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Controller Design

7 Controller Design [9]
7.1 Trade-offs in MIMO feedbaclé design [9.1]
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Controller Design

fCIosed—Ioop objectives: T

1. For disturbance rejection make &(.S) small.

2. For noise attenuation make &(7") small.

3. For reference tracking make & (T') ~ o(T) ~ 1.
4. For control energy reduction make (K S) small.

5. For robust stability in the presence of an additive
perturbation make & (K.S) small.

6. For robust stability in the presence of a multiplicative
output perturbation make & (7") small.

The closed-loop requirements 1 to 6 cannot all be satisfied
simultaneously. Feedback design is therefore a trade-off
Lover frequency of conflicting objectives. J
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(7.3) o(L)-1<

# At frequencies where o(L) >> 1, we have 6(S5) ~ 1/a(L)
o At frequencies where (L)

» At the bandwidth frequency (1/5(S(jwg)) = V2 = 1/41),
we have 0.41 < o(L(jwp)) < 2.41

<< 1,we have ¢(T) ~ (L)

o |
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vaer specified frequency ranges, we can approximate the T
closed-loop requirements by the following open-loop
objectives:

1.

2.

For disturbance rejection make o(GK) large; valid for
frequencies at which o(GK) > 1.

For noise attenuation make (G K') small; valid for
frequencies at which 6 (GK) < 1.

. For reference tracking make o(GK) large; valid for

frequencies at which ¢(GK) > 1.

For control energy reduction make &(K') small; valid for
frequencies at which 6(GK) < 1.

. For robust stability to an additive perturbation make (K ') small;

\_6.

valid for frequencies at which ¢(GK) < 1.

For robust stability to a multiplicative output perturbation make J
o(GK) small; valid for frequencies at which ¢(GK) < 1.
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Figure 2: Design tradeofft.
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fRequirements 1 and 3 are valid and important at low T
frequencies, 0 < w < w; < wpg. Requirements 2, 4, 5and 6
are conditions which are valid and important at high
frequencies, wp < wy, < w < .

At frequencies where we want high gains (at low

frequencies) the “worst-case” direction is related to (L),
whereas at frequencies where we want low gains (at high
frequencies) the “worst-case” direction is related to ().

o |
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7.3 LQG control [9.2] N
7.3.1 Traditional LQR and LQG Problems [9.2.1]
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Figure 3: Separation Principle
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7.3, and H.. control [9.3] -
7.3.1 General control problem formulation [9.3.1]
w <
— P =
U (V)

K |je—

Figure 6: General control configuration

2| w | _ Pi1(s) Pia(s) e
(7.4) v = P(s) u - _ Pr1(s) Paa(s) LY

u7.5) u= K(s)v J
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fThe state-space realization of the generalized plant P is T
given by

 A| By By |
(7.8) P = | Ci| Dy Dis
 C2 | Da1 Do |
(7.9) z = Fj(P, K)w
where
(7.10) Fj(P,K) = Pi1 + PioK(I — Py K) 1Py

Ho and H ., control involve the minimization of the H, and
Hoo Norms of Fj( P, K) respectively.

o |
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f7.3.2 ‘H> optimal control [9.3.2] T

The standard #, optimal control problem is to find a
stabilizing controller K which minimizes

1 @)
7AN [ F(s)]]2 = \/%/ F(jw)F(jw)Tdw; F 2 F(P,K)

For a particular problem the generalized plant P will include
the plant model, the interconnection structure, and the
designer specified weighting functions. This is illustrated for
the LQG problem in the next subsection.

Stochastic interpretation: suppose in the general control
configuration that the exogenous input w is white noise of
unit intensity. That is:

L(7.12) E {w(t)w(T)T} = 16(t —7) J
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fThe expected power in the error signal z is then given by: T

T
7.13) E{ lim % /_ Tz(t)Tz(t)dt}
= tr B {z(t)z(t)T}

_ 1 F(jw)F(jw)!dw
2T ) _
(by Parseval's Theorem)
(714 = ||Fllz = IE(P, K)ll3

Thus, by minimizing the #s norm, the output (or error)

power of the generalized system, due to a unit intensity

white noise input, is minimized; we are minimizing the
Lroot-mean-square (rms) value of z. J
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f&%’s LQG: a specifll 7;[2 2%th§Lc$r1}}£oller [9.3.3] T
(7.16) y = Cx+w,
where:

(7.17) E{[fﬁg] [ wa(r)” wn(f)T}} = [K‘j 3] 6(t =)

The LQG problem is to find © = K (s)y such that

T
(7.18) JE{ lim %/ 2" Qz + u" Ru] dt}
0

T— 00

is minimized with Q = Q' > 0and R = R! > 0.

o |
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 Define: -

(7.19) — [Q2 01] [x]
0 R2| U
and represent the stochastic inputs w,, w,, as
(7.20) wa | _ W= 00
Wn, 0 V2

where w IS a white noise process of unit intensity. Then the
LQG cost function is

T
(7.21) J = E{ lim l/ z(t)Tz(t)dt} = || F;(P, K)H%
0

B N
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(7.22) 2(s) = Fi(P, K)w(s)
and the generalized plant P is given by
" AWz 0 B

Py P 2| 0
p_ 11123@0 0

o |
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Figure 7: The LQG problem: general control config-
uration
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' 7.3.4 ., optimal control [9.3.4] -

With reference to the general control configuration of
Figure |6, the standard H ., optimal control problem is to find
all stabilizing controllers K which minimize

(7.23) |F1(P, K)o = maxa(Fi(P, K)(jw))

This has a time domain interpretation as the induced
(worst-case) 2-norm. Let z = Fj(P, K)w, then

|2(1)]]2
(7.24) Fi(F, K )ljoo = miax
|Fi(P, K)| w(t)20 |Jw(t)]]2

where [|2()[l2 = 1/ f* 32 [24() 2t i the 2-norm of the B
Lvec’[or signal.
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ﬁt IS often computationally (and theoretically) simpler to T
design a sub-optimal one (i.e. one close to the optimal
controller in the sense of the H,, norm). Let ~,,,;, be the
minimum value of || F;( P, K)||« over all stabilizing controllers
K. Then the H., sub-optimal control problem is: given a
~v > ~vmin, TINd all stabilizing controllers K such that

IE (P, K) |loo <

o |
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 7.35 Mixed-sensitivity .. control [9.3.5] |

To optimize performance, minimize ||w1S|| o,
to minimize control inputs, minimize ||wy K S||co-
Compromise:

S
(B

General setting: disturbance d as a single exogenous input,

T
error signal z = { A A } , where 2; = Wiy and
29 = —Wgu, ()

o |
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Figure 8: S/KS mixed-sensitivity optimization in
standard form (regulation)
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fThUS 21 = Wi Sw and zo = Wo K Sw and: T
W WG
P — P p—
(7.26) H 0 270y,
Poy=—1 Pog = =G

21 B T r 7]
P P

(7.27) S I e I

- - - Po1 Poo u

U L 4 L i
and ] )

WS
7.28 Fi(P. K) =
- (7.28) (P = | N
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fAnother useful mixed sensitivity optimization problem, is to T
find a stabilizing controller which minimizes

(7.29)

L . ©.@)

The S/T mixed-sensitivity minimization problem can be put
into the standard control configuration as shown in Figure 9.

P = W1 Pio = G
(7.30) 0 WG

Py = Py = -G

o |
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Figure 9: S/T mixed-sensitivity optimization in stan-
dard form

o |
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7.4 ‘H ., loop-shaping design [9.4] -

We need a design procedure more flexible than
mixed-sensitivity H ., but not as complicated as p-synthesis.
For simplicity, it should be based on classical loop-shaping
ideas.

7.4.1 Coprime Factorization [4.1.5]

A useful way to represent systems is the coprime
factorization, which may be used both in state-space and
tranfer function forms.

A right coprime factorization of GG is given by
(7.31) G(s) = Ny(s)MY(s)

T

Lwhere N,(s) and M, are stable coprime transfer functions. J
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" The stability implies that: o
# N,(s) should contain all the RHP-zeros of G(s)
o M, should contain as RHP-zeros all the RHP-poles of
G(s)
The coprimeness implies that:

# there should be no common RHP-zeros (including the
point at infinity) in N,.(s) and M,., which results in

pole-zero cancellation when forming N,.(s)M, 1 (s).

Mathematically, comprimeness means that there exist
stable U, (s) and V. (s) such that the following Bezout identity
IS satisfied:

(7.32) U-N,+V, M, =1

o |
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fSimiIarIy, a left coprime factorization of G is given by T
(7.33) G(s) = M (s)Ny(s)
where N,;(s) and M; are stable coprime transfer functions.

That is, there exist stable U;(s) and V;(s) such that the
following Bezout identity is satisfied:

(7.34) NU + MV, =1
Example

(s —=1)(s+2)
(7.35) G(s) = 5= 3)(s 1 4)

o |
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fThe coprime factorization is NOT unique. We introduce the T
operator M* defined as M*(s) = M1 (—s)
Then, G(s) = N,.(s)M1(s) is called a normalized right
coprime factorization if
(7.36) N N, + MM, =1
e
Ny
which means that X*X, = I.
Then, G(s) = M; ' (s)N,(s) is called a normalized left
coprime factorization if
(7.37) NZNZ* + MZMZ* =1

In this case, X;(s) = [M; N;]is a co-inner transfer function
- which means that X, X} = I. o

In this case, X, (s) = IS a Inner transfer function
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ﬁf G has a minimal state-space realization
o ‘ .

(7.38) G2
C'| D

-

Then, a minimal state-space representation of a normalized

left coprime factorization is given by

A+ HC|B+HD H
(7.39)  [Ni(s)My(s)] 2 ‘

R:C | R:D R:

where H = —(BDT + ZCT)R™!, R = I + DD, and the
matrix Z is the unique positive definite solution to the

Riccati equation

(A-BS™'DTC\z+Z(A-BS 'DTc)yl —zcTR™'CZ+BS !B =0

LNhere S=1I1+DID.
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f7.4.2 RS for Coprime Factor Uncertainty [8.6.2] T
(7.40) RS <= ||M|x <1

IS tight (not conservative) only when there is a single full
perturbation block. An “exception” to this is when the
uncertainty blocks enter or exit from the same location in
the block diagram, because they can be stacked on top of
each other or side by side in an overall A which is then a
full matrix. If we norm-bound the combined (stacked)
uncertainty, we then get a tight RS condition in terms of
1M || oo

o |
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fOne important uncertainty that falls into this category is the T
coprime uncertainty, for which the set of plants is

(7.41)Gp:(MZ—I—AM)_l(Nl—I—AN), I1AN Ao < €

where G = M; ' N, is a left coprime factorization of the
nominal plant.

———— AN A ‘ ﬂM a————

=1
- T Ng > ﬂ/fg ———L—ﬁ

—K |

o |

Figure 10: Coprime uncertainty
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fTo test for RS we can rearrange the block diagram into the T

M A structure with

(7.42) A = [AN AM], M =

We then have

K
1

—1as—1
(I +GK)™M,

(7.43)  RSV|AN Aplec <€ = |[M|loo < 1/€

This result is central to the H, loop-shaping design

procedure.

# Good “generic" uncertainty description when no a-priori
uncertainty information is available.

# Often used to maximize the uncertainty magnitude ¢

such that RS is maintained.
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~ 7.4.3 Robust Stabilization [9.4.1] -

For feedback systems with coprime uncertainty, the stability
property is robust if and only if the nominal feedback is

stable and
s

YK = 7

(7.44)

—1 —1
(I+GK)™'M

0. @)

<1/e V|An Anlloo <€

The lowest achievable v, and the corresponding maximum
stability margin ¢ were computed analytically

(7.45) Ymin = €0 =

={1—|I[N, M|l% b

V= (14 p(X 7)Y

where || - ||z denotes Hankel norm and p denotes the
Lspectral radius (maximum eigenvalue). J
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fFor a minimal realization (A, B, C, D) of G(s), Z Is the T
unique positive definite solution to the algebraic Riccati
equation

(A-BS™'D'C\z+Z(A-BS ‘D) —zcTR™'CZ+BS !B =0
(7.46)
where

(7.47) R=1I1+DD', S=I+D'D

and X is the unique positive definite solution to the
algebraic Riccati equation

(A—BST'DTCY' X+ X(A-BS 'DTC)—XBS 1B X+CTR™1C =0
(7.48)
This formula simplifies considerably for a strictly proper

~ plant, i.e., when D=0; o
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fA controller that guarantees that T
_ K _ —1q4,-1
(7.49) I I+ GK) "M, <~

for a specified v > ~v,in, IS given by

s A+ BF +2(LT)Z2CT(C + DF) | 2(LT) ' zCT
BTX | — DT
F = -sYpfc+ B'X)

L = 1-~)I+XZ

Since we can compute directly ~,,.;», we get an explicit
solution by solving just two Riccati equations and avoid the
v-iteration needed to solve the general H., problem. J
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f7.4.4 A Systematic ., Loop-Shaping Procedure [9.4.2] T

Robust stabilization alone is not much use in practice
because the designer is not able to specify any
performance requirements. We can add pre- and
post-compensators to the plant to shape the open-loop
singular values prior to robust stabilization of the “shaped"”

plant.

------------------------------------------------

------------------------------------------------

L Figure 11: Shaped plant and controller J
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ﬁf Wi and W5 are the pre- and post-compensators T
respectively, the “shaped" plant (initial loop shape) G, is
given by
(7.50) Gs = WoGW,

The controller K, is synthesized by solving the robust
stabilization problem for the “shaped" plant with a

normalized left coprime factorization G, = M!N,. The
feedback controller for the plant G is then

(7.51) K = W1 KWy

This procedure contains all the essential ingredients of
classical loop-shaping. The robust stabilization problem can
be solved using the formulae presented in the previous

Lsection. J
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