Recall Example: Wind Farm Control

A wind farm is controlled to minimize structural loads subject to fixed power production:

$$Minimize \quad \mathbf{E} \sum_{k} (x_k^2 + u_k^2)$$

subject to $u_1 + \ldots + u_n = 0$ and

$$\begin{cases} \dot{x}_1 = -x_1 + u_1 + w_1 \\ \vdots \\ \dot{x}_n = -x_n + u_n + w_n \end{cases}$$

Compare the solutions for n = 1, n = 2, n = 10 and n = 100.

Wind Farm Example Revisited

Define the average structural load $x_0 = \frac{1}{n}(x_1 + \cdots + x_n)$ and the deviation from average $z_k = x_k - x_0$. Then

$$\dot{x}_0 = -x_0 + \frac{1}{n}(w_1 + \dots + w_n)$$

$$\dot{z}_k = -z_k + u_k + \frac{1}{n}(w_1 + \dots + w_n)$$
E $x_0^2 = \frac{1}{2n}$

with the optimal control law $u_k = -\ell z_k = -\ell (x_k - x_0)$.

Hence every turbine should compute the optimal control $-\ell x_k$ without constraint, then subtract the average over all turbines!

As a result

$$\dot{x}_k = -(1+\ell)x_k + \ell x_0 + w_k$$

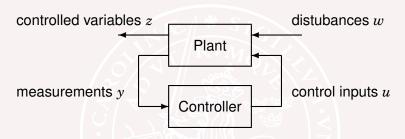
The variance of the term ℓx_0 decreases with n, so for large farms the constraint $u_1 + \ldots + u_n = 0$ is negligible. On the other hand, for a farm with just one turbine, it would imply that $u_1 = 0$.

Lecture 12: Internal Model Control

- Youla Parametrization
- Internal Model Control
- Dead Time Compensation

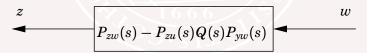
Section 8.4 in Glad/Ljung.

The Q-parametrization (Youla)



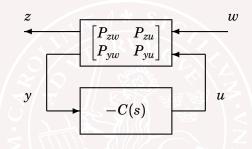
Idea for lecture 12-14:

The choice of controller generally corresponds to finding Q(s), to get desirable properties of the map from w to z:



Once Q(s) is determined, a corresponding controller is found.

The Youla Parametrization



The closed loop transfer matrix from w to z is

$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s)$$

where

$$Q(s) = C(s) [I + P_{yu}(s)C(s)]^{-1}$$

$$C(s) = Q(s) + Q(s)P_{yu}(s)C(s)$$

$$C(s) = \left[I - Q(s)P_{yu}(s)\right]^{-1}Q(s)$$

Closed loop maps for stable plants

Suppose the original plant P is stable. Then

- Stabilty of Q(s) implies stability of $P_{zw}(s) P_{zu}(s)Q(s)P_{vw}(s)$
- If $Q = C[I + P_{yu}C]^{-1}$ is unstable, then the closed loop is unstable.

Closed loop maps for unstable plants



In case $P_0(s)$ is unstable, let $C_0(s)$ be a stabilizing controller. Then the previous argument can be applied with P_{zw} , P_{zu} and P_{vw} representing the stabilized closed loop system.

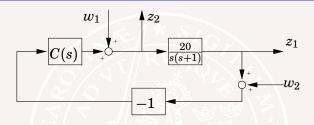
Next lecture: Synthesis by convex optimization

A general control synthesis problem can be stated as a convex optimization problem in the variable Q(s). The problem could have a quadratic objective, with linear/quadratic constraints:

$$\begin{array}{ll} \text{Minimize} & \int_{-\infty}^{\infty}|P_{zw}(i\omega)+P_{zu}(i\omega)\overbrace{\sum_{k}Q_{k}\phi_{k}(i\omega)}P_{yw}(i\omega)|^{2}d\omega \quad \Big\} \text{ quadratic objective} \\ \text{subject to} & \text{step response } w_{i}\rightarrow z_{j} \text{ is smaller than } f_{ijk} \text{ at time } t_{k} \\ \text{step response } w_{i}\rightarrow z_{j} \text{ is bigger than } g_{ijk} \text{ at time } t_{k} \\ \text{Bode magnitude } w_{i}\rightarrow z_{j} \text{ is smaller than } h_{ijk} \text{ at } \omega_{k} \\ \Big\} \text{ quadratic constraints} \\ \end{array}$$

Here $Q(s)=\sum_k Q_k\phi_k(s)$, where ϕ_1,\ldots,ϕ_m are fixed "basis functions" and Q_0,\ldots,Q_m are optimization variables. Once Q(s) has been determined, the controller is obtained as $C(s)=\left[I-Q(s)P_{vu}(s)\right]^{-1}Q(s)$

Example — DC-motor



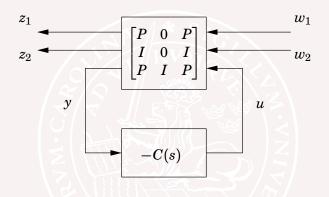
The transfer matrix from (w_1, w_2) to (z_1, z_2) is

$$G_{zw}(s) = \begin{bmatrix} \frac{P}{1+PC} & \frac{-PC}{1+PC} \\ \frac{1}{1+PC} & \frac{-C}{1+PC} \end{bmatrix}$$

where $P(s)=\frac{20}{s(s+1)}.$ How should we choose stable $P_{zw},\,P_{zu},\,P_{yw}$ and Q to get

$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{vw}(s)$$
?

Stabilizing nominal feedback for DC-motor

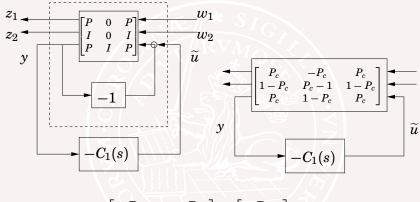


The plant $P(s) = \frac{20}{s(s+1)}$ is not stable, so write

$$C(s) = C_0(s) + C_1(s)$$

where $C_0(s) \equiv 1$ is a stabilizing controller.

Redraw diagram for DC motor example



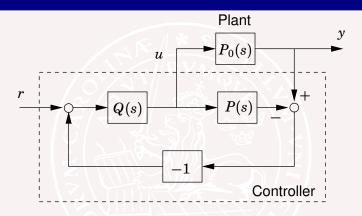
$$G_{zw}(s) = egin{bmatrix} P_c & -P_c \ 1-P_c & P_c-1 \end{bmatrix} + egin{bmatrix} P_c \ 1-P_c \end{bmatrix} Q \begin{bmatrix} P_c & 1-P_c \end{bmatrix}$$

where
$$P_c(s) = (1 + P(s))^{-1}P(s) = \frac{20}{s^2 + s + 20}$$
 is stable.

Outline

- Youla Parametrization
- Internal Model Control
- Dead Time Compensation

Internal Model Control

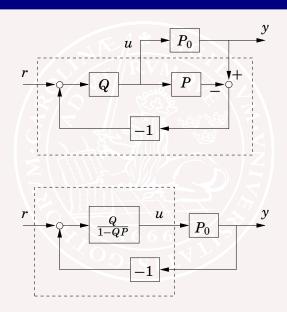


Feedback is used only as the real process deviates from P(s).

The transfer function Q(s) defines how the desired input depends on the reference signal.

When $P = P_0$, the transfer function from r to y is P(s)Q(s).

Two equivalent diagrams



Internal Model Control — Strictly proper plants

When $P = P_0$, the transfer function from r to y is P(s)Q(s).

Hence, ideally, one would like to put $Q(s) = P(s)^{-1}$. For several reasons this is not possible for accurate process models:

 If P(s) is strictly proper, the inverse would have more zeros than poles. Alternatively, one could choose

$$Q(s) = \frac{1}{(\lambda s + 1)^n} P(s)^{-1}$$

where n is large enough to make Q proper. The parameter λ influences the speed of control.

Internal Model Control — Zeros and delays

Once again, ideally, one would like to put $Q(s) = P(s)^{-1}$. Here are other reasons why this is often not possible:

- If P(s) has unstable zeros, the inverse would be unstable. Alternatively, one could either remove every unstable factor $(-\beta s+1)$ from the plant numerator before inverting, or replace it by $(\beta s+1)$. With the latter alternative, only the phase is modified, not the amplitude function.
- If P(s) includes a time delay, its inverse would have to predict the future. Instead, the time delay is removed before inverting.

Example 1 — First order plant model

$$P(s) = \frac{1}{\tau s + 1}$$

$$Q(s) = \frac{1}{\lambda s + 1} P(s)^{-1} = \frac{\tau s + 1}{\lambda s + 1}$$

$$C(s) = \frac{Q(s)}{1 - Q(s)P(s)} = \frac{\frac{\tau s + 1}{\lambda s + 1}}{1 - \frac{1}{\lambda s + 1}} = \underbrace{\frac{\tau}{\lambda} \left(1 + \frac{1}{s\tau}\right)}_{\text{PI controller}}$$

Example 2 — Non-minimum phase plant

$$\begin{split} P(s) &= \frac{-\beta s + 1}{\tau s + 1} \\ Q(s) &= \frac{(-\beta s + 1)}{(\beta s + 1)} P(s)^{-1} = \frac{\tau s + 1}{\beta s + 1} \\ C(s) &= \frac{Q(s)}{1 - Q(s)P(s)} = \frac{\frac{\tau s + 1}{\beta s + 1}}{1 - \frac{(-\beta s + 1)}{(\beta s + 1)}} = \underbrace{\frac{\tau}{2\beta} \left(1 + \frac{1}{s\tau}\right)}_{\text{PI controller}} \end{split}$$

Outline

- Youla Parametrization
- Internal Model Control
- Dead Time Compensation

Dead Time Compensation

Consider the plant model

$$P(s) = P_1(s)e^{-s\tau}$$

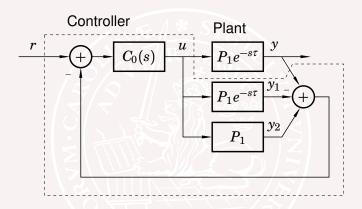
Let $C_0 = Q/(1 - QP_1)$ be the controller we would have used without delays. Then $Q = C_0/(1 + C_0P_1)$.

The rule of thumb tell us to use the same Q also for systems with delays. This gives

$$\begin{split} C(s) &= \frac{Q(s)}{1 - Q(s)P_1(s)e^{-s\tau}} = \frac{C_0/(1 + C_0P_1)}{1 - e^{-s\tau}P_1C_0/(1 + C_0P_1)} \\ C(s) &= \frac{C_0(s)}{1 + (1 - e^{-s\tau})C_0(s)P_1(s)} \end{split}$$

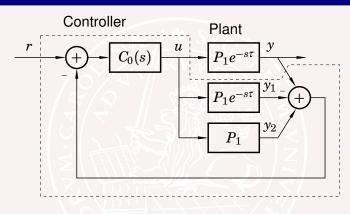
This modification of the $C_0(s)$ to account for time delays is known as dead time compensation according to Otto Smith.

Smith Compensator



Idea: Make an internal model of the process (with and without the delay) in the controller. Ideally Y and Y_1 cancel each other and use feedback from Y_2 "without delay".

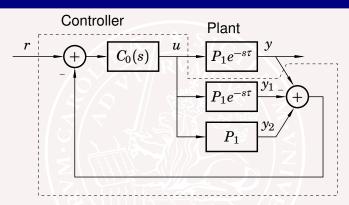
Smith Compensator



$$Y(s) = e^{-s\tau} \frac{C_0(s)P_1(s)}{1 + C_0(s)P_1(s)} R(s)$$

- Delay eliminated from denominator!
- Reference response greatly simplified!

Smith Compensator — A Success Story!

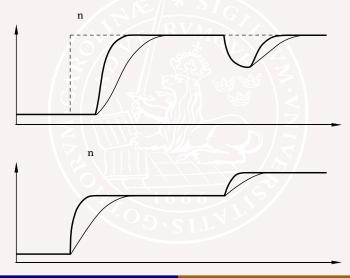


- Intriguing properties
- Numerous modifications
- Many industrial applications

Otto J.M. Smith listed in the ISA "Leaders of the Pack" list (2003) as one of the 50 most influential innovators since 1774.

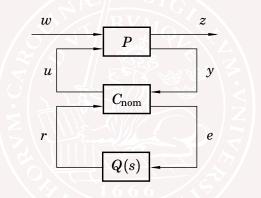
Example: Dead Time Compensation

Otto Smith compensator (thick) and standard PI controller (thin)



Youla parametrization revisited

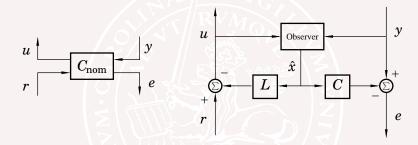
The Youla-parametrization:



where C_{nom} stabilizes the [P, C]-system and Q(s) is any stable transfer function.

Nominal Controller

Linear system $\dot{x} = Ax + Bu + B_w w$, $y = Cx + D_w w$



with observer

$$\dot{\hat{x}} = A\hat{x} + Bu + Ke$$

$$u = r - L\hat{x}$$

$$e = y - C\hat{x}$$

Summary of Internal Model Control

- ullet Q(s) can be designed by hand for simple plants
- Ideas applicable also to multivariable plants
- Warning:
 Cancellation of slow poles gives poor disturbance rejection