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Uncertainty in SISO Systems

5.1 Introduction [7.1]

A control system is robust if it is insensitive to differences
between the actual system and the model of the system
which was used to design the controller. These differences
are referred to as model/plant mismatch or simply model
uncertainty.
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Uncertainty in SISO Systems

Our approach is:

1. Determine the uncertainty set: find a mathematical
representation of the model uncertainty (“clarify what
we know about what we don’t know”).

2. Check Robust stability (RS): determine whether the
system remains stable for all plants in the uncertainty
set.

3. Check Robust performance (RP): if RS is satisfied,
determine whether the performance specifications are
met for all plants in the uncertainty set.
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Uncertainty in SISO Systems

Notation:

Π – a set of possible perturbed plant models (“uncertainty
set”).

G(s) ∈ Π – nominal plant model (with no uncertainty).

Gp(s) ∈ Π and G′(s) ∈ Π – particular perturbed plant
models.
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Uncertainty in SISO Systems

5.2 Classes of uncertainty [7.2]

1. Parametric uncertainty. Here the structure of the model
(including the order) is known, but some of the
parameters are uncertain.

2. Neglected and unmodelled dynamics uncertainty. Here the
model is in error because of missing dynamics, usually
at high frequencies, either through deliberate neglect or
because of a lack of understanding of the physical
process. Any model of a real system will contain this
source of uncertainty.

3. Lumped uncertainty. Here the uncertainty description
represents one or several sources of parametric and/or
unmodelled dynamics uncertainty combined into a
single lumped perturbation of a chosen structure.
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Uncertainty in SISO Systems
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Figure 1: Plant with multiplicative uncertainty
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Uncertainty in SISO Systems

Multiplicative uncertainty of the form
ΠI : Gp(s) = G(s)(1 + wI(s)∆I(s));
where

|∆I(jω)| ≤ 1 ∀ω︸ ︷︷ ︸
‖∆I‖∞≤1

(5.1)

Here ∆I(s) is any stable transfer function which at each
frequency is less than or equal to one in magnitude. Some
allowable ∆I(s)’s

s− z

s+ z
,

1

τs+ 1
,

1

(5s+ 1)3
,

0.1

s2 + 0.1s+ 1

Inverse multiplicative uncertainty

ΠiI : Gp(s) = G(s)(1 + wiI(s)∆iI(s))
−1; |∆iI(jω)| ≤ 1 ∀ω
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Uncertainty in SISO Systems

5.3 Representing uncertainty in the frequency

domain [7.4]

5.3.1 Uncertainty regions [7.4.1]

Example:

Gp(s) =
k

τs+ 1
e−θs, 2 ≤ k, θ, τ ≤ 3(5.2)
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Figure 2: Uncertainty regions of the Nyquist plot at

given frequencies. Data from (5.2)
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Uncertainty in SISO Systems
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Figure 3: Disc approximation (solid line) of the orig-

inal uncertainty region (dashed line). Plot corre-

sponds to ω = 0.2 in Figure 2
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Uncertainty in SISO Systems

5.3.2 Approximation by complex perturbations [7.4.2]
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Figure 4: Disc-shaped uncertainty regions gener-

ated by complex additive uncertainty, Gp = G+wA∆

Lecture 5 – p. 11/35



Uncertainty in SISO Systems

We use disc-shaped regions to represent uncertainty
regions (Figures 3 and 4) generated by

ΠA : Gp(s) = G(s) + wA(s)∆A(s); |∆A(jω)| ≤ 1 ∀ω(5.3)

where ∆A(s) is any stable transfer function which at each
frequency is no larger than one in magnitude.
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Uncertainty in SISO Systems
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Figure 5: The set of possible plants includes the

origin at frequencies where |wA(jω)| ≥ |G(jω)|, or

equivalently |wI(jω)| ≥ 1
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Uncertainty in SISO Systems

Alternative: multiplicative uncertainty description as in (5.1),

ΠI : Gp(s) = G(s)(1 + wI(s)∆I(s)); |∆I(jω)| ≤ 1,∀ω(5.4)

(5.3) and (5.4) are equivalent if at each frequency

|wI(jω)| = |wA(jω)|/|G(jω)|(5.5)
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Uncertainty in SISO Systems

5.3.3 Obtaining the weight for complex uncertainty [7.4.3]

1. Select a nominal model G(s).

2. Additive uncertainty. At each frequency find the
smallest radius lA(ω) which includes all the possible
plants Π:

|wA(jw)| ≥ lA(ω) = max
GP∈Π

|Gp(jω)−G(jω)|(5.6)

3. Multiplicative (relative) uncertainty. (preferred
uncertainty form)

|wI(jw)| ≥ lI(ω) = max
Gp∈Π

∣∣∣∣
Gp(jω)−G(jω)

G(jω)

∣∣∣∣(5.7)
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Uncertainty in SISO Systems

Example 1 Multiplicative weight for parametric uncertainty.

Consider again the set of plants with parametric uncertainty

given in (5.2)

Π : Gp(s) =
k

τs+ 1
e−θs, 2 ≤ k, θ, τ ≤ 3(5.8)

We want to represent this set using multiplicative uncertainty

with a rational weight wI(s). We select a delay-free nominal

model

G(s) =
k̄

τ̄ s+ 1
=

2.5

2.5s+ 1
(5.9)
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Figure 6: Relative errors for 27 combinations of k, τ

and θ with delay-free nominal plant (dotted lines).

Solid line: First-order weight |wI1| in (5.10). Dashed

line: Third-order weight |wI | in (5.11)

Lecture 5 – p. 17/35



Uncertainty in SISO Systems

wI1(s) =
Ts+ 0.2

(T/2.5)s+ 1
, T = 4(5.10)

wI(s) = ωI1(s)
s2 + 1.6s+ 1

s2 + 1.4s+ 1
(5.11)
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Uncertainty in SISO Systems

5.4 SISO Robust stability [7.5]

5.4.1 RS with multiplicative uncertainty
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Figure 7: Feedback system with multiplicative un-

certainty
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Uncertainty in SISO Systems

Graphical derivation of RS-condition.
In Figure 8 | − 1− L| = |1 + L| is the distance from the point
−1 to the centre of the disc representing Lp, |wIL| is the

radius of the disc. Encirclements are avoided if none of the
discs cover −1, and we get from Figure 8

RS = |wIL| < |1 + L|, ∀ω(5.12)

=

∣∣∣∣
wIL

1 + L

∣∣∣∣ < 1,∀ω ⇔ |wIT | < 1,∀ω(5.13)

def
⇔ ‖wIT‖∞ < 1(5.14)

RS = |T | < 1/|wI |, ∀ω(5.15)
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Figure 8: Nyquist plot of Lp for robust stability
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Uncertainty in SISO Systems

Example 2 Consider the following nominal plant and

PI-controller

G(s) =
3(−2s+ 1)

(5s+ 1)(10s+ 1)
K(s) = Kc

12.7s+ 1

12.7s

Kc = Kc1 = 1.13 (Ziegler-Nichols). One “extreme” uncertain

plant is G′(s) = 4(−3s+ 1)/(4s+ 1)2. For this plant the relative

error |(G′ −G)/G| is 0.33 at low frequencies; it is 1 at about

0.1 rad/s, and it is 5.25 at high frequencies ⇒ uncertainty

weight

wI(s) =
10s+ 0.33

(10/5.25)s+ 1

which closely matches this relative error.
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Figure 9: Checking robust stability with multiplica-

tive uncertainty
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Uncertainty in SISO Systems

By trial and error we find that reducing the gain to
Kc2 = 0.31 just achieves RS as seen from T2 in Fig. 9.
Remark:

The procedure is conservative. For Kc2 the system with the
“extreme” plant is not at the limit of instability; we can
increase the gain to kc2 = 0.58 before we get instability.
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Figure 10: M∆-structure

M∆-structure derivation of RS-condition. The stability of the
system in Figure 7 is equivalent to stability of the system in
Figure 10, where ∆ = ∆I and

M = wIK(1 +GK)−1G = wIT(5.16)
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Uncertainty in SISO Systems

The Nyquist stability condition then determines RS if and
only if the “loop transfer function” M∆ does not encircle −1
for all ∆. Thus,

RS = |1 +M∆| > 0, ∀ω,∀|∆| ≤ 1(5.17)

RS = 1− |M(jω)| > 0, ∀ω(5.18)

= |M(jω)| < 1, ∀ω(5.19)
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5.4.2 RS with inverse multiplicative uncertainty [7.5.3]
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Figure 11: Feedback system with inverse multiplica-

tive uncertainty

RS ⇔ |S| < 1/|wiI |, ∀ω(5.20)
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Uncertainty in SISO Systems

5.5 SISO Robust performance [7.6]

5.5.1 Nominal performance in the Nyquist plot

NP = |wPS| < 1 ∀ω = |wP | < |1 + L| ∀ω(5.21)

See Figure:
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Figure 12: Nyquist plot illustration of nominal perfor-

mance condition |wP | < |1 + L|
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Uncertainty in SISO Systems

5.5.2 Robust performance [7.6.2]
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Figure 13: Diagram for robust performance with

multiplicative uncertainty
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Uncertainty in SISO Systems

For robust performance we require the performance
condition (5.21) to be satisfied for all possible plants, that is,
including the worst-case uncertainty.

RP
def
⇔ |wPSp| < 1 ∀Sp,∀ω(5.22)

= |wP | < |1 + Lp| ∀Lp,∀ω(5.23)

This corresponds to requiring |ŷ/d| < 1 ∀∆I in Figure 13,
where we consider multiplicative uncertainty, and the set of
possible loop transfer functions is

Lp = GpK = L(1 + wI∆I) = L+ wIL∆I(5.24)
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Graphical derivation of RP-condition. (Figure 14)

RP = |wP |+ |wIL| < |1 + L|, ∀ω(5.25)

= |wP (1 + L)−1|+ |wIL(1 + L)−1| < 1,∀ω(5.26)

RP = maxω (|wPS|+ |wIT |) < 1(5.27)
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Figure 14: Nyquist plot illustration of robust perfor-

mance condition |wP | < |1 + Lp|
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Uncertainty in SISO Systems

5.5.3 The relationship between NP, RS and RP [7.6.3]

NP = |wPS| < 1,∀ω(5.28)

RS = |wIT | < 1,∀ω(5.29)

RP = |wPS|+ |wIT | < 1,∀ω(5.30)

A prerequisite for RP is that we satisfy NP and RS. This
applies in general, both for SISO and MIMO systems
and for any uncertainty.

Lecture 5 – p. 34/35
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For SISO systems, if we satisfy both RS and NP, then
we have at each frequency

|wPS|+ |wIT | ≤ 2max{|wPS|, |wIT |} < 2(5.31)

Therefore, within a factor of at most 2, we will
automatically get RP when NP and RS are satisfied.

|wPS|+ |wIT | ≥ min{|wP |, |wI |}(5.32)

We cannot have both |wP | > 1 (i.e. good performance)
and |wI | > 1 (i.e. more than 100% uncertainty) at the
same frequency.
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