FRTN10 Multivariable Control, Lecture 6

Anders Robertsson

Automatic Control LTH, Lund University

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
(다 Controllability, observability, multivariable zeros
(Fundamental limitations
(3) Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

Lecture 6

- Controllability and observability
- Multivariable zeros
- Realizations on diagonal form

Examples: Ball in a hoop Multiple tanks
[Glad \& Ljung] Ch. 3.2-3.3, notes on course web page

Example: Ball in the Hoop

$\ddot{\theta}+c \dot{\theta}+k \theta=\dot{\omega}$
Can you reach $\theta=\pi / 4, \dot{\theta}=0$?

Can you stay there?

Example: Two water tanks

Can you reach $y_{1}=1, y_{2}=2$? Can you stay there?

Controllability

The system

$$
\dot{x}(t)=A x(t)+B u(t)
$$

is controllable, if for every $x_{1} \in \mathbf{R}^{n}$ there exists $u(t), t \in\left[0, t_{1}\right]$, such that $x\left(t_{1}\right)=x_{1}$ is reached from $x(0)=0$.

The collection of vectors x_{1} that can be reached in this way is called the controllable subspace.

Controllability criteria

The following statements regarding a system $\dot{x}(t)=A x(t)+B u(t)$ of order n are equivalent:
(i) The system is controllable
(ii) rank $\left[\begin{array}{ll}A-\lambda I & B\end{array}\right]=n$ for all $\lambda \in \mathbf{C}$
(iii) $\operatorname{rank}\left[B A B \ldots A^{n-1} B\right]=n$

If A is exponentially stable, define the controllability Gramian

$$
S=\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t
$$

For such systems there is a fourth equivalent statement:
(iv) The controllability Gramian is non-singular

Interpretation of the controllability Gramian

The controllability Gramian measures how difficult it is in a stable system to reach a certain state.

In fact, let $S_{1}=\int_{0}^{t_{1}} e^{A t} B B^{T} e^{A^{T} t} d t$. Then, for the system $\dot{x}(t)=A x(t)+B u(t)$ to reach $x\left(t_{1}\right)=x_{1}$ from $x(0)=0$ it is necessary that

$$
\int_{0}^{t_{1}}|u(t)|^{2} d t \geq x_{1}^{T} S_{1}^{-1} x_{1}
$$

Equality is attained with

$$
u(t)=B^{T} e^{A^{T}\left(t_{1}-t\right)} S_{1}^{-1} x_{1}
$$

Proof

$$
\begin{aligned}
0 \leq & \int_{0}^{t_{1}}\left[x_{1}^{T} S_{1}^{-1} e^{A\left(t_{1}-t\right)} B-u(t)^{T}\right]\left[B^{T} e^{A^{T}\left(t_{1}-t\right)} S_{1}^{-1} x_{1}-u(t)\right] d t \\
& =x_{1}^{T} S_{1}^{-1} \underbrace{\int_{0}^{t_{1}} e^{A t} B B^{T} e^{A^{T} t} d t}_{S_{1}} S_{1}^{-1} x_{1} \\
& -2 x_{1}^{T} S_{1}^{-1} \underbrace{\int_{0}^{t_{1}} e^{A\left(t_{1}-t\right)} B u(t) d t}_{x_{1}}+\int_{0}^{t_{1}}|u(t)|^{2} d t \\
= & -x_{1}^{T} S_{1}^{-1} x_{1}+\int_{0}^{t_{1}}|u(t)|^{2} d t
\end{aligned}
$$

so $\int_{0}^{t_{1}}|u(t)|^{2} d t \geq x_{1}^{T} S_{1}^{-1} x_{1}$ with equality attained for $u(t)=B^{T} e^{A^{T}\left(t_{1}-t\right)} S_{1}^{-1} x_{1}$. This completes the proof.

Computing the controllability Gramian

The controllability Gramian $S=\int_{0}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t$ can be computed by solving the linear system of equations

$$
A S+S A^{T}+B B^{T}=0
$$

Proof. A change of variables gives

$$
\int_{h}^{\infty} e^{A t} B B^{T} e^{A^{T} t} d t=\int_{0}^{\infty} e^{A(t-h)} B B^{T} e^{A^{T}(t-h)} d t
$$

Differentiating both sides with respect to h and inserting $h=0$ gives

$$
-B B^{T}=A S+S A^{T}
$$

Example: Two water tanks

The controllability Gramian $S=\int_{0}^{\infty}\left[\begin{array}{c}e^{-t} \\ e^{-a t}\end{array}\right]\left[\begin{array}{c}e^{-t} \\ e^{-a t}\end{array}\right]^{T} d t=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{a+1} \\ \frac{1}{a+1} & \frac{1}{2 a}\end{array}\right]$ is close to singular when $a \approx 1$. Interpretation?

Example cont'd

In matlab you can solve the Lyapunov equation $A S+S A^{T}+B B^{T}=0$ by lyap

```
>> a=1.25 ; A=[-1 0 ; 0 -1*a ]; B=[1 ; 1] ;
```

```
>> Cs= [B A*B] , rank(Cs)
Cs =
    1.0000 -1.0000
    1.0000 -1.2500
ans =
    2
>> S=lyap(A,B*B')
S =
    0.5000 0.4444
    0.4444 0.4000
```

>> invS=inv(S)
invS =
162.0-180.0
$-180.0 \quad 202.5$

Plot of $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right] \cdot S^{-1}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=1$ corresponds to the states we can reach by

$$
\int_{0}^{\infty}|u(t)|^{2} d t=1
$$

Observability

The system

$$
\begin{aligned}
& \dot{x}(t)=A x(t) \\
& y(t)=C x(t)
\end{aligned}
$$

is observable, if the initial state $x(0)=x_{0} \in \mathbf{R}^{n}$ is uniquely determined by the output $y(t), t \in\left[0, t_{1}\right]$.

The collection of vectors x_{0} that cannot be distinguished from $x=0$ is called the unobservable subspace.

Observability criteria

The following statements regarding a system $\dot{x}(t)=A x(t)$, $y(t)=C x(t)$ of order n are equivalent:
(i) The system is observable
(ii) rank $\left[\begin{array}{c}A-\lambda I \\ C\end{array}\right]=n$ for all $\lambda \in \mathbf{C}$
(iii) rank $\left[\begin{array}{c}C \\ C A \\ \vdots \\ C A^{n-1}\end{array}\right]=n$

If A is exponentially stable, define the observability Gramian

$$
O=\int_{0}^{\infty} e^{A^{T} t} C^{T} C e^{A t} d t
$$

For such systems there is a fourth equivalent statement:
(iv) The observability Gramian is non-singular

Interpretation of the observability Gramian

The observability Gramian measures how difficult it is in a stable system to distinguish two initial states from each other by observing the output.

In fact, let $O_{1}=\int_{0}^{t_{1}} e^{A^{T} t} C^{T} C e^{A t} d t$. Then, for $\dot{x}(t)=A x(t)$, the influence from the initial state $x(0)=x_{0}$ on the output $y(t)=C x(t)$ satisfies

$$
\int_{0}^{t_{1}}|y(t)|^{2} d t=x_{0}^{T} O_{1} x_{0}
$$

Computing the observability Gramian

The observability Gramian $O=\int_{0}^{\infty} e^{A^{T} t} C^{T} C e^{A t} d t$ can be computed by solving the linear system of equations

$$
A^{T} O+O A+C^{T} C=0
$$

Proof. The result follows directly from the corresponding formula for the controllability Gramian.

Poles and zeros

$$
Y(s)=\underbrace{\left[C(s I-A)^{-1} B+D\right]}_{G(s)} U(s)
$$

For scalar systems, the points $p \in \mathbf{C}$ where $G(s)=\infty$ are called poles of G. They are eigenvalues of A and determine stability. The poles of $G(s)^{-1}$ are called zeros of G.

This definition can be used also for square systems, but we will next give a more general definition, involving also multiplicity.

Pole polynomial and Zero polynomial

- The pole polynomial is the least common denominator of all minors (sub-determinants) to $G(s)$.
- The zero polynomial is the greatest common divisor of the maximal minors of $G(s)$.

The poles of G are the roots of the pole polynomial. The zeros of G are the roots of the zero polynomial.
When $G(s)$ is square, the only maximal minor is $\operatorname{det} G(s)$, so the zeros are determined from the equation

$$
\operatorname{det} G(s)=0
$$

For a minimal and square realization, zeros are the solutions to

$$
\operatorname{det}\left[\begin{array}{cc}
s I-A & B \\
-C & D
\end{array}\right]=0
$$

Interpretation of poles and zeros

Poles:

- A pole $s=a$ is associated with a time function $x(t)=x_{0} e^{a t}$
- A pole $s=a$ is an eigenvalue of A

Zeros:

- A zero $s=a$ means that an input $u(t)=u_{0} e^{a t}$ is blocked
- A zero describes how inputs and outputs couple to states

Example: Ball in the Hoop

$\ddot{\theta}+c \dot{\theta}+k \theta=\dot{\omega}$
The transfer function from ω to θ is $\frac{s}{s^{2}+c s+k}$. The zero in $s=0$ makes it impossible to control the stationary position of the ball.

Example: Two water tanks

The system has a zero in the origin! At stationarity $y_{1}=y_{2}$.

Plot Singular Values of $G(s)$ Versus Frequency

" $\mathrm{S}=\mathrm{tf}$ ('s')
" $\mathrm{G}=[1 /(\mathrm{s}+1) 1 ; 2 /(\mathrm{s}+2) 1]$
» sigma(G) ; plot singular values
\% ALT. for a certain frequency:
» $\mathrm{i}=$ sqrt(-1)
" $\mathrm{w}=1$;
" $A=\left[1 /\left(i^{*} w+1\right) 1 ; 2 /\left(i^{*} w+2\right) 1\right]$
" $[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{A})$

Singular Values

The largest singular value of $G(i \omega)=\left[\begin{array}{cc}\frac{1}{i \omega+1} & 1 \\ \frac{2}{i \omega+2} & 1\end{array}\right]$ is fairly constant.
This is due to the second input. The first input makes it possible to control the difference between the two tanks, but mainly near $\omega=1$ where the dynamics make a difference.

Singular values - continued

Revisit example from lecture notes 2 :
The largest singular value of a matrix $A, \bar{\sigma}(A)=\sigma_{\max }(A)$ is the square root of the largest eigenvalue of the matrix $A^{*} A$,
$\bar{\sigma}(A)=\sqrt{\lambda_{\max }\left(A^{*} A\right)}$

Q: For frequency specifications (see prev lectures); When are we interested in the largest amplification and when are we interested in the smallest amplification?

Realization on diagonal form

Consider a transfer matrix with partial fraction expansion

$$
G(s)=\sum_{i=1}^{n} \frac{C_{i} B_{i}}{s-p_{i}}+D
$$

This has the realization

$$
\begin{aligned}
& \dot{x}(t)=\left[\begin{array}{ccc}
p_{1} I & & 0 \\
& \ddots & \\
0 & & p_{n} I
\end{array}\right] x(t)+\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{n}
\end{array}\right] u(t) \\
& y(t)=\left[\begin{array}{lll}
C_{1} & \ldots & C_{n}
\end{array}\right] x(t)+D u(t)
\end{aligned}
$$

The rank of the matrix $C_{i} B_{i}$ determines the necessary number of columns in B_{i} and the multiplicity of the pole p_{i}.

Example: Realization of Multi-variable system

To find state space realization for the system

$$
G(s)=\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{2}{(s+1)(s+3)} \\
\frac{6}{(s+2)(s+4)} & \frac{1}{s+2}
\end{array}\right]
$$

write the transfer matrix as

$$
\left[\frac{3}{\frac{1}{s+1}} \frac{\frac{1}{s+1}-\frac{1}{s+2}}{\frac{3}{s+4}} \frac{\frac{1}{s+2}}{s+2}\right]=\frac{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]}{s+1}+\frac{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
3 & 1
\end{array}\right]}{s+2}-\frac{\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right]}{s+3}-\frac{\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
3 & 0
\end{array}\right]}{s+4}
$$

This gives the realization

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t) \\
\dot{x}_{3}(t) \\
\dot{x}_{4}(t)
\end{array}\right] } & =\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]+\left[\begin{array}{cc}
1 & 1 \\
3 & 1 \\
0 & -1 \\
-3 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right] \\
{\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right] } & =\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] x(t)
\end{aligned}
$$

Summary

- Controllability and observability
- Multivariable zeros
- Realizations on diagonal form

Examples: Ball in a hoop Multiple tanks
[Glad \& Ljung] Ch. 3.2-3.3, notes on course web page

Course Outline

L1-L5 Specifications, models and loop-shaping by hand
L6-L8 Limitations on achievable performance
(다 Controllability, observability, multivariable zeros
(Fundamental limitations
(3) Multivariable and decentralized control

L9-L11 Controller optimization: Analytic approach
L12-L14 Controller optimization: Numerical approach

