
Lecture 2

Stability and Robustness1

This lecture discusses the role of stability in feedback design. The emphasis is
not on yes/no tests for stability, but rather on how to measure the distance to
instability. The small gain theorem is introduced as a means to verify stability in
presence of model uncertainty.

2.1 Stability of feedback systems

Feedback and stability are closely connected issues. On one hand, the introduction
of feedback may potentially create instability. On the other hand, properly applied
feedback is often the best way to get rid of instabilities.
There are several well known examples in the history. One is the construction

of airplanes. The first airplanes in the early 1900s were depending on the pilot to
stabilize the dynamics manually using the control-stick. The modern fighter JAS-
Gripen was built unstable for the sake of maneuverability and relies on computer
control for stabilization.

Figure 2.1 Lawrence Sperry demonstrates a stabilizing gyroscopic controller. He waves his
hand in the air, while his mechanic is walking on the wing.

Another striking example was the construction of the first electronic feedback
amplifiers, that were necessary to build long distance telephone connections in
the 1930s. In this case, high gain feedback was needed to reduce the nonlinear
signal distorsion. Stability problems became a major issue, and the development
of frequency domain stability criteria was critical for successful implementation.
A modern example is the maneuver test for Mercesdes A-class, the so called

elk-test, that created unstable oscillations severe enough to turn the car over. The
problem was solved by introducing electronic feedback control.
Recall from the previous lecture that a system is called input-output stable

(or L2-stable) if its L2-gain is bounded. A transfer function is called stable if it
corresponds to an input-output stable system. The following stability criterion is
available for linear time-invariant systems.

THEOREM 2.1
A rational transfer function G(s) is stable if and only if all poles of G have negative
real part. In particular, if G(s) = C(sI − A)−1B + D, it is sufficient that all
eigenvalues of A have negative real part.

1Written by A. Rantzer with contributions by K.J. Åström
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Lecture 2. Stability and Robustness1

Figure 2.2 The stability problems of Mercedes A-class were solved by electronic feedback

More generally, a system with impulse response �(t) is stable provided that G(iω ) =
∫∞

0 e
−iω t�(t)dt is well defined and there is a c with pG(iω )p ≤ c for all ω .

Example 1 Let us determine input-output stability of the following systems

(I)











ẋ =

[

−1 2

−3 −2

]

+

[

1

0

]

u

y= [ 1 1 ] x + u

(I I) y(t) =

∫ t

0
eτ−t

(

u(τ ) − y(τ )
)

dτ

(I) The first system is input-output stable due to stable eigenvalues of the sys-
tem matrix. A two-by-two matrix like this is stable if and only if the trace is
negative (here −3) and the determinant is positive (here 8). This is because
the trace is the sum of the eigenvalues and the determinant is the product.
In general, eigenvalues can be computed by the matlab command eig(A):

>> eig([-1 2; -3 -2])

ans =

-1.5000 + 2.3979i

-1.5000 - 2.3979i

Note that the coefficients of the characteristic polynomial should not be com-
puted, at least for high order systems, since this generally leads to numerical
difficulties.

(I I) The input-output relationship can be written

y= � ∗ (u− y)

where �(t) = e−t, t ≥ 0. After Laplace transformation, this gives

Y(s) =
1
s+ 1

[U(s) − Y(s)]

[ Y(s) =
1
s+ 2

U(s)

The transfer function 1/(s + 2) shows that the system is stable, since the
only pole −2 is negative.

✷

Our main objective is to study stability of feedback loops. From the basic course,
we recall the Nyquist criterion, which supports understanding by graphical illus-
trations.
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2.1 Stability of feedback systems
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Figure 2.3 The closed loop system remains stable as long as the Nyquist diagram does
not encircle −1. The amplitude margin Am and phase margin φm measure the distance from
instability.

THEOREM 2.2—THE NYQUIST CRITERION
Suppose that G(s) is stable and that the Nyquist plot G(iω ), ω ∈ R does not
encircle −1. Then (1+ G(s))−1 is also stable.

The following example illustrates the use of the theorem.

Example 2 As motivating example, consider a position control in a mechanical
system with damping coefficient c. The controller contains a time delay:

ẍ + cẋ + x = u u(t) = −k[x(t− T) + ẋ(t− T)]

The feedback loop is illustrated in the figure below. Nominal values of the param-
eters are k = 1, c = 1 and T = 0. Let us investigate how much margin there is in
each of the parameters before the system becomes unstable?

❤ k(s+1)
s2+cs+1 e−sT

−1

✲ ✲ ✲ ✲

✛

✻

For this purpose, we plot the Nyquist and Bode diagrams of the nominal transfer
function (s+ 1)/(s2+ s+ 1). The Matlab command margin gives numerical values
for the amplitude- and phase-margins.
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Figure 2.4 Nyquist and bode plots for the nominal transfer function (s+ 1)/(s2 + s+ 1)
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Lecture 2. Stability and Robustness1

For k = c = 1 the open loop transfer function is

s+ 1
s2 + s+ 1

e−sT

For small values of T the Nyquist plot will not encircle −1, so the systems remains
stable. To find out exactly how large values of T are needed for instability, note that
the phase margin 109 degrees (or 109π /180 radians) is obtained at the frequency
1.41 rad/sec. Hence a time delay of 109π

180⋅1.41 = 1.35 seconds can be tolerated for
k = c = 1.
To investigate the robustness to variations in the parameters c and k, we note

that the closed loop characteristic polynomial for T = 0 is

(s2 + cs+ 1) + k(s+ 1) = s2 + (c+ k)s+ 1+ k

The stability condition for a second degree polynomial is positive coefficients, so
stability is maintained as long as c+ k > 0 and 1+ k > 0. ✷

Having analyzed the example with respect to parametric uncertainty above,
it is natural to ask about robustness to unmodelled dynamics. For example, this
would be relevant to capture the difference between a rigid body and an elastic
one. This is also the subject for the remaining part of the lecture.

2.2 Sensitivity

Two transfer functions are of particular interest in the study of the feedback loop
below.

C(s) P(s)

−1

ΣΣΣ
r e u

d

x

n

y

Figure 2.5 A simple control loop

These are

S(s) =
1

1+ P(s)C(s)
(the sensitivity function)

T(s) =
P(s)C(s)

1+ P(s)C(s)
(the complementary sensitivity function)

The term complementary refers to the fact that S(s) + T(s) " 1. Note that T(s)
is the transfer function from reference signal r to the the plant output x. An-
other name for T(s) is therefore the closed loop transfer function of the system,
while P(s)C(s) is called the open loop transfer function or just the “loop transfer
function”.
The name sensitivity function refers to the fact that S measures how small

relative errors in P are mapped into relative errors in T . This is verified by a
simple calculation:

dT

dP
=
d

dP

(

1−
1

1+ PC

)

=
C

(1+ PC)2
=
TS

P
[

dT/T

dP/P
= S
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2.3 Norms of signals

R−1 = sup
ω
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Figure 2.6 The L2-gain of the sensitivity function is the inverse of the distance from the
Nyquist plot to −1.

Notice that T is a nonlinear function of P. Hence the sensitivity calculation
only says something about the response to small pertubations in P. For larger
perturbations, the system could have a drastically different behaviour and even
become unstable.
Given the Nyquist criterion, it is natural to conjecture that the robustness to

unmodelled dynamics should somehow be related to the distance from the Nyquist
plot to the point −1. It is therefore striking to note that the L2-gain of the sensi-
tivity function turns out to be exactly the inverse of this distance. Consequences
are investigated in the next section.

2.3 Norms of signals

In the previous Chapter we looked at sizes of signals (norms) and gains of systems.
Recall that the L2-gain of a SISO-system was the largest magnitude in the Bode-
diagram. Later in the course we will work with multivariable systems where the
relation between vectors of inputs and outputs could be described as a matrix with
transfer function elements, as for example

[

y1

y2

]

=

[

2
s+1

4
2s+1

s
s2+s+1

3
s+4

]

[

u1

u2

]

(2.1)

For that purpose we will first introduce how to measure the size of a vector
(vector norm) and based on this the induced norm (gain) of a matrix.
For x ∈ Rn, we use the “L2-norm”

pxp =
√

xT x =
√

x21 + ⋅ ⋅ ⋅+ x2n

You may think of it as Pythagoras’ theorem in Rn.

For matrices M ∈ Rn$n, we use the “L2-induced norm”, the largest ratio be-
tween the output and the corresponding input

qMq := sup
x

pMxp

pxp
= sup

x

√

xTMTMx

xT x
=

√

λ̄(MTM)

Here λ̄(MTM) denotes the largest eigenvalue of MTM . The largest gain is

thus
√

λ̄(MTM), also called the largest singular value of M , denoted σ̄ (M). The
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Figure 2.7 Matlab-example showing how the output vector y= Mu changes size and direc-
tion when the input signal with ppupp = 1 are changed in different directions around the unit
circle. (Note scaling of axes in lower plot).

fraction pMxp/pxp is maximized when x is a corresponding eigenvector to MTM ,
but note that we in general have different directions of the input vector x and the
output vector Mx (as x in general is not a eigenvector of M).
Example:

[

y1

y2

]

=

[

2 4

0 3

] [

u1

u2

]

Matlab-code for singular value decomposition of the matrix

M =

[

2 4

0 3

]

Singula Value Decomposition(SVD) :

M = U ⋅ S ⋅ V ∗

where both the matrices U and V are unitary (i.e. have or-
thonormal columns s.t. V ∗ ⋅ V = I) and S is the diagonal
matrix with (sorted decreasing) singular values σ i.
Multiplying M with a input vector along the first column in
V gives

M ⋅ V(:,1) = USV
∗ ⋅ V(:,1) =

= US

[

1

0

]

= U(:,1) ⋅ σ1

That is, we get maximal gain σ1 in the output direction U(:,1)
if we use an input in direction V(:,1) (and minimal gain σ n =

σ2 if we use the last column V(:,n) = V(:,2)).

>> M=[2 4 ; 0 3]

M =

2 4

0 3

>> [U,S,V]=svd(M)

U =

0.8416 -0.5401

0.5401 0.8416

S =

5.2631 0

0 1.1400

V =

0.3198 -0.9475

0.9475 0.3198

>> M*V(:,1)

ans =

4.4296

2.8424

>> U(:,1)*S(1,1)

ans =

4.4296

2.8424

Now when we know how to calculate the induced norm for a matrix, we can
apply this to a transfer function matrix, where the elements depend on the fre-
quency. The magnitude plot of the Bode diagram for single-input-single-output
systems has the multivariable correspondence of plotting all singular values for
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2.3 Norms of signals
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Figure 2.8 The singular values of the tranfer function matrix in Eq. 2.1. Note that G(0)=[2,4
; 0 3] which corresponds to M in the SVD-example above. qGq∞ = 10.3577.

the matrix transfer function as a function of the frequency. In matlab this is done
with the command sigma, see example below.

The gain of the system G is defined as

qGq∞ = maxω pG(iω )p

and is the largest magnitude (largest singular value) when sweeping over all fre-
quencies for pG(iω )p, see Fig 2.8.

Example: Consider the transfer matrix G(iω ) from Eq. 2.1

G(s) =







2
s+ 1

4
2s+ 1

s

s2 + 0.1s+ 1
3
s+ 1







>> s=tf(’s’)

>> G=[ 2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];

>> sigma(G) % plot sigma values of G wrt fq

>> grid on

>> norm(G,inf) % infinity norm = system gain

ans =

10.3577
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Lecture 2. Stability and Robustness1

2.4 Robustness via the small gain theorem

r1

r2

e1

e2

S1

S2

In this section, we will investigate stability robustness using the following
theorem, based on the notion of input-output L2-gain. For simplicity, calculations
are done assuming zero initial conditions.

THEOREM 2.3—THE SMALL GAIN THEOREM
Assume that S1 and S2 are input-output stable systems with L2-gain qS1q and
qS2q. If qS1q ⋅ qS2q < 1, then the L2-gain from (r1, r2) to (e1, e2) in the closed loop
system

e1 = S2(e2) + r1

e2 = S1(e1) + r2

is finite.

Proof. Define qyqT =
√

∫ T

0 py(t)p
2dt. Then qS(y)qT ≤ qSq ⋅ qyqT .

e1 = r1 + S2(r2 + S1(e1))

qe1qT ≤ qr1qT + qS2q
(

qr2qT + qS1q ⋅ qe1qT

)

qe1qT ≤
qr1qT + qS2q ⋅ qr2qT
1− qS1q ⋅ qS2q

Bounded gain from (r1, r2) to e1 follows as T → ∞. The gain to e2 is bounded in
the same way. ✷

To demonstrate how the small gain theorem can be used for robustness anal-
ysis, consider the feedback loop in Figure 2.4, where the plant P(s) has been
replaced by [1+ ∆(s)]P(s).

❢P(s)

∆(s)

❄

✛

✲

✲

C(s)

−1

✲ ✲

v w

Figure 2.9 Loop diagram with perturbed plant [1+ ∆(s)]P(s)

The transfer function from w to v is equal to −T(s), the complementary sen-
sitivity function. Hence, by the small gain theorem, the feedback system remains
stable as long as

q∆q ⋅ qTq < 1

8



2.4 Robustness via the small gain theorem

Note that the small gain theorem does not assume linearity or time-invariance.
Hence the closed loop system will remain stable for all plants of the form P(s)[1+
∆(s)] where ∆ has L2-gain smaller than [supω pT(iω )p]

−1, even for ∆ that are
nonlinear or time-varying.
As a second example, let us derive a stability criterion for the case that the

perturbation appears additively, i.e. P(s) is replaced by P(s) + ∆(s).

❢C(s) P(s)✲ ✲

−1 ✛

✲

∆(s)

❄

✲
wv

Figure 2.10 Loop diagram with perturbed plant P(s) + ∆(s)

Then the transfer function from w to v is equal to C(s)S(s), so the small gain
theorem shows stability for all perturbations satisfying

q∆q ⋅ qCSq < 1

For linear time-invariant perturbations, this criterion can be nicely illustrated in
the Nyquist diagram. Clearly, the condition

p∆ ⋅ Cp < p1+ PCp

guarantees that the Nyquist plot of (P+ ∆)C does not encircle −1.

−1

1+ PC

∆ ⋅ C
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