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Lecture 15: Cour se Summary

L1-L5 Specifications, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

Examples

Flexible servo resonant system

Quadruple tank system multivariable (MIMO), NMP-zero

Rotating crane multivariable, observer needed

DVD pick-up control resonant system, wide frequency range,
(midranging)

Bicycle steering unstable pole/zero-pair

Distillation column MIMO, input-output pairing

Helicopter MIMO, actuator couplings/pairing

Experiment

Implementation

Synthesis

Analysis

Matematical model
and 

specification

Idea/Purpose

Cour se Summary

• Specifi cations, models and loop-shaping

○ Limitations on achievable performance

○ Controller optimization: Analytic approach

○ Controller optimization: Numerical approach
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◮ Reduce the effects of load disturbances
◮ Control the effects of measurement noise
◮ Reduce sensitivity to process variations
◮ Make output follow command signals
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Impor tant Step Respons es
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Lag and lead fil ters for loop- shaping of P(s)C(s)
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MIMO-sys tems

If C, P and F are general MIMO-systems, so called transfer
function matrices the order of mult ip lic ation matters and

PC ,= CP

and thus we need to multiply with the inverse from the correct
side as in general

(1+ L)−1M ,= M(1+ L)−1

Note, however that

(1+ PC)−1PC = P(1+ CP)−1C = PC(1+ PC)−1

Different gains in different directions:
[
y1
y2

]
=

[
2 4

0 3

] [
u1
u2

]
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(red):eigenvectors ; (blue): V ; (green): U    A=U*S*VT 

y 2

y=Gu = [4.42      2.85]T,      |y|= 5.26

Plot Singul ar Values of G(s) Versus Frequency

» s=tf(’s’)
» G=[1/(s+1) 1 ; 2/(s+2) 1]
» sigma(G) ;
%plot singular values

% ALT. for a certain frequency:

» i=sqrt(-1)
» w=1;
» A=[1/(i*w+1) 1 ; 2/(i*w+2) 1]
» [U,S,V] = svd(A)
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Example: Realization of Mul ti-variable sys tem
To find state space realization for the system

G(s) =

[
1
s+1

2
(s+1)(s+3)

6
(s+2)(s+4)

1
s+2

]

write the transfer matrix as

[
1
s+1

1
s+1 −

1
s+3

3
s+2 −

3
s+4

1
s+2

]
=

[
1

0

] [
1 1

]

s+ 1
+

[
0

1

] [
3 1

]

s+ 2
−

[
1

0

] [
0 1

]

s+ 3
−

[
0

1

] [
3 0

]

s+ 4

This gives the realization



ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)


 =




−1 0 0 0

0 −2 0 0

0 0 −3 0

0 0 0 −4







x1(t)
x2(t)
x3(t)
x4(t)


+




1 1

3 1

0 −1
−3 0



[
u1(t)
u2(t)

]

[
y1(t)
y2(t)

]
=

[
1 0 1 0

0 1 0 1

]
x(t)

The Small Gain Theorem

Consider a system S with input u and output S(u) having a
(Hurwitz) stable transfer function G(s). Then, the system gain

qSq := sup
u

qS(u)q

quq
is equal to qGq∞ := sup

ω
pG(iω )p

r1

r2

e1

e2

S1

S2

Assume that S1 and S2 are input-output stable. If
qS1q ⋅ qS2q < 1, then the gain from (r1, r2) to (e1, e2) in the
closed loop system is finite.

Appl ication to robustness analys is

d dG(iω )

C(iω )

∆(iω )

6
- ?

�

-

-

- -

v w

The transfer function from w to v is

C(iω )G(iω )

1+ C(iω )G(iω )

Hence the small gain theorem guarantees closed loop stability
for all perturbations ∆ with

q∆q <

(
sup

ω

∣∣∣∣
C(iω )G(iω )

1+ C(iω )G(iω )

∣∣∣∣
)−1

Cour se Summary

○ Specifications, models and loop-shaping

• Limitations on achievable performance

○ Controller optimization: Analytic approach

○ Controller optimization: Numerical approach

Example: Two water tanks

Example from Lecture 6:

u1u1

u2 u2x1

x1
x2

ax2 a > 1

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

y1 = x1 + u2 y2 = ax2 + u2

Can you reach y1 = 1, y2 = 2? Can you stay there?
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Example: Two water tanks

u1u1

u2 u2x1

x1

x2

ax2 a > 1

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

The controllability Gramian S =
∫ ∞

0

[
e−t

e−at

] [
e−t

e−at

]T
dt =

[
1
2

1
a+1

1
a+1

1
2a

]

is close to singular for a ( 1, so it is harder to reach a desired state.

Comput ing the cont rol labi li ty Gramian

The controllability Gramian S =
∫∞
0
eAtBBT eA

T tdt can be
computed by solving the linear system of equations

AS+ SAT + BBT = 0

S = ST > 0, i.e., S is a symmetric positive definite matrix

Assign

S =

[
s11 s12
s12 s22

]

Multiply together and solve for s11, s12, s22 in the same way as
you also do for the spectral factorization and the Riccati
equations...

Example: Two water tanks

ce
u1u1

u2 u2x1

x1
x2

ax2 a > 1

ẋ1 = −x1 + u1 ẋ2 = −ax2 + u1

G(s) =

[
1
s+1 1
2
s+2 1

]
. Find zero from detG(s) =

−s

(s+ 1)(s+ 2)

There is a zero at s = 0! Outputs must be equal at stationarity.

Sensitivity bounds from RHP zeros and pol es

Rules of thumb:

“The closed-loop bandwidth must be less than z.”
“The closed-loop bandwidth must be greater than p.”
“Time delays T must be less than 1/p.”

Hard bound s:

The sensitivity must be one at an unstable zero:

G(z) = 0 [ S(z) :=
1

1+ C(z)G(z)
= 1

The complimentary sensitivity must be one at an unstable pole:

G(p) = ∞ [ T(p) :=
C(p)G(p)

1+ C(p)G(p)
= 1

Hard limitations from uns table zeros

If the plant has an unstable zero zu, then the specification
∣∣∣∣

1

1+ P(iω )C(iω )

∣∣∣∣ <
2√

1+ z2u/ω
2

for all ω

is impossible to satisfy.
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Examples: Rear-wheel steering and quadruple tank process

Hard limitations from uns table pol es

If the plant has an unstable pole pu, then the specification
∣∣∣∣
P(iω )C(iω )

1+ P(iω )C(iω )

∣∣∣∣ <
2√

ω 2/p2u + 1
for all ω

is impossible to satisfy.

10
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Example: Inverted pendulum

Nonm in-phase zero and uns table pol e

Let P = P̂(s− z)(s− p)−1, with P̂ proper and P̂(p) ,= 0.

Then, for stable closed loop the sensitivity function satisfies

sup
ω
pS(iω )p = sup

Re s≥0

∣∣∣∣∣
s+ p

s− p+ CP̂(s− z)

∣∣∣∣∣ ≥
∣∣∣∣
z+ p

z− p

∣∣∣∣

so if p ( z, then the sensitivity function must have a high peak
for every controller C.

Example: Bicycle with rear wheel steering

θ (s)

δ (s)
=
am{V0
bJ

⋅
(−s+ V0/a)

(s2 −m�{/J)

Relative Gain Array (RGA)

For an arbitrary square matrix A ∈ Cn$n, define

RGA(A) := A. ∗ (A†)T

where A† is the pseudo-inverse and “.*” denotes
element-by-element multiplication.

◮ The sum of all elements in a column or row is one.
◮ Permutations of rows or columns in A give the same

permutations in RGA(A)
◮ RGA(A) = RGA(D1AD2) if D1 and D2 are diagonal, i.e.

RGA(A) is independent of scaling
◮ If A is triangular, then RGA(A) is the unit matrix I.
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RGA for a Distill ation Column

◮ Find a permutation of inputs and outputs that makes
RGA(P(0)) as close as possible to the identity matrix.

◮ Avoid pairings that give negative diagonal elements of
RGA(P(0))

RGA(P(0)) =
[
0.2827 −0.6111 1.3285

0.0134 1.5827 −0.5962

]

To choose control signal for y1, we apply the heuristics to the
top row and choose u3. Based on the bottom row, we choose
u2 to control y2. Decentralized control!

Decoupl ing

Simple idea: Find a compensator so that the system appears to
be without coupling ("block-diagonal transfer function matrix").

◮ Input decoupling Q = PD1
◮ Output decoupling Q = D2P
◮ “both” Q = D2PD1

—————————————–

Example: Quadcopter

input actuators 4 motors

outputs height, orientation

yuv

w

PC D1

D2

Find D1 and D2 so that the controller sees a “diagonal plant”:

D2PD1 =




∗ 0 0

0 ∗ 0

0 0 ∗




Then we can use a "decentralized" controller C with same
block-diagonal structure.

Cour se Summary

○ Specifications, models and loop-shaping

○ Limitations on achievable performance

• Controller optimization: Analytic approach

○ Controller optimization: Numerical approach

A General Opt imization Setup

Plant

Controller

� �

�

-

control inputs u

controlled variables z

measurements y

distubances w

The objective is to find a controller that optimizes the transfer
matrix Gzw(s) from disturbances w to controlled outputs z.

Lecture 9-11: Problems with analytic solutions
Lectures 12-14: Problems with numeric solutions

Output feedback using state estimates

Plant
�

Estimator
-

�

−L
�

-

�

v

u x̂y

z

Plant:

{
ẋ(t) = Ax(t) + Bu(t) + v1(t)

y(t) = Cx(t) + v2(t)

Controller:

{
d
dt
x̂(t) = Ax̂(t) + Bu(t) + K [y(t) − Cx̂(t)]

u(t) = −Lx̂(t)

Linear Quadratic Opt imal Cont rol (LQG)

Given the linear plant




ẋ(t) = Ax(t) + Bu(t) + v1(k)

y(t) = Cx(t) + v2(t)

z(t) =
[

x(t)

u(t)

]

Q =

[
Q1 Q12
QT12 Q2

]

R =

[
R1 R12
RT12 R2

]

consider controllers of the form u = −Lx̂ with
d
dt
x̂ = Ax̂ + Bu+ K [y− Cx̂]. The frequency integral

trace
1

2π

∫ ∞

−∞
QGzv(iω )RGzv(iω )∗dω

is minimized when K and L satisfy
0 = Q1 + A

TS+ SA− (SB + Q12)Q
−1
2 (SB + Q12)

T L = Q−12 (SB + Q12)
T

0 = R1 + AP+ PA
T − (PCT + R12)R

−1
2 (PC

T + R12)
T K = (PCT + R12)R

−1
2

The minimal value of the integral is

tr(SR1) + tr[PL
T(BTSB + Q2)L]

Stocha stic Interpretation of LQG Cont rol

Given white noise (v1,v2) with intensity R and the linear plant
{
ẋ(t) = Ax(t) + Bu(t) + v1(t)

y(t) = Cx(t) + v2(t)
R =

[
R1 R12
RT12 R2

]

consider controllers of the form u = −Lx̂ with
d
dt
x̂ = Ax̂ + Bu+ K [y− Cx̂]. The stationary variance

E

(
xTQ1x + 2x

TQ12u+ u
TQ2u

)

is minimized when K and L satisfy

0 = Q1 + A
TS+ SA− (SB + Q12)Q

−1
2 (SB + Q12)

T L = Q−12 (SB + Q12)
T

0 = R1 + AP+ PA
T − (PCT + R12)R

−1
2 (PC

T + R12)
T K = (PCT + R12)R

−1
2

The minimal variance is

tr(SR1) + tr[PL
T(BTSB + Q2)L]
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Stabi li ty robustness of opt imal state feedback
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Notice that the distance from L(iω I − A)−1B to −1 is never
smaller than 1. This is always true (!) for linear quadratic
optimal state feedback when Q1 > 0, Q12 = 0 and Q2 = ρ > 0
is scalar. Hence the phase margin is at least 60○.

Cour se Summary

○ Specifications, models and loop-shaping

○ Limitations on achievable performance

○ Controller optimization: Analytic approach

• Controller optimization: Numerical approach

The Q-parametrization (Youl a)

Plant

Controller

� �

�

-

control inputs u

controlled variables z

measurements y

distubances w

Idea for lecture 12-14:
The choice of controller generally corresponds to finding Q(s),
to get desirable properties of the map from w to z:

z w

Pzw(s) − Pzu(s)Q(s)Pyw(s)

Once Q(s) is determined, a corresponding controller is derived.

The Youl a Parametrization

[
Pzw Pzu
Pyw Pyu

]

−C(s)

� �

�

-

u

z

y

w

The closed loop transfer matrix from w to z is

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s)

where

Q(s) = C(s)
[
I + Pyu(s)C(s)

]−1

C(s) = Q(s) + Q(s)Pyu(s)C(s)

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)

Synthesis by convex opt imization

A general control synthesis problem can be stated as a convex
optimization problem in the variables Q0, . . . ,Qm. The problem
has a quadratic objective, with linear and quadratic constraints:

Minimize
∫∞
−∞ pPzw(iω ) + Pzu(iω )

Q(iω )
︷ ︸︸ ︷
∑

k

Qkφk(iω ) Pyw(iω )p
2dω

}

quadratic objective

subject to
step response wi → zj is smaller than fi jk at time tk
step response wi → zj is bigger than �i jk at time tk

}

linear constraints

Bode magnitude wi → zj is smaller than hi jk at ω k
}

quadratic constraints

Once the variables Q0, . . . ,Qm have been optimized, the
controller is obtained as C(s) =

[
I − Q(s)Pyu(s)

]−1
Q(s)

Model reduc tion by balanced trunc ation

Consider a balanced realization
[
ξ̇1
ξ̇2

]
=

[
A11 A12
A21 A22

] [
ξ1
ξ2

]
+

[
B1
B2

]
u Σ =

[
Σ1 0

0 Σ2

]

y=
[
C1 C2

] [ξ1
ξ2

]
+ Du

with the lower part of the gramian being Σ2 =






σ r+1 0

. . .
0 σ n




.

Replacing the second state equation by ξ̇2 = 0 gives the
relation 0 = A21ξ1 + A22ξ2 + B2u. The reduced system

{
ξ̇1 = (A11 − A12A

−1
22 A21)ξ1 + (B1 − A12A

−1
22 B2)u

yr = (C1 − C2A
−1
22 A21)ξ1 + (D − C2A

−1
22 B2)u

satisfies the error bound
qy− yrq2
quq2

≤ 2σ r+1 + ⋅ ⋅ ⋅+ 2σ n

DC-servo example

Recall the Bode plot of the optimized controller Copt(s) from
Lec.14:
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The Hankel singular values of Cstab(s) = Copt(s) +
6.17
s

are

Sigma = [16.0768 2.2306 0.7023 0.1994 0.0896]

Only one state needs to be kept in Cstab(s).

What remains of Copt(s) = Cstab(s) −
6.17
s

is a PID controller.


