# FRTN10 Multivariable Control, Lecture 6

#### **Anders Robertsson**

Automatic Control LTH, Lund University

### **Course Outline**

L1-L5 Specifications, models and loop-shaping by hand

- L6-L8 Limitations on achievable performance
  - Controllability, observability, multivariable zeros
  - Fundamental limitations
  - Multivariable and decentralized control
- L9-L11 Controller optimization: Analytic approach
- L12-L14 Controller optimization: Numerical approach

### Lecture 6

- Controllability and observability
- Multivariable zeros
- Realizations on diagonal form

Examples: Ball in a hoop Multiple tanks

[Glad & Ljung] Ch. 3.2-3.3, notes on course web page

### **Example: Ball in the Hoop**



### Example: Two water tanks



Can you reach  $y_1 = 1, y_2 = 2$ ?

Can you stay there?

# Controllability

The system

$$\dot{x}(t) = Ax(t) + Bu(t)$$

is <u>controllable</u>, if for every  $x_1 \in \mathbf{R}^n$  there exists  $u(t), t \in [0, t_1]$ , such that  $x(t_1) = x_1$  is reached from x(0) = 0.

The collection of vectors  $x_1$  that can be reached in this way is called the controllable subspace.



# **Controllability criteria**

The following statements regarding a system  $\dot{x}(t) = Ax(t) + Bu(t)$  of order n are equivalent:

(i) The system is controllable (ii) rank  $[A - \lambda I \ B] = n$  for all  $\lambda \in \mathbf{C}$ (iii) rank  $[B \ AB \dots A^{n-1}B] = n$ 

If A is exponentially stable, define the controllability Gramian

$$S = \int_0^\infty e^{At} B B^T e^{A^T t} dt$$

For such systems there is a fourth equivalent statement:

(iv) The controllability Gramian is non-singular

The controllability Gramian measures how difficult it is in a stable system to reach a certain state.

In fact, let  $S_1 = \int_0^{t_1} e^{At} B B^T e^{A^T t} dt$ . Then, for the system  $\dot{x}(t) = Ax(t) + Bu(t)$  to reach  $x(t_1) = x_1$  from x(0) = 0 it is necessary that

$$\int_0^{t_1} |u(t)|^2 dt \ge x_1^T S_1^{-1} x_1$$

Equality is attained with

$$u(t) = B^T e^{A^T(t_1 - t)} S_1^{-1} x_1$$

### Proof

$$0 \leq \int_{0}^{t_{1}} [x_{1}^{T}S_{1}^{-1}e^{A(t_{1}-t)}B - u(t)^{T}][B^{T}e^{A^{T}(t_{1}-t)}S_{1}^{-1}x_{1} - u(t)]dt$$

$$= x_{1}^{T}S_{1}^{-1}\underbrace{\int_{0}^{t_{1}}e^{At}BB^{T}e^{A^{T}t}dt}_{S_{1}}S_{1}^{-1}x_{1}$$

$$- 2x_{1}^{T}S_{1}^{-1}\underbrace{\int_{0}^{t_{1}}e^{A(t_{1}-t)}Bu(t)dt}_{x_{1}} + \int_{0}^{t_{1}}|u(t)|^{2}dt$$

$$= -x_{1}^{T}S_{1}^{-1}x_{1} + \int_{0}^{t_{1}}|u(t)|^{2}dt$$

so  $\int_0^{t_1} |u(t)|^2 dt \ge x_1^T S_1^{-1} x_1$  with equality attained for  $u(t) = B^T e^{A^T(t_1-t)} S_1^{-1} x_1$ . This completes the proof.

### Computing the controllability Gramian

The controllability Gramian  $S = \int_0^\infty e^{At} B B^T e^{A^T t} dt$  can be computed by solving the linear system of equations

$$AS + SA^T + BB^T = 0$$

Proof. A change of variables gives

$$\int_{h}^{\infty} e^{At} B B^{T} e^{A^{T}t} dt = \int_{0}^{\infty} e^{A(t-h)} B B^{T} e^{A^{T}(t-h)} dt$$

Differentiating both sides with respect to h and inserting h = 0 gives

$$-BB^T = AS + SA^T$$

### Example: Two water tanks



The controllability Gramian  $S = \int_0^\infty \begin{bmatrix} e^{-t} \\ e^{-at} \end{bmatrix} \begin{bmatrix} e^{-t} \\ e^{-at} \end{bmatrix}^T dt = \begin{bmatrix} \frac{1}{2} & \frac{1}{a+1} \\ \frac{1}{a+1} & \frac{1}{2a} \end{bmatrix}$ 

is close to singular when  $a \approx 1$ . Interpretation?

### Example cont'd

In matlab you can solve the Lyapunov equation  $AS + SA^T + BB^T = 0$  by lyap

>> a=1.25 ; A=[-1 0 ; 0 -1\*a ]; B=[1 ; 1] ;

```
>> Cs= [B A*B] , rank(Cs)
Cs =
    1.0000 -1.0000
    1.0000 -1.2500
ans =
    2
>> S=lyap(A,B*B')
S =
    0.5000 0.4444
    0.4040
>> invS=inv(S)
invS =
    162.0 -180.0
    -180.0 202.5
```



## Observability

The system

 $\dot{x}(t) = Ax(t)$ y(t) = Cx(t)

is <u>observable</u>, if the initial state  $x(0) = x_0 \in \mathbf{R}^n$  is uniquely determined by the output  $y(t), t \in [0, t_1]$ .

The collection of vectors  $x_0$  that cannot be distinguished from x = 0 is called the unobservable subspace.

# **Observability criteria**

The following statements regarding a system  $\dot{x}(t) = Ax(t)$ , y(t) = Cx(t) of order n are equivalent:



If A is exponentially stable, define the observability Gramian

$$O = \int_0^\infty e^{A^T t} C^T C e^{At} dt$$

For such systems there is a fourth equivalent statement:

(iv) The observability Gramian is non-singular

The observability Gramian measures how difficult it is in a stable system to distinguish two initial states from each other by observing the output.

In fact, let  $O_1 = \int_0^{t_1} e^{A^T t} C^T C e^{At} dt$ . Then, for  $\dot{x}(t) = Ax(t)$ , the influence from the initial state  $x(0) = x_0$  on the output y(t) = Cx(t) satisfies

$$\int_0^{t_1} |y(t)|^2 dt = x_0^T O_1 x_0$$

### Computing the observability Gramian

The observability Gramian  $O = \int_0^\infty e^{A^T t} C^T C e^{At} dt$  can be computed by solving the linear system of equations

 $A^T O + O A + C^T C = 0$ 

**Proof.** The result follows directly from the corresponding formula for the controllability Gramian.

#### **Poles and zeros**

$$Y(s) = \underbrace{[C(sI - A)^{-1}B + D]}_{G(s)} U(s)$$

For scalar systems, the points  $p \in \mathbf{C}$  where  $G(s) = \infty$  are called poles of G. They are eigenvalues of A and determine stability. The poles of  $G(s)^{-1}$  are called zeros of G.

This definition can be used also for square systems, but we will next give a more general definition, involving also multiplicity.

# Pole polynomial and Zero polynomial

- The <u>pole polynomial</u> is the least common denominator of all minors (sub-determinants) to *G*(*s*).
- The <u>zero polynomial</u> is the greatest common divisor of the maximal minors of *G*(*s*).

The poles of G are the roots of the pole polynomial. The zeros of G are the roots of the zero polynomial.

When G(s) is square, the only maximal minor is  $\det G(s)$ , so the zeros are determined from the equation

 $\det G(s) = 0$ 

For a minimal and square realization, zeros are the solutions to

$$\det \begin{bmatrix} sI - A & B \\ -C & D \end{bmatrix} = 0$$

### Interpretation of poles and zeros

Poles:

- A pole s = a is associated with a time function  $x(t) = x_0 e^{at}$
- A pole s = a is an eigenvalue of A

Zeros:

- A zero s = a means that an input  $u(t) = u_0 e^{at}$  is blocked
- A zero describes how inputs and outputs couple to states



### **Example: Ball in the Hoop**



 $\ddot{\theta} + c\dot{\theta} + k\theta = \dot{\omega}$ 

The transfer function from  $\omega$  to  $\theta$  is  $\frac{s}{s^2+cs+k}$ . The zero in s = 0 makes it impossible to control the stationary position of the ball.

### Example: Two water tanks



$$G(s) = \begin{bmatrix} \frac{1}{s+1} & 1\\ \frac{2}{s+2} & 1 \end{bmatrix} \qquad \det G(s) = \frac{-s}{(s+1)(s+2)}$$

The system has a zero in the origin! At stationarity  $y_1 = y_2$ .

# Plot Singular Values of G(s) Versus Frequency



The largest singular value of  $G(i\omega) = \begin{bmatrix} \frac{1}{i\omega+1} & 1\\ \frac{2}{i\omega+2} & 1 \end{bmatrix}$  is fairly constant. This is due to the second input. The first input makes it possible to control the difference between the two tanks, but mainly near  $\omega = 1$  where the dynamics make a difference. Revisit example from lecture notes 2:

The largest singular value of a matrix A,  $\overline{\sigma}(A) = \sigma_{max}(A)$  is the square root of the largest eigenvalue of the matrix  $A^*A$ ,  $\overline{\sigma}(A) = \sqrt{\lambda_{max}(A^*A)}$ 

Q: For frequency specifications (see prev lectures); When are we interested in the largest amplification and when are we interested in the smallest amplification?

## **Realization on diagonal form**

Consider a transfer matrix with partial fraction expansion

$$G(s) = \sum_{i=1}^{n} \frac{C_i B_i}{s - p_i} + D$$

This has the realization

$$\dot{x}(t) = \begin{bmatrix} p_1 I & 0 \\ & \ddots & \\ 0 & & p_n I \end{bmatrix} x(t) + \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} C_1 & \dots & C_n \end{bmatrix} x(t) + Du(t)$$

The rank of the matrix  $C_iB_i$  determines the necessary number of columns in  $B_i$  and the multiplicity of the pole  $p_i$ .

# Example: Realization of Multi-variable system

To find state space realization for the system

$$G(s) = \begin{bmatrix} \frac{1}{s+1} & \frac{2}{(s+1)(s+3)} \\ \frac{6}{(s+2)(s+4)} & \frac{1}{s+2} \end{bmatrix}$$

write the transfer matrix as

This gives the realization

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \\ \dot{x}_4(t) \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ 3 & 1 \\ 0 & -1 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$
$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} x(t)$$

### Summary

- Controllability and observability
- Multivariable zeros
- Realizations on diagonal form

Examples: Ball in a hoop Multiple tanks

[Glad & Ljung] Ch. 3.2-3.3, notes on course web page

### **Course Outline**

L1-L5 Specifications, models and loop-shaping by hand

- L6-L8 Limitations on achievable performance
  - Controllability, observability, multivariable zeros
  - Fundamental limitations
  - Multivariable and decentralized control
- L9-L11 Controller optimization: Analytic approach
- L12-L14 Controller optimization: Numerical approach