
Lecture 7

Fundamental limitations1

7.1 Introduction

Maybe the cardinal mistake in control engineering would be to consider the process
as fixed once and for all. In fact, the control system specifications could very well
be impossible to meet once the process is constructed and fixed. A striking example
of this is given in the following citation from F. R. Whitt and D. G. Wilson (MIT
Press, 1974), Bicycling Science - Ergonomics and Mechanics:

“Many people have seen theoretical advantages in the fact that front-drive,

rear-steered recumbent bicycles would have simpler transmissions than

rear-driven recumbents and could have the center of mass nearer the front

wheel than the rear. The U.S. Department of Transportation commissioned

the construction of a safe motorcycle with this configuration. It turned out

to be safe in an unexpected way: No one could ride it.”

This lecture is devoted to the fundamental limitations that are inherited from
properties of the controlled plant and will address questions like the following
two:

• Why are some bicycles impossible to ride?

• How short inverted pendulums can be balanced by hand?

One of the practically most important restrictions to control performance is the
fact that actuators have limited capacity and may saturate. However, saturation
is a non-linear effect and will not be studied further here. Instead, the focus will
be on limitations caused by unstable zeros, unstable poles and time-delays.
An unstable pole p means that the response to a disturbance grows exponen-

tially as ept. It is intuitively clear that in order to stabilize such a system, the
feedback loop must be “faster” than the time constant 1/p. A formal argument for
this will be given in this lecture.
In case the unstable system also includes a time-delay, the control problem

could become “impossible”. A time-delay T means that control action at time t does
not have any effect until time t+T . Hence, it is intuitively clear that an unstable
pole can not be stabilized unless T is small compared to 1/p. The argument applies
to the question about pendulum balancing above, since the human feedback system
through the eyes always involves a time delay.
A more intricate performance limitation is imposed by unstable zeros. It is

well known that an unstable zero results in a step response that initially goes in
the “wrong” direction. In fact, this can be seen directly in the expression for the
Laplace transform Y(s) of the step response y(t), where the zero at z means that

0 = Y(z) =
∫ ∞

0
y(t)e−ztdt

1Written by A. Rantzer with contributions by K.J. Åström
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Figure 7.1 Schematic picture of a bicycle. The top view is shown on the left and the rear
view on the right.

Clearly the integral cannot be zero unless y(t) takes both positive and negative
values. The time duration of such dynamics is approximately 1/z and limits the
achievable rate of control. Hence, while an unstable pole requires a fast feedback
loop, an unstable zero gives an upper bound on how fast it can be. A combination
of the two phenomena can make the system impossible to control.
Example 1 A tourque balance for a bicycle can be written as

J
d2θ

dt2
= m�{θ +

mV0{

b

(
V0β + a

dβ

dt

)

where the physical parameters have typical values as follows:

Mass: m = 70 kg

Distance rear-to-center: a = 0.3m

Height over ground: { = 1.2 m

Distance center-to-front: b = 0.7 m

Moment of inertia: J = 120 kgm2

Speed: V0 = 5 ms−1

Acceleration of gravity: � = 9.81 ms−2

The transfer function from β to θ is

P(s) =
mV0{

b

as+ V0
Js2 −m�{

The system has an unstable pole p with time-constant

p−1 =

√
J

m�{
( 0.4 s

The closed loop system must be at least as fast as this. Moreover, the transfer
function has a zero z with

z−1 = −
a

V0
( 0.06s
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7.2 The Maximum Modulus Theorem

Riding the bicycle at this speed, the zero is not really an obstacle for control.
However, with a rear-wheel-steered bicycle, the speed gets a negative sign and
the zero becomes unstable. In particular, for slow speed (( 0.7m/s) there is an
unstable pole-zero cancellation, which is impossible to stabilize. 2

7.2 The Maximum Modulus Theorem

More formal arguments about fundamental limitations can be obtained using the-
ory for analytic functions. It is natural that analytic functions appear, since we
have a seen that a controller is stabilizing if and only if the closed loop transfer
function is analytic in the right half plane (all poles in the left half plane). The
main mathematical theorem to be used is the following:

THEOREM 7.1—THE MAXIMUM MODULUS THEOREM
Suppose that the function f is analytic in a set containing the unit disc. Then

max
pzp≤1

p f (z)p = max
pzp=1

p f (z)p

In Laplace transform applications, the stability boundary will be the imaginary
axis. It is therefore convenient to note that for every stable rational transfer func-
tion G(s), analytic in the right half plane, the function

f (z) = G

(
1+ z
1− z

)

is analytic in the unit disc. Hence the Maximum Modulus Theorem can be applied
to give the following corollary:

COROLLARY 7.1
Suppose that all poles of the rational function G(s) have negative real part. Then

max
Re s≥0

pG(s)p = max
ω∈R

pG(iω )p

7.3 Sensitivity bounds from unstable zeros and poles

It is easy to see that the sensitivity function must be equal to one at an unstable
zero of the transfer function:

P(z) = 0 [ S(z) :=
1

1+ C(z)P(z)
= 1

Notice that the unstable zero in the plant can not be cancelled by an unstable pole
in the controller, since this would give an unstable transfer function C/(1+ CP)
from measurement noise to control input.
Similarly, the complimentary sensitivity must be one at an unstable pole:

P(p) = ∞ [ T(p) :=
C(p)P(p)

1+ C(p)P(p)
= 1
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Figure 7.2 Amplitude plots for weighting functions. The left weighting function is used
to bound the sensitivity at small frequencies, while the right function is used to boud the
complementary sensitivity at high frequencies

In this case, cancellation by an unstable zero in the controller would give an
unstable transfer function P/(1+ CP) from input disturbance to plant output.
Combining the first constraint S(z) = 1 with Corollary 7.1 immediately gives

a lower bound on the norm of the sensitivity function:

max
ω∈R

pS(iω )p = max
Re s≥0

pS(s)p ≥ pS(z)p = 1 [ qSq∞ ≥ 1

This bound is however not particularly interesting, since usually S(iω ) ( 1 for high
frequencies anyway. A much more interesting conclusion will next be obtained by
using a weighting function.
Recall that disturbance rejection requires small sensitivity for small frequen-

cies. One way to formalize this condition is to define

Wa(s) =
s+ a

2s

and require that

sup
ω
pWa(iω )S(iω )p ≤ 1 (7.1)

for some value of a. See Figure 7.2, left. Satisfying (7.1) with a high value of a
means fast disturbance rejection.
The specification requires that S(s) has a zero in the origin. This is often

obtained by an integrator in the controller. Moreover, Corollary 7.1 implies that

sup
ω
pWa(iω )S(iω )p = sup

Re s≥0
pWa(s)S(s)p ≥ pWa(zi)p

for every unstable zero zi of the plant P. In particular, the specification (7.1)
is impossible to satisfy unless pWa(zi)p ≤ 1, or in other words a ≤ zi, for every
unstable zero zi. Hence the unstable zeros give an upper bound on the achievable
bandwidth. In the following theorem, this discussion is summarized together with
a corresponding argument for unstable poles:

THEOREM 7.2
Suppose that the plant P(s) has unstable zeros zi and unstable poles pj . Then the
specifications

sup
ω
pWa(iω )S(iω )p ≤ 1 sup

ω

∣∣Wb(iω )T(iω )
∣∣ ≤ 1

are impossible to meet with a stabilizing controller unless qWa(zi)q ≤ 1 for every
unstable zero zi and qWb(pj)q ≤ 1 for every unstable pole pj .
In particular, if Wa = (s + a)/(2s) and Wb(s) = (s + b)/(2b), it is necessary

that a ≤ mini zi and b ≥ max j pj .
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7.4 Bode’s integral formula

Proof. The statement about the sensitivity function was proved above, and the
statment about the complementary sensitivity function is analogous. 2

Example 2 Let us see what Theorem 7.2 has to say about the bicycle example.
The unstable pole gives a bound qWbTq ≤ 1 for b ≥

√
m�{/J. This shows that the

closed loop transfer function from measurement noise to process output can not
be forced small for frequencies below

√
m�{/J. A loose interpretation is that it

is impossible to ride the bicycle and keep the eyes shut except for a sample every
second. This applies for the bicycle with normal steering regardless of speed.
For a rear wheel steering bike, there is the second complication of an unstable

zero at V0/a, which gives a bound on how fast disturbances one can reject. For
low speed, only slow disturbances can be rejected.
The special difficulties corresponding to a combination of an unstable pole and

an unstable zero nearby are however not apparent in Theorem 7.2. Such problems
will be treated next. 2

The following theorem gives simple expressions for the limitations caused by
an unstable pole/zero pair.

THEOREM 7.3
If P(s) has an unstable pole p and an unstable zero z, then

∥∥∥∥
1

1+ CP

∥∥∥∥
∞

≥

∣∣∣∣
z+ p

z− p

∣∣∣∣

for every stabilizing C(s).

Note that if S is very large, then the same is true for T , since S+T " 1. Hence, if
p(z+ p)/(z− p)p is significantly larger than one, the system is impossible to control
because of poor robustness to model errors and amplification of measurement
noise.

Proof. Assume that P(s) = (s− z)(s− p)−1 P̂(s), with P̂ proper and P̂(p) ,= 0. Then
the sensitivity function satisfies

qSq∞ = sup
ω

∣∣∣∣
1

1+ CP

∣∣∣∣ = sup
ω

∣∣∣∣∣
1

1+ CP̂(iω − z)(iω − p)−1

∣∣∣∣∣

= sup
ω

∣∣∣∣∣
iω − p

iω − p+ CP̂(iω − z)

∣∣∣∣∣ = supω

∣∣∣∣∣
iω + p

iω − p+ CP̂(iω − z)

∣∣∣∣∣

= sup
Re s≥0

∣∣∣∣∣
s+ p

s− p+ CP̂(s− z)

∣∣∣∣∣ ≥
∣∣∣∣
z+ p

z− p

∣∣∣∣

The fourth inequality uses that piω − pp =
√

ω 2 + p2 = piω + pp and the fifth
inequality is Corollary 7.1. 2

A similar argument can be applied to a system involving a time delay but
application of the maximum modulus theorem is less straightforward in this case.

7.4 Bode’s integral formula

Another striking performance limitation, known as Bode’s integral formula, shows
that the effort to make the sensitivity function small is always a trade-off between
different frequency regions:
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Figure 7.3 The amplitude curve of the sensitivity function always enclose the same area
below the level pSp = 1 as above.

THEOREM 7.4
If P(s), C(s) and S(s) = [1 + C(s)P(s)]−1 are stable and s2C(s)P(s) is bounded,
then

∫ ∞

0
log pS(iω )p dω = 0

Proof. Proof sketch. From the theory of analytic functions, recall that Cauchy’s
formula states that

∫

γ

f (z)dz = 0

for every closed path γ in the region where the function f is analytic. Bode’s
integral formula follows by application of Cauchy’s formula to

f (z) = log S(z)

The stability of C and P guarantee that f is well-defined and analytic in the
whole right half plane. Integration along the imaginary axis can be extended to
integration along a closed path by adding a large half-circle in the right half
plane. The condition that s2C(s)P(s) is bounded is needed to make sure that the
contribution from the half-circle vanishes as the radius tends to infinity. 2

The invariance of Bode’s integral is sometimes referred to as the “water-bed”
effect: If the designer tries to push the magnitude of the sensitivity function down
at some point, it will inevitably pop up somewhere else!
The assumptions behind Bode’s integral formula deserve some discussion. The

expression s2C(s)P(s) is always bounded whenever C(s) and P(s) correspond to
real sensor/actuator interconnections, since direct terms are not physically imple-
mentable. With unstable poles in C(s)P(s) the integral formula changes into

∫ ∞

0
log pS(iω )p dω = π

∑

i

Re pi

which makes it even harder to push down the sensitivty magnitude! The faster
unstable modes, the harder it is. In fact, this can be used as an argument why
unstable controllers should in general be avoided.
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