
Lecture 13

Control Synthesis by
Convex Optimization1

This chapter is devoted to numerical optimization of controllers using the Q-

parametrization (Youla). In the previous lecture, we saw that a closed loop map
Gzw(s) from w to z in the diagram of Figure 13.1 is achievable by a stabilizing
controller C(s) if and only if it has the form

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s)

Hence a control design problem can be viewed as a search for Q(s), to get desir-
able properties of Gzw(s). Once Q(s) is determined, a corresponding controller is

derived by the formula C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s).

[
Pzw(s) Pzu(s)

Pyw(s) Pyu(s)

]

−C(s)

� �

�

-

control inputs u

controlled variables z

measurements y

distubances w

Figure 13.1 The controller C(s) is computed to optimize the closed loop map from w to z.

Many natural specifications on the closed loop system can be stated as norm

constraints on Gzw(s). This, together with the fact that Q(s) appears linearly in
the expression for Gzw(s), makes it possible to do controller design using convex
optimization. This is a special kind of optimization that allows for fast algorithms

and guaranteed convergence. The basics will be described next.

13.1 Basics of Convex Optimization

We consider optimization problems of the form

minimize f0(x)

subject to fi(x) ≤ bi i = 1, . . . ,m
(13.1)

where x is the optimization variable, f0 is the objective function and f1, . . . , fm
are constraints functions. This is a convex optimization problem if f0, . . . , fm are

1Much of this lecture is based on source material kindly provided by Stephen Boyd. See

http://www.control.lth.se/course/FRTN10/lectures.html.
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Figure 13.2 A straight line connecting two point on the graph of a convex function always

stays above the graph

convex, that is if

fi(θ x + (1− θ)y) ≤ θ fi(x) + (1− θ) fi(y)

for all x, y and for 0 ≤ θ ≤ 1. See Figure 13.2. Convex optimizations problems are
particularly easy to solve, since

Examples of convex functions are the following:

• affine functions: aT x + b where x, a ∈ R
n, b ∈ R

• exponentials: eax for x, a ∈ R

• powers: xa for x, a > 0

• norms: qxq

The most common convex optimization problem is the least-squares problem,

where f0 is quadratic and no constraints exist.

minimize qAx − bq2

This was used in earlier lectures to solve linear-quadratic control problems.

Another important class of convex optimization problems is linear program-

ming, where the functions f0, . . . , fm are all affine:

minimize cT x x ∈ Rn

subject to aTi x ≤ bi i = 1, . . . ,m

Geometrically, the linear functions define a polyhedron, and the optimum is achie-

ved at a corner of the polyhedron. See Figure 13.3. Linear programs can be solved

P
x⋆

−c

Figure 13.3 A linear program finds a point as far as possible in the direction −c within a
polyhedron defined by the constraints aTi x ≤ bi
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Figure 13.4 A quadratic program finds the smallest ellipsoid that touches a polyhedron

defined by the constraints aTi x ≤ bi

efficiently for problems with hundreds of thousands of variables and they are used

in a wide range of applications. The complexity grows as n2m when m ≥ n.
Combining a quadratic objective with linear constraints, we get another well

known class of convex optimization problems, known as quadratic programming.

minimize 1
2
xTPx + qT x + r x ∈ Rn

subject to aTi x ≤ bi i = 1, . . . ,m

The geometric picture is again optimization over a polyhedron, but the quadratic

objective need not necessarily achieve its optimum at a corner. See Figure 13.4

If instead the constraints are defined by convex quadratic functions, the convex

optimization problem is called second order cone programming:

minimize cT x x ∈ Rn

subject to qAix + biq2 ≤ c
T
i x + di i = 1, . . . ,m

All the previous problem classes can be restated into this form and solved

using reliable and efficient algorithms. In fact, many modern algorithms for convex

programming are based on Newton’s method:

x+ = x − t[∇2 f (x)]−1∇ f (x)

where t is chosen by line search. The iteration above can be used to find the

minimum of f (x) when there are no constraints. See Figure 13.5.
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Figure 13.5 A few steps of Newton iteration are illustrated to the left, together with dotted

level curves of the objective function. The ellipsoids illustrate level curves of the local second

order approximation of f . The right plot shows the values of the objective function, illustrating

quadratic convergence near the optimum.
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Figure 13.6 Both lower bounds and upper bounds are convex, because intermediate transfer

functions have intermediate step responses.

For problems with constraints, many algorithms use so-called barrier functions

to enforce the constraints. For example, the modified objective function

f0(x) − (1/γ )

m∑

i=1

log(− fi(x))

is similar to f0(x) when fi(x) > 0 and γ is small, but the function grows to

infinity when x approaches the constraint boundary fi(x) = 0. The minimum of
the modified objective approaches the minimum of (13.1) as γ →∞.

13.2 Convex Specifications on Feedback Systems

Several important specifications on control systems can be stated as convex con-

straints on the closed loop transfer function Gzw(s). Alternatively, because of the
linear relationship between Gzw(s) and Q(s), the same specifications can be viewed
as convex constraints on Q(s):

• Stability of the closed loop system

• Lower and upper bounds on step response from wi to zj at time ti

• Upper bound on Bode amplitude from wi to zj at frequency ω i

• Interval bound on Bode phase from wi to zj at frequency ω i

In each case the convexity must be verified according to the definition: If G1zw(s)
and G2zw(s) are stable, then θG1zw(s) + (1 − θ)G2zw(s) is stable for all θ ∈ [0, 1].
Similarly, if the step responses of G1zjwi(s) and G

2
zjwi
(s) stay within given lower

and upper bounds at time ti, then the same is true for the intermediate transfer

functions θG1zw(s) + (1− θ)G2zw(s). See Figure 13.6.
Upper bounds on the Bode amplitude at a certain frequency are convex con-

straints (see Figure 13.7), because

pG1zjwi(iω )p ≤ γ , pG2zjwi(iω )p ≤ γ [ pG1zjwi(iω ) + (1− θ)G2zjwi(iω )p ≤ γ
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Figure 13.7 An upper bound on the Bode amplitude is a convex quadratic constraint.
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Bode Magnitude Diagram
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Figure 13.8 Lower bounds on the Bode amplitude give rise to non-convex constraints and

should be avoided

However, the implication does not hold for lower bounds on the amplitude func-

tion, because two points outside the circular disc defined by the amplitude bound

may very well have a convex combination that is inside the disc. See Figure 13.8.

Hence this type of specifications are not easily treated in the context of convex

optimization.

13.3 Optimization of Controllers

By using the convex specifications discussed in the previous section, a typical

convex optimization problem for control synthesis could be stated as follows:

MinimizeQ
∫∞

−∞ pPzw(iω ) + Pzu(iω )Q(iω )Pyw(iω )p
2dω

subject to

step response wi → zj is smaller than fi jk at time tk

step response wi → zj is bigger than �i jk at time tk

Bode amplitude wi → zj is smaller than hi jk at ω k

Here the optimization variable is Q, which could be any stable transfer matrix

of the right dimension. In order to solve the problem numerically, we need to re-

strict the optimization to a finite number of parameters. Hence we will consider

a fixed set of basis function φ0(s), . . . ,φN(s) and search numerically for matrices
Q0, . . . ,QN such that the closed loop transfer matrix Gzw(s) satisfies given speci-
fications when

Gzw(s) = Pzw(s) − Pzu(s)Q(s)Pyw(s) and Q(s) =

N∑

k=0

Qkφk(s)

An intuitively simple parametrization of Q(s) is obtained by letting each param-
eter Qk represent a point on the corresponding impulse response in time domain:
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Figure 13.9 The transfer function Q(s) =
PN
k=0 Qkφk(s) can be parametrized by letting

each parameter Qk represent a point on the corresponding impulse response.
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Figure 13.10 Feedback control of a DC servo.

This gives a second-order-cone programming problem in the coefficients of the

Qk-matrices:

MinimizeQk
∫∞
−∞ pPzw(iω ) + Pzu(iω )

Q(iω )
︷ ︸︸ ︷
∑

k

Qkφk(iω )Q(iω )Pyw(iω )p
2dω

}

quadratic objective

subject to
step response wi → zj is smaller than fi jk at time tk

step response wi → zj is bigger than �i jk at time tk

}

linear constraints

Bode amplitude wi → zj is smaller than hi jk at ω k

}

quadratic constraints

Once Q(s) has been determined, we will recover the desired controller from the
formula

C(s) =
[
I − Q(s)Pyu(s)

]−1
Q(s)

This controller may be of very high order and unsuitable for implementation.

However, the computation is still useful, for two reasons:

1. There are techniques for model reduction, which can be used to approximate

the high order controller with low order controllers. This will be described

in detail in the next lecture.

2. It is useful to know the limits of what is achievable by a linear time-invariant

controller. Studying the behavior of the optimal high order controller can

give a better understanding for the implications of the closed loop system

specifications.

13.4 Example — DCservo revisited

Consider again control of a DC servo as in the previous lecture: The transfer

matrix from (w1,w2) to (z1, z2) is

Gzw(s) =

[ P
1+PC

−PC
1+PC

1
1+PC

−C
1+PC

]

with P(s) = 20
s(s+1) . We will choose C(s) to minimize

trace

∫ ∞

−∞

Gzw(iω )Gzw(iω )∗dω

6



13.4 Example — DCservo revisited

Step Response

Time (sec)

A
m

p
lit

u
d

e

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Step Response

Time (sec)

A
m

p
lit

u
d

e

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 13.11 Time-domain responses for the optimized closed loop system (middle plot)
plotted together with optimization bounds

subject to bounds on the time-domain response to a step disturbance w1 and also

bounds on the time-domain response to a reference step. Figure 13.11 shows the

time-domain response of the optimized closed loop system together with the upper

and lower bounds.

If the optimization is re-done without the upper bound on the input disturbance

response, the controller drops the integral action and accepts a static error in the

disturbance response. See Figure 13.12.
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Figure 13.12 Time-domain responses for the optimized closed loop system with out upper

bound on the response to the input disturbance. In this case we get a static error, so the

controller has no longer any integral action.
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