and L; = KG
also have a RHP-pole at p, while
S=I+GK)'KS=K(I+GK)!and
St = (I + KG)~! have a RHP-zero at p.

o |
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|7Exercise: Interpolation constraints. Prove for SISO feedback T

systems when the plant G(s) has a RHP-zero z or a
RHP-pole p:

865 G(2) =0 = L(z)=0 & T(2)=0,9%2)=1

366)G '(p) =0 = Lp)=occ <« T(p)=1,5(p) =0

Remark “Perfect control” implies S ~ 0 and T ~ 1.

RHP-zero = perfect control impossible.

RHP-pole = perfect control possible.

RHP-poles cause problems when tight (high gain) control is
not possible.

o |
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3.8 Stabilizing controllers [4.8] -

Stable plants

Lemma For a stable plant G(s) the negative feedback system
in Figure 2 is internally stable if and only if

Q= K(I+ GK)!is stable.

Proof: The four transfer functions in (3.63) and (3.64) are

(3.67) KI+GK)'=qQ
(3.68) (I+GK) '=1-GQ
(3.69) I+ KG)t=1-QG
(3.70) G(I+KG) =G -QG)

Lwhich are clearly all stable if and only if G and ¢ are stable. J
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-

Consequences: All stabilizing negative feedback controllers
for the stable plant GG(s) are given by

(3.71) K=(-QG)'Q=0I-GQ)™"

where the “parameter” () is any stable transfer function matrix.
(Identical to the internal model control (IMC)
parameterization of stabilizing controllers.)

o |
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Figure 3: The internal model control (IMC) structure
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3.9 Stability analysis in the frequency domain o

Generalization of Nyquist’s stability test for SISO systems.

3.9.1 Open and closed-loop characteristic polynomials

" :FT > L g

Figure 4. Negative feedback system
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fOpen Loop: T
(3.72) L<S) — COZ(S] — Aol)—lBol + Dy

Poles of L(s) are the roots of the open-loop characteristic
polynomial
(3.73) Gol(s) = det(s] — Ag)

Assume no RHP pole-zero cancellations between G(s) and
K (s). Then from Theorem 4.5 internal stability of the
closed-loop System is equivalent to the stability of

S(s) = (I + L(s))~L.
The realization of S(s) can be derived as follow:

(3.74) t = Agr+ By(r —y)

u3.75) —e = r—y=1r—Cux — Dy(r—1y) J
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~or N

(3.76) r—y=(+Dy) ' (r—Cyz)
and

(3.77) T = (Aol - Bol([ + ljol)_lgol)aj + Bol(] T Dol)_lT
Therefore the state matrix of S(s) is
(3.78) Acl — Aol — Bol(] T Dol)_lool

And the closed-loop characteristic polynomial is

(3.79) ¢u(s) 2 det(sI—Ay) = det(sI— A+ By (I+Dy) " Cly)

o |
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fF{elationship between characteristic polynomials T
From (3.72) we get

(3.80) det([ -+ L(S)) = det(] + Col(S] — Aol)_lBOl -+ Dol)

Schur’s formula yields (with
All =1 + DolaA12 — _COZ7A22 = sl — A0l7A21 — Bol)

(3.81) det(I + L(s)) = 26223 .

where ¢ = det(I + D,;) is a constant (cf. SISO result from
RSI).

o |
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~ Side calculation: |

1 + Dol _COZ
B,; sl — Aol
= det [ + D,;| det {s[ — Ay + By (I + Dol)_1 Col}

det

= det [s] — A,] det [[ + Dy + Cop (s — Aog)_1 Bol}

Schur’s formula:

det = det(Aq1) - det(Agg — Ag1 A7 Aro)

- = det(Ag) - det(Ay — ApAgy Ax) N
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|73

Theorem: Generalized (MIMO) Nyquist theorem. Let P,; denote
the number of open-loop unstable poles in L(s). The
closed-loop system with loop transfer function L(s) and
negative feedback is stable if and only if the Nyquist plot of
det(I + L(s))

1) makes P,; anti-clockwise encirclements of the origin, and
) does not pass through the origin.

9.2 MIMO Nyquist stability criteria T

Note

By “Nyquist plot of det(I + L(s))” we mean “the image of
det(I + L(s)) as s goes clockwise around the Nyquist
D-contour”.

o |
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f3.9.4 Small gain theorem [4.9.4] T

(3.82 p(L(jw)) 2 max [ Ni(L(jw))]

Theorem: Spectral radius stability condition. Consider a system
with a stable loop transfer function L(s). Then the

closed-loop system is stable if

(3.83) p(L(jw)) = max [ N(L(jw)) <1 Vo

o |
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fProof: Assume the system is unstable. Therefore T
det(I + L(s)) encircles the origin, and there is an eigenvalue,
Ai(L(jw)) which is larger than 1 at some frequency. If
det(I + L(s)) does encircle the origin, then there must exists a
gain € € (0, 1] and a frequency w’ such that

(3.84)
or

(3.85)
(3.86)

(3.87)

(3.88)

L<3.89)

det(I + eL(jw')) =0
H Ai(1 + eL(jw')) =0

1+ eN(L(jw')) =0 for some i

1
N(L(juw')) = - for some ¢

INi(L(jw"))| > 1 for some i
p(L(ju)) =1 -
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ﬁnterpretation: If the system gain is less than 1 in all T
directions (all eigenvalues) and for all frequencies (Vw),
then all signal deviations will eventually die out, and the
system is stable.
Spectral radius theorem is conservative because phase
information is not considered.
Small Gain Theorem. Consider a system with a stable loop
transfer function L(s). Then the closed-loop system is
stable if

(3.90) ILGw)| <1 Ve

where ||L|| denotes any matrix norm satisfying

|AB|| < ||A|l - || B]|, for example the singular value ¢(L).

Note The small gain theorem is generally more conservative
than the spectral radius condition in (3.83).

|
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f3.1 0 System norms [4.10] T

Yo

w e

Figure 5: System ¢

Figure B: System with stable transfer function matrix G(s) and

impulse response matrix g(t).
Question: given information about the allowed input signals

w(t), how large can the outputs z(¢) become?
We use the 2-norm,

L(3.91) |2(t)||2 = \/; /OO |2 (7)|2dT J
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fand consider three inputs: T
1. w(t) is a series of unit impulses.
2. w(t) Is any signal satisfying ||w(t)||2 = 1.

3. w(t) is any signal satisfying ||w(t)||2 = 1, but w(t) = 0 for
t > 0, and we only measure z(t) for t > 0.

The relevant system norms in the three cases are the Ho,
H~, and Hankel norms, respectively.

o |
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3101 75 norm [4.10.1]
G(s) strictly proper.

-

For the H-> norm we use the Frobenius norm spatially (for
the matrix) and integrate over frequency, i.e.,

©.@)

A 1

(3.92)  [|G(s)|2 = tr

(Gjw)" G(jw)) dw

2m J o

\

|GG |2=3,, |G (jw)

G (s) must be strictly proper, otherwise the H, norm is

infinite. By Parseval’s theorem, (
norm of the impulse response

3.92) is equal to the H;

A

(3.93) [[G(s)ll2 = llg(?)ll2 =

o

\
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.

K

Note that GG(s) and ¢(t) are dynamic systems while G (jw) T
and ¢(7) are constant matrices (for given value of w or 7).

We can change the order of integration and summation
in (3.93) to get

054 1Gtela=Ia0l = > | lautr)pan
tj
where g;;(t) is the i5'th element of the impulse response
matrix, ¢g(t). Thus Hs norm can be interpreted as the
2-norm output resulting from applying unit impulses 6;(¢)
to each input, one after another (allowing the output to
settle to zero before applying an impulse to the next

input). Thus [|G(s)]|? = />_iw; l1z:(¢)]|3 where z;(t) is the

output vector resulting from applying a unit impulse 6;(t) J
to the 2'th input.
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-

Numerical computations of the {5 norm.

-

Consider G(s) = C(sI — A)~'B. Then

395) |G(s)ll2 = \/tx(BTQB) or [[G(s)l2 = /tx(CPCT)

where () = observability Gramian
and P = controllability Gramian

o |
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3102 7. norm [4.10.2] o

G(s) proper.
For the H,, norm we use the singular value (induced
2-norm) spatially (for the matrix) and pick out the peak

value as a function of frequency

(3.96) |G(s)lloo = max(G(jew))

The H,, norm is the peak of the transfer function
“magnitude”.

o |
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Fl'ime domain performance interpretations of the 7, norm. T

o Worst-case steady-state gain for sinusoidal inputs at
any frequency.

# Induced (worst-case) 2-norm in the time domain:

3.97) ||G(9)|loo =

(In essence,

3.9/

12(0) 12

max — max Z(T
wt)20 ||w(t)]l2  Jw(t)]2=1 =0l

arises because the worst input

signal w(t) is a sinusoid with frequency w* and a
direction which gives o(G(jw*)) as the maximum gain.)

|
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fNumerical computation of the H ., norm. Consider T
G(s)=C(sI —A)'B+D

H~ norm is the smallest value of v such that the
Hamiltonian matrix H has no eigenvalues on the imaginary
axis, where

3.98)H — [ A+ BR™'DTC BR™'BT ]

~CY(I+ DR 'D"C —(A+BR'D'C)!

and R =~?I — DD

o |
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f3.10.3 Difference between the > and ., norms T

Frobenius norm in terms of singular values

(3.99) |G (s) 2\/ / Za (jw))

Thus when optimizing performance in terms of the different
norms:

® H: “push down peak of largest singular value”.

& H-: “push down whole thing” (all singular values over all
frequencies).

o |
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fExample T

1
1 _—
(3.100) G(s) s+ a
Ho norm:
1 > . 2 1
IGs)l2 = (5= [ |GUW)I dw)?
oo ———
w2—1|—a2
o 1 —1 W S %_ i
_<27TCL {tan (Cb)}—oo) V24

Alternatively: Consider the impulse response

_ pr—1 1 __ _—at
L(3.1O1) g(t) =L <S+a,>_6 >0 J
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 to get o

(3102 la(®)ll> = \/ /O ey - \/2I

as expected from Parseval’'s theorem.
‘H~, NOrm:

1 1
(3.108) [|G(5)||oe = max |G(jw)| = max !
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fExample T

There is no general relationship between the Hs and H
norms.
1 €S

(3.104) )= RO=g—"7

| filloo =1 |lfill2 = o0
| folloo =1 |[f2llz=0
Why is the H ., norm so popular? In robust control convenient

for representing unstructured model uncertainty, and
because it satisfies the multiplicative property:

(3.105)

(3.106) [A(s)B(8)]loo < [|A(S)]loo - |1 B(S)lloo

What is wrong with the 7> norm? |t is not an induced norm and
does not satisty the multiplicative property. J
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fExample T

Consider again G(s) = 1/(s + a) in (3.100), for which

|G (s)llz = +/1/2a.

L9119
Al

_|_

S
~
o

IGEEE) = /0 YRl

\

_ \ﬁg _ \ﬁ 1G(s)I13

(3.107)
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ﬁora<1 T

(3.108) |G (5)G(s)ll2 > 1G(s)]]2 - |G (s)ll2

which does not satisfy the multiplicative property.
H~ norm does satisfy the multiplicative property

IG(5)G(8) o0 = — = G(8)]loc - 1G(5)l]oo

a

o |
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