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Elements of Linear System Theory

3.1 System Descriptions [4.1]

Let f(u) be a liner operator, u1 and u2 two independent
variables, and α1 and α2 two real scalars, then

f(α1u1 + α2u2) = α1f(u1) + α2f(u2)(3.1)

3.1.1 State Space Representation
ẋ(t) = Ax(t) +Bu(t)(3.2)

y(t) = Cx(t) +Du(t)(3.3)

or: [
ẋ
y

]
=

[
A B
C D

] [
x
u

]
, G

s
=

[
A B

C D

]
(3.4)
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System (3.2)–(3.3) is not a unique description of the
input-output behaviour of a linear system. Define new

states q = Sx, i.e. x = S−1q. Equivalent state-space
realization (i.e., with same input-output behaviour):

Aq = SAS−1, Bq = SB, Cq = CS−1, Dq = D(3.5)

Dynamical system response x(t) for t ≥ t0

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ(3.6)

For a system with disturbances d and noise n:

ẋ = Ax+Bu+ Ed(3.7)

y = Cx+Du+ Fd+ n(3.8)
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eAt = I +

∞∑

k=1

(At)k

k!
(3.9)

Let Aq = SAS−1 = Λ = diag{λi} be diagonal then

eAt = S−1{diag(eλit)}S

where eλit is the mode associated with eigenvalue λi(A).
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3.1.2 Impulse response

The impulse response matrix is

g(t) =

{
0 t < 0

CeAtB +Dδ(t) t ≥ 0
(3.10)

With initial state x(0) = 0, the dynamic response to an
arbitrary input u(t) is

y(t) = g(t) ∗ u(t) =

∫ t

0

g(t− τ)u(τ)dτ(3.11)

where ∗ denotes the convolution operator.
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3.1.3 Transfer function representation (Laplace)

G(s) =

∫ ∞

0

g(t)e−stdt(3.12)

Laplace transforms of (3.2) and (3.3) become for x(0) = 0

sx(s) = Ax(s) + Bu(s) ⇒

⇒ x(s) = (sI −A)−1Bu(s)(3.13)

y(s) = Cx(s) +Du(s) ⇒

⇒ y(s) = (C(sI − A)−1B +D)︸ ︷︷ ︸
G(s)

u(s)
(3.14)

where G(s) is the transfer function matrix.
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Equivalently,

G(s) =
1

det(sI −A)
[Cadj(sI − A)B +D det(sI −A)](3.15)

From Appendix A.2.1

det(sI − A) =

n∏

i=1

λi(sI − A) =

n∏

i=1

(s− λi(A))(3.16)
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3.1.4 State-space realizations [4.1.6]

Inverse system. For a square G(s) we have

G−1 s
=

[
A−BD−1C BD−1

−D−1C D−1

]
(3.17)

If D = 0, set D = εI. Be careful not to introduce RHP zeros
with this modification.

Improper systems cannot be represented in state space form.
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Realization of SISO transfer functions.

G(s) =
βn−1s

n−1 + · · · + β1s+ β0
sn + an−1sn−1 + · · · + a1s+ a0

(3.18)

y(s) = G(s)u(s) corresponds to

yn(t) + an−1y
n−1(t) + · · · + a1y

′(t) + a0y(t) =

βn−1u
n−1(t) + · · · + β1u

′(t) + β0u(t)

(3.19)

where yn−1(t) and un−1(t) represent n− 1’th order
derivatives, etc.
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Write this as

yn = (−an−1y
n−1 + βn−1u

n−1) + · · ·

· · · + (−a1y
′ + β1u

′) + (−a0y + β0u)︸ ︷︷ ︸
x′
n︸ ︷︷ ︸

x2
n−1

With the notation ẋ ≡ x′(t) = dx/dt, we get

ẋn = −a0x1 + β0u

ẋn−1 = −a1x1 + xn + β1u

...

ẋ1 = −an−1x1 + x2 + βn−1u
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corresponding to the realization (observer canonical form)

A =




−an−1 1 0 · · · 0 0
−an−2 0 1 0 0

...
...

. . .
...

−a2 0 0 1 0
−a1 0 0 · · · 0 1
−a0 0 0 · · · 0 0



, B =




βn−1

βn−2
...
β2
β1
β0




(3.20)

C = [ 1 0 0 · · · 0 0 ]

Example: To obtain the state-space realization of G(s) = s−a
s+a ,

first bring out a constant term by division to get

G(s) =
s− a

s+ a
=

−2a

s+ a
+ 1

Thus D = 1. Then (3.20) yields A = −a,B = −2a and C = 1.
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Example: Ideal PID-controller

K(s) = Kc(1 +
1

τIs
+ τDs) = Kc

τIτDs
2 + τIs+ 1

τIs
(3.21)

⇒ Improper ⇒ no realization

Proper PID controller

K(s) = Kc(1 +
1

τIs
+

τDs

1 + ǫτDs
), ǫ ≤ 0.1(3.22)

Four common realizations

D = Kc

1 + ǫ

ǫ
(3.23)
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1. Diagonalized form (Jordan canonical form)

A =

[
0 0
0 − 1

ǫτD

]
, B =

[
Kc/τI

Kc/(ǫ
2τD)

]
, C = [ 1 −1 ](3.24)

2. Observability canonical form

A =

[
0 1
0 − 1

ǫτD

]
, B =

[
γ1
γ2

]
, C = [ 1 0 ](3.25)

where γ1 = Kc(
1

τI
−

1

ǫ2τD
), γ2 =

Kc

ǫ3τ2D
(3.26)
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3. Controllability canonical form

A =

[
0 0
1 − 1

ǫτD

]
, B =

[
1
0

]
, C = [ γ1 γ2 ](3.27)

4. Observer canonical form in (3.20)

A =

[
− 1

ǫτD
1

0 0

]
, B =

[
β1
β0

]
, C = [ 1 0 ](3.28)

where β0 =
Kc

ǫτIτD
, β1 = Kc

ǫ2τD − τI
ǫ2τIτD

(3.29)

Note: Transfer function offers more immediate insight.
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3.2 State controllability and state observability

State controllability. The dynamical system ẋ = Ax+ Bu, or
equivalently the pair (A,B), is said to be state controllable
if, for any initial state x(0) = x0, any time t1 > 0 and any final
state x1, there exists an input u(t) such that x(t1) = x1.
Otherwise the system is said to be state uncontrollable.

1. The pair: (A,B) is state controllable if and only if the
controllability matrix

C
∆
=

[
B AB A2B · · · An−1B

]
(3.30)

has rank n (full row rank). Here n is the number of
states.
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2. From (3.6) one can verify that for x(t1) = x1

u(t) = −BT eA
T (t1−t)Wc(t1)

−1(eAt1x0 − x1)(3.31)

where Wc(t) is the Gramian matrix at time t,

Wc(t)
∆
=

∫ t

0

eAτBBT eA
T τdτ(3.32)

Thus (A,B) is state controllable if and only if Wc(t) has
full rank (and thus is positive definite) for any t > 0. For

a stable system (A is stable) check only P
∆
= Wc(∞),

P
∆
=

∫ ∞

0

eAτBBT eA
T τdτ(3.33)
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P may also be obtained as the solution to the Lyapunov
equation

AP + PAT = −BBT
(3.34)

3. Let pi be the i’th eigenvalue of A and qi the

corresponding left eigenvector, qHi A = piq
H
i . Then the

system is state controllable if and only if qHi B 6= 0,∀i.

Example:

A =

[
−2 −2

0 −4

]
, B =

[
1

1

]
, C = [ 1 0 ], D = 0

The transfer function

G(s) = C(sI −A)−1B =
1

s+ 4

has only one state.
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1. The controllability matrix has two linearly dependent
rows:

C = [B AB ] =

[
1 −4

1 −4

]
.

2. The controllability Gramian is singular

P =

[
0.125 0.125

0.125 0.125

]

3. p1 = −2 and p2 = −4, q1 = [ 0.707 −0.707 ]T and

q2 = [ 0 1 ]T .

qH1 B = 0, qH2 B = 1

the first mode (eigenvalue) is not state controllable.
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Controllability is a system-theoretic concept important for
computation and realizations; but no practical insight:

1. It says nothing about how the states behave, e.g. it
does not imply that one can hold (as t → ∞) the states
at a given value.

2. Required inputs may be very large with sudden
changes.

3. Some states may be of no practical importance.

4. Existence result which provides no “degree of
controllability”.
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Definition State observability. The dynamical system
ẋ = Ax+Bu, y = Cx+Du (or the pair (A,C)) is said to be
state observable if, for any time t1 > 0, the initial state
x(0) = x0 can be determined from the time history of the
input u(t) and the output y(t) in the interval [0, t1]. Otherwise
the system, or (A,C), is said to be state unobservable.

1. (A,C) is state observable if and only if the observability
matrix

O
∆
=




C
CA

...
CAn−1


(3.35)

has rank n (full column rank).
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2. For a stable system the observability Gramian

Q
∆
=

∫ ∞

0

eA
T τCTCeAτdτ(3.36)

must have full rank n (and thus be positive definite). Q
can also be found as the solution to the following
Lyapunov equation

ATQ+QA = −CTC(3.37)

3. Let pi be the i’th eigenvalue of A and ti the
corresponding eigenvector, Ati = piti. Then the system
is state observable if and only if Cti 6= 0,∀i.

Observability is a system theoretical concept but may not
give practical insight.
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Kalman’s decomposition

By performing an appropriate coordinate transformation,
any system can be reduce to a decomposition indicating
the state that are or aren’t controllable and/or observable.




ẋ1
ẋ2
ẋ3
ẋ4


 =




A11 A12 0 0
0 A22 0 0

A31 A32 A33 A34

0 A42 0 A44







x1
x2
x3
x4


+




B1

0
B3

0


 u

y = [C1 C2 0 0 ]




x1
x2
x3
x4



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s1

s3

s2

s4

x1

x3

x2

x4

u y

A state-space realization (A,B,C,D) of G(s) is said to be a
minimal realization of G(s) if A has the smallest possible
dimension (i.e., the fewest number of states). The smallest
dimension is called the McMillan degree of G(s). A mode is
hidden if it is not state controllable or observable and thus
not appear in the minimial realization. The state-space
realization is minimal if and only if (A,B) is controllable and
(A,C) is observable.

Lecture 3 – p. 23/77



Elements of Linear System Theory

3.3 Stability [4.3]

Definition

A system is (internally) stable if none of its components
contains hidden unstable modes and the injection of
bounded external signals at any place in the system results
in bounded output signals measured anywhere in the
system. “internal”, i.e. all the states must be stable not only
inputs/outputs.

Definition

State stabilizable, state detectable and hidden unstable modes. A
system is state stabilizable if all unstable modes are state
controllable. A system is state detectable if all unstable
modes are state observable. A system with unstabilizable
or undetectable modes is said to contain hidden unstable
modes.
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3.4 Poles [4.4]

Definition

Poles. The poles pi of a system with state-space description
(3.2)–(3.3) are the eigenvalues λi(A), i = 1, . . . , n of the
matrix A. The pole or characteristic polynomial φ(s) is

defined as φ(s)
∆
= det(sI −A) =

∏n
i=1(s− pi). Thus the poles

are the roots of the characteristic equation

φ(s)
∆
= det(sI − A) = 0(3.38)
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3.4.1 Poles and stability

Theorem 1 A linear dynamic system ẋ = Ax+Bu is stable
if and only if all the poles are in the open left-half plane
(LHP), that is, Re{λi(A)} < 0,∀i. A matrix A with such a
property is said to be “stable” or Hurwitz.

3.4.2 Poles from transfer functions

Theorem 2 The pole polynomial φ(s) corresponding to a
minimal realization of a system with transfer function G(s),
is the least common denominator of all non-identically-zero
minors of all orders of G(s).
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Example:

G(s) =
1

1.25(s+ 1)(s+ 2)

[
s− 1 s
−6 s− 2

]
(3.39)

The minors of order 1 are the four elements all have
(s+ 1)(s+ 2) in the denominator.
Minor of order 2

detG(s) =
(s− 1)(s− 2) + 6s

1.252(s+ 1)2(s+ 2)2
=

1

1.252(s+ 1)(s+ 2)
(3.40)

Least common denominator of all the minors:

φ(s) = (s+ 1)(s+ 2)(3.41)

Minimal realization has two poles: s = −1; s = −2.
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Example: Consider the 2× 3 system, with 3 inputs and 2

outputs,

G(s) =
1

(s+ 1)(s+ 2)(s− 1)
∗

∗

[
(s− 1)(s+ 2) 0 (s− 1)2

−(s+ 1)(s+ 2) (s− 1)(s+ 1) (s− 1)(s+ 1)

]
(3.42)

Minors of order 1:

1

s+ 1
,

s− 1

(s+ 1)(s+ 2)
,

−1

s− 1
,

1

s+ 2
,

1

s+ 2
(3.43)

Minor of order 2 corresponding to the deletion of column 2:
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M2 =
(s− 1)(s+ 2)(s− 1)(s+ 1) + (s+ 1)(s+ 2)(s− 1)2

((s+ 1)(s+ 2)(s− 1))2
=

=
2

(s+ 1)(s+ 2)
(3.44)

The other two minors of order two are

M1 =
−(s− 1)

(s+ 1)(s+ 2)2
, M3 =

1

(s+ 1)(s+ 2)
(3.45)

Least common denominator:

φ(s) = (s+ 1)(s+ 2)2(s− 1)(3.46)

The system therefore has four poles: s = −1, s = 1 and two
at s = −2. Note MIMO-poles are essentially the poles of the
elements. A procedure is needed to determine multiplicity.
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3.5 Zeros [4.5]

SISO system: zeros zi are the solutions to G(zi) = 0.

In general, zeros are values of s at which G(s) loses rank.

Example

[
Y =

s+ 2

s2 + 7s+ 12
U

]

Compute the response when

u(t) = e−2t, y(0) = 0, ẏ(0) = −1
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L{u(t)} =
1

s+ 2

s2Y − sy(0)− ẏ(0) + 7sY − 7y(0) + 12Y = 1

s2Y + 7sY + 12Y + 1 = 1

⇒ Y (s) = 0

Assumption: g(s) has a zero z, g(z) = 0.

Then for input u(t) = u0e
zt the output is y(t) ≡ 0, t > 0.

(with appropriate initial conditions)
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3.5.1 Zeros from state-space realizations [4.5.1]

The state-space equations of a system can be written as:

P (s)

[
x

u

]
=

[
0

y

]
, P (s) =

[
sI − A −B

C D

]
(3.47)

The zeros are then the values s = z for which the
polynomial system matrix P (s) loses rank, resulting in zero
output for some non-zero input

[
zI − A −B

C D

][
xz

uz

]
= 0
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The zeros are the solutions of

det

[
zI −A −B

C D

]
= 0

MATLAB

zero = tzero(A,B,C,D)
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3.5.2 Zeros from transfer functions [4.5.2]

Definition Zeros. zi is a zero of G(s) if the rank of G(zi) is
less than the normal rank of G(s). The zero polynomial is

defined as z(s) =
∏nz

i=1(s− zi) where nz is the number of

finite zeros of G(s).
Theorem The zero polynomial z(s), corresponding to a
minimal realization of the system, is the greatest common
divisor of all the numerators of all order-r minors of G(s),
where r is the normal rank of G(s), provided that these
minors have been adjusted in such a way as to have the
pole polynomial φ(s) as their denominators.
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Example

G(s) =
1

s+ 2

[
s− 1 4

4.5 2(s− 1)

]
(3.48)

The normal rank of G(s) is 2.

Minor of order 2: detG(s) = 2(s−1)2−18
(s+2)2

= 2 s−4
s+2

.

Pole polynomial: φ(s) = s+ 2.

Zero polynomial: z(s) = s− 4.

Note Multivariable zeros have no relationship with the zeros
of the transfer function elements.
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Example

G(s) =
1

1.25(s+ 1)(s+ 2)

[
s− 1 s
−6 s− 2

]
(3.49)

Minor of order 2 is the determinant

detG(s) =
(s− 1)(s− 2) + 6s

1.252(s+ 1)2(s+ 2)2
=

1

1.252(s+ 1)(s+ 2)
(3.50)

φ(s) = 1.252(s+ 1)(s+ 2)

Zero polynomial = numerator of (3.50)
⇒ no multivariable zeros.
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Example

G(s) =

[
s− 1

s+ 1

s− 2

s+ 2

]
(3.51)

The normal rank of G(s) is 1

no value of s for which G(s) = 0 ⇒ G(s) has no zeros.
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3.6 More on poles and zeros[4.6]

3.6.1 Directions of poles and zeros

Let G(s) = C(sI −A)−1B +D.
Zero directions. Let G(s) have a zero at s = z. Then G(s)
loses rank at s = z, and there exist non-zero vectors uz and
yz such that

G(z)uz = 0, yHz G(z) = 0(3.52)

uz = input zero direction
yz = output zero direction
yz gives information about which output (or combination of
outputs) may be difficult to control.
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Pole directions. Let G(s) have a pole at s = p. Then G(p) is
infinite, and we may write

G(p)up = ∞, yHp G(p) = ∞(3.53)

up = input pole direction
yp = output pole direction.

SVD:

G(z/p) = UΣV H

uz = last column in V , yz = last column of U
(corresponding to the zero singular value of G(z))
up = first column in V , yp = first column of U

(corresponding to the infinite singular value of G(p))
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Example

Plant in (3.48) has a RHP-zero at z = 4 and a LHP-pole at
p = −2.

G(z) = G(4) =
1

6

[
3 4
4.5 6

]

=
1

6

[
0.55 −0.83
0.83 0.55

] [
9.01 0
0 0

] [
0.6 −0.8
0.8 0.6

]H

uz =

[
−0.80

0.60

]
yz =

[
−0.83

0.55

]
(3.54)

For pole directions consider

G(p+ ǫ) = G(−2 + ǫ) =
1

ǫ2

[
−3 + ǫ 4
4.5 2(−3 + ǫ)

]
(3.55)
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The SVD as ǫ → 0 yields

G(−2 + ǫ) =
1

ǫ2

[
−0.55 −0.83
0.83 −0.55

] [
9.01 0
0 0

] [
0.6 −0.8
−0.8 −0.6

]H

up =

[
0.60

−0.80

]
yp =

[
−0.55

0.83

]
(3.56)

Note Locations of poles and zeros are independent of input
and output scalings, their directions are not.
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3.6.2 Remarks on poles and zeros [4.6.2]

1. For square systems the poles and zeros of G(s) are
“essentially” the poles and zeros of detG(s).
This fails when zero and pole in different parts of the
system cancel when forming detG(s).

G(s) =

[
(s+ 2)/(s+ 1) 0

0 (s+ 1)/(s+ 2)

]
(3.57)

detG(s) = 1, although the system obviously has poles
at −1 and −2 and (multivariable) zeros at −1 and −2.

2. System (3.57) has poles and zeros at the same
locations (at −1 and −2). Their directions are different.
They do not cancel or otherwise interact.
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3. There are no zeros if the outputs contain direct
information about all the states; that is, if from y we can
directly obtain x (e.g. C = I and D = 0);

4. Zeros usually appear when there are fewer inputs or
outputs than states

5. Moving poles. (a) feedback control (G(I +KG)−1) moves
the poles, (b) series compensation (GK, feedforward
control) can cancel poles in G by placing zeros in K
(but not move them), and (c) parallel compensation
(G+K) cannot affect the poles in G.
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6. Moving zeros. (a) With feedback, the zeros of

G(I +KG)−1 are the zeros of G plus the poles of K. ,
i.e. the zeros are unaffected by feedback. (b) Series
compensation can counter the effect of zeros in G by
placing poles in K to cancel them, but cancellations are
not possible for RHP-zeros due to internal stability (see
Section 3.7). (c) The only way to move zeros is by
parallel compensation, y = (G+K)u, which, if y is a
physical output, can only be accomplished by adding an
extra input (actuator).
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Example. Effect of feedback on poles and zeros.

SISO plant G(s) = z(s)/φ(s) and K(s) = k.

T (s) =
L(s)

1 + L(s)
=

kG(s)

1 + kG(s)
=

kz(s)

φ(s) + kz(s)
= k

zcl(s)

φcl(s)
(3.58)

Note the following:
1. Zero polynomial: zcl(s) = z(s)

⇒ zero locations are unchanged.

2. Pole locations are changed by feedback.
For example,

k → 0 ⇒ φcl(s) → φ(s)(3.59)

k → ∞ ⇒ φcl(s) → z(s).z̃(s)(3.60)

where roots of z̃(s) move with k to infinity (complex pattern)
(cf. root locus)

Lecture 3 – p. 45/77



Elements of Linear System Theory

3.7 Internal stability of feedback systems [4.7]

Note: Checking the pole of S or T is not sufficient to
determine internal stability

Example (Figure 1). In forming L = GK we cancel the term

(s− 1) (a RHP pole-zero cancellation) to obtain

L = GK =
k

s
, and S = (I + L)−1 =

s

s+ k
(3.61)

S(s) is stable, i.e. transfer function from dy to y is stable.

However, the transfer function from dy to u is unstable:

u = −K(I +GK)−1dy = −
k(s+ 1)

(s− 1)(s+ k)
dy(3.62)
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❞❞❞ q

✻
✲❄❄ ✲✲✲✲✲ +

+

+

+
+
-

yu

dydu G

s−1
s+1

k(s+1)
s(s−1)

K

r

Figure 1: Internally unstable system
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❞

❞q

q

✻
✛ ✛

❄

❄✲✲
✻

+

+

+

+

y

dy u

du

G

−K

Figure 2: Block diagram used to check internal stability of

feedback system

For internal stability consider

u = (I +KG)−1du −K(I +GK)−1dy(3.63)

y = G(I +KG)−1du + (I +GK)−1dy(3.64)
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Theorem 4.4 The feedback system in Figure 2 is internally

stable if and only if all four closed-loop transfer matrices in
(3.63) and (3.64) are stable.

Theorem 4.5 Assume there are no RHP pole-zero
cancellations between G(s) and K(s). Then the feedback
system in Figure 2 is internally stable if and only if one of the
four closed-loop transfer function matrices in (3.63) and (3.64)
is stable.
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Implications of the internal stability requirement

1. If G(s) has a RHP-zero at z, then L = GK,

T = GK(I +GK)−1, SG = (I +GK)−1G, LI = KG and

TI = KG(I +KG)−1 will each have a RHP-zero at z.

2. If G(s) has a RHP-pole at p, then L = GK and LI = KG
also have a RHP-pole at p, while

S = (I +GK)−1,KS = K(I +GK)−1 and

SI = (I +KG)−1 have a RHP-zero at p.
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Exercise: Interpolation constraints. Prove for SISO feedback

systems when the plant G(s) has a RHP-zero z or a

RHP-pole p:

G(z) = 0 ⇒ L(z) = 0 ⇔ T (z) = 0, S(z) = 1(3.65)

G−1(p) = 0 ⇒ L(p) = ∞ ⇔ T (p) = 1, S(p) = 0(3.66)

Remark “Perfect control” implies S ≈ 0 and T ≈ 1.
RHP-zero ⇒ perfect control impossible.
RHP-pole ⇒ perfect control possible.
RHP-poles cause problems when tight (high gain) control is
not possible.
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3.8 Stabilizing controllers [4.8]

Stable plants
Lemma For a stable plant G(s) the negative feedback system
in Figure 2 is internally stable if and only if

Q = K(I +GK)−1 is stable.
Proof: The four transfer functions in (3.63) and (3.64) are

K(I +GK)−1 = Q(3.67)

(I +GK)−1 = I −GQ(3.68)

(I +KG)−1 = I −QG(3.69)

G(I +KG)−1 = G(I −QG)(3.70)

which are clearly all stable if and only if G and Q are stable.
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Consequences: All stabilizing negative feedback controllers
for the stable plant G(s) are given by

K = (I −QG)−1Q = Q(I −GQ)−1
(3.71)

where the “parameter” Q is any stable transfer function matrix.
(Identical to the internal model control (IMC)
parameterization of stabilizing controllers.)
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❞
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-
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-

+
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plant

GQ
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Figure 3: The internal model control (IMC) structure
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3.9 Stability analysis in the frequency domain

Generalization of Nyquist’s stability test for SISO systems.

3.9.1 Open and closed-loop characteristic polynomials

❡ q

✻
✲✲✲ y

L
-

+r

Figure 4: Negative feedback system

Lecture 3 – p. 55/77



Elements of Linear System Theory

Open Loop:

L(s) = Col(sI −Aol)
−1Bol +Dol(3.72)

Poles of L(s) are the roots of the open-loop characteristic
polynomial

φol(s) = det(sI − Aol)(3.73)

Assume no RHP pole-zero cancellations between G(s) and
K(s). Then from Theorem 4.5 internal stability of the
closed-loop system is equivalent to the stability of

S(s) = (I + L(s))−1.
The realization of S(s) can be derived as follow:

ẋ = Aolx+Bol(r − y)(3.74)

−e = r − y = r − Colx−Dol(r − y)(3.75)
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or

r − y = (I +Dol)
−1(r − Colx)(3.76)

and

ẋ = (Aol −Bol(I +Dol)
−1Col)x+Bol(I +Dol)

−1r(3.77)

Therefore the state matrix of S(s) is:

Acl = Aol − Bol(I +Dol)
−1Col(3.78)

And the closed-loop characteristic polynomial is

φcl(s)
∆
= det(sI−Acl) = det(sI−Aol+Bol(I+Dol)

−1Col)(3.79)
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Relationship between characteristic polynomials

From (3.72) we get

det(I + L(s)) = det(I + Col(sI − Aol)
−1Bol +Dol)(3.80)

Schur’s formula yields (with

A11 = I +Dol, A12 = −Col, A22 = sI −Aol, A21 = Bol)

det(I + L(s)) =
φcl(s)

φol(s)
· c(3.81)

where c = det(I +Dol) is a constant (cf. SISO result from
RSI).
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Side calculation:

det

[
I +Dol −Col

Bol sI − Aol

]

= det [I +Dol] det
[
sI −Aol +Bol (I +Dol)

−1Col

]

= det [sI − Aol] det
[
I +Dol + Col (sI − Aol)

−1Bol

]

Schur’s formula:

det

[
A11 A12

A21 A22

]
= det(A11) · det(A22 − A21A

−1
11 A12)

= det(A22) · det(A11 − A12A
−1
22 A21)
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3.9.2 MIMO Nyquist stability criteria

Theorem: Generalized (MIMO) Nyquist theorem. Let Pol denote
the number of open-loop unstable poles in L(s). The
closed-loop system with loop transfer function L(s) and
negative feedback is stable if and only if the Nyquist plot of
det(I + L(s))
i) makes Pol anti-clockwise encirclements of the origin, and
ii) does not pass through the origin.

Note

By “Nyquist plot of det(I + L(s))” we mean “the image of
det(I + L(s)) as s goes clockwise around the Nyquist
D-contour”.
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3.9.4 Small gain theorem [4.9.4]

ρ(L(jω))
∆
= max

i
|λi(L(jω))|(3.82)

Theorem: Spectral radius stability condition. Consider a system
with a stable loop transfer function L(s). Then the
closed-loop system is stable if

ρ(L(jω))
∆
= max

i
|λi(L(jω))| < 1 ∀ω(3.83)
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Proof: Assume the system is unstable. Therefore

det(I + L(s)) encircles the origin, and there is an eigenvalue,

λi(L(jω)) which is larger than 1 at some frequency. If

det(I +L(s)) does encircle the origin, then there must exists a

gain ǫ ∈ (0, 1] and a frequency ω′ such that

det(I + ǫL(jω′)) = 0(3.84)

or ∏

i

λi(I + ǫL(jω′)) = 0(3.85)

= 1 + ǫλi(L(jω
′)) = 0 for some i(3.86)

= λi(L(jω
′)) = −

1

ǫ
for some i(3.87)

⇒ |λi(L(jω
′))| ≥ 1 for some i(3.88)

= ρ(L(jω′)) ≥ 1(3.89)
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Interpretation: If the system gain is less than 1 in all
directions (all eigenvalues) and for all frequencies (∀ω),
then all signal deviations will eventually die out, and the
system is stable.
Spectral radius theorem is conservative because phase
information is not considered.
Small Gain Theorem. Consider a system with a stable loop
transfer function L(s). Then the closed-loop system is
stable if

‖L(jω)‖ < 1 ∀ω(3.90)

where ‖L‖ denotes any matrix norm satisfying
‖AB‖ ≤ ‖A‖ · ‖B‖, for example the singular value σ̄(L).
Note The small gain theorem is generally more conservative
than the spectral radius condition in (3.83).
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3.10 System norms [4.10]

✲✲ zw G

Figure 5: System G

Figure 5: System with stable transfer function matrix G(s) and

impulse response matrix g(t).
Question: given information about the allowed input signals
w(t), how large can the outputs z(t) become?
We use the 2-norm,

‖z(t)‖2 =

√∑

i

∫ ∞

−∞

|zi(τ)|2dτ(3.91)
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and consider three inputs:

1. w(t) is a series of unit impulses.

2. w(t) is any signal satisfying ‖w(t)‖2 = 1.

3. w(t) is any signal satisfying ‖w(t)‖2 = 1, but w(t) = 0 for
t ≥ 0, and we only measure z(t) for t ≥ 0.

The relevant system norms in the three cases are the H2,
H∞, and Hankel norms, respectively.
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3.10.1 H2 norm [4.10.1]

G(s) strictly proper.
For the H2 norm we use the Frobenius norm spatially (for
the matrix) and integrate over frequency, i.e.,

‖G(s)‖2
∆
=

√√√√
1

2π

∫ ∞

−∞

tr(G(jω)HG(jω))︸ ︷︷ ︸
‖G(jω)‖2F=

∑
ij |Gij(jω)|2

dω(3.92)

G(s) must be strictly proper, otherwise the H2 norm is
infinite. By Parseval’s theorem, (3.92) is equal to the H2

norm of the impulse response

‖G(s)‖2 = ‖g(t)‖2
∆
=

√√√√
∫ ∞

0

tr(gT (τ)g(τ))︸ ︷︷ ︸
‖g(τ)‖2F=

∑
ij |gij(τ)|

2

dτ(3.93)
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Note that G(s) and g(t) are dynamic systems while G(jω)
and g(τ) are constant matrices (for given value of ω or τ ).

We can change the order of integration and summation
in (3.93) to get

‖G(s)‖2 = ‖g(t)‖2 =

√√√√
∑

ij

∫ ∞

0

|gij(τ)|2dτ(3.94)

where gij(t) is the ij’th element of the impulse response

matrix, g(t). Thus H2 norm can be interpreted as the

2-norm output resulting from applying unit impulses δj(t)
to each input, one after another (allowing the output to
settle to zero before applying an impulse to the next

input). Thus ‖G(s)‖2 =
√∑m

i=1 ‖zi(t)‖
2
2 where zi(t) is the

output vector resulting from applying a unit impulse δi(t)
to the i’th input.
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Numerical computations of the H2 norm.

Consider G(s) = C(sI − A)−1B. Then

‖G(s)‖2 =

√
tr(BTQB) or ‖G(s)‖2 =

√
tr(CPCT )(3.95)

where Q = observability Gramian
and P = controllability Gramian
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3.10.2 H∞ norm [4.10.2]

G(s) proper.
For the H∞ norm we use the singular value (induced
2-norm) spatially (for the matrix) and pick out the peak
value as a function of frequency

‖G(s)‖∞
∆
= max

ω
σ̄(G(jω))(3.96)

The H∞ norm is the peak of the transfer function
“magnitude”.
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Time domain performance interpretations of the H∞ norm.

Worst-case steady-state gain for sinusoidal inputs at
any frequency.

Induced (worst-case) 2-norm in the time domain:

‖G(s)‖∞ = max
w(t) 6=0

‖z(t)‖2
‖w(t)‖2

= max
‖w(t)‖2=1

‖z(t)‖2(3.97)

(In essence, (3.97) arises because the worst input
signal w(t) is a sinusoid with frequency ω∗ and a
direction which gives σ(G(jω∗)) as the maximum gain.)
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Numerical computation of the H∞ norm. Consider

G(s) = C(sI −A)−1B +D

H∞ norm is the smallest value of γ such that the
Hamiltonian matrix H has no eigenvalues on the imaginary
axis, where

H =

[
A+ BR−1DTC BR−1BT

−CT (I +DR−1DT )C −(A+BR−1DTC)T

]
(3.98)

and R = γ2I −DTD
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3.10.3 Difference between the H2 and H∞ norms

Frobenius norm in terms of singular values

‖G(s)‖2 =

√
1

2π

∫ ∞

−∞

∑

i

σ2i (G(jω))dω(3.99)

Thus when optimizing performance in terms of the different
norms:

H∞: “push down peak of largest singular value”.

H2: “push down whole thing” (all singular values over all
frequencies).
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Example

G(s) =
1

s+ a
(3.100)

H2 norm:

‖G(s)‖2 = (
1

2π

∫ ∞

−∞

|G(jω)|2︸ ︷︷ ︸
1

ω2+a2

dω)
1

2

= (
1

2πa

[
tan−1(

ω

a
)
]∞
−∞

)
1

2 =

√
1

2a

Alternatively: Consider the impulse response

g(t) = L−1

(
1

s+ a

)
= e−at, t ≥ 0(3.101)
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to get

‖g(t)‖2 =

√∫ ∞

0

(e−at)2dt =

√
1

2a
(3.102)

as expected from Parseval’s theorem.
H∞ norm:

||G(s)||∞ = max
ω

|G(jω)| = max
ω

1

(ω2 + a2)
1

2

=
1

a
(3.103)
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Example

There is no general relationship between the H2 and H∞

norms.

f1(s) =
1

ǫs+ 1
, f2(s) =

ǫs

s2 + ǫs+ 1
(3.104)

||f1||∞ = 1 ||f1||2 = ∞

||f2||∞ = 1 ||f2||2 = 0
(3.105)

Why is the H∞ norm so popular? In robust control convenient
for representing unstructured model uncertainty, and
because it satisfies the multiplicative property:

‖A(s)B(s)‖∞ ≤ ‖A(s)‖∞ · ‖B(s)‖∞(3.106)

What is wrong with the H2 norm? It is not an induced norm and
does not satisfy the multiplicative property.

Lecture 3 – p. 75/77



Elements of Linear System Theory

Example

Consider again G(s) = 1/(s+ a) in (3.100), for which

‖G(s)‖2 =
√

1/2a.

‖G(s)G(s)‖2 =

√√√√√

∫ ∞

0

| L−1[(
1

s+ a
)2]

︸ ︷︷ ︸
te−at

|2

=

√
1

a

1

2a
=

√
1

a
‖G(s)‖22

(3.107)
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for a < 1,

‖G(s)G(s)‖2 > ‖G(s)‖2 · ‖G(s)‖2(3.108)

which does not satisfy the multiplicative property.
H∞ norm does satisfy the multiplicative property

‖G(s)G(s)‖∞ =
1

a2
= ‖G(s)‖∞ · ‖G(s)‖∞
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