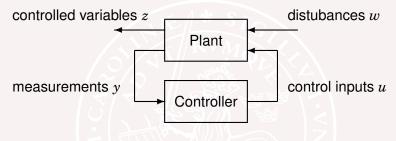
The *Q*-parametrization (Youla)



Idea for lecture 12-14:

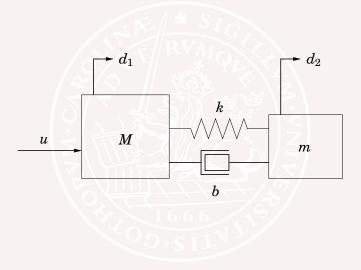
The choice of controller generally corresponds to finding Q(s), to get desirable properties of the map from w to z:

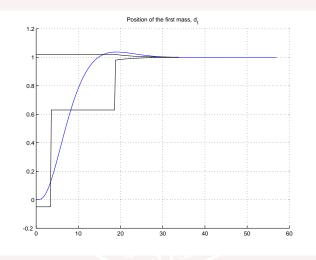
Once Q(s) is determined, a corresponding controller is derived.

- Example: Spring-mass system
- Introduction to convex optimization
- Controller optimization using Youla parametrization
- Examples revisited

Most of this lecture is based on source material from Boyd, Vandenberghe and coauthors. See http://www.control.lth.se/Education/EngineeringProgram/FRTN10.html

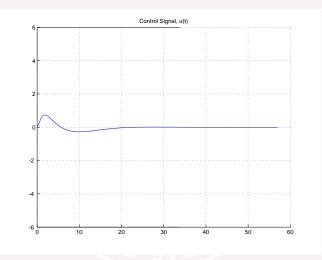
Example: Spring-mass System





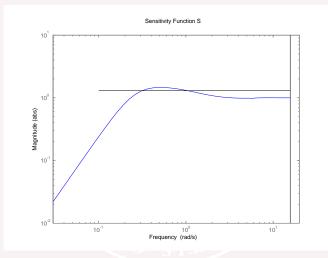
The step response is not within its upper and lower bounds.

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 13



The step input stays within its amplitude bound $|u(t)| \leq 6$.

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 13



The sensitivity does not satisfy the magnitude bound $|S| \le 1.3$

Automatic Control LTH, 2013 FRTN10 Multivariable Control, Lecture 13

- Example: Spring-mass system
- Introduction to convex optimization
- Controller optimization using Youla parametrization
- Examples revisited

Most of this lecture is based on source material from Boyd, Vandenberghe and coauthors. See http://www.control.lth.se/Education/EngineeringProgram/FRTN10.html

Least-squares

minimize $||Ax - b||_2^2$

solving least-squares problems

- analytical solution: $x^* = (A^T A)^{-1} A^T b$
- reliable and efficient algorithms and software
- computation time proportional to n^2k ($A \in \mathbf{R}^{k \times n}$); less if structured
- a mature technology

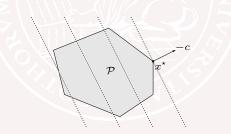
using least-squares

- least-squares problems are easy to recognize
- a few standard techniques increase flexibility (*e.g.*, including weights, adding regularization terms)

Linear program (LP)

 $\begin{array}{ll} \mbox{minimize} & c^T x + d \\ \mbox{subject to} & G x \preceq h \\ & A x = b \end{array}$

- · convex problem with affine objective and constraint functions
- feasible set is a polyhedron



Linear programming

 $\begin{array}{ll} \mbox{minimize} & c^T x \\ \mbox{subject to} & a_i^T x \leq b_i, \quad i=1,\ldots,m \end{array}$

solving linear programs

- no analytical formula for solution
- reliable and efficient algorithms and software
- computation time proportional to n^2m if $m \ge n$; less with structure
- a mature technology

using linear programming

- not as easy to recognize as least-squares problems
- a few standard tricks used to convert problems into linear programs (*e.g.*, problems involving ℓ_{1^-} or ℓ_{∞} -norms, piecewise-linear functions)

Convex optimization problem

minimize $f_0(x)$ subject to $f_i(x) \le b_i, \quad i = 1, \dots, m$

objective and constraint functions are convex:

 $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$

if $\alpha + \beta = 1$, $\alpha \ge 0$, $\beta \ge 0$

includes least-squares problems and linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i 's and their first and second derivatives
- almost a technology

using convex optimization

- often difficult to recognize
- many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Brief history of convex optimization

theory (convex analysis): ca1900-1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ...)
- 1970s: ellipsoid method and other subgradient methods
- 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
- late 1980s-now: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski 1994)

applications

- before 1990: mostly in operations research; few in engineering
- since 1990: many new applications in engineering (control, signal processing, communications, circuit design, . . .); new problem classes (semidefinite and second-order cone programming, robust optimization)

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on \mathbb{R}^n and $\mathbb{R}^{m \times n}$

affine functions are convex and concave; all norms are convex

examples on Rⁿ

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_{\infty} = \max_k |x_k|$

examples on $\mathbf{R}^{m \times n}$ ($m \times n$ matrices)

• affine function

$$f(X) = \mathbf{tr}(A^T X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

• spectral (maximum singular value) norm

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Convex optimization problem

standard form convex optimization problem

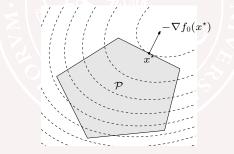
 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & a_i^T x = b_i, \quad i=1,\ldots,p \end{array}$

- f_0, f_1, \ldots, f_m are convex; equality constraints are affine
- problem is quasiconvex if f_0 is quasiconvex (and f_1, \ldots, f_m convex)

Quadratic program (QP)

minimize $(1/2)x^T P x + q^T x + r$ subject to $Gx \leq h$ Ax = b

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron



Second-order cone programming

$$\begin{array}{ll} \mbox{minimize} & f^T x\\ \mbox{subject to} & \|A_i x + b_i\|_2 \leq c_i^T x + d_i, \quad i = 1, \dots, m\\ & F x = g \end{array}$$

$$(A_i \in \mathbf{R}^{n_i \times n}, \ F \in \mathbf{R}^{p \times n})$$

Semidefinite program (SDP)

minimize $c^T x$ subject to $x_1F_1 + x_2F_2 + \dots + x_nF_n + G \leq 0$ Ax = b

with F_i , $G \in \mathbf{S}^k$

• inequality constraint is called linear matrix inequality (LMI)

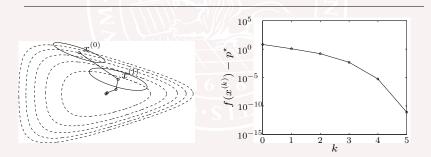
Newton's method

given a starting point $x \in \operatorname{dom} f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

$$\Delta x_{\mathrm{nt}} := -
abla^2 f(x)^{-1}
abla f(x); \quad \lambda^2 :=
abla f(x)^T
abla^2 f(x)^{-1}
abla f(x).$$

- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{nt}$.



Barrier method for constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ $1 = 1, ..., m$
 $Ax = b$

approximation via logarithmic barrier

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

- an equality constrained problem
- for t > 0, $-(1/t)\log(-u)$ is a smooth approximation of I_-
- approximation improves as $t
 ightarrow \infty$



Outline

- Example: Spring-mass system
- Introduction to convex optimization
- Controller optimization using Youla parametrization
- Examples revisited

Scheme for numerical optimization of Q

Given some fixed set of basis function $\phi_0(s), \ldots, \phi_N(s)$, we will search numerically for matrices Q_0, \ldots, Q_N such that the closed loop transfer matrix $G_{zw}(s)$ satisfies given specifications when

$$G_{zw}(s) = P_{zw}(s) - P_{zu}(s)Q(s)P_{yw}(s)$$
 and $Q(s) = \sum_{k=0}^{N} Q_k \phi_k(s)$

Once Q(s) has been determined, we will recover the desired controller from the formula

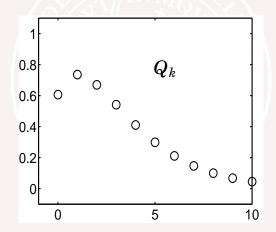
$$C(s) = \left[I - Q(s)P_{yu}(s)\right]^{-1}Q(s)$$

It is possible to choose the sequence $\phi_0(s), \phi_1(s), \phi_2(s), \ldots$ such that every stable Q can be approximated arbitrarily well. Hence, in principle, every convex control design problem can be solved this way.

But, what specifications give a convex design problem?

Pulse response parameterization

We will use an intuitively simple parametrization of Q(s) where each parameter Q_k represents a point on the corresponding impulse response in time domain.

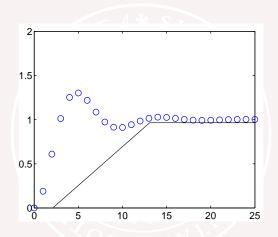


Mini-problem

Which specifications are convex constraints on Q_k ?

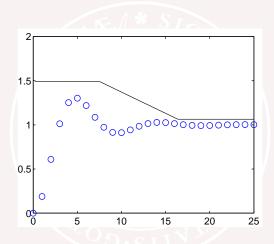
- Stability of the closed loop system
- Lower bound on step response from w_i to z_j at time t_i
- Upper bound on step response from w_i to z_j at time t_i
- Solution 2.5 Lower bound on Bode amplitude from w_i to z_j at frequency ω_i
- Solution \mathbf{S}_{i} Upper bound on Bode amplitude from w_{i} to z_{j} at frequency ω_{i}
- **(3)** Interval bound on Bode phase from w_i to z_j at frequency ω_i

Lower bound on step response



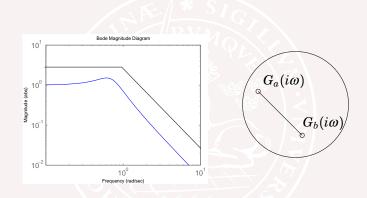
The step response depends linearly on Q_k , so every time t_k with a lower bound gives a linear constraint.

Upper bound on step response



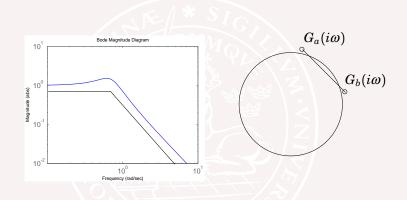
Every time t_k with an upper bound also gives a linear constraint.

Upper bound on Bode amplitude



An amplitude bound $|G(i\omega_i)| < c$ is a quadratic constraint.

Lower bound on Bode amplitude



An lower bound $|G(i\omega_i)|$ is a *non-convex* quadratic constraint. This should be avoided in optimization.

Synthesis by convex optimization

A general control synthesis problem can be stated as a convex optimization problem in the variables Q_0, \ldots, Q_m . The problem has a quadratic objective, with linear and quadratic constraints:

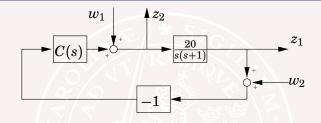
Minimize
$$\int_{-\infty}^{\infty} |P_{zw}(i\omega) + P_{zu}(i\omega) \sum_{k} Q_{k}\phi_{k}(i\omega) P_{yw}(i\omega)|^{2} d\omega$$
 quadratc objective subject to step response $w_{i} \rightarrow z_{j}$ is smaller than f_{ijk} at time t_{k} linear constraints Bode magnitude $w_{i} \rightarrow z_{j}$ is smaller than h_{ijk} at ω_{k} quadratic constraints

Once the variables Q_0, \ldots, Q_m have been optimized, the controller is obtained as $C(s) = [I - Q(s)P_{yu}(s)]^{-1}Q(s)$

Outline

- Example: Spring-mass system
- Introduction to convex optimization
- Controller optimization using Youla parametrization
- Examples revisited

Example — DC-motor



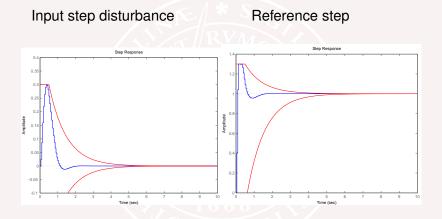
The transfer matrix from (w_1, w_2) to (z_1, z_2) is

$$G_{zw}(s) = egin{bmatrix} rac{P}{1+PC} & rac{-PC}{1+PC} \ rac{1}{1+PC} & rac{-C}{1+PC} \end{bmatrix}$$

with $P(s) = \frac{20}{s(s+1)}$. We will choose C(s) to minimize trace $\int_{-\infty}^{\infty} G_{zw}(i\omega)G_{zw}(i\omega)^*d\omega$

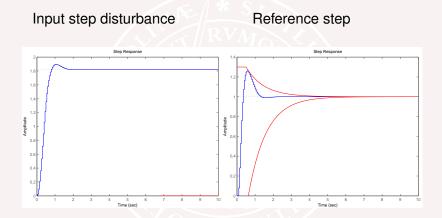
subject time-domain bounds.

DC-servo with time domain bounds



What if we remove the upper bound on the response to input disturbances ?

DC-servo with time domain bounds



The integral action in the controller is lost, just as in lecture 11!

Summary

• There are efficient algorithms for convex optimization, e.g.

- Linear programming (LP)
- Quadratic programming (QP)
- Second order cone programming (SOCP)
- Semi-definite programming (SDP)
- The Youla parametrization allows us to use these algorithms for control synthesis
- Resulting controllers have high order. Order reduction will be studied in the next lecture.