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PREFACE

This is a book on practical feedback control and not on system theory

generally� Feedback is used in control systems for two reasons First� to

change the dynamics of the system � usually� to make the response stable and

su�ciently fast� Second� to reduce the sensitivity of the system to uncertainty

� both signal uncertainty �disturbances� and model uncertainty� Important

topics covered in the book� include

� classical frequency
domain methods

� analysis of directions in multivariable systems using singular value

decomposition

� input
output controllability �inherent control limitations in the plant�

� model uncertainty and robustness

� performance requirements

� methods for controller design and model reduction

� control structure selection and decentralized control

The treatment is limited to linear systems� mainly because the theory is

then much simpler and more well developed� but also because a large amount

of practical experience tells us that in many cases linear controllers designed

using linear methods provide satisfactory performance when applied to real

nonlinear plants�

We have attempted to keep the mathematics at a reasonably simple level�

and we have tried to emphasize results that enhance insight and intuition� The

design methods currently available for linear systems are well developed� and

with associated software it is relatively straightforward to design controllers

for most multivariable plants� However� without insight and intuition it is

di�cult to judge a solution� and to know how to proceed �e�g� how to change

weights� in order to improve a design�

The book is appropriate for use as a text for an introductory graduate

course in multivariable control or for an advanced undergraduate course� We

also think it will be useful for engineers who want to understand multivariable

control� its limitations� and how can it be applied in practice� There are

numerous worked examples� exercises and case studies which make frequent

viii MULTIVARIABLE FEEDBACK CONTROL

use of MATLAB�

The prerequisites for reading this book are an introductory course in

classical single
input single
output �SISO� control and some elementary

knowledge of matrices and linear algebra� It would be an advantage to have

some knowledge of system theory or multivariable control� including state


space realization theory and optimal control�

The book is partly based on a graduate multivariable control course given

by the �rst author in the Control �Cybernetics� Department at the Norwegian

University of Science and Technology in Trondheim� About �� students from

Electrical� Chemical and Mechanical Engineering have taken the course each

year since ����� The course has usually consisted of � lectures a week for ��

weeks� In addition to regular assignments� the students have been required to

complete a �� hour design project using MATLAB� In Appendix B� a project

outline is given together with a sample exam problem�

By covering parts of the book it should be suitable as a basis for a number of

linear control courses on various levels introduction to multivariable control�

advanced multivariable control� robust control� control system design� and

control structure design and controllability analysis�

Examples and ftp

Most of the numerical examples have been solved using MATLAB� Some

sample �les are included in the text to illustrate the steps involved� Most

of these �les use the �
toolbox� and some the Robust Control toolbox� but in

most cases the problems could have been solved easily using other software

packages�

The following are available over the Internet from Trondheim and Leicester�

� MATLAB �les for examples and �gures

� Solutions to selected exercises

� Linear state
space models for plants used in the case studies

� Corrections� comments to chapters� extra exercises

The addresses are

Anonymous ftp to ftp�kjemi�unit�no� cd �pub�che�Control�Group�Skogestad�

Web service� http���www�kjemi�unit�no�pub�che�Control�Group�Skogestad�bo

After � Sept� ���� Replace unit by ntnu�

Comments and questions� Please send questions� errors and any

comments you may have by email to

Sigurd�Skogestad�kjemi�unit�no

ixp�le�ac�uk
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INTRODUCTION

In this chapter� we begin with a brief outline of the design process for control systems�

We then discuss linear models and transfer functions which are the basic building

blocks for the analysis and design techniques presented in this book� The scaling of

variables is critical in applications and so we provide a simple procedure for this� An

example is given to show how to derive a linear model in terms of deviation variables

for a practical application� Finally� we summarize the most important notation used

in the book�

��� The process of control system design

The process of designing a control system usually makes many demands of

the engineer or engineering team� These demands often emerge in a step by

step design procedure as follows

�� Study the system �plant� to be controlled and obtain initial information

about the control objectives�

�� Model the system and simplify the model� if necessary�

�� Analyze the resulting model� determine its properties�

�� Decide which variables are to be controlled �controlled outputs��

�� Decide on the measurements and manipulated variables what sensors and

actuators will be used and where will they be placed�

�� Select the control con�guration�

	� Decide on the type of controller to be used�

�� Decide on performance speci�cations� based on the overall control

objectives�

�� Design a controller�

��� Analyze the resulting controlled system to see if the speci�cations are

satis�ed� and if they are not satis�ed modify the speci�cations or the type

of controller�

��� Simulate the resulting controlled system� either on a computer or a pilot

plant�
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��� Repeat from step �� if necessary�

��� Choose hardware and software and implement the controller�

��� Test and validate the control system� and tune the controller on
line� if

necessary�

Control courses and text books usually focus on steps � and �� in the

above procedure� that is� on methods for controller design and control system

analysis� Interestingly� many real control systems are designed without any

consideration of these two steps� For example� even for complex systems with

many inputs and outputs� it may be possible to design workable control

systems� often based on a hierarchy of cascaded control loops� using only

on
line tuning �involving steps �� � �� �� 	� �� and ���� However� in this case

a suitable control structure may not be known at the outset� and there is a

need for systematic tools and insights to assist the designer with steps �� �

and �� A special feature of this book is the provision of tools for input�output

controllability analysis �step �� and for control structure design �steps �� �� �

and 	��

Input
output controllability is a�ected by the location of sensors and

actuators� but otherwise it cannot be changed by the control engineer�

Simply stated� �even the best control system cannot make a Ferrari out of a

Volkswagen�� Therefore� the process of control system design should in some

cases also include a step �� involving the design of the process equipment itself�

The idea of looking at process equipment design and control system design

as an integrated whole is not new as is clear from the following quote taken

from a paper by Ziegler and Nichols ������

In the application of automatic controllers� it is important to

realize that controller and process form a unit� credit or discredit

for results obtained are attributable to one as much as the

other� A poor controller is often able to perform acceptably on

a process which is easily controlled� The �nest controller made�

when applied to a miserably designed process� may not deliver the

desired performance� True� on badly designed processes� advanced

controllers are able to eke out better results than older models�

but on these processes� there is a de�nite end point which can be

approached by instrumentation and it falls short of perfection�

Ziegler and Nichols then proceed to observe that there is a factor in equipment

design that is neglected� and state that

� � � the missing characteristic can be called the �controllability��

the ability of the process to achieve and maintain the desired

equilibrium value�

To derive simple tools with which to quantify the inherent input
output

controllability of a plant is the goal of Chapters � and ��

INTRODUCTION �

��� The control problem

The objective of a control system is to make the output y behave in a

desired way by manipulating the plant input u� The regulator problem is to

manipulate u to counteract the e�ect of a disturbance d� The servo problem is

to manipulate u to keep the output close to a given reference input r� Thus� in

both cases we want the control error e � y� r to be small� The algorithm for

adjusting u based on the available information is the controller K� To arrive

at a good design for K we need a priori information about the expected d

and r� and of the plant model �G� and disturbance model �Gd�� In this book

we make use of linear models of the form

y � Gu�Gdd �����

A major source of di�culty is that the models �G� Gd� may be inaccurate or

may change with time� In particular� inaccuracy in G may cause problems

because the plant will be part of a feedback loop� To deal with such a

problem we will make use of the concept of model uncertainty� For example�

instead of a single model G we may study the behaviour of a class of models�

Gp � G � E� where the �uncertainty� or �perturbation� E is bounded�

but otherwise unknown� In most cases weighting functions� w�s�� are used

to express E � w� in terms of normalized perturbations� �� where the

magnitude �norm� of � is less than �� The following terms are useful

Nominal stability NS�� The system is stable with no model uncertainty�

Nominal Performance NP�� The system satis�es the performance spec


i�cations with no model uncertainty�

Robust stability RS�� The system is stable for all perturbed plants about

the nominal model up to the worst
case model uncertainty�

Robust performance RP�� The system satis�es the performance speci


�cations for all perturbed plants about the nominal model up to the

worst
case model uncertainty�

We will discuss these terms in detail in Chapters 	 and ��

��� Transfer functions

The book makes extensive use of transfer functions� G�s�� and of the frequency

domain� which are very useful in applications for the following reasons

� Invaluable insights are obtained from simple frequency
dependent plots�
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� Important concepts for feedback such as bandwidth and peaks of closed


loop transfer functions may be de�ned�

� G�j�� gives the steady
state response to a sinusoidal input of frequency ��

� A series interconnection of systems corresponds in the frequency domain to

multiplication of the individual system transfer functions� whereas in the

time domain the evaluation of complicated convolution integrals is required�

� Poles and zeros appear explicitly in factorized scalar transfer functions�

� Uncertainty is more easily handled in the frequency domain� This is related

to the fact that two systems can be described as close �i�e� have similar

behaviour� if their frequency responses are similar� On the other hand� a

small change in a parameter in a state
space description can result in an

entirely di�erent system response�

We consider linear� time
invariant systems whose input
output responses

are governed by linear ordinary di�erential equations with constant

coe�cients� An example of such a system is

 x��t� � �a�x��t� � x��t� � b�u�t�

 x��t� � �a�x��t� � b�u�t�

y�t� � x��t�

�����

where  x�t� � dx�dt� Here u�t� represents the input signal� x��t� and x��t�

the states� and y�t� the output signal� The system is time
invariant since the

coe�cients a�� a�� b� and b� are independent of time� If we apply the Laplace

transform to ����� we obtain indexLaplace transform

s!x��s�� x��t � �� � �a�!x��s� � !x��s� � b�!u�s�

s!x��s�� x��t � �� � �a�!x��s� � b�!u�s�

!y�s� � !x��s�

�����

where !y�s� denotes the Laplace transform of y�t�� and so on� To simplify our

presentation we will make the usual abuse of notation and replace !y�s� by

y�s�� etc�� In addition� we will omit the independent variables s and t when

the meaning is clear�

If u�t�� x��t�� x��t� and y�t� represent deviation variables away from a

nominal operating point or trajectory� then we can assume x��t � �� � x��t �

�� � �� The elimination of x��s� and x��s� from ����� then yields the transfer

function

y�s�

u�s�
� G�s� �

b�s� b�

s� � a�s� a�

�����

Importantly� for linear systems� the transfer function is independent of the

input signal �forcing function�� Notice that the transfer function in ����� may

also represent the following system

�y�t� � a�  y�t� � a�y�t� � b�  u�t� � b�u�t� �����
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with input u�t� and output y�t��

Transfer functions� such as G�s� in ������ will be used throughout the book

to model systems and their components� More generally� we consider rational

transfer functions of the form

G�s� �

�nzs
nz � � � �� ��s� ��

sn � an��sn�� � � � �� a�s� a�

�����

For multivariable systems� G�s� is a matrix of transfer functions� In ����� n is

the order of the denominator or pole polynomial and is also called the order

of the system� and nz is the order of the numerator or zero polynomial� Then

n� nz is referred to as the pole excess or relative order�

For a proper system� with n � nz � we may realize ����� by a state
space

description�  x � Ax�Bu� y � Cx�Du� similar to ������ The transfer function

may then be written as G�s� � C�sI �A���B �D� similar to ������

De�nition ���

� A system G�s� is strictly proper if G�s� � � as s���

� A system G�s� is semi
proper or bi
proper if G�s� � D �� � as s���

� A system G�s� which is strictly proper or semi�proper is proper�

� A system G�s� is improper if G�s� �� as s���

All practical systems will have zero gain at a su�ciently high frequency�

and are therefore strictly proper� It is often convenient� however� to model

high frequency e�ects by a non
zero D
term� and hence semi
proper models

are frequently used� Furthermore� certain derived transfer functions� such as

S � �I �GK���� are semi
proper�

Usually we use G�s� to represent the e�ect of the inputs u on the outputs

y� whereas Gd�s� represents the e�ect on y of the disturbances d� We then

have the following linear process model in terms of deviation variables

y�s� � G�s�u�s� �Gd�s�d�s� ���	�

Here we have made use of the superposition principle for linear systems� which

implies that a change in a dependent variable �y� can simply be found by

adding together the separate e�ects resulting from changes in the independent

variables �u and d� considered one at a time�

All the signals u�s�� d�s� and y�s� are deviation variables� This is sometimes

shown explicitly� for example� by use of the notation �u�s�� but since we always

use deviation variables when we consider Laplace transforms� the � is normally

omitted�
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��� Scaling

Scaling is very important in practical applications as it makes model analysis

and controller design �weight selection� much simpler� It requires the engineer

to make a judgement at the start of the design process about the required

performance of the system� To do this� decisions are made on the expected

magnitudes of disturbances and reference changes� on the allowed magnitude

of each input signal� and on the allowed deviation of each output�

Let the unscaled �or originally scaled� linear model of the process in

deviation variables be

by � bGbu� bGd
bd� be � by � br �����

where a hat � b � is used to show that the variables are in their unscaled

�original� units� A useful approach for scaling is to make the variables less

than one in magnitude� This is done by dividing each variable by its maximum

expected or allowed change� For disturbances and manipulated inputs� we use

the scaled variables

d � bd�bdmax� u � bu�bumax �����

where

� bdmax " largest expected change in disturbance

� bumax " largest allowed input change

The maximum deviation from a nominal value should be chosen by thinking

of the maximum value one can expect� or allow� as a function of time�

The variables by� be and br are in the same units� so the same scaling factor

should be applied to each� Two alternatives are possible

� bemax " largest allowed control error

� brmax " largest expected change in reference value

Since a major objective of control is to minimize the control error be� we here

usually choose to scale with respect to the maximum control error

y � by�bemax� r � br�bemax� e � be�bemax ������

To formalize the scaling procedure� introduce the scaling factors

De � bemax� Du � bumax� Dd � bdmax� Dr � brmax ������

For MIMO systems each variable in the vectors bd� br� bu and be may have a

di�erent maximum value� in which case De� Du� Dd and Dr become diagonal

scaling matrices� This ensures� for example� that all errors �outputs� are of

about equal importance in terms of their magnitude�
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The corresponding scaled variables to use for control purposes are then

d � D��

d

bd� u � D��

u bu� y � D��

e by� e � D��

e be� r � D��

e br ������

On substituting ������ into ����� we get

Dey � bGDuu� bGdDdd� Dee � Dey �Der

and introducing the scaled transfer functions

G � D��

e

bGDu� Gd � D��

e

bGdDd ������

then yields the following model in terms of scaled variables

y � Gu�Gdd� e � y � r ������

Here u and d should be less than � in magnitude� and it is useful in some cases

to introduce a scaled reference er� which is less than � in magnitude� This is

done by dividing the reference by the maximum expected reference change

er � br�brmax � D��

r br ������

We then have that
r � Rer where R

�
� D��

e Dr � brmax�bemax ������

Here R is the largest expected change in reference relative to the allowed

e e� � �� �

� �

�u

G

Gd
d

y

r
�

�

�

�

er
e

R

Figure ���	 Model in terms of scaled variables�

control error� typically� R � �� The block diagram for the system in scaled

variables may then be written as in Figure ���� for which the following control

objective is relevant

� In terms of scaled variables we have that jd�t�j 	 � and jer�t�j 	 �� and

our control objective is to design u with ju�t�j 	 � such that je�t�j �

jy�t�� r�t�j 	 � �at least most of the time��
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Remark � A number of the interpretations used in the book depend critically

on a correct scaling� In particular� this applies to the input�output controllability

analysis presented in Chapters � and �� Furthermore� for a MIMO system one cannot

correctly make use of the sensitivity function S � I � GK��� unless the output

errors are of comparable magnitude�

Remark � With the above scalings� the worst�case behaviour of a system is

analyzed by considering disturbances d of magnitude �� and references er of

magnitude ��

Remark � With r � Rer the control error may be written as

e � y � r � Gu�Gdd�Rer �����

We see that a normalized reference change er may be viewed as a special case of a

disturbance with Gd � �R� where R is usually a constant diagonal matrix� We will

sometimes use this to unify our treatment of disturbances and references�

Remark � The above scaling of the outputs is used when analyzing a given plant�

However� if the issue is to select which outputs to control� see Section ����� then it

one may choose to scale the outputs with respect to their expected variation which

is similar to brmax��

Remark � If the expected or allowed variation of a variable about � its nominal

value� is not symmetric then the largest variation should be used for bdmax and the

smallest variation for bumax and bemax� For example� if the disturbance is �� � bd � ��

then bdmax � ��� and if the manipulated input is �� � bu � �� then bumax � �� This

approach may be conservative in terms of allowing too large disturbances etc��

when the variations in several variables are not symmetric�

A further discussion on scaling and performance is given in Chapter � on

page �	��

��� Deriving linear models

Linear models may be obtained from physical ��rst
principle� models� from

analyzing input
output data� or from a combination of these two approaches�

Although modelling and system identi�cation are not covered in this book� it

is always important for a control engineer to have a good understanding of a

model�s origin� The following steps are usually taken when deriving a linear

model for controller design based on a �rst
principle approach

�� Formulate a nonlinear state
space model based on physical knowledge�

�� Determine the steady
state operating point �or trajectory� about which to

linearize�

INTRODUCTION �

�� Introduce deviation variables and linearize the model� There are essentially

three parts to this step

�a� Linearize the equations using a Taylor expansion where second and

higher order terms are omitted�

�b� Introduce the deviation variables by substitution� e�g�� �x�t� de�ned by

x�t� � x� � �x�t�

where the superscript � denotes the steady
state operating point or

trajectory along which we are linearizing�

�c� Subtract the steady
state to eliminate the terms involving only steady


state quantities�

These parts are usually accomplished together� For example� for a nonlinear

state
space model of the form

dx
dt

� f�x� u� ������

the linearized model in deviation variables ��x� �u� is

d�x
dt

�
�
�f

�x
�
�

� �z �
A

�x �
�
�f

�u
�
�

� �z �
B

�u ������

Here x and u may be vectors� in which case the Jacobians A and B are

matrices�

�� Scale the variables to obtain scaled models which are more suitable for

control purposes�

In most cases steps � and � are performed numerically based on the model

obtained in step �� Also� since ������ is in terms of deviation variables� its

Laplace transform becomes s�x�s� � A�x�s� �B�u�s�� or

�x�s� � �sI � A���B�u�s� ������

Example ��� Physical model of a room heating process�

The above steps for deriving a linear model will be illustrated on the simple example

depicted in Figure ���� where the control problem is to adjust the heat input Q to

maintain constant room temperature T � The outdoor temperature To is the main

disturbance� Units are shown in square brackets�

�� Physical model� An energy balance for the room requires that the change

in energy in the room must equal the net in�ow of energy to the room �per unit of

time�� This yields the following state�space model

d
dt

CV T � � Q� �To � T � �����
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Figure ���	 Room heating process�

where T 	K
 is the room temperature� CV 	J�K
 is the heat capacity of the room� Q

	W
 is the heat input �from some heat source�� and the term �To�T � 	W
 represents

the net heat loss due to exchange of air and heat conduction through the walls�

�� Operating point� Consider a case where the heat input Q� is ����W and the

di�erence between indoor and outdoor temperatures T ��T �o is ��K� Then the steady�

state energy balance yields �� � ������� � ��� 	W�K
� We assume the room heat

capacity is constant� CV � ��� 	kJ�K
� �This value corresponds approximately to the

heat capacity of air in a room of about ���m� thus we neglect heat accumulation in

the walls��

�� Linear model in deviation variables� If we assume � is constant the model

in ������ is already linear� Then introducing deviation variables

�T t� � T t�� T �t�� �Qt� � Qt��Q�t�� �Tot� � Tot�� T �o t�

yields

CV

d
dt

�T t� � �Qt� � ��Tot�� �T t�� �����

Remark� If � depended on the state variable �T in this example�� or on one of the

independent variables of interest �Q or To in this example�� then one would have to

include an extra term T � � T �o ���t� on the right hand side of Equation �������

On taking Laplace transforms in ������� assuming �T t� � � at t � �� and

rearranging we get
�T s� �

�
�s� �

�
�

�
�Qs� � �Tos�

�
� � �

CV
�

�����

The time constant for this example is � � ��� �������� � ���� 	s
 � �� 	min
 which

is reasonable� It means that for a step increase in heat input it will take about ��min

for the temperature to reach ��� of its steady�state increase�
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�� Linear model in scaled variables� Introduce the following scaled variables

ys� �

�T s�

�Tmax
� us� �

�Qs�

�Qmax

� ds� �

�Tos�

�To�max

�����

In our case the acceptable variations in room temperature T are ��K� i�e� �Tmax �

�emax � � 	K
� Furthermore� the heat input can vary between �W and ����W� and

since its nominal value is ����W we have �Qmax � ���� 	W
 �see Remark� on ���

Finally� the expected variations in outdoor temperature are ���K� i�e� �To�max � ��

	K
� The model in terms of scaled variables then becomes

Gs� �

�
�s� �

�Qmax

�Tmax
�

�
�

��

����s� �

Gds� �

�
�s� �

�To�max

�Tmax

�

��

����s� �

�����

Note that the static gain for the input is k � ��� whereas the static gain for the

disturbance is kd � ��� The fact that jkdj � � means that we need some control

�feedback or feedforward� to keep the output within its allowed bound �jej � �� when

there is a disturbance of magnitude jdj � �� The fact that jkj � jkdj means that

we have enough �power� in the inputs to reject the disturbance at steady state� that

is� we can� using an input of magnitude juj � �� have perfect disturbance rejection

�e � �� for the maximum disturbance �jdj � ��� We will return with a detailed

discussion of this when we consider input�output controllability analysis in Chapter

�� The room heating process is considered in detail in Section �������

��� Notation

There is no standard notation to cover all of the topics covered in this book�

We have tried to use the most familiar notation from the literature whenever

possible� but an overriding concern has been to be consistent within the book�

to ensure that the reader can follow the ideas and techniques through from

one chapter to another�

The most important notation is summarized in Figure ���� which shows

a one degree
of
freedom control con�guration with negative feedback� a two

degrees
of
freedom control con�guration� and a general control con�guration�

The latter can be used to represent a wide class of controllers� including

the one and two degrees
of
freedom con�gurations� as well as feedforward and

estimation schemes and many others� and� as we will see� it can also be used

to formulate optimization problems for controller design� The symbols used

in Figure ��� are de�ned in Table ���� Apart from the use of v to represent

the controller inputs for the general con�guration� this notation is reasonably

standard�

Lower
case letters are used for vectors and signals �e�g�� u� y� n�� and

capital letters for matrices� transfer functions and systems �e�g�� G� K�� Matrix
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Figure ���	 Control con�gurations

INTRODUCTION ��

Table ���	 Nomenclature

K controller� in whatever con�guration� Sometimes the controller is

broken down into its constituent parts� For example� in the two

degrees
of
freedom controller in Figure ��� �b�� K �
h
Kr

Ky
i

where

Kr is a pre�lter and Ky is the feedback controller�

For the conventional control con�gurations Figure ��� a� and b���

G plant model

Gd disturbance model

r reference inputs �commands� setpoints�

d disturbances �process noise�

n measurement noise

y plant outputs� These signals include the variables to be controlled

��primary� outputs with reference values r� and possibly some

additional �secondary� measurements to improve control� Usually

the signals y are measurable�

ym measured y

u control signals �manipulated plant inputs�

For the general control con�guration Figure ��� c���

P generalized plant model� It will include G and Gd and the

interconnection structure between the plant and the controller� In

addition� if P is being used to formulate a design problem� then it

will also include weighting functions�

w exogenous inputs commands� disturbances and noise

z exogenous outputs� �error� signals to be minimized� e�g�� y � r�

v controller inputs for the general con�guration� e�g�� commands�

measured plant outputs� measured disturbances� etc� For the

special case of a one degree
of
freedom controller with perfect

measurements we have v � r � y�
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elements are usually denoted by lower
case letters� so gij is the ij�th element in

the matrixG� However� sometimes we use upper
case lettersGij � for example if

G is partitioned so that Gij is itself a matrix� or to avoid con�icts in notation�

The Laplace variable s is often omitted for simplicity� so we often write G

when we mean G�s��

For state
space realizations we use the standard �A�B�C�D�
notation� That

is� a system G with a state
space realization �A�B�C�D� has a transfer

function G�s� � C�sI �A���B �D� We sometimes write

G�s�
s

�
�
A B

C D

	

������

to mean that the transfer function G�s� has a state
space realization given by

the quadruple �A�B�C�D��

For closed
loop transfer functions we use S to denote the sensitivity at the

plant output� and T to denote the complementary sensitivity� With negative

feedback� S � �I�L��� and T � L�I�L���� where L is the transfer function

around the loop as seen from the output� In most cases L � GK� but if

we also include measurement dynamics �ym � Gmy � n� then L � GKGm�

The corresponding transfer functions as seen from the input of the plant are

LI � KG �or LI � KGmG�� SI � �I � LI�
�� and TI � LI�I � LI�
���

To represent uncertainty we use perturbations E �not normalized� or �

�normalized such that their magnitude is less than one�� The nominal plant

model is G� whereas the perturbed model with uncertainty is denoted Gp

�usually for a set of possible perturbed plants� or G� �usually for a particular

perturbed plant�� For example� with additive uncertainty we may have G� �

G�EA � G�wA�A� where wA is weight representing the magnitude of the

uncertainty�

By the right half plane �RHP� we mean the closed right half of the complex

plane� including the imaginary axis �j�
axis�� The left half plane �LHP� is the

open left half of the complex plane� excluding the imaginary axis� A RHP


pole �unstable pole� is a pole located in the right half plane� and thus includes

poles on the imaginary axis� Similarly� a RHP
zero ��unstable� zero� is a zero

located in the right half plane�

We use AT to denote the transpose of a matrix A� and AH to represent its

complex conjugate transpose�

Mathematical terminology

The symbol
�

� is used to denote equal by de�nition� and
def


 is used to denote

equivalent by de�nition�

Let A and B be logic statements� Then the following expressions are

equivalent

INTRODUCTION ��

A � B

A if B� or If B then A

A is necessary for B

B � A� or B implies A

B is su�cient for A

B only if A

not A � not B

The remaining notation� special terminology and abbreviations will be

de�ned in the text�
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CLASSICAL FEEDBACK

CONTROL

In this chapter� we review the classical frequency�response techniques for the

analysis and design of single�loop �single�input single�output� SISO� feedback control

systems� These loop�shaping techniques have been successfully used by industrial

control engineers for decades� and have proved to be indispensable when it comes

to providing insight into the bene�ts� limitations and problems of feedback control�

During the ��	
�s the classical methods were extended to a more formal method

based on shaping closed�loop transfer functions� for example� by considering the

H�norm of the weighted sensitivity function� We introduce this method at the end

of the chapter�

The same underlying ideas and techniques will recur throughout the book as we

present practical procedures for the analysis and design of multivariable �multi�input

multi�output� MIMO� control systems�

��� Frequency response

On replacing s by j� in a transfer function model G�s� we get the so�

called frequency response description� Frequency responses can be used to

describe� �� a system�s response to sinusoids of varying frequency� 	� the

frequency content of a deterministic signal via the Fourier transform� and


� the frequency distribution of a stochastic signal via the power spectral

density function�

In this book we use the �rst interpretation� namely that of frequency�by�

frequency sinusoidal response� This interpretation has the advantage of being

directly linked to the time domain� and at each frequency � the complex

number G�j�� �or complex matrix for a MIMO system� has a clear physical

interpretation� It gives the response to an input sinusoid of frequency �� This

will be explained in more detail below� For the other two interpretations we

cannot assign a clear physical meaning to G�j�� or y�j�� at a particular

frequency � it is the distribution relative to other frequencies which matters

�	 MULTIVARIABLE FEEDBACK CONTROL

then�
One important advantage of a frequency response analysisof a system is

that it provides insight into the bene�ts and trade�os of feedback control�

Although this insight may be obtained by viewing the frequency response

in terms of its relationship between power spectral densities� as is evident

from the excellent treatment by Kwakernaak and Sivan ����	�� we believe

that the frequency�by�frequency sinusoidal response interpretation is the most

transparent and useful�

Frequency�by�frequency sinusoids

We now want to give a physical picture of frequency response in terms of a

system�s steady�state response to persistent sinusoids� It is important that

the reader has this picture in mind when reading the rest of the book� For

example� it is needed to understand the response of a multivariable system

in terms of its singular value decomposition� A physical interpretation of the

frequency response for a stable linear system y � G�s�u is a follows� Apply a

sinusoidal input signal with frequency � �rad�s� and magnitude u�� that is�

u�t� � u� sin��t� ��

The input signal is persistent� that is� it has been applied since t � ���

Then as t � � �i�e�� after some initial period when the response is more

complicated� the steady�state output signal is a sinusoid of the same frequency�

namely

y�t� � y� sin��t� ��

Here u� and y� represent magnitudes and are therefore both non�negative�

Note that the output sinusoid has a dierent amplitude y� and is also shifted

in phase from the input by

�
�
� � � �

Importantly� it can be shown that yo�uo and � can be obtained directly from

the Laplace transform G�s� after inserting the imaginary number s � j� and

evaluating the magnitude and phase of the resulting complex number G�j���

We have

y��uo � jG�j��j� � � � G�j�� �rad� �	���

For example� let G�j�� � a� jb� with real part a � ReG�j�� and imaginary

part b � ImG�j��� then

jG�j��j �
p
a� � b�� � G�j�� � arctan�b�a� �	�	�

In words� �	��� says that after sending a sinusoidal signal through a system

G�s�� the signal�s magnitude is ampli�ed by a factor jG�j��j and its phase is
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shifted by � G�j��� In Figure 	��� this statement is illustrated for the following

�rst�order delay system �time in seconds��

G�s� �

ke��s

�s� �
� k � �� � � 	� � � �� �	�
�

At frequency � � �		 �rad�s�� we see that the output y lags behind the

input by about a quarter of a period and that the amplitude of the output is

approximately twice that of the input� More accurately� the ampli�cation is

jG�j��j � k�
p
����� � � � ��

p
������ � � � 			�

and the phase shift is

� � � G�j�� � � arctan������� � � arctan������	� � ��	��rad � ���	��

0 10 20 30 40 50 60 70 80 90 100

−2

−1

0

1

2

u�t�
y�t�

Time �sec

Figure ���� Sinusoidal response for system G�s� � �e��s���
s � �� at frequency

� � 
�� �rad�s�

G�j�� is called the frequency response of the system G�s�� It describes

how the system responds to persistent sinusoidal inputs of frequency �� The

magnitude of the frequency response� jG�j��j� being equal to jyo���j�juo���j�

is also referred to as the system gain� Sometimes the gain is given in units of

dB �decibel� de�ned as

A �dB� � 	� log�� A �	���

For example� A � 	 corresponds to A � �	�	 dB� and A �
p
	 corresponds to

A � 
	�� dB� and A � � corresponds to A � � dB�

Both jG�j��j and � G�j�� depend on the frequency �� This dependency

may be plotted explicitly in Bode plots �with � as independent variable�

or somewhat implicitly in a Nyquist plot �phasor diagramIn Bode plots we

usually employ a log�scale for frequency and gain and a linear scale for the

phase� In Figure 	�	� the Bode plots are shown for the system in �	�
�� We note

that in this case both the gain and phase fall monotonically with frequency�
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Figure ���� Frequency response �Bode plots� of G�s� � �e��s���
s� ���

This is quite common for process control applications� The delay � only shifts

the sinusoid in time� and thus aects the phase but not the gain� The system

gain jG�j��j is equal to k at low frequencies� this is the steady�state gain and

is obtained by setting s � � �or � � ��� The gain remains relatively constant

up to the break frequency ��� where it starts falling sharply� Physically� the

system responds too slowly to let high�frequency ��fast�� inputs have much

eect on the outputs� and sinusoidal inputs with � 
 ��� are attenuated by

the system dynamics�

The frequency response is also useful for an unstable plant G�s�� which by

itself has no steady�state response� Let G�s� be stabilized by feedback control�

and consider applying a sinusoidal forcing signal to the stabilized system� In

this case all signals within the system are persistent sinusoids with the same

frequency �� and G�j�� yields as before the sinusoidal response from the input

to the output of G�s��

Phasor notation� From Euler�s formula for complex numbers we have that

ejz � cos z� j sin z� It then follows that sin��t� is equal to the imaginary part

of the complex function ej�t� and we can write the time domain sinusoidal

response in complex form as follows�

u�t� � u�Ime
j��t��� gives as t�� y�t� � y�Ime
j��t��� �	���

where

y� � jG�j��ju�� � � � G�j�� � � �	���

and jG�j��j and � G�j�� are de�ned in �	�	�� Now introduce the complex

numbers

u���
�
� u�e
j�� y���
�
� y�e
j� �	���
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where we have used � as an argument because y� and � depend on frequency�

and in some cases so may u� and �� Note that u��� is not equal to u�s�

evaluated at s � � nor is it equal to u�t� evaluated at t � �� Since

G�j�� � jG�j��j ej � G�j�� the sinusoidal response in �	��� and �	��� can then

be written on complex form as follows

y���ej�t � G�j��u���ej�t �	���

or because the term ej�t appears on both sides

y��� � G�j��u��� �	���

which we refer to as the phasor notation� At each frequency� u���� y��� and

G�j�� are complex numbers� and the usual rules for multiplying complex

numbers apply� We will use this phasor notation throughout the book� Thus

whenever we use notation such as u��� �with � and not j� as an argument��

the reader should interpret this as a �complex� sinusoidal signal� u���ej�t�

�	��� also applies to MIMO systems where u��� and y��� are complex vectors

representing the sinusoidal signal in each channel and G�j�� is a complex

matrix�

Minimum phase systems� For stable systems which are minimum phase

�no time delays or right�half plane �RHP� zeros� there is a unique relationship

between the gain and phase of the frequency response� This may be quanti�ed

by the Bode gain�phase relationship which gives the phase of G �normalized�

such that G��� 
 �� at a given frequency �� as a function of jG�j��j over the

entire frequency range�

� G�j��� �
�

�
Z �

��

d ln jG�j��j

d ln�� �z �
N���

ln
����� � ��

� � ��
���� � d�� �	����

The name minimum phase refers to the fact that such a system has the

minimum possible phase lag for the given magnitude response jG�j��j� The

term N��� is the slope of the magnitude in log�variables at frequency �� In

particular� the local slope at frequency �� is

N���� �
�
d ln jG�j��j

d ln�

�
����

�	����

The term ln
�����������
��� in �	���� is in�nite at � � ��� so it follows that � G�j��� is

primarily determined by the local slope N����� Also
R�
��

ln
�����������
��� � d�� � ��

�

� The normalization of G�s� is necessary to handle systems such as �
s��

and ��

s��
� which

have equal gain� are stable and minimum phase� but their phases di�er by ����� Systems

with integrators may be treated by replacing �
s
by �
s��
where � is a small positive number�
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which justi�es the commonly used approximation for stable minimum phase

systems

� G�j��� � �
	

N���� �rad� � ��
� �N����

The approximation is exact for the system G�s� � ��sn �where N��� � �n��

and it is good for stable minimum phase systems except at frequencies close

to those of resonance �complex� poles or zeros�

RHP�zeros and time delays contribute additional phase lag to a system when

compared to that of a minimum phase system with the same gain �hence the

term non�minimum phase system�� For example� the systemG�s� � �s�a

s�a with

a RHP�zero at s � a has a constant gain of �� but its phase is �	 arctan���a�

�rad� �and not � �rad� as it would be for the minimum phase system G�s� � �

of the same gain�� Similarly� the time delay system e��s has a constant gain

of �� but its phase is ��� �rad��
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Figure ���� Bode plots of transfer function L� � �
 s��

�s��������s����
� The asymptotes

are given by dotted lines� The vertical dotted lines on the upper plot indicate the

break frequencies ��� �� and ���

Straight�line approximations� For the design methods used in this book

it is useful to be able to sketch quickly Bode plots� and in particular the

magnitude �gain� diagram� The reader is therefore advised to become familiar

with asymptotic Bode plots �straight�line approximations�� For example� for

a transfer function

G�s� � k
�s� z���s� z�� � � �

�s� p���s� p�� � � � �	��	�

the asymptotic Bode plots of G�j�� are obtained by approximating each

term s � a by j� � a � a for � � a and by j� � a � j� for � 
 a�
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These approximations yield straight lines on a log�log plot which meet at the

so�called break point frequency � � a� In �	��	� therefore� the frequencies

z�� z�� 	 	 	 � p�� p�� 	 	 	 are the break points where the asymptotes meet� For

complex poles or zeros� the term s� � 	s�� � ��� �where jj � �� is

approximated by ��� for � � �� and by s� � �j��� � ��� for � 
 ���

The magnitude of a transfer function is usually close to its asymptotic value�

and the only case when there is signi�cant deviation is around the resonance

frequency �� for complex poles or zeros with a damping jj of about ��
 or

less� In Figure 	�
� the Bode plots are shown for

L��s� � 
�

�s� ��

�s� �	�����s� ���

�	��
�

The asymptotes are shown by dotted lines� We note that the magnitude

follows the asymptotes closely� whereas the phase does not� In this example

the asymptotic slope of L� is � up to the �rst break frequency at ���� rad�s

where we have two poles and then the slope changes to N � �	� Then at

� rad�s there is a zero and the slope changes to N � ��� Finally� there is

a break frequency corresponding to a pole at �� rad�s and so the slope is

N � �	 at this and higher frequencies�

��� Feedback control
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Figure ���� Block diagram of one degree�of�freedom feedback control system�
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����� One degree�of�freedom controller

In most of this chapter� we examine the simple one degree�of�freedom negative

feedback structure shown in Figure 	��� The input to the controller K�s� is

r � ym where ym � y � n is the measured output and n is the measurement

noise� Thus� the input to the plant is

u � K�s��r � y � n� �	����

The objective of control is to manipulate u �design K� such that the control

error e remains small in spite of disturbances d� The control error e is de�ned

as

e � y � r �	����

where r denotes the reference value �setpoint� for the output� Note that we

do not de�ne e as the controller input r � ym which is frequently done�

����� Closed�loop transfer functions

The plant model is written as
y � G�s�u�Gd�s�d �	����

and for a one degree�of�freedom controller the substitution of �	���� into �	����

yields

y � GK�r � y � n� �Gdd

or

�I �GK�y � GKr �Gdd�GKn �	����

and hence the closed�loop response is

y � �I �GK���GK� �z �
T

r � �I �GK���� �z �
S

Gdd� �I �GK���GK� �z �
T

n �	����

The control error is

e � y � r � �Sr � SGdd� Tn �	����

where we have used the fact T�I � �S� The corresponding plant input signal

is

u � KSr �KSGdd�KSn �	�	��

The following notation and terminology are used

L � GK loop transfer function

S � �I �GK��� � �I � L��� sensitivity function

T � �I �GK���GK � �I � L���L complementary sensitivity function
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We see that S is the closed�loop transfer function from the output disturbances

to the outputs� while T is the closed�loop transfer function from the reference

signals to the outputs� The term complementary sensitivity for T follows from

the identity�

S � T � I �	�	��

To derive �	�	��� write S � T � �I � L��� � �I � L���L and factor out the

term �I � L���� The term sensitivity function is natural because S gives the

sensitivity reduction aorded by feedback� To see this� consider the �open�

loop� case i�e� with no feedback� Then

y � GKr �Gdd� � � n �	�		�

and a comparison with �	���� shows that� with the exception of noise� the

response with feedback is obtained by premultiplying the right hand side by

S�
Remark � Actually� the above is not the original reason for the name �sensitivity��

Bode �rst called S sensitivity because it gives the relative sensitivity of the closed�

loop transfer function T to the relative plant model error� In particular� at a given

frequency � we have for a SISO plant� by straightforward di�erentiation of T � that

dT�T

dG�G
� S ������

Remark � Equations ������������� are written in matrix form because they also

apply to MIMO systems� Of course� for SISO systems we may write S � T � ��

S � �
��L
� T � L
��L

and so on�

Remark � In general� closed�loop transfer functions for SISO systems with

negative feedback may be obtained from the rule

OUTPUT �

�direct�

� � �loop�
� INPUT ������

where �direct� represents the transfer function for the direct e�ect of the input on

the output �with the feedback path open� and �loop� is the transfer function around

the loop �denoted L�s��� In the above case L � GK� If there is also a measurement

device� Gm�s�� in the loop� then L�s� � GKGm� The rule in ������ is easily derived

by generalizing ������� In Section ���� we present a more general form of this rule

which also applies to multivariable systems�

����� Why feedback�

At this point it is pertinent to ask why we should use feedback control at

all � rather than simply using feedforward control� A �perfect� feedforward

controller is obtained by removing the feedback signal and using the controller
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K�s� � G���s� �we assume for now that it is possible to obtain and

physically realize such an inverse� although this may of course not be true��

We also assume that the plant and controller are both stable and that all the

disturbances are known� that is� we know Gdd� the eect of the disturbances

on the outputs� Then with r � Gdd as the controller input� this feedforward

controller would yield perfect control assuming G was a perfect model of the

plant�

y � Gu�Gdd � GK�r �Gdd� �Gdd � r �	�	��

Unfortunately� G is never an exact model� and the disturbances are never

known exactly� The fundamental reasons for using feedback control are

therefore the presence of

�� Signal uncertainty � Unknown disturbance

	� Model uncertainty


� An unstable plant

The third reason follows because unstable plants can only be stabilized by

feedback �see internal stability in Chapter ���

The ability of feedback to reduce the eect of model uncertainty is of

crucial importance in controller design� One strategy for dealing with model

uncertainty is to approximate its eect on the feedback system by adding

�ctitious disturbances or noise� For example� this is the only way of handling

model uncertainty within the so�called LQG approach to optimal control �see

Chapter ��� Is this an acceptable strategy� In general� the answer is no� This

is easily illustrated for linear systems where the addition of disturbances does

not aect system stability� whereas model uncertainty combined with feedback

may easily create instability� For example� consider a perturbed plant model

Gp � G�E where E represents additive model uncertainty� Then the output

of the perturbed plant is

y � Gu� d� � d�� d� � Eu� d� � Gdd �	�	��

where y is dierent from what we ideally expect �namely Gu� for two reasons�

�� Uncertainty in the model �d���

	� Signal uncertainty �d��

In LQG control we set wd � d��d� where wd is assumed to be an independent

variable such as white noise� Then in the design problem we may make wd

large by selecting appropriate weighting functions� but its presence will never

cause instability� However� in reality wd � Eu � d�� so wd depends on the

signal u and this may cause instability in the presence of feedback when u

depends on y� Speci�cally� the closed�loop system �I � �G�E�K��� may be

unstable for some E �� �� In conclusion� it may be important to explicitly take

into account model uncertainty when studying feedback control�
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��� Closed�loop stability

One of the main issues in designing feedback controllers is stability� If the

feedback gain is too large� then the controller may �overreact� and the closed�

loop system becomes unstable� This is illustrated next by a simple example�

0 5 10 15 20 25 30 35 40 45 50
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Kc 	 
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Kc 	 ���

Kc 	 ���

Kc 	 � �Unstable�

Pu

Time �sec

Figure ���� E�ect of proportional gain Kc on the closed�loop response y�t� of the

inverse response process�

Example ��� Inverse response process� Consider the plant �time in seconds�

G�s� �

����s� ��

��s� ����
s� ��

������

This is one of two main example processes used in this chapter to illustrate the

techniques of classical control� The model has a right�half plane �RHP� zero at

s � 
�� �rad�s�� This imposes a fundamental limitation on control� and high

controller gains will induce closed�loop instability�

This is illustrated for a proportional �P� controller K�s� � Kc in Figure 	�
�

where the response y � Tr � GKc�� � GKc�
��r to a step change in the reference

�r�t� � � for t � 
� is shown for four di�erent values of Kc� The system is seen

to be stable for Kc � ���� and unstable for Kc � ���� The controller gain at the

limit of instability� Ku � ���� is sometimes called the ultimate gain and for this

value �Kc � Ku� the system is seen to cycle continuously with a period Pu � ����s�

corresponding to the frequency �u
�
� ���Pu � 
��� �rad�s��

Two methods are commonly used to determine closed�loop stability�

�� The poles of the closed�loop system are evaluated� That is� the zeros of

� � L�s� � � are found where L is the transfer function around the loop�

The system is stable if and only if all the closed�loop poles are in the open

left�half plane �LHP� �that is� poles on the imaginary axis are considered

�unstable��� The poles are also equal to the eigenvalues of the state�space

A�matrix� and this is usually how the poles are computed numerically�
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	� The frequency response �including region in frequencies� of L�j�� is

plotted in the complex plane and the number of encirclements it makes

of the critical point �� is counted� By Nyquist�s stability criterion �as is

illustrated in Figure 	��	 and for which a detailed statement is given in

Theorem ����� closed�loop stability is inferred by equating the number

of encirclements to the number of open�loop unstable poles �RHP�poles��

For open�loop stable systems where � L�j�� falls with frequency such that

� L�j�� crosses ����� only once �from above at frequency ��	��� one may

equivalently use Bode�s stability condition which says that the closed�loop

system is stable if and only if the loop gain jLj is less than � at this

frequency� that is

Stability � jL�j��	��j � � �	�	��

where ��	� is the phase crossover frequency de�ned by � L�j��	�� � ������

Method �� which involves computing the poles� is best suited for numerical

calculations� However� time delays must �rst be approximated as rational

transfer functions� e�g�� Pad�e approximations� Method 	� which is based on

the frequency response� has a nice graphical interpretation� and may also be

used for systems with time delays� Furthermore� it provides useful measures

of relative stability and forms the basis for several of the robustness tests used

later in this book�

Example ��� Stability of inverse response process with proportional

control� Let us determine the condition for closed�loop stability of the plant G in

�	�	�� with proportional control� that is� with K�s� � Kc and L�s� � KcG�s��

� The system is stable if and only if all the closed�loop poles are in the LHP� The

poles are solutions to � � L�s� � 
 or equivalently the roots of

��s� ����
s � �� �Kc����s� �� � 


� �
s� � ���� �Kc�s� �� � �Kc� � 
 ������

But since we are only interested in the half plane location of the poles� it is not

necessary to solve �	�	��� Rather� one may consider the coe�cients ai of the

characteristic equation ans
n � � � � a�s � a� � 
 in �	�	��� and use the Routh�

Hurwitz test to check for stability� For second order systems� this test says that

we have stability if and only if all the coe�cients have the same sign� This yields

the following stability conditions

���� �Kc� � 
� �� � �Kc� � 


or equivalently ���� � Kc � ���� With negative feedback �Kc � 
� only the

upper bound is of practical interest� and we �nd that the maximum allowed gain

��ultimate gain�� is Ku � ��� which agrees with the simulation in Figure 	�
�

The poles at the onset of instability may be found by substituting Kc � Ku � ���
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into �	�	�� to get �
s� � 	�� � 
� i�e�� s � �j
p
	����
 � �j
����� Thus� at the

onset of instability we have two poles on the imaginary axis� and the system will

be continuously cycling with a frequency � � 
���� �rad�s� corresponding to a

period Pu � ���� � ���� s� This agrees with the simulation results in Figure 	�
�
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with Kc � ��

	� Stability may also be evaluated from the frequency response of L�s�� A graphical

evaluation is most enlightening� The Bode plots of the plant �i�e� L�s� with

Kc � �� are shown in Figure 	��� From these one �nds the frequency ��	�

where � L is ��	
� and then reads o� the corresponding gain� This yields

jL�j��	��j � KcjG�j��	��j � 
��Kc� and we get from �	�	�� that the system is

stable if and only if Kc � ��� �as found above�� Alternatively� the phase crossover

frequency may be obtained analytically from�

� L�j��	�� � � arctan����	��� arctan����	��� arctan��
��	�� � ��	

�

which gives ��	� � 
���� �rad�s� as found in the pole calculation above� The loop

gain at this frequency is

jL�j��	��j � Kc

� �
p
����	��� � �p

����	��� � � �
p
��
��	��� � �

� 
��Kc

which is the same as found from the graph in Figure 	��� The stability condition

jL�j��	��j � � then yields Kc � ��� as expected�

��� Evaluating closed�loop performance

Although closed�loop stability is an important issue� the real objective of

control is to improve performance� that is� to make the output y�t� behave

�
 MULTIVARIABLE FEEDBACK CONTROL

in a more desirable manner� Actually� the possibility of inducing instability is

one of the disadvantages of feedback control which has to be traded o against

performance improvement� The objective of this section is to discuss ways of

evaluating closed�loop performance�

����� Typical closed�loop responses

The following example which considers proportional plus integral �PI� control

of the inverse response process in �	�	��� illustrates what type of closed�loop

performance one might expect�

Example ��� PI�control of inverse response process� We have already

studied the use of a proportional controller for the process in �	�	��� We found that

a controller gain of Kc � ��� gave a reasonably good response� except for a steady�

state o�set �see Figure 	�
�� The reason for this o�set is the nonzero steady�state

sensitivity function� S�
� � �

��KcG���

� 
��	 �where G�
� � � is the steady�state

gain of the plant�� From e � �Sr it follows that for r � � the steady�state control

error is �
��	 �as is con�rmed by the simulation in Figure 	�
�� To remove the

steady�state o�set we add integral action in the form of a PI�controller

K�s� � Kc
�

� �

�
�Is

�

����
�

The settings for Kc and �I can be determined from the classical tuning rules of

Ziegler and Nichols ���	��
Kc � Ku����� �I � Pu���� ������

where Ku us the maximum �ultimate� P�controller gain and Pu is the corresponding

period of oscillations� In our case Ku � ��� and Pu � ����s �as observed from the

simulation in Figure 	�
�� and we get Kc � ���� and �I � ����s� Alternatively� Ku

and Pu can be obtained from the model G�s��

Ku � ��jG�j�u�j� Pu � ����u ������

where �u is de�ned by � G�j�u� � ��	

��

The closed�loop response� with PI�control� to a step change in reference is shown in

Figure 	��� The output y�t� has an initial inverse response due to the RHP�zero� but

it then rises quickly and y�t� � 
�� at t � 	�
 s �the rise time�� The response is quite

oscillatory and it does not settle to within ��� of the �nal value until after t � �� s

�the settling time�� The overshoot �height of peak relative to the �nal value� is about

��� which is much larger than one would normally like for reference tracking� The

decay ratio� which is the ratio between subsequent peaks� is about 
��� which is also

a bit large� �However� for disturbance rejection the controller settings may be more

reasonable� and one can always add a pre�lter to improve the response for reference

tracking� resulting in a two degrees�of�freedom controller��

The corresponding Bode plots for L� S and T are shown in Figure 	��� Later� in

Section 	����� we de�ne stability margins and from the plot of L�j��� repeated in
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Figure ��	� Closed�loop response to a step change in reference for the inverse

response process with PI�control�

Figure 	�� we �nd that the phase margin �PM� is 
��� rad � ����� and the gain

margin �GM� is ����� These margins are too small according to common rules of

thumb� The peak value of jSj is MS � ����� and the peak value of jT j is MT � ����

which again are high according to normal design rules�

Exercise ��� Use �	��	� to compute Ku and Pu for the process in �	�	���

In summary� for this example� the Ziegler�Nichols� PI�tunings are somewhat

�aggressive� and give a closed�loop system with smaller stability margins and

a more oscillatory response than would normally be regarded as acceptable�

����� Time domain performance

Step response analysis� The above example illustrates the approach often

taken by engineers when evaluating the performance of a control system� That

is� one simulates the response to a step in the reference input� and considers

the following characteristics �see Figure 	����

� Rise time �tr� � the time it takes for the output to �rst reach �� of its

�nal value� which is usually required to be small�

� Settling time �ts� � the time after which the output remains within 	� of

its �nal value� which is usually required to be small�

� Overshoot � the peak value divided by the �nal value� which should typically

be ��	 �	� � or less�

� Decay ratio � the ratio of the second and �rst peaks� which should typically

be ��
 or less�

� Steady�state o�set � the dierence between the �nal value and the desired

�nal value� which is usually required to be small�

The rise time and settling time are measures of the speed of the response �

whereas the overshoot� decay ratio and steady�state oset are related to the
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� Typical Bode magnitude and phase plots of L � GK� S and T �

G�s� � ����s���
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� K�s� � ������� � �
����s
� �Ziegler�Nichols PI controller��

quality of the response � Another measure of the quality of the response is�

� Excess variation � the total variation �TV� divided by the overall change at

steady state� which should be as close to � as possible�

The total variation is the total movement of the output as illustrated in

Figure 	���� For the cases considered here the overall change is �� so the excess

variation is equal to the total variation� Note that the step response is equal

to the integral of the corresponding impulse response �e�g�� set u��� � � in

������ Some thought then reveals that one can compute the total variation as

the integrated absolute area ���norm� of the corresponding impulse response

�Boyd and Barratt� ����� p� ���� That is� let y � Tr� then the total variation
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Figure ���� Characteristics of closed�loop response to step in reference�
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in y for a step change in r is

TV �
Z �

�

jgT ���jd� �
� kgT �t�k� �	�

�

where gT �t� is the impulse response� i�e�� y�t� resulting from an impulse change

in r�t��

      

v�

v�

v�

v


v� v� v

v�

Time

y
�t
�

Figure ����� Total variation is TV �
P

i
vi� and Excess variation is TV�v��

The above measures address the output response� y�t�� In addition� one

should consider the magnitude of the manipulated input �control signal� u��

which usually should be as small and smooth as possible� If there are important

disturbances� then the response to these should also be considered� Finally�

one may investigate in simulation how the controller works if the plant model

parameters are dierent from their nominal values�

Another way of quantifying time domain performance is in terms of some

norm of the error signal e�t� � y�t� � r�t�� For example� one might use

the integral squared error �ISE�� or its square root which is the 	�norm

of the error signal� ke�t�k� �
qR�

�

je���j�d� � Note that in this case the

various objectives related to both the speed and quality of response are

combined into one number� Actually� in most cases minimizing the 	�norm

seems to give a reasonable trade�o between the various objectives listed

above� Another advantage of the 	�norm is that the resulting optimization

problems �such as minimizing ISE� are numerically easy to solve� One

can also take input magnitudes into account by considering� for example�

J �
qR�

� �Qje�t�j� �Rju�t�j��dt where Q and R are positive constants� This

is similar to linear quadratic �LQ� optimal control� but in LQ�control one

normally considers an impulse rather than a step change in r�t�� and e�t�

normally represents the system states�
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����� Frequency domain performance

The frequency�response of the loop transfer function� L�j��� or of various

closed�loop transfer functions� may also be used to characterize closed�loop

performance� Typical Bode plots of L� T and S are shown in Figure 	��� One

advantage of the frequency domain compared to a step response analysis� is

that it considers a broader class of signals �sinusoids of any frequency�� This

makes it easier to characterize feedback properties� and in particular system

behaviour in the crossover �bandwidth� region� We will now describe some

of the important frequency�domain measures used to assess performance e�g�

gain and phase margins� the maximum peaks of S and T � and the various

de�nitions of crossover and bandwidth frequencies used to characterize speed

of response�

Gain and phase margins
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Figure ����� Typical Bode plot of L�j�� with PM and GM indicated

Let L�s� denote the loop transfer function of a system which is closed�loop

stable under negative feedback� A typical Bode plot and a typical Nyquist

plot of L�j�� illustrating the gain margin �GM� and phase margin �PM� are

given in Figures 	��� and 	��	� respectively�

The gain margin is de�ned as
GM � ��jL�j��	��j �	�
��

where the phase crossover frequency ��	� is where the Nyquist curve of L�j��



CLASSICAL CONTROL ��

−1            0.5     1 

    

−0.5

 0.5

    

L�j��

� � ��

PM

�� �
GM Re

Im

L�j�c�

L�j��	��

Figure ����� Typical Nyquist plot of L�j�� for stable plant with PM and GM

indicated� Closed�loop instability occurs if L�j�� encircles the critical point ���

crosses the negative real axis between �� and �� that is

� L�j��	�� � ����� �	�
��

If there is more than one crossing the largest value of jL�j��	��j is taken� On a

Bode plot with a logarithmic axis for jLj� we have that GM �in logarithms� e�g�

in dB� is the vertical distance from the unit magnitude line down to jL�j��	��j�

see Figure 	���� The GM is the factor by which the loop gain jGK�j��j may

be increased before the closed�loop system becomes unstable� The GM is thus

a direct safeguard against steady�state gain uncertainty �error�� Typically we

require GM
 	� If the Nyquist plot of L crosses the negative real axis between

�� and �� then a gain reduction margin can be similarly de�ned from the

smallest value of jL�j��	�j of such crossings�

The phase margin is de�ned as

PM � � L�j�c� � ���
� �	�
��

where the gain crossover frequency �c is where jL�j��j �rst crosses � from

above� that is

jL�j�c�j � � �	�
��
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The phase margin tells how much negative phase �phase lag� we can add to

L�s� at frequency �c before the phase at this frequency becomes ����� which

corresponds to closed�loop instability �see Figure 	��	�� Typically� we require

PM larger than 
�� or more� The PM is a direct safeguard against time delay

uncertainty� the system becomes unstable if we add a time delay of

�max � PM��c �	�
��

Note that the units must be consistent� so if wc is in rad�s then PM must

be in radians� It is important to note that decreasing the value of �c �lower

closed�loop bandwidth� slower response� means that we can tolerate larger

time delay errors�

Example ��� For the PI�controlled inverse response process example we have

PM� ����� � ��������� �rad� � 
��� �rad� and �c � 
���� �rad�s�� The allowed

time delay error is then 	max � 
��� �rad��
���� �rad�s� � ���� �s��

From the above arguments we see that gain and phase margins provide

stability margins for gain and delay uncertainty� However� as we show below

the gain and phase margins are closely related to the peak values of jS�j��j

and jT �j��j and are therefore also useful in terms of performance� In short� the

gain and phase margins are used to provide the appropriate trade�o between

performance and stability�

Exercise ��� Prove that the maximum additional delay for which closed�loop

stability is maintained is given by �	�����

Exercise ��� Derive the approximation for Ku � ��jG�j�u�j given in �
���� for

a �rst�order delay system�

Maximum peak criteria

The maximum peaks of the sensitivity and complementary sensitivity

functions are de�ned as

MS � max
�

jS�j��j� MT � max
�

jT �j��j �	�
��

�Note thatMS � kSk� andMT � kTk� in terms of theH� norm introduced

later�� Typically� it is required that MS is less than about 	 �� dB� andMT is

less than about ��	� �	 dB�� A large value ofMS orMT �larger than about ��

indicates poor performance as well as poor robustness� Since S � T � I � the

values of MS and MT are close when the peaks are large� For stable plants

we usually haveMS 
 MT � but this is not a general rule� An upper bound on

MT has been a common design speci�cation in classical control and the reader

may be familiar with the use ofM �circles on a Nyquist plot or a Nichols chart

used to determine MT from L�j���



CLASSICAL CONTROL ��

We now give some justi�cation for why we may want to bound the value

of MS � Recall that without control e � y � r � Gdd � r� and with feedback

control e � S�Gdd � r�� Thus� feedback control improves performance in

terms of reducing jej at all frequencies where jSj � �� Usually� jSj is small

at low frequencies� for example� jS���j � � for systems with integral action�

But because all real systems are strictly proper we must at high frequencies

have that L � � or equivalently S � �� At intermediate frequencies one

cannot avoid in practice a peak value� MS � larger than � �e�g�� see the

argument following �	������ Thus� there is an intermediate frequency range

where feedback control degrades performance� and the value of MS is a

measure of the worst�case performance degradation� One may also viewMS as

a robustness measure� as is now explained� To maintain closed�loop stability

the number of encirclements of the critical point�� by L�j�� must not change�

so we want L to stay away from this point� The smallest distance between

L�j�� and the �� point is M��
S � and therefore for robustness� the smallerMS�

the better�

There is a close relationship between these maximums peaks and the gain

and phase margins� Speci�cally� for a given MS we are guaranteed

GM 
 MS

MS � �� PM 
 	 arcsin� �
	MS
� 
 �
MS

�rad� �	����

For example� with MS � 	 we are guaranteed GM
 	 and PM
 	�	���

Similarly� for a given value of MT we are guaranteed

GM 
 � � �
MT
� PM 
 	 arcsin� �
	MT
� 


�
MT

�rad� �	����

and therefore with MT � 	 we have GM
 �	� and PM
 	�	���

Proof of �	���� and �	���� To derive the GM�inequalities notice that L�j��	�� �

���GM �since GM� ��jL�j��	��j and L is real and negative at ��	��� from which

we get

T �j��	�� �

��

GM� �
� S�j��	�� �

�

�� �
GM

������

and the results follow�

To derive the PM�inequalities in ����
� and ������ consider Figure ���� where we

have jS�j�c�j � ��j� � L�j�wc�j � ��j � �� L�j�c�j and we obtain

jS�j�c�j � jT �j�c�j �

�

� sin�PM���

������

and the inequalities follow� Alternative formulae� which are sometimes used� follow

from the identity � sin�PM��� �
p
���� cos�PM��� �

We note with interest that �	��	� requires jSj to be larger than � at

frequency ��	�� This means that provided ��	� exists� that is� L�j�� has
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Figure ����� At frequency �c we see from the �gure that j��L�j�c�j � � sin�PM����

more than ����� phase lag at some frequency �which is the case for any

real system�� then the peak of jS�j�� must exceed ��

In conclusion� we see that speci�cations on the peaks of jS�j��j or jT �j��

�MS or MT �� can make speci�cations on the gain and phase margins

unnecessary� For instance� requiring MS � 	 implies the common rules of

thumb GM
 	 and PM
 
���

����� Relationship between time and frequency domain

peaks

For a change in reference r� the output is y�s� � T �s�r�s�� Is there any

relationship between the frequency domain peak of T �j��� MT � and any

characteristic of the time domain step response� for example the overshoot or

the total variation� To answer this consider a prototype second�order system

with complementary sensitivity function

T �s� �

�

��s� � 	�s� �

�	����

For underdamped systems with  � � the poles are complex and yield

oscillatory step responses� With r�t� � � �a unit step change� the values of the

overshoot and total variation for y�t� are given� together with MT and MS�

as a function of  in Table 	��� From Table 	��� we see that the total variation

TV correlates quite well with MT � This is further con�rmed by �A��
� and
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Table ���� Peak values and total variation of prototype second�order system

Time domain Frequency domain

 Overshoot Total variation MT MS

	�� � � � ����

��� � � � ����

��� � � � ����

��� ���	 ���
 � ��		

��� ���� ��	� ���� ��
�

��� ��	� ���� ��
� ����

��	 ���
 
�		 	��� 	��


��� ���
 ��
� ���
 ���	

���� ���� �
�� ���� ����

� MATLAB code �Mu toolbox� to generate Table�

tau���zeta��	��t����	�������

T � nd
sys����tautau 
tauzeta ���� S � msub���T��

�A�B�C�D��unpck�T�� y� � step�A�B�C�D���t��

overshoot�max�y���tv�sum�abs�diff�y����

Mt�hinfnorm�T��	e����Ms�hinfnorm�S��	e���

�	�

� which together yield the following general bounds�

MT � TV � �	n� ��MT �	����

Here n is the order of T �s�� which is 	 for our prototype system in �	����� Given

that the response of many systems can be crudely approximated by fairly low�

order systems� the bound in �	���� suggests thatMT may provide a reasonable

approximation to the total variation� This provides some justi�cation for the

use of MT �rather than MS� in classical control to evaluate the quality of the

response�

����� Bandwidth and crossover frequency

The concept of bandwidth is very important in understanding the bene�ts

and trade�os involved when applying feedback control� Above we considered

peaks of closed�loop transfer functions� MS and MT � which are related to the

quality of the response� However� for performance we must also consider the

speed of the response� and this leads to considering the bandwidth frequency

of the system� In general� a large bandwidth corresponds to a faster rise

time� since high frequency signals are more easily passed on to the outputs�

A high bandwidth also indicates a system which is sensitive to noise and to

�
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parameter variations� Conversely� if the bandwidth is small� the time response

will generally be slow� and the system will usually be more robust�

Loosely speaking� bandwidth may be de�ned as the frequency range ���� ���

over which control is eective� In most cases we require tight control at steady�

state so �� � �� and we then simply call �� � �B the bandwidth�

The word �eective� may be interpreted in dierent ways� and this may

give rise to dierent de�nitions of bandwidth� The interpretation we use is

that control is e�ective if we obtain some bene�t in terms of performance� For

tracking performance the error is e � y � r � �Sr and we get that feedback

is eective �in terms of improving performance� as long as the relative error

e�r � �S is reasonably small� which we may de�ne to be less than ����� in

magnitude� We then get the following de�nition�

De�nition ��� The �closed�loop� bandwidth� �B� is the frequency where

jS�j��j �rst crosses ��p	 � �	����� �
 dB� from below�

Another interpretation is to say that control is e�ective if it signi�cantly

changes the output response� For tracking performance� the output is y � Tr

and since without control y � �� we may say that control is eective as long

as T is reasonably large� which we may de�ne to be larger than ������ This

leads to an alternative de�nition which has been traditionally used to de�ne

the bandwidth of a control system� The bandwidth in terms of T � �BT � is

the highest frequency at which jT �j��j crosses ��p	 � �	����� �
 dB� from

above� In most cases� the two de�nitions in terms of S and T yield similar

values for the bandwidth� However� as we demonstrate below� the de�nition in

terms of T may in some cases be a misleading indicator of closed�loop control

performance�

In cases where �B and �BT dier� the situation is generally as follows� Up

to the frequency �B � jSj is less than ���� and control is eective in terms of

improving performance� In the frequency range ��B � �BT � control still aects

the response� but does not improve performance � in most cases we �nd that

in this frequency range jSj is larger than � and control degrades performance�

Finally� at frequencies higher than �BT we have S � � and control has no

signi�cant eect on the response� The situation just described is illustrated in

Example 	�� below �see Figure 	�����

The gain crossover frequency� �c� de�ned as the frequency where jL�j�c��j

�rst crosses � from above� is also sometimes used to de�ne closed�loop

bandwidth� It has the advantage of being simple to compute and usually

gives a value between �B and �BT � Speci�cally� for systems with PM � ���

we have

�B � �c � �BT �	����

Proof of �	����� Note that jL�j�c�j � � so jS�j�c�j � jT �j�c�j� Thus� when PM� �
�

we get jS�j�c�j � jT �j�c�j � 
��
� �see �������� and we have �B � �c � �BT � For
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PM� �
� we get jS�j�c�j � jT �j�c�j � 
��
�� and since �B is the frequency where

jS�j��j crosses 
��
� from below we must have �B � �c� Similarly� since �BT is the

frequency where jT �j��j crosses 
��
� from above� we must have �BT � �c� �

Another important frequency is the phase crossover frequency� ��	�� de�ned

as the �rst frequency where the Nyquist curve of L�j�� crosses the negative

real axis between �� and �� From �	��	� we get that ��	� 
 �BT for

GM
 		���� and ��	� � �BT for GM� 		���� and since in many cases the

gain margin is about 	�� we conclude that ��	� is usually close to �BT � It is

also interesting to note from �	��	� that at ��	� the phase of T �and of L�

is ������ so from y � Tr we conclude that at frequency ��	� the tracking

response is completely out of phase� Since as just noted �BT is often close to

��	�� this further illustrates that �BT may be a poor indicator of the system

bandwidth�

In conclusion� �B �which is de�ned in terms of S� and also �c �in terms of

L� are good indicators of closed�loop performance� while �BT �in terms of T �

may be misleading in some cases�

Example ��� Comparison of �B and �BT as indicators of performance�

An example where �BT is a poor indicator of performance is the following�

L �

�s� z

s��s� �z � ��
� T �
�s� z

s� z

�
�s� �

� z � 
��� � � � ������

For this system� both L and T have a RHP�zero at z � 
��� and we have GM� ����

PM� �
���� MS � ���� and MT � �� We �nd that �B � 
�
�� and �c � 
�
�� are

both less than z � 
�� �as one should expect because speed of response is limited by

the presence of RHP�zeros�� whereas �BT � ��� � ��
 is ten times larger than z�

The closed�loop response to a unit step change in the reference is shown in Figure

	��� The rise time is ���
 s� which is close to ���B � �	�
s� but very di�erent from

���BT � ��
s� illustrating that �B is a better indicator of closed�loop performance

than �BT �
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The Bode plots of S and T are shown in Figure 	�
� We see that jT j � � up to

about �BT � However� in the frequency range from �B to �BT the phase of T �not

shown� drops from about ��
� to about ���
�� so in practice tracking is poor in

this frequency range� For example� at frequency ��	� � 
��� we have T � �
��� and

the response to a sinusoidally varying reference r�t� � sin��	�t is completely out of

phase� i�e�� y�t� � �
��r�t��

We thus conclude that jT j by itself is not a good indicator of performance�

we must also consider its phase� The reason is that we want T � � in order

to have good performance� and it is not su!cient that jT j � �� On the other

hand� jSj by itself is a reasonable indicator of performance� it is not necessary

to consider its phase� The reason for this is that for good performance we

want S close to � and this will be the case if jSj � � irrespective of the phase

of S�

��� Controller design

We have considered ways of evaluating performance� but one also needs

methods for controller design� The Ziegler�Nichols� method used earlier is

well suited for on�line tuning� but most other methods involve minimizing

some cost function� The overall design process is iterative between controller

design and performance �or cost� evaluation� If performance is not satisfactory

then one must either adjust the controller parameters directly �for example�

by reducing Kc from the value obtained by the Ziegler�Nichols� rules� or

adjust some weighting factor in an objective function used to synthesize the

controller�

There exists a large number of methods for controller design and some of

these will be discussed in Chapter �� In addition to heuristic function rules and
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on�line tuning we can distinguish between three main approaches to controller

design�

�� Shaping of transfer functions� In this approach the designer speci�es

the magnitude of some transfer function�s� as a function of frequency� and

then �nds a controller which gives the desired shape�s��

�a� Loop shaping� This is the classical approach in which the magnitude

of the open�loop transfer function� L�j��� is shaped� Usually no

optimization is involved and the designer aims to obtain jL�j��j with

desired bandwidth� slopes etc� We will look at this approach in detail

later in this chapter� However� classical loop shaping is di!cult to apply

for complicated systems� and one may then instead use the Glover�

McFarlaneH� loop�shaping design presented in Chapter �� The method

consists of a second step where optimization is used to make an initial

loop�shaping design more robust�

�b� Shaping of closed�loop transfer functions	 such as S	 T and KS�

Optimization is usually used� resulting in various H� optimal control

problems such as mixed weighted sensitivity� more on this later�

	� The signal�based approach� This involves time domain problem

formulations resulting in the minimization of a norm of a transfer function�

Here one considers a particular disturbance or reference change and then

one tries to optimize the closed�loop response� The �modern� state�space

methods from the �����s� such as Linear Quadratic Gaussian �LQG�

control� are based on this signal�oriented approach� In LQG the input

signals are assumed to be stochastic �or alternatively impulses in a

deterministic setting� and the expected value of the output variance �or

the 	�norm� is minimized� These methods may be generalized to include

frequency dependent weights on the signals leading to what is called the

Wiener�Hopf �or H��norm� design method�

By considering sinusoidal signals� frequency�by�frequency� a signal�based

H� optimal control methodology can be derived in which the H� norm of

a combination of closed�loop transfer functions is minimized� This approach

has attracted signi�cant interest� and may be combined with model

uncertainty representations� to yield quite complex robust performance

problems requiring ��synthesis� an important topic which will be addressed

in later chapters�


� Numerical optimization� This often involves multi�objective optimiza�

tion where one attempts to optimize directly the true objectives� such as

rise times� stability margins� etc� Computationally� such optimization prob�

lems may be di!cult to solve� especially if one does not have convexity�

Also� by eectively including performance evaluation and controller de�

sign in a single step procedure� the problem formulation is far more criti�

cal than in iterative two�step approaches� The numerical optimization ap�
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proach may also be performed on�line� which might be useful when dealing

with cases with constraints on the inputs and outputs� On�line optimiza�

tion approaches such as model predictive control are likely to become more

popular as faster computers and more e!cient and reliable computational

algorithms are developed�

��� Loop shaping

In the classical loop�shaping approach to controller design� �loop shape� refers

to the magnitude of the loop transfer function L � GK as a function of

frequency� An understanding of how K can be selected to shape this loop

gain provides invaluable insight into the multivariable techniques and concepts

which will presented later in the book� and so we will discuss loop shaping in

some detail in the next two sections�

��	�� Trade�o
s in terms of L

Recall equation �	����� which yields the closed�loop response in terms of the

control error e � y � r�

e � � �I � L���� �z �
S

r � �I � L���� �z �
S

Gdd� �I � L���L� �z �
T

n �	����

For �perfect control� we want e � y � r � �� that is� we would like

e � � � d� � � r � � � n �	����

The �rst two requirements in this equation� namely disturbance rejection and

command tracking� are obtained with S � �� or equivalently� T � I � Since

S � �I � L���� this implies that the loop transfer function L must be large

in magnitude� On the other hand� the requirement for zero noise transmission

implies that T � �� or equivalently� S � I � which is obtained with L � �� This

illustrates the fundamental nature of feedback design which always involves a

trade�o between con"icting objectives� in this case between large loop gains

for disturbance rejection and tracking� and small loop gains to reduce the

eect of noise�

It is also important to consider the magnitude of the control action u �which

is the input to the plant�� We want u small because this causes less wear and

saves input energy� and also because u is often a disturbance to other parts

of the system �e�g� consider opening a window in your o!ce to adjust your

body temperature and the undesirable disturbance this will impose on the air

conditioning system for the building�� In particular� we usually want to avoid
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fast changes in u� The control action is given by u � K�r � ym� and we �nd

as expected that a small u corresponds to small controller gains and a small

L � GK�

The most important design objectives which necessitate trade�os in

feedback control are summarized below�

�� Performance� good disturbance rejection� needs large controller gains� i�e�

L large�

	� Performance� good command following� L large�


� Stabilization of unstable plant� L large�

�� Mitigation of measurement noise on plant outputs� L small�

�� Small magnitude of input signals� K small and L small�

�� Physical controller must be strictly proper� K � � at high frequencies�

�� Nominal stability �stable plant�� L small �because of RHP�zeros and time

delays��

�� Robust stability �stable plant�� L small �because of uncertain or neglected

dynamics��

Fortunately� the con"icting design objectives mentioned above are generally

in dierent frequency ranges� and we can meet most of the objectives by using

a large loop gain �jLj 
 �� at low frequencies below crossover� and a small

gain �jLj � �� at high frequencies above crossover�

��	�� Fundamentals of loop�shaping design

By loop shaping one usually means a design procedure that involves explicitly

shaping the magnitude of the loop transfer function� jL�j��j� Here L�s� �

G�s�K�s� where K�s� is the feedback controller to be designed and G�s�

is the product of all other transfer functions around the loop� including

the plant� the actuator and the measurement device� Essentially� to get the

bene�ts of feedback control we want the loop gain� jL�j��j� to be as large

as possible within the bandwidth region� However� due to time delays� RHP�

zeros� unmodelled high�frequency dynamics and limitations on the allowed

manipulated inputs� the loop gain has to drop below one at and above

some frequency which we call the crossover frequency �c� Thus� disregarding

stability for the moment� it is desirable that jL�j��j falls sharply with

frequency� To measure how jLj falls with frequency we consider the logarithmic

slope N � d ln jLj�d ln�� For example� a slope N � �� implies that jLj drops

by a factor of �� when � increases by a factor of ��� If the gain is measured

in decibels �dB� then a slope of N � �� corresponds to �	� dB� decade� The

value of �N at higher frequencies is often called the roll�o� rate�

The design of L�s� is most crucial and di!cult in the crossover region

between �c �where jLj � �� and ��	� �where � L � ������� For stability� we at

least need the loop gain to be less than � at frequency ��	�� i�e�� jL�j��	��j � ��
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Thus� to get a high bandwidth �fast response� we want ��	� large� that is� we

want the phase lag in L to be small� Unfortunately� this is not consistent with

the desire that jL�j��j should fall sharply� For example� the loop transfer

function L � ��sn �which has a slope N � �n on a log�log plot� has a phase

� L � �n � ���� Thus� to have a phase margin of ��� we need � L 
 ��
���

and the slope of jLj cannot exceed N � ��	��

In addition� if the slope is made steeper at lower or higher frequencies� then

this will add unwanted phase lag at intermediate frequencies� As an example�

consider L��s� given in �	��
� with the Bode plot shown in Figure 	�
� Here

the slope of the asymptote of jLj is �� at the gain crossover frequency �where

jL��j�c�j � ��� which by itself gives ���� phase lag� However� due to the

in"uence of the steeper slopes of �	 at lower and higher frequencies� there is

a �penalty� of about �
�� at crossover� so the actual phase of L� at �c is

approximately ��	���

The situation becomes even worse for cases with delays or RHP�zeros in

L�s� which add undesirable phase lag to L without contributing to a desirable

negative slope in L� At the gain crossover frequency �c� the additional phase

lag from delays and RHP�zeros may in practice be �
�� or more�

In summary� a desired loop shape for jL�j��j typically has a slope of about

�� in the crossover region� and a slope of �	 or higher beyond this frequency�

that is� the roll�o is 	 or larger� Also� with a proper controller� which is

required for any real system� we must have that L � GK rolls o at least

as fast as G� At low frequencies� the desired shape of jLj depends on what

disturbances and references we are designing for� For example� if we are

considering step changes in the references or disturbances which aect the

outputs as steps� then a slope for jLj of �� at low frequencies is acceptable�

If the references or disturbances require the outputs to change in a ramp�like

fashion then a slope of �	 is required� In practice� integrators are included in

the controller to get the desired low�frequency performance� and for oset�free

reference tracking the rule is that

� L�s� must contain at least one integrator for each integrator in r�s��

To see this� let L�s� � bL�s��snI where bL��� is nonzero and �nite and nI is

the number of integrators in L�s� � sometimes nI is called the system type�

Consider a reference signal of the form r�s� � ��snr � For example� if r�t� is

a unit step then r�s� � ��s �nr � ��� and if r�t� is a ramp then r�s� � ��s
�

�nr � 	�� The �nal value theorem for Laplace transforms is

lim
t��

e�t� � lim
s��

se�s� �	����

In our case� the control error is

e�s� � � �

� � L�s�
r�s� � � snI�nr

snI � bL�s�
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and to get zero oset �i�e� e�t��� � �� we must from �	���� require nI 
 nr�

and the rule follows� In Section 	����� we discuss how to specify the loop shape

when disturbance rejection is the primary objective of control�

In conclusion� one can de�ne the desired loop transfer function in terms of

the following speci�cations�

�� The gain crossover frequency� �c� where jL�j�c�j � ��

	� The shape of L�j��� e�g�� in terms of the slope of jL�j��j in certain

frequency ranges� Typically� we desire a slope of about N � �� around

crossover� and a larger roll�o at higher frequencies� The desired slope at

lower frequencies depends on the nature of the disturbance or reference

signal�


� The system type� de�ned as the number of pure integrators in L�s��

Loop�shaping design is typically an iterative procedure where the designer

shapes and reshapes jL�j��j after computing the phase and gain margins�

the peaks of closed�loop frequency responses �MT and MS�� selected closed�

loop time responses� the magnitude of the input signal� etc� The procedure is

illustrated next by an example�

Example ��
 Loop�shaping design for the inverse response process�
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Figure ����� Frequency response of L�s� in ������ for loop�shaping design with

Kc � 
�
�� �GM� ����� PM� ���� �c � 
���� ��	� � 
���� MS � ����� MT � �����

We will now design a loop�shaping controller for the example process in �	�	��

which has a RHP�zero at s � 
��� The RHP�zero limits the achievable bandwidth

and so the crossover region �de�ned as the frequencies between �c and ��	�� will

be at about 
�� rad�s� We only require the system to have one integrator �type �
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Figure ���
� Magnitude Bode plot of controller ������ for loop�shaping design�

system�� and therefore a reasonable approach is to let the loop transfer function have

a slope of �� at low frequencies� and then to roll o� with a higher slope at frequencies

beyond 
�� rad�s� We choose the following loop�shape

L�s� � �Kc

���s� ��

s��s� ���
���s � ��

������

The frequency response �Bode plots� of L is shown in Figure 	��� The asymptotic

slope of jLj is �� up to � rad�s where it changes to ��� The controller corresponding

to the loop�shape in �	�
� is

K�s� � Kc

��
s� ����s� ��

s��s� ���
���s� ��
� Kc � 
�
� ������

The controller has zeros at the locations of the plant poles� This is desired in this case

because we do not want the slope of the loop shape to drop at the break frequencies

���
 � 
�� �rad�s� and ��� � 
�� �rad�s� just before crossover� The controller

gain Kc was selected to get a reasonable trade�o� between speed of response and

the robustness margin to instability� The phase of L is ��
� at low frequency� and
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at � � 
�� �rad�s� the additional contribution from the term ��s��

�s��

in �	�
� is

��
�� so for stability we need �c � 
�� �rad�s�� The selection of Kc � 
�
� yields

�c � 
��� �rad�s� corresponding to GM� ���� and PM����� The corresponding time

response is shown in Figure 	��� It is seen to be much better than the responses with

either the simple PI�controller in Figure 	�� or with the P�controller in Figure 	�
�

Figure 	�� also shows that the magnitude of the input signal is reasonable �assuming

the signals have been scaled such that we want the input to be less than about � in

magnitude�� This means that the controller gain is not too large at high frequencies�

The magnitude Bode plot for the controller �	�
	� is shown in Figure 	��� It is

interesting to note that in the crossover region around � � 
�� �rad�s� the controller

gain is quite constant� around � in magnitude� which is similar to the �best� gain

found using a P�controller �see Figure 	�
��

Limitations imposed by RHP�zeros and time delays�

Based on the above loop�shaping arguments we can now examine how the

presence of delays and RHP�zeros limit the achievable control performance�

We have already argued that if we want the loop shape to have a slope of

�� around crossover ��c�� with preferably a steeper slope before and after

crossover� then the phase lag of L at �c will necessarily be at least �����

even when there are no RHP�zeros or delays� Therefore� if we assume that for

performance and robustness we want a phase margin of about 
�� or more�

then the additional phase contribution from any delays and RHP�zeros at

frequency �c cannot exceed about �����

First consider a time delay �� It yields an additional phase contribution of

���� which at frequency � � ��� is�� rad ����� �which is more than������

Thus� for acceptable control performance we need �c � ���� approximately�

Next consider a real RHP�zero at s � z� To avoid an increase in slope caused

by this zero we place a pole at s � �z such that the loop transfer function

contains the term �s�z

s�z � the form of which is referred to as all�pass since its

magnitude equals � at all frequencies� The phase contribution from the all�

pass term at � � z�	 is �	 arctan��	�� � ��
� �which is close to ������ so

for acceptable control performance we need �c � z�	� approximately�

��	�� Inverse�based controller design

In Example 	��� we made sure that L�s� contained the RHP�zero of G�s��

but otherwise the speci�ed L�s� was independent of G�s�� This suggests the

following possible approach for a minimum�phase plant �i�e� one with no RHP�

zeros or time delays�� Select a loop shape which has a slope of �� throughout

the frequency range� namely

L�s� �
�c

s

�	��
�
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where �c is the desired gain crossover frequency� This loop shape yields a

phase margin of ��� and an in�nite gain margin since the phase of L�j��

never reaches ������ The controller corresponding to �	��
� is

K�s� �
�c

s
G���s� �	����

That is� the controller inverts the plant and adds an integrator ���s�� This

is an old idea� and is also the essential part of the IMC �Internal Model

Control� design procedure of Morari �Morari and Za�riou� ����� which has

proved successful in many applications� However� there are at least two good

reasons for why this controller may not be a good choice�

�� The controller will not be realizable if G�s� has more poles than zeros� and

may in any case yield large input signals� These problems may be partly

�xed by adding high�frequency dynamics to the controller�

	� The loop shape resulting from �	��
� is not generally desirable� unless the

references and disturbances aect the outputs as steps� This is illustrated

by the following example�

Example ��� Disturbance process� We now introduce our second main

example process and control problem in which disturbance rejection is an important

objective in addition to command tracking� We assume that the plant has been

appropriately scaled as outlined in Section ���

Problem formulation� Consider the disturbance process described by

G�s� �

�



�
s� �

�

�
�
�s� ���
� Gd�s� �

�



�
s� �

������

with time in seconds� A block diagram is shown in Figure 	�	�� The control objectives

are�

� Command tracking� The rise time �to reach �
� of the �nal value� should be less

than 
�� �s� and the overshoot should be less than ���

	� Disturbance rejection� The output in response to a unit step disturbance should

remain within the range ���� � at all times� and it should return to 
 as quickly

as possible �jy�t�j should at least be less than 
�� after � s��

�� Input constraints� u�t� should remain within the range ���� � at all times to avoid

input saturation �this is easily satis�ed for most designs��

Analysis� Since Gd�
� � �

 we have that without control the output response to a

unit disturbance �d � �� will be �

 times larger than what is deemed to be acceptable�

The magnitude jGd�j��j is lower at higher frequencies� but it remains larger than �

up to �d � �
 �rad�s� �where jGd�j�d�j � ��� Thus� feedback control is needed up to

frequency �d� so we need �c to be approximately equal to �
 rad�s for disturbance

rejection� On the other hand� we do not want �c to be larger than necessary because

of sensitivity to noise and stability problems associated with high gain feedback� We

will thus aim at a design with �c � �
 �rad�s�
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Inverse�based controller design� We will consider the �inverse�based� design as

given by �	�
�� and �	�
�� with �c � �
� This yields an unrealizable controller and

therefore we choose to approximate the plant term �
�
�s � ��� by �
��s � �� and

then in the controller we let this term be e�ective over one decade� i�e�� we use

�
��s� ����
�
�s � �� to give the realizable design

K��s� �
�c

s
�
s� �

�




��s� �


�
�s� �
� L��s� �

�c
s


��s� �

�
�
�s� ����
�
�s� ��
� �c � �


������
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Figure ����� Responses with �inverse�based� controller K��s� for disturbance

process�

The response to a step reference is excellent as shown in Figure 	�� �a�� The rise

time is about 
��� s and there is no overshoot so the speci�cations are more than

satis�ed� However� the response to a step disturbance �Figure 	�� �b�� is much too

sluggish� Although the output stays within the range ���� �� it is still 
��� at t � �

s �whereas it should be less than 
���� Because of the integral action the output does

eventually return to zero� but it does not drop below 
�� until after �� s�

The above example illustrates that the simple �inverse�based� design

method where L has a slope of about N � �� at all frequencies� does

not always yield satisfactory designs� The objective of the next section is

to understand why the disturbance response was so poor� and to propose a

more desirable loop shape for disturbance rejection�

��	�� Loop shaping for disturbance rejection

At the outset we assume that the disturbance has been scaled such that at each

frequency jd���j � �� and the main control objective is to achieve je���j � ��

With feedback control we have e � y � SGdd� so to achieve je���j � � for

jd���j � � �the worst�case disturbance� we require jSGd�j��j � ����� or

equivalently�

j� � Lj 
 jGdj �� �	����
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At frequencies where jGdj 
 �� this is approximately the same as requiring

jLj 
 jGdj� However� in order to minimize the input signals� thereby reducing

the sensitivity to noise and avoiding stability problems� we do not want to use

larger loop gains than necessary �at least at frequencies around crossover��

A reasonable initial loop shape Lmin�s� is then one that just satis�es the

condition

jLminj � jGdj �	����

where the subscript min signi�es that Lmin is the smallest loop gain to satisfy

je���j � �� Since L � GK the corresponding controller with the minimum

gain satis�es

jKminj � jG��Gdj �	����

In addition� to improve low�frequency performance �e�g� to get zero steady�

state oset�� we often add integral action at low frequencies� and use

jKj � js� �I
s

jjG��Gdj �	����

This can be summarized as follows�

� For disturbance rejection a good choice for the controller is one which

contains the dynamics �Gd� of the disturbance and inverts the dynamics

�G� of the inputs �at least at frequencies just before crossover��

� For disturbances entering directly at the plant output� Gd � �� and we

get jKminj � jG��j� so an inverse�based design provides the best trade�o

between performance �disturbance rejection� and minimum use of feedback�

� For disturbances entering directly at the plant input �which is a common

situation in practice � often referred to as a load disturbance�� we have

Gd � G and we get jKminj � �� so a simple proportional controller with

unit gain yields a good trade�o between output performance and input

usage�

� Notice that a reference change may be viewed as a disturbance directly

aecting the output� This follows from ������� from which we get that a

maximum reference change r � R may be viewed as a disturbance d � �

with Gd�s� � �R where R is usually a constant� This explains why selecting

K to be like G�� �an inverse�based controller� yields good responses to step

changes in the reference�

In addition to satisfying jLj � jGdj �eq� 	���� at frequencies around

crossover� the desired loop�shape L�s� may be modi�ed as follows�

�� Around crossover make the slopeN of jLj to be about��� This is to achieve

good transient behaviour with acceptable gain and phase margins�

	� Increase the loop gain at low frequencies as illustrated in �	���� to improve

the settling time and to reduce the steady�state oset� Adding an integrator

yields zero steady�state oset to a step disturbance�
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� Let L�s� roll o faster at higher frequencies �beyond the bandwidth� in

order to reduce the use of manipulated inputs� to make the controller

realizable and to reduce the eects of noise�

The above requirements are concerned with the magnitude� jL�j��j� In

addition� the dynamics �phase� of L�s� must be selected such that the closed�

loop system is stable� When selecting L�s� to satisfy jLj � jGdj one should

replace Gd�s� by the corresponding minimum�phase transfer function with the

same magnitude� that is� time delays and RHP�zeros in Gd�s� should not be

included in L�s� as this will impose undesirable limitations on feedback� On

the other hand� any time delays or RHP�zeros in G�s� must be included in

L � GK because RHP pole�zero cancellations between G�s� and K�s� yield

internal instability� see Chapter ��

Remark� The idea of including a disturbance model in the controller is well known

and is more rigorously presented in� for example� research on the internal model

principle �Wonham� ������ or the internal model control design for disturbances

�Morari and Za�riou� ��	��� However� our development is simple� and su�cient for

gaining the insight needed for later chapters�

Example ��� Loop�shaping design for the disturbance process

ee q
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�����

�
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�	�

�

�����s����
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�

�r

K�s�

Figure ����� Block diagram representation of the disturbance process in ������

Consider again the plant described by �	�

�� The plant can be represented by

the block diagram in Figure 	�	�� and we see that the disturbance enters at the plant

input in the sense that G and Gd share the same dominating dynamics as represented

by the term �

���
s � ���

Step �� Initial design� From �	�
�� we know that a good initial loop shape looks like

jLminj � jGdj �
�� ���

��s��
�� at frequencies up to crossover� The corresponding controller

is K�s� � G��Lmin � 
���
�
�s����� This controller is not proper �i�e� it has more

zeros than poles�� but since the term �
�
�s���� only comes into e�ect at ��
�
� � �
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�rad�s�� which is beyond the desired gain crossover frequency �c � �
 �rad�s�� we may

replace it by a constant gain of � resulting in a proportional controller

K��s� � 
�� ������

The magnitude of the corresponding loop transfer function� jL��j��j� and the

response �y��t�� to a step change in the disturbance are shown in Figure 	�	� This

simple controller works surprisingly well� and for t � �s the response to a step change

in the disturbance response is not much di�erent from that with the more complicated

inverse�based controller K��s� of �	�
�� as shown earlier in Figure 	��� However�

there is no integral action and y��t�� � as t���
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Figure ����� Loop shapes and disturbance responses for controllers K�� K� and K�

for the disturbance process�

Step �� More gain at low frequency� To get integral action we multiply the

controller by the term s��I
s

� where �I is the frequency up to which the term is

e�ective �the asymptotic value of the term is  for � � �I�� For performance we

want large gains at low frequencies� so we want �I to be large� but in order to

maintain an acceptable phase margin �which is ����� for controller K�� the term

should not add too much negative phase at frequency �c� so �I should not be too

large� A reasonable value is �I � 
���c for which the phase contribution from s��I
s

is arctan���
��� � �
� � ���� at �c� In our case �c � �
 �rad�s�� so we select the

following controller

K��s� � 
��
s � �

s

������

The resulting disturbance response �y�� in shown in Figure 	�	 satis�es the

requirement that jy�t�j � 
�� at time t � � s� but y�t� exceeds � for a short time�

Also� the response is slightly oscillatory as might be expected since the phase margin

is only ��� and the peak values for jSj and jT j are MS � ���	 and MT � ��	� �see

Table 	�	��

Step �� High�frequency correction� To increase the phase margin and improve

the transient response we supplement the controller with �derivative action� by

multiplying K��s� by a lead�lag term which is e�ective over one decade starting
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at �
 rad�s�

K��s� � 
��
s� �

s


�
�s� �


�

�s � �

������

The corresponding disturbance response �y�� is seen to be faster initially and y��t�

stays below ��

Table ���� Alternative loop�shaping designs for the disturbance process

Reference Disturbance

GM PM �c MS MT tr ymax ymax y�t � ��

Spec�� � �
 	 �� 	 ��
� 	 � 	 
��

K� ���� ����� ���� ���� � ��� ��

 
��� ���

K� ��
� ����� 	��	 ��	� ���� ��� ���� ���� ���

K� ���� �
��� 	��� ���	 ��	� ��� ���� ���� �

�

K� ���� �
��� ���� ���� ���� ��� ���� 
��� �

�

Table 	�	 summarizes the results for the four loop�shaping designs� the inverse�

based design K� for reference tracking and the three designs K�� K� and K�

for disturbance rejection� Although controller K� satis�es the requirements for

disturbance rejection� it is not satisfactory for reference tracking� the overshoot is

��� which is signi�cantly higher than the maximum value of ��� On the other

hand� the inverse�based controller K� inverts the term ����
s � �� which is also in

the disturbance model� and therefore yields a very sluggish response to disturbances

�the output is still 
��� at t � � s whereas it should be less than 
����

��	�� Two degrees�of�freedom design

For the disturbance process example we see from Table 	�	 that none of

the controller designs meet all the objectives for both reference tracking and

disturbance rejection� The problem is that for reference tracking we typically

want the controller to look like �
sG

�� see �	����� whereas for disturbance

rejection we want the controller to look like �
sG

��Gd� see �	����� We cannot

achieve both of these simultaneously with a single �feedback� controller�

The solution is to use a two degrees�of�freedom controller where the

reference signal r and output measurement ym are independently treated by

the controller� rather than operating on their dierence r � ym� There exist

several alternative implementations of a two degrees�of�freedom controller�

The most general form is shown in Figure ��
�b� on page �	 where the

controller has two inputs �r and ym� and one output �u�� However� the

controller is often split into two separate blocks as shown in Figure 	�		 where

Ky denotes the feedback part of the controller andKr a reference pre�lter� The

feedback controllerKy is used to reduce the eect of uncertainty �disturbances

and model error� whereas the pre�lter Kr shapes the commands to improve

performance� In general� it is optimal to design the combined two degrees�of�
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Figure ����� Two degrees�of�freedom controller�

freedom controller K in one step� However� in practice Ky is often designed

�rst for disturbance rejection� and then Kr is designed to improve reference

tracking� This is the approach taken here�

Let T � L���L��� �with L � GKy� denote the complementary sensitivity

function for the feedback system� Then for a one degree�of�freedom controller

y � Tr� whereas for a two degrees�of�freedom controller y � TKrr� If the

desired transfer function for reference tracking �often denoted the reference

model� is Tref � then the corresponding ideal reference pre�lter Kr satis�es

TKr � Tref � or

Kr�s� � T���s�Tref�s� �	����

Thus� in theory we may design Kr�s� to get any desired tracking response

Tref�s�� However� in practice it is not so simple because the resulting Kr�s�

may be unstable �if G�s� has RHP�zeros� or unrealizable� and relatively

uncertain if T �s� is not known exactly� A convenient practical choice of

pre�lter is the lead�lag network
Kr�s� �

�leads� �

�lags� �

�	����

Here we select �lead 
 �lag if we want to speed up the response� and �lead � �lag

if we want to slow down the response� If one does not require fast reference

tracking� which is the case in many process control applications� a simple lag

is often used �with �lead � ���

Example �� Two degrees�of�freedom design for the disturbance process

In Example 	�� we designed a loop�shaping controller K��s� for the plant in �	�

�

which gave good performance with respect to disturbances� However� the command
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Figure ����� Tracking responses with the one degree�of�freedom controller �K��

and the two degrees�of�freedom controller �K�� Kr�� for the disturbance process�

tracking performance was not quite acceptable as is shown by y� in Figure 	�	��

The rise time is 
��� s which is better than the required value of 
�� s� but the

overshoot is ��� which is signi�cantly higher than the maximum value of ��� To

improve upon this we can use a two degrees�of�freedom controller with Ky � K��

and we design Kr�s� based on �	���� with reference model Tref � ���
��s � ��

�a �rst�order response with no overshoot�� To get a low�order Kr�s�� we may

either use the actual T �s� and then use a low�order approximation of Kr�s�� or

we may start with a low�order approximation of T �s�� We will do the latter� From

the step response y� in Figure 	�	� we approximate the response by two parts� a

fast response with time constant 
�� s and gain ���� and a slower response with

time constant 
�� s and gain �
�� �the sum of the gains is �� Thus we use

T �s� � ��


���s��
� ��


��
s��

� ����s���

����s������
s���
� from which �	���� yields Kr�s� �
��
s��

���s��
�

Following closed�loop simulations we modi�ed this slightly to arrive at the design

Kr��s� �


��s� �


���s� �
�

�


�
�s � �

������

where the term ���
�
�s � �� was included to avoid the initial peaking of the input

signal u�t� above �� The corresponding tracking response is shown in Figure 	�	�� The

rise time is 
���s which is still better than the requirement of 
��s� and the overshoot

is only ����� The disturbance response is the same as curve y� in Figure 	�	� In

conclusion� we are able to satisfy all speci�cations using a two degrees�of�freedom

controller�

Loop shaping applied to a �exible structure

The following example shows how the loop�shaping procedure for disturbance

rejection� can be used to design a one degree�of�freedom controller for a very

dierent kind of plant�

Example ���� Loop shaping for a exible structure
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Consider the following model of a �exible structure with disturbances occurring at

the plant input

G�s� � Gd�s� �

���s�s� � ��

�s� � 
�����s� � ���

������

From the Bode magnitude plot in Figure 	�	� �a� we see that jGd�j��j �� �

around the resonance frequencies of 
�� and � �rad�s�� so control is needed at these

frequencies� The dashed line in Figure 	�	� �b� shows the open�loop response to a

unit step disturbance� The output y�t� is seen to cycle between �� and � �outside

the allowed range �� to ��� which con�rms that control is needed� From �	�
��

a controller which meets the speci�cation jy���j 	 � for jd���j � � is given by

jKmin�j��j � jG
��Gdj � �� Indeed the controller

K�s� � � ����	�

turns out to be a good choice as is veri�ed by the closed�loop disturbance response in

Figure 	�	� �b� �solid line�� the output goes up to about 
�� and then returns to zero�

The fact that the choice L�s� � G�s� gives closed�loop stability is not immediately

obvious since jGj has � gain crossover frequencies� However� instability cannot occur

because � G � ��	
� at all frequencies�

��	�	 Conclusion loop shaping

The loop�shaping procedure outlined and illustrated by the examples above

is well suited for relatively simple problems� as might arise for stable plants

where L�s� crosses the negative real axis only once� Although the procedure

may be extended to more complicated systems the eort required by the

engineer is considerably greater� In particular� it may be very di!cult to

achieve stability�

Fortunately� there exist alternative methods where the burden on the
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engineer is much less� One such approach is the Glover�McFarlane H� loop�

shaping procedure which is discussed in detail in Chapter �� It is essentially

a two�step procedure� where in the �rst step the engineer decides on a loop

shape� jLj �denoted the �shaped plant� Gs� as outlined in this section� and

in the second step the optimization provides the necessary phase corrections

to get a stable and robust design� The method is applied to the disturbance

process in Example ��
 on page ��
�

Remark� Another design philosophy which deals directly with shaping both the

gain and phase of L�s� is the quantitative feedback theory �QFT�� see Horowitz

�������

��	 Shaping closed�loop transfer functions

In this section� we introduce the reader to shaping of closed�loop transfer

functions where we synthesize a controller by minimizing an H� performance

objective� The topic is discussed further in Section 
���� and in more detail in

Chapter ��

Speci�cations directly on the open�loop transfer function L � GK� as in

the loop�shaping design procedures of the previous section� make the design

process transparent as it is clear how changes in L�s� aect the controller

K�s� and vice versa� An apparent problem with this approach� however� is

that it does not consider directly the closed�loop transfer functions� such as

S and T � which determine the �nal response� The following approximations

apply

jL�j��j  � � S � L��� T � �

jL�j��j � � � S � �� T � L

but in the crossover region where jL�j��j is close to �� one cannot infer

anything about S and T from jL�j��j� The phase of L�j�� is then crucial�

For example� jSj and jT j may experience large peaks if L�j�� is close to ���

An alternative design strategy is to directly shape the magnitudes of closed�

loop transfer functions� such as S�s� and T �s�� Such a design strategy can

be formulated as an H� optimal control problem� thus automating the

actual controller design and leaving the engineer with the task of selecting

reasonable bounds ��weights�� on the desired closed�loop transfer functions�

Before explaining how this may be done in practice� we discuss the terms H�

and H��
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����� The terms H� and H


The H� norm of a stable scalar transfer function f�s� is simply its peak value

as a function of frequency� that is�

kf�s�k� �
� max
�

jf�j��j �	����

Strictly speaking� we should here replace �max� �the maximum value� by

�sup� �the supremum� the least upper bound�� This is because the maximum

may only be approached as w � � and may therefore not actually be

achieved� However� for engineering purposes there is no dierence between

�sup� and �max��

The terms H� norm and H� control are intimidating at �rst� and a

name conveying the engineering signi�cance of H� would have been better�

After all� we are simply talking about a design method which aims to press

down the peak�s� of one or more selected transfer functions� However� the

term H�� which is purely mathematical� has now established itself in the

control community� To make the term less forbidding� an explanation of its

background may help� First� the symbol � comes from the fact that the

maximum magnitude over frequency may be written as

max
�

jf�j��j � lim
p��

�Z �
��

jf�j��jpd�
���p

Essentially� by raising jf j to an in�nite power we pick out its peak value� Next�

the symbol H stands for �Hardy space�� and H� in the context of this book

is the set of transfer functions with bounded ��norm� which is simply the set

of stable and proper transfer functions�

Similarly� the symbol H� stands for the Hardy space of transfer functions

with bounded 	�norm� which is the set of stable and strictly proper transfer

functions� The H� norm of a strictly proper stable transfer function is de�ned

as

kf�s�k� �
�

�
�
	�

Z �
��

jf�j��j�d�
����

�	����

The factor ��
p
	� is introduced to get consistency with the 	�norm of the

corresponding impulse response� see �������� Note that the H��norm of a

semi�proper �or bi�proper� transfer function �where lims�� f�s� is a nonzero

constant� is in�nite� whereas its H� norm is �nite� An example of a semi�

proper transfer function �with an in�nite H� norm� is the sensitivity function

S � �I �GK����

We will now outlineH� optimal design� and give an example� We will return

with more details regarding both H� and H� optimal control in Chapter ��
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����� Weighted sensitivity

As already discussed� the sensitivity function S is a very good indicator

of closed�loop performance� both for SISO and MIMO systems� The main

advantage of considering S is that because we ideally want S small� it is

su!cient to consider just its magnitude jSj� that is� we need not worry about

its phase� Typical speci�cations in terms of S include�

�� Minimum bandwidth frequency ��B �de�ned as the frequency where jS�j��j

crosses ����� from below��

	� Maximum tracking error at selected frequencies�


� System type� or alternatively the maximum steady�state tracking error� A�

�� Shape of S over selected frequency ranges�

�� Maximum peak magnitude of S� kS�j��k� �M �

The peak speci�cation prevents ampli�cation of noise at high frequencies�

and also introduces a margin of robustness� typically we select M � 	�

Mathematically� these speci�cations may be captured simply by an upper

bound� ��jwP �s�j� on the magnitude of S where wP �s� is a weight selected by

the designer�� The subscript P stands for performance since S is mainly used

as a performance indicator� and the performance requirement becomes

jS�j��j � ��jwP �j��j� �� �	����

� jwPSj � �� �� � kwPSk� � � �	��	�

The last equivalence follows from the de�nition of the H� norm� and in words

the performance requirement is that the H� norm of the weighted sensitivity�

wPS� must be less than one� In Figure 	�	� �a�� an example is shown where

the sensitivity� jSj� exceeds its upper bound� ��jwP j� at some frequencies�

The resulting weighted sensitivity� jwPSj therefore exceeds � at the same

frequencies as is illustrated in Figure 	�	� �b�� Note that we usually do not

use a log�scale for the magnitude when plotting weighted transfer functions�

such as jwPSj�

Weight selection� An asymptotic plot of a typical upper bound� ��jwP j�

is shown in Figure 	�	�� The weight illustrated may be represented by

wP �s� �
s�M � ��B

s� ��BA

�	��
�

and we see that jwP �j��j�� is equal to A � � at low frequencies� is equal

to M 
 � at high frequencies� and the asymptote crosses � at the frequency�

��B � which is approximately the bandwidth requirement� For this weight the

loop shape L � ��B�s yields an S which exactly matches the bound �	��	�

at frequencies below the bandwidth and easily satis�es �by a factor M� the
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�b� Weighted sensitivity wPS�

Figure ����� Case where jSj exceeds its bound ��jwP j� resulting in kwPSk� � ��

bound at higher frequencies� This L has a slope in the frequency range below

crossover of N � ��� In some cases� in order to improve performance� we

may want a steeper slope for L �and S� below the bandwidth� and then a

higher�order weight may be selected� A weight which asks for a slope �	 for

L at lower frequencies is
wP��s� �
�s�M��� � ��B�
�

�s� ��BA
�����

�	����

The insight gained from the previous section on loop�shaping design is very

useful for selecting weights� For example� for disturbance rejection we must

satisfy jSGd�j��j � � at all frequencies �assuming the variables have been

scaled to be less than � in magnitude�� It then follows that a good initial choice

for the performance weight is to let wp�s� look like jGd�j��j at frequencies

where jGdj 
 �� In other cases� one may �rst obtain an initial controller using
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Figure ����� Inverse of performance weight� Exact and asymptotic plot of

��jwP �j��j in �������

another design procedure� and the resulting sensitivity jS�j��j may then be

used to select a performance weight for a subsequent H� design�

Exercise ��� Make an asymptotic plot of ��jwP�j in �	���� and compare with the

asymptotic plot of ��jwP j in �	�����

����� Stacked requirements� mixed sensitivity

The speci�cation kwPSk� � � puts a lower bound on the bandwidth� but not

an upper one� and nor does it allow us to specify the roll�o of L�s� above the

bandwidth� To do this one can make demands on another closed�loop transfer

function� for example� on the complementary sensitivity T � I � S � GKS�

Also� to achieve robustness or to avoid too large input signals� one may want

to place bounds on the transfer function KS�

For instance� one might specify an upper bound ��jwT j on the magnitude

of T to make sure that L rolls o su!ciently fast at high frequencies� and

an upper bound� ��jwuj� on the magnitude of KS to restrict the size of

the input signals� u � KS�r � Gdd�� To combine these �mixed sensitivity�

speci�cations� a �stacking approach� is usually used� resulting in the following

overall speci�cation�

kNk� � max
�

#��N�j��� � �� N �
	


 wPS

wTT

wuKS
�

� �	����

We here use the maximum singular value� #��N�j���� to measure the size of

the matrix N at each frequency� For SISO systems� N is a vector and #��N�

is the usual Euclidean vector norm�

#��N� �
p
jwPSj� � jwTT j� � jwuKSj� �	����
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The stacking procedure is selected for mathematical convenience as it does not

allow us to exactly specify the bounds on the individual transfer functions as

described above� For example� assume that ���K� and ���K� are two functions

of K �which might represent ���K� � wPS and ���K� � wTT � and that we

want to achieve

j��j � � and j��j � � �	����

This is similar to� but not quite the same as the stacked requirement

#�

��

��
�
�

p
j��j� � j��j� � � �	����

Objectives �	���� and �	���� are very similar when either j��j or j��j is small�

but in the worst case when j��j � j��j� we get from �	���� that j��j � �	���

and j��j � �	���� That is� there is a possible �error� in each speci�cation

equal to at most a factor
p
	 � 
 dB� In general� with n stacked requirements

the resulting error is at most
p
n� This inaccuracy in the speci�cations is

something we are probably willing to sacri�ce in the interests of mathematical

convenience� In any case� the speci�cations are in general rather rough� and

are eectively knobs for the engineer to select and adjust until a satisfactory

design is reached�

After selecting the form of N and the weights� the H� optimal controller

is obtained by solving the problem
min
K

kN�K�k� �	����

where K is a stabilizing controller� Let �� � minK kN�K�k� denote the

optimal H� norm� An important property of H��optimal controllers is that

they yield a "at frequency response� that is� #��N�j��� � �� at all frequencies�

The practical implication is that� except for at most a factor
p
n� the transfer

functions resulting from a solution to �	���� will be close to �� times the

bounds selected by the designer� This gives the designer a mechanism for

directly shaping the magnitudes of #��S�� #��T �� #��KS�� and so on� A good

tutorial introduction to H�control is given by Kwakernaak ����
��

Example ���� H� mixed sensitivity design for the disturbance process�

Consider again the plant in �	�

�� and consider an H� mixed sensitivity S�KS

design in which

N �

wPS

wuKS
�

���	
�

It was stated earlier that appropriate scaling has been performed so that the inputs

should be about � or less in magnitude� and we therefore select a simple input weight

wu � �� The performance weight is chosen� in the form of �	����� as

wP��s� �
s�M � ��B

s� ��BA

� M � ���� ��B � �
� A � �
�� ���	��
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A value of A � 
 would ask for integral action in the controller� but to get a stable

weight and to prevent numerical problems in the algorithm used to synthesize the

controller� we have moved the integrator slightly by using a small non�zero value

for A� This has no practical signi�cance in terms of control performance� The value

��B � �
 has been selected to achieve approximately the desired crossover frequency

�c of �
 rad�s� The H��problem is solved with the 
�toolbox in MATLAB using the

commands in table 	�� �see Section ��� for more details��

Table ���� MATLAB program to synthesize an H� controller�

� Uses the Mu�toolbox

G�nd
sys���conv���� ���conv���	�� �����	�� �����
���� �Plant is G	

M��	�� wb���� A��	e��� Wp � nd
sys����M wb�� �� wbA��� Wu � �� � Weights	

�
� Generalized plant P is found with function sysic�

�
systemnames � �G Wp Wu��

inputvar � �� r���� u������

outputvar � ��Wp� Wu� r�G���

input to G � ��u���

input to Wp � ��r�G���

input to Wu � ��u���

sysoutname � �P��

cleanupsysic � �yes��

sysic�

�
� Find H�infinity optimal controller�

�
nmeas��� nu��� gmn��	�� gmx�
�� tol��	����

�khinf�ghinf�gopt� � hinfsyn�P�nmeas�nu�gmn�gmx�tol��
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Figure ���	� Inverse of performance weight �dashed line� and resulting sensitivity

function �solid line� for two H� designs �� and �� for the disturbance process�

For this problem� we achieved an optimal H� norm of ����� so the weighted

sensitivity requirements are not quite satis�ed �see design � in Figure 	�	���
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Figure ���
� Closed�loop step responses for two alternative H� designs �� and ��

for the disturbance process�

Nevertheless� the design seems good with MS � ���
� MT � ��
� GM� 	�
��

PM� ����� and �c � ����� and the tracking response is very good as shown by

curve y� in Figure 	�	� �a�� The design is actually very similar to the loop�shaping

design for references� K�� which was an inverse�based controller�

However� we see from curve y� in Figure 	�	� �b� that the disturbance response

is very sluggish� If disturbance rejection is the main concern� then from our earlier

discussion in Section 	���� this motivates the need for a performance weight that

speci�es higher gains at low frequencies� We therefore try

wP��s� �
�s�M��� � ��B�
�

�s� ��BA
�����
� M � ���� ��B � �
� A � �
� ���	��

The inverse of this weight is shown in Figure 	�	�� and is seen from the dashed line

to cross � in magnitude at about the same frequency as weight wP�� but it speci�es

tighter control at lower frequencies� With the weight wP�� we get a design with an

optimal H� norm of ����� yielding MS � ����� MT � ����� GM � ����� PM � �����

and �c � ������ The design is actually very similar to the loop�shaping design

for disturbances� K�� The disturbance response is very good� whereas the tracking

response has a somewhat high overshoot� see curve y� in Figure 	�	� �a��

In conclusion� design � is best for reference tracking whereas design � is best for

disturbance rejection� Two get a design with both good tracking and good disturbance

rejection we need a two degrees�of�freedom controller�

��
 Conclusion

The main purpose of this chapter has been to present the classical ideas and

techniques of feedback control� We have concentrated on SISO systems so

that insights into the necessary design trade�os� and the design approaches
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available� can be properly developed before MIMO systems are considered� We

introduced the H��problem based on weighted sensitivity� for which typical

performance weights are given in �	��
� and �	�����

�	 MULTIVARIABLE FEEDBACK CONTROL



�
INTRODUCTION TO

MULTIVARIABLE CONTROL

In this chapter� we introduce the reader to multi�input multi�output �MIMO�

systems� We discuss the singular value decomposition �SVD�� multivariable control�

and multivariable RHP�zeros� The need for a careful analysis of the e�ect of

uncertainty in MIMO systems is motivated by two examples� Finally we describe a

general control con�guration that can be used to formulate control problems� In this

chapter we introduce many important topics which are considered in greater detail

later in the book� It is hoped that the chapter should be accessible also to readers

with only a course on classical SISO control as their basis�

��� Introduction

We consider a multi�input multi�output �MIMO� plant with m inputs and l

outputs� Thus� the basic transfer function model is y�s� � G�s�u�s�� where y

is an l� � vector� u is an m� � vector and G�s� is an l�m transfer function

matrix�

If we make a change in the �rst input� u�� then this will generally a	ect

all the outputs� y�� y�� � � � � yl� that is� there is interaction between the inputs

and outputs� A non�interacting plant would result if u� only a	ects y�� u�

only a	ects y� and so on�

The main di	erence between a scalar �SISO� system and a MIMO system

is the presence of directions in the latter� Directions are relevant for vectors

and matrices� but not for scalars� However� despite the complicating factor

of directions� most of the ideas and techniques presented in the previous

chapter on SISO systems may be extended to MIMO systems� The singular

value decomposition �SVD� provides a useful way of quantifying multivariable

directionality� and we will see that most SISO results involving the absolute

value �magnitude� may be generalized to multivariable systems by considering

the maximum singular value� An exception to this is Bode
s stability condition
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which has no generalization in terms of singular values� This is related to the

fact that it is di�cult to �nd a good measure of phase for MIMO transfer

functions�

The chapter is organized as follows� We start by presenting some rules

for determining multivariable transfer functions� Although most of the

formulae for scalar systems apply� we must exercise some care since matrix

multiplication is not commutative� that is� in general GK �� KG� Then we

introduce the singular value decomposition and show how it may be used to

study directions in multivariable systems� We also give a brief introduction to

multivariable control and decoupling� We then consider a simple plant with a

multivariable RHP�zero and show how the e	ect of this zero may be shifted

from one output channel to another� After this we discuss robustness� and

study two example plants� each ���� which demonstrate that the simple gain

and phase margins used for SISO systems do not generalize easily to MIMO

systems� Finally� we consider a general control problem formulation for use

later in the book�

At this point� you may �nd it useful to browse through Appendix A where

some important mathematical tools are described� Exercises to test your

understanding of this mathematics are given at the end of this chapter�

��� Transfer functions for MIMO systems

� G�

� G�

�

G

u z

�a� Cascade system

� c ��
�

G�

�q

�G�

�

u yv
z

�b� Positive feedback system

Figure ���
 Block diagrams for the cascade rule and the feedback rule�

The following three rules are useful when evaluating transfer functions for

MIMO systems

Cascade rule� For the cascade �series� interconnection of G� and G� in

Figure ��� �a�� the overall transfer function matrix is G � G�G��

Remark� The order of the transfer function matrices in G � G�G� �from left to

right� is the reverse of the order in which they appear in the block diagram of

Figure �� �a� �from left to right�� This has led some authors to use block diagrams

in which the inputs enter at the right hand side� However� in this case the order of

the transfer function blocks in a feedback path will be reversed compared with their

order in the formula� so no fundamental bene�t is obtained�
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Feedback rule� With reference to the positive feedback system in

Figure ��� �b� we have v � �I � L���u where L � G�G� is the transfer

function around the loop�

Push�through rule� For matrices of appropriate dimensions

G��I �G�G��
�� � �I �G�G��
��G� ����

Proof� Equation ���� is veri�ed by pre�multiplying both sides by �I � G�G�� and

post�multiplying both sides by �I �G�G��� �

Exercise ��� Derive the cascade and feedback rules�

The cascade and feedback rules can be combined into the following MIMO

rule for evaluating closed�loop transfer functions from block diagrams�

MIMO Rule� Start from the output and write down the blocks as you

meet them when moving backwards �against the signal �ow�� taking the

most direct path towards the input� If you exit from a feedback loop then

include a term �I�L��� for positive feedback �or �I�L��� for negative

feedback� where L is the transfer function around that loop �evaluated

against the signal �ow starting at the point of exit from the loop��

Care should be taken when applying this rule to systems with nested loops�

For such systems it is probably safer to write down the signal equations and

eliminate internal variables to get the transfer function of interest� The rule

is best understood by considering an example�

e

e q

���

�

�� ���

�

�

�

�

�

z

P��

P��
P��

KP��

w

Figure ���
 Block diagram corresponding to ������

Example ��� The transfer function for the block diagram in Figure ��� is given

by

z � �P�� � P��K�I � P��K�
��P���w �����
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To derive this from the MIMO rule above we start at the output z and move

backwards towards w� There are two branches� one of which gives the term P��

directly� In the other branch we move backwards and meet P�� and then K� We then

exit from a feedback loop and get a term �I�L��� �positive feedback� with L � P��K�

and �nally we meet P���

Exercise ��� Use the MIMO rule to derive the transfer functions from u to y and

from u to z in Figure ��	�b�� Use the push
through rule to rewrite the two transfer

functions�

Exercise ��� Use the MIMO rule to show that ���	�� corresponds to the negative

feedback system in Figure ����

Negative feedback control systems

� e ��
�

K � e� �� � G � e� �� �q

�

r yu

d� d�

Figure ���
 Conventional negative feedback control system�

For the negative feedback system in Figure �� we de�ne L to be the loop

transfer function as seen when breaking the loop at the output of the plant�

Thus� for the case where the loop consists of a plant G and a feedback

controller K we have

L � GK ���

The sensitivity and complementary sensitivity are then de�ned as

S
�
� �I � L���� T

�
� I � S � L�I � L��� ����

In Figure �� T is the transfer function from r to y� and S is the transfer

function from d� to y� also see equations ������ to ������ which apply to MIMO

systems�

S and T are sometimes called the output sensitivity and output

complementary sensitivity� respectively� and to make this explicit one may

use the notation LO
�
� L � GK� SO

�
� S and TO

�
� T � This is to distinguish

them from the corresponding transfer functions evaluated at the input to the

plant�

We de�ne LI to be the loop transfer function as seen when breaking the

loop at the input to the plant with negative feedback assumed� In Figure �

LI � KG ����
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The input sensitivity and input complementary sensitivity functions are then

de�ned as

SI � �I � LI�
��� TI � I � SI � LI�I � LI�
�� ����

In Figure �� �TI is the transfer function from d� to u� Of course� for SISO

systems LI � L� SI � S� and TI � T �

Exercise ��� In Figure ���� what transfer function does SI represent Evaluate

the transfer functions from d� and d� to r � y�

The following relationships are useful�

�I � L��� � L�I � L��� � S � T � I ����

G�I �KG��� � �I �GK���G ����

GK�I �GK��� � G�I �KG���K � �I �GK���GK ����

T � L�I � L��� � �I � �L������ �����

Note that the matrices G and K in ���������� need not be square whereas

L � GK is square� ���� follows trivially by factorizing out the term �I�L���

from the right� ���� says that GSI � SG and follows from the push�through

rule� ���� also follows from the push�through rule� ����� can be derived from

the identity M��
� M��
� � �M�M��

���

Similar relationships� but with G andK interchanged� apply for the transfer

functions evaluated at the plant input� To assist in remembering ����������

note that G comes �rst �because the transfer function is evaluated at the

output� and then G and K alternate in sequence� A given transfer matrix

never occurs twice in sequence� For example� the closed�loop transfer function

G�I �GK��� does not exist �unless G is repeated in the block diagram� but

then these G
s would actually represent two di	erent physical entities��

Remark � The above identities are clearly useful when deriving transfer functions

analytically� but they are also useful for numerical calculations involving state�space

realizations� e�g� L�s� � C�sI � A���B � D� For example� assume we have been

given a state�space realization for L � GK with n states �so A is a n � n matrix�

and we want to �nd that of T � Then we can �rst form S � �I �L��� with n states�

and then multiply it by L to obtain T � SL with �n states� However� a minimal

realization of T has only n states� This may be obtained numerically using model

reduction� but it is preferable to �nd it directly using T � I � S� see ������

Remark � Note also that the right identity in ���	� can only be used to compute

the state�space realization of T if that of L�� exists� so L must semi�proper with

D �� 	 �which is rarely the case in practice�� On the other hand� since L is square�

we can always compute the frequency response of L�j���� �except at frequencies

where L�s� has j��axis poles�� and then obtain T �j�� from ���	��

�� MULTIVARIABLE FEEDBACK CONTROL

In Appendix A�� we present some factorizations of the sensitivity function

which will be useful in later applications� For example� �A���� relates the

sensitivity of a perturbed plant� S� � �I � G�K���� to that of the nominal

plant� S � �I �GK���� We have

S� � S�I �EOT �
��� EO

�
� �G� �G�G�� �����

where EO is an output multiplicative perturbation representing the di	erence

between G and G�� and T is the nominal complementary sensitivity function�

��� Multivariable frequency response analysis

The transfer function G�s� is a function of the Laplace variable s and can be

used to represent a dynamic system� However� if we �x s � s� then we may

view G�s�� simply as a complex matrix� which can be analyzed using standard

tools in matrix algebra� In particular� the choice s� � j� is of interest since

G�j�� represents the response to a sinusoidal signal of frequency ��

����� Obtaining the frequency response from G�s�

�� y

G�s�

d

Figure ���
 System G�s� with input d and output y

The frequency domain is ideal for studying directions in multivariable systems

at any given frequency� Consider the system G�s� in Figure �� with input d�s�

and output y�s��

y�s� � G�s�d�s� �����

�We here denote the input by d rather than by u to avoid confusion with

the matrix U used below in the singular value decomposition�� In Section ���

we considered the sinusoidal response of scalar systems� These results may

be directly generalized to multivariable systems by considering the elements

gij�j�� of the matrix G�j��� We have

� gij�j�� represents the sinusoidal response from input j to output i�

To be more speci�c� apply to input channel j a scalar sinusoidal signal given

by

dj�t� � dj� sin��t� �j� ����
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This input signal is persistent� that is� it has been applied since t � ��� Then

the corresponding persistent output signal in channel i is also a sinusoid with

the same frequency

yi�t� � yi� sin��t� �i� �����

where the ampli�cation �gain� and phase shift may be obtained from the

complex number gij�j�� as follows

yio
djo

� jgij�j��j� �i � �j � � gij�j�� �����

In phasor notation� see ����� and ������ we may compactly represent the

sinusoidal time response described in ���������� by

yi��� � gij�j��dj��� �����

where

dj��� � djoe
j�j � yi��� � yioe
j�i �����

Here the use of � �and not j�� as the argument of dj��� and yi��� implies that

these are complex numbers� representing at each frequency � the magnitude

and phase of the sinusoidal signals in ���� and ������

The overall response to simultaneous input signals of the same frequency

in several input channels is� by the superposition principle for linear systems�

equal to the sum of the individual responses� and we have from �����

yi��� � gi��j��d���� � gi��j��d���� � � � � �
X

j

gij�j��dj��� �����

or in matrix form

y��� � G�j��d��� �����

where

d��� �
����������
d����

d����
���

dj���
���

dm���
����������

and y��� �
����������
y����

y����
���

yi���
���

yl���
����������

�����

represent the vectors of sinusoidal input and output signals�

Example ��� Consider a ��� multivariable system where we simultaneously apply

sinusoidal signals of the same frequency � to the two input channels�

d�t� �
�
d��t�

d��t�
�
�

�
d�� sin��t� ���

d�� sin��t� ���
�

�����
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The corresponding output signal is

y�t� �
�
y��t�

y��t�
�
�

�
y�� sin��t� ���

y�� sin��t� ���
�

������

which can be computed by multiplying the complex matrix G�j�� with the complex

vector d����
y��� � G�j��d���� y��� �

�
y��e
j��

y��e
j��

�
� d��� �

�
d��e
j��

d��e
j��

�
������

����� Directions in multivariable systems

For a SISO system y � Gd the gain at a given frequency is simply

jy���j
jd��j �

jG�j��d���j

jd���j �
y�

d�
� jG�j��j

The gain depends of the frequency �� but since the system is linear it is

independent of the input magnitude jd���j� Things are not quite as simple

for MIMO systems where the input and output signals are both vectors� and

we need to �sum up� the magnitudes of the elements in the vector by use of

some norm� as discussed in Appendix A����� If we select the vector ��norm�

the usual measure of length� then at a given frequency � the magnitude of

the vector input signal is

kd���k� �
sX

j

jdj���j� �
q

d��� � d��� � � � � �����

and the magnitude of the vector output signal is

ky���k� �
sX

i

jyi���j� �
q

y��� � y��� � � � � �����

The gain of the system G�s� for a particular input signal d��� is then given

by the ratio

ky���k�

kd���k� �
kG�j��d���k�

kd���k� �
p
y��� � y��� � � � �p

d��� � d��� � � � �

�����

Again the gain depends on the frequency � and again it is independent of the

input magnitude kd���k�� However� for a MIMO system there are additional

degrees of freedom and the gain depends also on the direction of the input d�
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Example ��� For a system with two inputs� d �

h
d��
d��

i
� the gain is in general

di�erent for the following �ve inputs�

d� �
�

	

�
� d� �

�
	


�
� d� �

�
	��	�

	��	�
�

� d� �
�
	��	�

�	��	�
�

� d� �
�
	��
�	��

�

�which all have the same magnitude kdk� �  but are in di�erent directions�� For

example� for the �� � system

G� �
�
� �

� �
�

������

�a constant matrix� we get for the �ve inputs

y� �
�
�
�

�
� y� �

�
�
�

�
� y� �

�
����

����
�

� y� �
�
	��	�

	��	�
�

� y� �
�
�	��
	��

�

and the �
norm of these �ve outputs �i�e� the gain for the �ve inputs� are

ky�k� � ����� ky�k� � ����� ky�k� � ���	� ky�k� � �		� ky�k� � 	���

This dependency of the gain on the input direction is illustrated graphically in

Figure ��� where we we have used the ratio d���d�� as an independent variable to

represent the input direction� We see that� depending on the ratio d���d��� the gain

varies between 	��� and �����

The maximum value of the gain in ����� as the direction of the input is

varied is the maximum singular value of G�

���G� � max
d���

kGdk�
kdk� � max

kdk���
kGdk� �����

whereas the minimum gain is the minimum singular value of G�

��G� � min
d���

kGdk�
kdk� � min

kdk���
kGdk� �����

We will discuss this in detail below� The last identities in ����� and �����

follow because the gain is independent of the input magnitude for a linear

system�

����� Eigenvalues are a poor measure of gain

Before discussing the singular values we want to demonstrate that the

magnitudes of the eigenvalues of a transfer function matrix� e�g� j�i�G�j��j�

do not provide a useful means of generalizing the SISO gain� jG�j��j� First of

all� eigenvalues can only be computed for square systems� and even then they

can be very misleading� To see this consider the system y � Gd with

G �
�
� ���

� �
�

����
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Figure ���
 Gain kG�dk��kdk� as a function of d���d�� for G� in �������

which has both eigenvalues �i equal to zero� However� to conclude from the

eigenvalues that the system gain is zero is clearly misleading� For example�

with an input vector d � �� ��T we get an output vector y � ���� ��T �

The �problem� is that the eigenvalues measure the gain for the special case

when the inputs and the outputs are in the same direction� namely in the

direction of the eigenvectors� To see this let ti be an eigenvector of G and

consider an input d � ti� Then the output is y � Gti � �iti where �i is the

corresponding eigenvalue� and so j�ij measures the gain in the direction ti�

This may be useful for stability analysis� but not for performance�

To �nd useful generalizations of jGj for the case when G is a matrix� we

need the concept of a matrix norm� denoted kGk� Two important properties

which must be satis�ed for a matrix norm are the triangle inequality

kG� �G�k � kG�k� kG�k

and the multiplicative property

kG�G�k � kG�k � kG�k

�see Appendix A�� for more details�� As we may expect� the magnitude of the

largest eigenvalue� ��G�
�
� j�max�G�j �the spectral radius�� does not satisfy

the properties of a matrix norm� also see �A�����

In Appendix A���� we introduce several matrix norms� such as the Frobenius

norm kGkF � the sum norm kGksum� the maximum column sum kGki�� the

maximum row sum kGki�� and the maximum singular value kGki� � ���G�

�the latter three norms are induced by a vector norm� e�g� see ������ this is

the reason for the subscript i�� We will use all of these norms in this book�

each depending on the situation� However� in this chapter we will mainly use

the induced ��norm� ���G�� Notice that ���G� � ��� for the matrix in �����

Exercise ��� Compute the spectral radius and the �ve matrix norms mentioned

above for the matrices in ������ and �������
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����� Singular value decomposition

The singular value decomposition �SVD� is de�ned in Appendix A�� Here

we are interested in its physical interpretation when applied to the frequency

response of a MIMO system G�s� with m inputs and l outputs�

Consider a �xed frequency � where G�j�� is a constant l � m complex

matrix� and denote G�j�� by G for simplicity� Any matrix G may be

decomposed into its singular value decomposition� and we write

G � U�V H ����

where

� is an l �m matrix with k � minfl�mg non�negative singular values� �i�

arranged in descending order along its main diagonal� the other entries

are zero� The singular values are the square roots of the eigenvalues of

GHG� where GH is the complex conjugate transpose of G�

�i�G� �
q

�i�GHG� ����

U is an l � l unitary matrix of output singular vectors� ui�

V is an m�m unitary matrix of input singular vectors� vi�

This is illustrated by the SVD of a real �� � matrix which can be written

G �
�
cos 	� � sin 	�

sin 	� cos 	�
�

	 
z �
U

�
�� �

� ��
�

	 
z �
�

�
cos 	� � sin 	�

� sin 	� � cos 	�
�T

	 
z �

V T

���

where the two singular values are given in �A���� From ��� we see that the

matrices U and V involve rotations and that their columns are orthonormal�

The singular values are sometimes called the principal values or principal

gains� and the associated directions are called principal directions�

Caution� It is standard notation to use the symbol U to denote the matrix of

output singular vectors� This is unfortunate as it is also standard notation to use

u �lower case� to represent the input signal� The reader should be careful not to

confuse these two� When we refer to ui below� then this is the output singular vector

formed from the i�th column of U �

Input and output directions� The column vectors of U represent the

output directions of the plant� They are orthogonal and of unit length

�orthonormal�� that is
kuik� �

p
jui�j� � jui�j����� juilj� � � ����
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uHi ui � �� uHi uj � �� i �� j ����

Likewise� the column vectors of V are orthogonal and of unit length� and

represent the input directions� These input and output directions are related

through the singular values� To see this� note that since V is unitary we have

V HV � I � so ���� may be written as GV � U�� which for column i becomes

Gvi � �iui ����

where vi and ui are vectors� whereas �i is a scalar� That is� if we consider an

input in the direction vi� then the output is in the direction ui� Furthermore�

since kvik� � � and kuik� � � we see that the i
th singular value �i gives

directly the gain of the matrix G in this direction� In other words

�i�G� � kGvik� � kGvik�

kvik� ����

Some advantages of the SVD over the eigenvalue decomposition for analyzing

gains and directionality of multivariable plants are�

�� The singular values give better information about the gains of the plant�

�� The plant directions obtained from the SVD are orthogonal�

� The SVD also applies directly to non�square plants�

Maximum and minimum singular value� As already stated� it can be

shown that the largest gain for any input direction is equal to the maximum

singular value

max
d���

kGdk�
kdk� �

kGv�k�

kv�k� � ���G�
�
� ���G� ����

and that the smallest gain for any input direction is equal to minimum singular

value

min
d���

kGdk�
kdk� �

kGvkk�

kvkk� � �k�G�
�
� ��G� ����

where k � minfl�mg� Thus� for any vector d we have that

��G� � kGdk�
kdk� � ���G� �����

De�ne u� � �u� v� � �v� uk � u and vk � v� Then it follows that

G�v � ���u� Gv � � u �����

The vector �v corresponds to the input direction with largest ampli�cation� and

�u is the corresponding output direction in which the inputs are most e	ective�

The direction involving �v and �u is sometimes referred to as the �strongest��

�high�gain� or �most important� direction� The next most important direction

is associated with v� and u�� and so on �see Appendix A���� until the �least

important�� �weak� or �low�gain� direction which is associated with v and u�
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Example ��� Consider again the system ������ in Example ����

G� �
�
� �

� �
�

������

The singular value decomposition of G� is

G� �
�
	���� 	���	

	���	 �	����
�

	 
z �
U

�
����� 	

	 	����
�

	 
z �
�

�
	���� �	��	�

	��	� 	����
�H

	 
z �
VH

The largest gain of ����� is for an input in the direction �v �

h
�����

�����
i

� and the

smallest gain of ����� is for an input in the direction v �
h
������

�����
i

� This con�rms

the �ndings in Example ����

Since in ����� both inputs a	ect both outputs� we say that the system is

interactive� This follows from the relatively large o	�diagonal elements in G��

Furthermore� the system is ill�conditioned� that is� some combinations of the

inputs have a strong e	ect on the outputs� whereas other combinations have a

weak e	ect on the outputs� This may be quanti�ed by the condition number�

the ratio between the gains in the strong and weak directions� which for the

system in ����� is ���
����� � �����

Example ��� Shopping cart� Consider a shopping cart �supermarket trolley�

with �xed wheels which we may want to move in three directions� forwards� sideways

and upwards� This is a simple illustrative example where we can easily �gure out the

principal directions from experience� The strongest direction� corresponding to the

largest singular value� will clearly be in the forwards direction� The next direction�

corresponding to the second singular value� will be sideways� Finally� the most

�di�cult� or �weak� direction� corresponding to the smallest singular value� will

be upwards �lifting up the cart��

For the shopping cart the gain depends strongly on the input direction� i�e��

the plant is ill
conditioned� Control of ill
conditioned plants is sometimes di�cult�

and the control problem associated with the shopping cart can be described as

follows� Assume we want to push the shopping cart sideways �maybe we are blocking

someone�� This is rather di�cult �the plant has low gain in this direction� so a

strong force is needed� However� if there is any uncertainty in our knowledge about

the direction the cart is pointing� then some of our applied force will be directed

forwards �where the plant gain is large� and the cart will suddenly move forward

with an undesired large speed� We thus see that the control of an ill
conditioned

plant may be especially di�cult if there is input uncertainty which can cause the

input signal to �spread� from one input direction to another� We will discuss this in

more detail later�
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Example ��	 Distillation process� Consider the following steady
state model of

a distillation column

G �
�
���� �����

	��� �	���
�

������

The variables have been scaled as discussed in Section 	��� Thus� since the elements

are much larger than  in magnitude this suggests that there will be no problems with

input constraints� However� this is somewhat misleading as the gain in the low
gain

direction �corresponding to the smallest singular value� is actually only just above �

To see this consider the SVD of G�

G �
�
	���� �	���

	��� 	����
�

	 
z �
U

�
���� 	

	 ���
�

	 
z �
�

�
	��	� �	��	�

�	��	� �	��	�
�H

	 
z �
VH

������

From the �rst input singular vector� v� � � 	��	� �	��	� �� we see that the gain is

���� when we increase one inputs and decrease the other input by a similar amount�

On the other hand� from the second input singular vector� v� � ��	��	� �	��	� �T �

we see that if we increase both inputs by the same amount then the gain is only

���� The reason for this is that the plant is such that the two inputs counteract each

other� Thus� the distillation process is ill
conditioned� at least at steady
state� and

the condition number is �������� � ���� The physics of this example is discussed

in more detail below� and later in this chapter we will consider a simple controller

design �see Motivating robustness example No� � in Section �������

Example ��
 Physics of Distillation process� The model in ������ represents

two
point �dual� composition control of a distillation column� where the top

composition is to be controlled at yD � 	��� �output y�� and the bottom composition

at xB � 	�	 �output y��� using re�ux L �input u�� and boilup V �input u�� as

manipulated inputs �see Figure 	��� on page ����� Note that we have here returned

to the convention of using u� and u� to denote the manipulated inputs� the output

singular vectors will be denoted by �u and u�

The � 
element of the gain matrix G is ����� Thus an increase in u� by  �with u�

constant� yields a large steady
state change in y� of ����� that is� the outputs are very

sensitive to changes in u�� Similarly� an increase in u� by  �with u� constant� yields

y� � ������ Again� this is a very large change� but in the opposite direction of that

for the increase in u�� We therefore see that changes in u� and u� counteract each

other� and if we increase u� and u� simultaneously by � then the overall steady
state

change in y� is only ����� ���� � ���

Physically� the reason for this small change is that the compositions in the

distillation column are only weakly dependent on changes in the internal �ows �i�e��

simultaneous changes in the internal �ows L and V �� This can also be seen from the

smallest singular value� ��G� � ���� which is obtained for inputs in the direction

v �
h
������

������
i

� From the output singular vector u �
h
�����	

���
�
i

we see that the e�ect

is to move the outputs in di�erent directions� that is� to change y� � y�� Therefore�

it takes a large control action to move the compositions in di�erent directions� that

is� to make both products purer simultaneously� This makes sense from a physical

point of view�
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On the other hand� the distillation column is very sensitive to changes in external

�ows which make L and V more di�erent �i�e�� increase u� � u� � L � V �� This

can be seen from the input singular vector �v �
h
�����

������
i

associated with the largest

singular value� and is a general property of distillation columns where both products

are of high purity� The reason for this is that the external distillate �ow �which varies

as V � L� has to be about equal to the amount of light component in the feed� and

even a small imbalance leads to large changes in the product compositions�

For dynamic systems the singular values and their associated directions

vary with frequency� and for control purposes it is usually the frequency

range corresponding to the closed�loop bandwidth which is of main interest�

The singular values are usually plotted as a function of frequency in a Bode

magnitude plot with a log�scale for frequency and magnitude� Typical plots

are shown in Figure ���
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Figure ���
 Typical plots of singular values

Nonsquare plants

The SVD is also useful for nonsquare plants� For example� consider a plant

with � inputs and  outputs� In this case the third output singular vector� u��

tells us in which output direction the plant cannot be controlled� Similarly� for

a plant with more inputs than outputs� the additional input singular vectors

tell us in which directions the input will have no e	ect�

Exercise ��	 For a system with m inputs and  output� what is the interpretation

of the singular values and the associated input directions �V � What is U in this

case �Answer� v�� � � � � vm yield the input directions with no e�ect on the output�

U � ��
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Use of the minimum singular value of the plant

The minimum singular value of the plant� ��G�j��� evaluated as a function

of frequency� is a useful measure for evaluating the feasibility of achieving

acceptable control� If the inputs and outputs have been scaled as outlined

in Section ���� then we can� with an manipulated input of unit magnitude

�measured with the ��norm�� achieve an output of magnitude of at least ��G�

in any output direction� We generally want ��G� as large as possible� at at least

to avoid input saturation we want ��G� larger than about � at all frequencies

where control is required�

Remark� The relationship between ��G� an input saturation is discussed in

Section ���� In Section 	�� on selection of controlled outputs it is shown that it may

be desirable to have ��G�j�� large even when input saturation is not a concern�

The minimum singular value of the plant to analyze achievable performance was

discussed by Morari ����� and Yu and Luyben ����� call ��G�j��� the �Morari

resiliency index��

����� Singular values for performance

So far we have used the SVD primarily to gain insight into the directionality

of MIMO systems� But the maximum singular value is also very useful in

terms of frequency�domain performance and robustness� We here consider

performance�

For a one degree�of�freedom feedback control system the closed�loop

response from references� r� to control errors� e � y � r� is e � �Sr� We have

previously argued for SISO systems that jS�j��j evaluated as a function of

frequency gives useful information about the e	ectiveness of feedback control�

because for sinusoids je���j
jr���j � jS�j��j� For MIMO systems a useful

generalization results if we consider the ratio ke���k�
kr���k� where k � k� is

the vector ��norm� As explained above� this ratio depends on the direction of

r��� and we have from �����

��S�j��� � ke���k�

kr���k� � ���S�j��� �����

In terms of performance� it is reasonable to require that the ratio

ke���k�
kr���k� remains small for any direction of r���� including the �worst�

case� direction which gives the ratio as ���S�j���� Let at each frequency

�
jwP �j��j represent the maximum allowed magnitude of kek�
krk�� This

results in the following performance requirement�

���S�j��� � �
jwP �j��j� 	� 
 ���wPS� � �� 	�


 kwPSk� � � �����
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where the H� norm �see page ��� is de�ned as the peak of the maximum

singular value of the frequency response

kM�s�k� �
� max
�

���M�j��� �����

By using the H� norm to de�ne performance most of the ideas presented in

Chapter � can be generalized to MIMO systems� Typical performance weights

are given in Section ������ which should be studied carefully�

The singular values of S�j�� may be plotted as a function of frequency

as illustrated in Figure ��� �a�� Typically� they are small at low frequencies

where feedback is e	ective� and they approach � at high frequencies because

any real system is strictly proper� The maximum singular value� ���S�j����

usually has a peak larger than � at crossover frequencies� This peak is

undesirable� but it is unavoidable for real systems�

As for SISO systems we de�ne the bandwidth as the frequency up to

which feedback is e	ective� For MIMO systems the bandwidth will depend

on directions� and we have a bandwidth region between a lower frequency

where the maximum singular value� ���S�� reaches ��� �the low�gain or worst�

case direction�� and a higher frequency where the minimum singular value�

��S�� reaches ��� �the high�gain or best direction�� If we want to associate a

single bandwidth frequency for a multivariable system� then we consider the

worst�case �low�gain� direction� and de�ne

� Bandwidth� �B � Frequency where ���S� crosses �p
�
� ��� from below�

It is then understood that the bandwidth is at least �B for any direction of

the input �reference or disturbance� signal� Since S � �I�L���� �A���� yields

��L�� � � �
���S�
� ��L� � � �����

Thus at frequencies where feedback is e	ective �namely where ��L� � �� we

have ���S� � �
��L��� and at the bandwidth frequency �where �
���S�j�B�� �p
� � ����� we have that ��L�j�B�� is between ���� and ����� Thus� the

bandwidth is approximately where ��L�j��� crosses �� Finally� at higher

frequencies where for any real system ��L� �and ���L�� is small we have that

���S� � ��

��� Control of multivariable plants

Consider the simple feedback system in Figure ��� A conceptually simple

approach to multivariable control is given by a two�step procedure in which

we �rst design a �compensator� to deal with the interactions in G� and then
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Figure ���
 One degree�of�freedom feedback control con�guration�

design a diagonal controller using methods similar to those for SISO systems�

This approach is discussed below�

The most common approach is to design a pre�compensator� W��s�� which

counteracts the interactions in the plant and results in a �new� shaped plant�

Gs�s� � G�s�W��s� �����

which is more diagonal and easier to control than the original plant G�s��

After �nding a suitable W��s� we can design a diagonal controller Ks�s� for

the shaped plant� The overall controller is then�

K�s� �W��s�Ks�s� �����

In many cases e	ective compensators may be derived on physical grounds and

may include nonlinear elements such as ratios�

Some design approaches in this spirit are the Nyquist Array technique of

Rosenbrock ������ and the characteristic loci technique of MacFarlane and

Kouvaritakis ������� In the latter� W� is usually chosen as a constant matrix

obtained by inverting a real approximation of G�j�� at a given frequency�

Remark� The H� loop�shaping design procedure described in detail in Section ���

is similar in that a precompensator is �rst chosen to yield a shaped plant�Gs � GW��

with desirable properties� and then a controller Ks�s� is designed� The main

di�erence is that Ks�s� is a full multivariable controller� and secondly it is designed

based on optimization �to optimize H� robust stability��
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����� Decoupling

Decoupling results when the compensator is chosen such that Gs in ����� is

diagonal at a selected frequency� The following di	erent cases are possible�

�� Dynamic decoupling	 Gs�s� is diagonal �at all frequencies�� For example�

with Gs�s� � I and a square plant� we get W� � G���s� �disregarding the

possible problems involved in realizing G���s��� In this case a reasonable

overall controller �corresponding to Ks�s� � l�s�I with e�g� l�s� � k
s�

might be given by

K�s� � Kinv�s�
�
� l�s�G���s� �����

We will later refer to ����� as an inverse�based controller� It results

in a decoupled nominal system with identical loops� i�e� L�s� � l�s�I �

S�s� � �

��l	s
 I and T �s� � l	s


��l	s
I �

In some cases we may want to keep the diagonal elements in the shaped

plant unchanged by selecting W� � G��Gdiag � In other cases we may want

the diagonal elements in W� to be �� this may be obtained by selecting

W� � G����G���diag����

�� Steady�state decoupling	 Gs��� is diagonal� This may be obtained by

selecting a constant precompensator W� � G����� �and for a non�square

plant we may use the pseudo�inverse provided G��� has full row �output�

rank��

� Approximate decoupling at frequency wo	 Gs�j�o� is as diagonal as possible�

This is usually obtained by choosing a constant precompensatorW� � G��
o

where Go is a real approximation of G�j�o�� Go may be obtained� for

example� using the align algorithm of Kouvaritakis ������� The bandwidth

frequency is a good selection for �o because the e	ect on performance of

reducing interaction is normally greatest at this frequency�

The idea of using a decoupling controller is appealing� but there are several

di�culties�

�� We cannot in general choose Gs freely� For example�W��s� must not cancel

any RHP�zeros in G�s��

�� If the plant has RHP�zeros then the requirement of decoupling generally

introduces extra RHP�zeros in the closed�loop system� see Section ������

� As we might expect� decoupling may be very sensitive to modelling

errors and uncertainties� This is illustrated in Section ���� and is further

discussed in Section �����

�� The requirement of decoupling may not be desirable for disturbance

rejection� The reasons are similar to those given for SISO systems in

Section ������ and are discussed further below� see ������
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Even though decoupling controllers may not be desirable in practice�

they are of interest from a theoretical point of view� They also yield

insights into the limitations imposed by the multivariable interactions on

achievable performance� One popular design method� which essentially yields

a decoupling controller is the internal model control �IMC� approach �Morari

and Za�riou� ������

Another common strategy� which avoids most of the problems just

mentioned� is to use partial �one�way� decoupling where Gs�s� in ����� is

upper or lower triangular�

����� Pre� and post�compensators and the

SVD�controller

The above pre�compensator approach may be extended by introducing a post�

compensator W��s�� as shown in Figure ��� One then designs a diagonal

� � � �W� Ks W�

K

Figure ��	
 Pre� and post�compensator� W� and W�� Ks is diagonal�

controller Ks for the shaped plant W�GW�� The overall controller is then

K�s� �W�KsW� �����

The SVD�controller is a special case of a pre� and post�compensator design�

Here W� � Vo and W� � UT
o � where Vo and Uo are obtained from a singular

value decomposition of Go � Uo�oV
T
o � where Go is a real approximation

of G�j�o� at a given frequency wo �often around the bandwidth�� SVD�

controllers are studied by Hung and MacFarlane ������� and by Hovd� Braatz

and Skogestad ������ who found that the SVD controller structure is optimal

in some cases� e�g� for plants consisting of symmetrically interconnected

subsystems�

In summary� the SVD�controller provides a useful class of controllers� By

by selecting Ks � l�s����o a decoupling design is achieved� and by selecting

a diagonal Ks with a low condition number ���Ks� small� we generally get a

robust controller �see Section ������
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����� Diagonal controller �decentralized control	

Another simple approach to multivariable controller design is to use a diagonal

or block�diagonal controller K�s�� This is often referred to as decentralized

control� Clearly� this works well if G�s� is close to diagonal� because then the

plant to be controlled is essentially a collection of independent sub�plants�

and each element in K�s� may be designed independently� However� if o	�

diagonal elements in G�s� are large� then the performance with decentralized

diagonal control may be poor because no attempt is made to counteract the

interactions�

����� What is the shape of the 
best� feedback

controller�

Consider the problem of disturbance rejection� The closed�loop disturbance

response is y � SGdd� Suppose we have scaled the system �see Section ����

such that at each frequency the disturbances are of magnitude �� kdjj� � ��

and our performance requirement is that kyk� � �� This is equivalent to

requiring ���SGd� � �� In many cases there is a trade�o	 between input use

and performance� such that the controller that minimizes the input magnitude

is one that yields all singular values of SGd equal to �� i�e�� �i�SGd� � ��	��

This corresponds to

SminGd � U� ����

where U��s� is an all�pass transfer function which at each frequency has all

its singular values equal to �� The subscript min refers to the use of the

smallest loop gain that satis�es the performance objective� For simplicity�

we assume that Gd is square so U��j�� is a unitary matrix� At frequencies

where feedback is e	ective we have S � �I � L��� � L��� and ���� yields

Lmin � GKmin � GdU
��
� � In conclusion� the controller and loop shape with

the minimum gain will often look like

Kmin � G��GdU� Lmin � GdU �����

where U � U��
� is some all�pass transfer function matrix� This provides a

generalization of jKminj � jG��Gdj which was derived in ������ for SISO

systems� and the conclusions following ������ on page �� therefore also apply

to MIMO systems� For example� we see that for disturbances entering at

the plant inputs� Gd � G� we get Kmin � U � so a simple constant unit

gain controller yields a good trade�o	 between output performance and input

usage� We also note with interest that it is generally not possible to select a

unitary matrix U such that Lmin � GdU is diagonal� so a decoupling design

is generally not optimal for disturbance rejection� These insights can be used

as a basis for a loop�shaping design� see more on H� loop�shaping in Chapter

��
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����� Multivariable controller synthesis

The above design methods are based on a two�step procedure in which we

�rst design a pre�compensator �for decoupling control� or we make a pairing

selection �for decentralized control� and then we design a diagonal controller

Ks�s�� Invariably this two�step procedure results in a suboptimal design�

The alternative is to synthesize directly a multivariable controller K�s�

based on minimizing some objective function �norm�� We here use the word

synthesize rather than design to stress that this is a more formalized approach�

Optimization in controller design become prominent in the ����
s with

�optimal control theory� based on minimizing the expected value of the output

variance in the face of stochastic disturbances� Later� other approaches and

norms were introduced� such as H� optimal control� We next provide a brief

summary of the S
KS and other mixed�sensitivity H� design methods which

are used in later examples�

���� Summary of mixed�sensitivity H� design �S�KS	

In the S
KS problem the objective is to minimize the H� norm of

N �
�
WPS

WuKS
�

�����

This problem was discussed for SISO systems earlier� and it is recommended

to read Section ���� carefully� A sample MATLAB �le is provided in Example

����� page ���

The following issues should be considered when selecting the the weights

WP and Wu�

�� KS is the transfer function from r to u in Figure ��� so for a system which

has been scaled as in Section ���� a reasonable initial choice for the input

weight is Wu � I �

�� S is the transfer function from d to e � y � r� A common choice for the

performance weight is WP � diagfwPig with

wPi �
s
Mi � ��Bi

s� ��BiAi
� Ai  � �����

�see also Figure ���� on ��� Selecting Ai  � ensures approximate integral

action with S��� � �� Often we select Mi � � for all outputs� whereas

��Bi may be di	erent for each output� A large value of ��Bi yields a faster

response for output i�

� To �nd a reasonable initial choice for the weight WP � one can �rst design

a controller with some other method� plot the magnitude of the resulting

diagonal elements of S as a function of frequency� and then use a rational

approximation of �
jSiij� for wPi�s��
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�� For disturbance rejection� we may in some cases want a steeper slope for

wPi�s� at low frequencies than that given in ������ e�g� as illustrated by

the weight in ������� However� it may be better to consider the disturbances

explicitly by considering the H� norm of

N �
�
WPS WPSGd

WuKS WuKSGd
�

�����

or equivalently

N �
�
WPSWd

WuKSWd
�

with Wd � � I Gd � �����

where N represents the transfer function from
h
r
d

i
to the weighted outputsh

WP e

Wuu
i
� In some situations we may want to adjust WP or Gd in order

to better satisfy our original objectives� The helicopter case study in

Section ���� illustrates this by introducing a scalar parameter � to adjust

the magnitude of Gd�

�� T is the transfer function from �n to y� To reduce sensitivity to noise and

uncertainty� we want T small at high frequencies� that is� we may want

additional roll�o	 in L� This can be achieved in several ways� One approach

is to add WTT to the stack for N in ������ where WT � diagfwTig and

jwTij is smaller than � at low frequencies and large at high frequencies�

A more direct approach is to add high�frequency dynamics� W��s�� to the

plant model to ensure that the resulting shaped plant� Gs � GW�� rolls o	

with the desired slope� We then obtain an H��optimal controller Ks for

this shaped plant� and �nally include W��s� in the controller� K �W�Ks�

More details about H� design are given in Chapter ��

��� Introduction to multivariable RHP�zeros

By means of an example� we now give the reader an appreciation of the fact

that MIMO systems also have zeros even though their presence may not be

obvious from the elements of G�s�� As for SISO systems� we �nd that RHP�

zeros impose fundamental limitations on control�

Zeros of MIMO systems are de�ned as the values s � z where G�s� loses

rank� see Section ���� and we can �nd the direction of the zero by looking

at the direction in which the matrix G�z� has zero gain� For square systems

we essentially have that the poles and zeros of G�s� are the poles and zeros

of detG�s�� However� this crude method may fail in some cases� as it may

incorrectly cancel poles and zeros at the same location but with di	erent

directions�
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Example ��� Consider the following plant

G�s� �



�	��s� ��s� �
�
 

 � �s �
�

������

The responses to a step in each individual input are shown in Figure ��� �a� and

�b�� We see that the plant is interactive� but for these two inputs there is no inverse
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Figure ��

 Open�loop response for G�s� in ������

response to indicate the presence of a RHP
zero� Nevertheless� the plant does have a

multivariable RHP
zero at z � 	��� that is� G�s� loses rank at s � 	��� The singular

value decomposition of G�	��� is

G�	��� �


���

�
 

� �
�
�

�
	��� 	���

	��� �	���
�

	 
z �
U

�
��� 	

	 	
�

	 
z �
�

�
	�� �	��

	�� 	��
�H

	 
z �
V H

����	�

and we have as expected ��G�	���� � 	� The input and output directions

corresponding to the RHP
zero are v �

h
����	

���	
i

and u �

h
����

�����
i

� Thus� the

RHP
zero is associated with both inputs and with both outputs� The presence of the

multivariable RHP
zero is also observed from the time response in Figure ��� �c��

which is for a simultaneous input change in opposite directions� u � �  � �T � We

see that y� displays an inverse response whereas y� happens to remain at zero for

this particular input change�

To see how the RHP
zero a�ects the closed
loop response� we design a controller

which minimizes the H� norm of the weighted S�KS matrix

N �
�
WPS

WuKS
�

�����

with weights �see �������

Wu � I� WP �
�
wP� 	

	 wP�
�

� wPi �
s�Mi � ��Bi

s� w�BiAi
� Ai � 	
�� ������



INTRODUCTION TO MULTIVARIABLE CONTROL ��

The MATLAB �le for the design is the same as in Table ��� on ��� except that we

now have a � � � system� Since there is a RHP
zero at z � 	�� we expect that this

will somehow limit the bandwidth of the closed
loop system�

Design �� We weight the two outputs equally and select

Design  
 M� �M� � ��� ��B� � ��B� � z�� � 	���

This yields an H� norm for N of ���	 and the resulting singular values of S are

shown by the solid lines in Figure ��	� �a�� The closed
loop response to a reference

change r � �  � �T is shown by the solid lines in Figure ��	� �b�� We note that

both outputs behave rather poorly and both display an inverse response�
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 Alternative designs for �� � plant ������ with RHP�zero�

Design �� For MIMO plants� one can often move most of the deteriorating e�ect

�e�g�� inverse response� of a RHP
zero to a particular output channel� To illustrate

this� we change the weight wP� so that more emphasis is placed on output �� We do

this by increasing the bandwidth requirement in output channel � by a factor of 		�

Design � 
 M� �M� � ��� ��B� � 	���� �
�
B� � ��

This yields an optimal design with an H� norm of ����� In this case we see from the

dashed line in Figure ��	� �b� that the response for output � �y�� is excellent with

no inverse response� However� this comes at the expense of output  �y�� where the

response is somewhat poorer than for Design �

Design �� We can also interchange the weights wP� and wP� to stress output 

rather than output �� In this case �not shown� we get an excellent response in output

 with no inverse response� but output � responds very poorly �much poorer than

output  for Design ��� Furthermore� the H� norm is ����� whereas it was only ����

for Design ��

Thus� we see that it is easier in this example to get tight control of output �

than of output � This may be expected from the output direction of the RHP
zero�

u �
h
����

�����
i

� which is mostly in the direction of output � We will discuss this in

more detail in Section ����	�
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Remark � We �nd from this example that we can direct the e�ect of the RHP�zero

to either of the two outputs� This is typical of multivariable RHP�zeros� but there

are cases where the RHP�zero is associated with a particular output channel and

it is not possible to move its e�ect to another channel� The zero is then called a

�pinned zero� �see Section �������

Remark � It is observed from the plot of the singular values in Figure ��	 �a��

that we were able to obtain with Design � a very large improvement in the �good�

direction �corresponding to ��S�� at the expense of only a minor deterioration in the

�bad� direction �corresponding to ���S��� Thus Design  demonstrates a shortcoming

of the H� norm
 only the worst direction �maximum singular value� contributes to

the H� norm and it may not always be easy to get a good trade�o� between the

various directions�

��� Condition number and RGA

Two measures which are used to quantify the degree of directionality and the

level of �two�way� interactions in MIMO systems� are the condition number

and the relative gain array �RGA�� respectively� We de�ne the two measures

and present an overview of their practical use� We do not prove each result� but

refer to other places in the book where the details can be found� Some algebraic

properties of the condition number and the RGA are given in Appendix A�����

���� Condition number

We de�ne the condition number of a matrix as the ratio between the maximum

and minimum singular values
��G� � ���G�
��G� ����

A matrix with a large condition number is said to be ill�conditioned� For a

nonsingular �square� matrix ��G� � �
���G���� so ��G� � ���G����G���� It

then follows from �A����� that the condition number is large if both G and

G�� have large elements�

The condition number depends strongly on the scaling of the inputs and

outputs� To be more speci�c� if D� and D� are diagonal scaling matrices�

then the condition numbers of the matrices G and D�GD� may be arbitrarily

far apart� In general� the matrix G should be scaled on physical grounds� for

example� by dividing each input and output by its largest expected or desired

value as discussed in Section ����

One might also consider minimizing the condition number over all possible

scalings� This results in the minimized or optimal condition number which is
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de�ned by

���G� � min

D��D�

��D�GD�� �����

and can be computed using �A�����

The condition number has been used as an input�output controllability

measure� and in particular it has been assumed that a large condition number

indicates sensitivity to uncertainty� This is not true in general� but the reverse

holds�

If the condition number is small� then multivariable e	ects of uncertainty is

not likely to be a problem �see ��������

If the condition number is large �say� larger than ���� then this may indicate

control problems�

�� A large condition number ��G� � ���G�
��G� may be caused by a small

value of ��G�� which is generally undesirable �on the other hand a large

value of ���G� need not necessarily be a problem��

�� A large condition number may mean that the plant has a large minimized

condition number� or equivalently� it has large RGA�elements� which

indicates fundamental control problems� see below�

Remark� A large condition number does imply that the system is sensitive to

�unstructured� �full�block� input uncertainty with an inverse�based controller�

�see �������� but this kind of uncertainty may not occur in practice� We can

therefore not conclude that a plant with a large condition number is sensitive to

uncertainty� see also the example plant in �

���� Relative Gain Array �RGA

The Relative Gain Array �RGA� of a nonsingular square matrix G is a square

matrix de�ned as

RGA�G� � ��G�
�
� G� �G���T �����

where � denotes element�by�element multiplication �the Schur product�� For

a �� � matrix with elements gij the RGA is

��G� �
�
��� ���

��� ���
�

�
�
��� �� ���

�� ��� ���

�
� ��� �

�

�� g��g��

g��g��

�����

The RGA has a number of interesting algebraic properties� of which the most

important are �see Appendix A�� for more details��

�� It is independent of input and output scaling�

�� Its rows and columns sum to one�
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� The sum�norm of the RGA� k�ksum� is very close to the minimized

condition number ��� see �A����� This means that plants with large RGA�

elements are always ill�conditioned �with a large value of ��G��� but the

reverse may not hold �i�e�� a plant with a large ��G� may have small RGA�

elements��

�� A relative change in an element of G equal to the negative inverse of its

corresponding RGA�element yields singularity�

�� The RGA is the identity matrix if G is upper or lower triangular�

From the last property it follows that the RGA �or more precisely � � I�

provides a measure of two�way interaction�

The de�nition of the RGA may be generalized to non�square matrices by

using the pseudo inverse� see Appendix A�����

Bristol ������� originally introduced the RGA as a steady�state measure

of interactions for decentralized control� Unfortunately� based on the original

de�nition� many people have dismissed the RGA as being �only meaningful at

� � ��� To the contrary� in most cases it is the value of the RGA at frequencies

close to crossover which is most important�

In addition to the algebraic properties listed above� the RGA has a

surprising number of useful control properties�

�� The RGA is a good indicator of sensitivity to uncertainty�

�a� Uncertain in the input channels �diagonal input uncertainty�� Plants

with large RGA�elements around the crossover�frequency are fundamen�

tally di�cult to control because of sensitivity to this uncertainty� e�g��

caused by uncertain or neglected actuator dynamics� In particular� de�

couplers or other inverse�based controllers should not be used for such

plants �see page �����

�b� Element uncertainty� As stated by algebraic property no� � above� large

RGA�elements imply sensitivity to element�by�element uncertainty�

However� this source of uncertainty may not occur due to physical

couplings between the transfer function elements� so the diagonal input

uncertainty mentioned above �which always is present� is usually of more

concern�

�� RGA and RHP�zeros� If the sign of an RGA�element changes from s � �

to s ��� then there is a RHP�zero somewhere �see Theorem ������

� Non�square plants� Extra inputs� If the sum of the elements in a column of

RGA are small � ��� then one may consider deleting the corresponding

input� Extra outputs� If all elements in a row of RGA are small � ���then

the corresponding output cannot be controlled� �See Section ������

�� Diagonal dominance� The RGA can be used to measure diagonal

dominance� by the simple quantity

RGA�number � k��G�� Iksum �����
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For decentralized control we prefer pairings for which the RGA�number at

crossover frequencies is close to � �see pairing rule � on page ���� Similarly�

for certain multivariable design methods� it is simpler to choose the weights

and shape the plant if we �rst rearrange the inputs and outputs to make

the plant diagonally dominant with a small RGA�number�

�� RGA and decentralized control�

�a� Integrity	 For stable plants avoid pairing on negative steady�state RGA�

elements� Otherwise� if the sub�controllers are designed independently

each with integral action� the interactions will cause instability either

when all of the loops are closed� or when the loop corresponding to the

negative relative gain becomes inactive �e�g� because of saturation� �see

Theorem ������ Interestingly� this is the only use of the RGA directly

related to its original de�nition�

�b� Stability	 Prefer pairings corresponding to an RGA�number close to � at

crossover frequencies �see page ����

Remark� An iterative evaluation of the RGA� ���G� � ����G�� etc�� has in

applications proved to be useful for choosing pairings for large systems� Wol� �����

found numerically that �with the exception of �borderline� cases�

��
�
� lim
k��

�k�G� ������

is a permuted identity matrix �the result is proved for a positive de�nite Hermitian

matrix G by Johnson and Shapiro ������ Typically� �k approaches �� for k

between � and �� This permuted identity matrix may then be used as a candidate

pairing choice� For example� for G �

h
	 


�	 	
i
we get � �

h
���� ����

���� ����
i
� �� �h
����� 	���

	��� �����
i
� �� �

h
����� 	���

	��� �����
i
and �� �

h
���� 	���

���� 	���
i
� which indicates

that the o��diagonal pairing should be considered� Note that

Lambda� may sometimes �recommend� a pairing on negative RGA�elements� even

if a positive pairing exists�

Example ��� Consider a diagonal plant

G �
�
		 	

	 
�

� ��G� � I� ��G� �

���G�

��G�
�
		


� 		� ���G� � 

Here the condition number is large which means that the plant gain depends strongly

on the input direction� However� since the plant is diagonal there are no interactions

so ��G� � I and ���G� � � and no sensitivity to uncertainty �or other control

problems� is normally expected�

Remark� An exception would be if there was uncertainty caused by unmodelled or

neglected o�
diagonal elements in G� This would couple the high
gain and low
gain

directions� and the large condition number indicates sensitivity to this o�
diagonal

��unstructured�� uncertainty�
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Example ��� Consider the triangular matrix

G �
�
 �

	 
�

� G�� �
�
 ��

	 
�

� ��G� � I� ��G� �
���

	��
� ����� ���G� � 

������

Note that for a triangular matrix the RGA is always the identity matrix and ���G�

is always �

Example ���� Consider again the distillation process for which we have at steady


state
G �

�
���� �����

	��� �	���
�

� G�� �
�
	���� �	���

	���� �	���	
�

� ��G� �
�
��� ����

���� ���
�

����	�

In this case ��G� � �������� � ��� is only slightly larger than ���G� � �������

The magnitude sum of the elements in the RGA
matrix is k�ksum � ������� This

con�rms �A���� which states that� for � � � systems� k��G�ksum � ���G� when

���G� is large� The condition number is large� but since the minimum singular

value ��G� � ��� is larger than  this does not by itself imply a control problem�

However� the RGA
elements �and ���G�� are large� which indicate control problems�

and fundamental control problems are expected if an analysis shows that G�j�� has

large RGA
elements also in the crossover frequency range� �Indeed� the idealized

dynamic model ������ used below has large RGA
elements at all frequencies� and we

will con�rm in simulations a strong sensitivity to input channel uncertainty with an

inverse
based controller��

Example ���� Consider a �� � plant for which we have

G �
�
��� �	�� ���	

���� ��	 ���

��� ��� ���	


� ��G� �
�
��	 	��� ����

�	�� 	��� 	���

�	�	� �	��� ��	�


�����

and � � �������� � ���� and �� � ���	� The magnitude sum of the elements in the

RGA is k�ksum � ���� which is close to �� as expected from �A����� Note that rows

and the columns of � sum to � Since ��G� is larger than 	 and the RGA
elements

are relatively small� this steady
state analysis does not indicate any particular control

problems for the plant�

Remark� ����	� represents the steady
state model of a �uid catalytic cracking �FCC�

process� A dynamic model of the FCC process in ����	� is given in Exercise ��	��

For a more detailed analysis of achievable performance of the plant �input�

output controllability analysis�� one must also also consider the singular

values� RGA and condition number as a function of frequency� In particular�

the crossover frequency range is important� In addition� disturbances and the

presence of unstable �RHP� plant poles and zeros must be considered� All

these issues are discussed in much more detail in Chapters � and � where we

discuss achievable performance and input�output controllability analysis for

SISO and MIMO plants� respectively�
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��	 Introduction to robustness

To motivate the need for a deeper understanding of robustness� we present

two examples which illustrate that MIMO systems can display a sensitivity to

uncertainty not found in SISO systems� We focus our attention on diagonal

input uncertainty� which is present in any real system and often limits

achievable performance because it enters between the controller and the plant�

����� Motivating robustness example no� �� Spinning

Satellite

Consider the following plant �Doyle� ����� Packard� Doyle and Balas� ����

which can itself be motivated by considering the angular velocity control of a

satellite spinning about one of its principal axes�

G�s� �

�

s� � a�
�
s� a� a�s� ��

�a�s� �� s� a�
�

� a � �� �����

A minimal� state�space realization� G � C�sI �A���B �D� is

G

s
�

�
A B

C D

�
�

����
� a � �

�a � � �

� a � �

�a � � �
���� ����

The plant has a pair of j��axis poles at s � �ja so it needs to be stabilized�

Let us apply negative feedback and try the simple diagonal controller

K � I

We get

T �s� � GK�I �GK��� �

�
s� �

�
� a

�a �
�

�����

The closed�loop system has two poles at s � �� and so it is stable� This can

be veri�ed by evaluating the closed�loop state matrix

Acl � A�BKC �
�
� a

�a �
�
�

�
� a

�a �
�

�
��� �

� ��
�

�To derive Acl use �x � Ax�Bu� y � Cx and u � �K � y��

First let us consider performance� The singular values of L � GK � G are

shown in Figure �� �a�� We see that ��L� � � at low frequencies and starts

dropping o	 at about � � ��� Since ��L� never exceeds � this implies that we

do not have tight control in the low�gain direction for this plant �recall the
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discussion following ������� For example� at steady�state ���T � � ����� and

���S� � ��� This is also seen from the large o	�diagonal elements in T �s� which

indicate strong interactions in the closed�loop system and poor performance�

�For reference tracking� however� this may be counteracted by use of a two

degrees�of�freedom controller��

Now let us consider stability robustness� In order to determine stability

margins with respect to perturbations in each input channel� one may consider

Figure ��� where we have broken the loop at the �rst input� The loop transfer

function at this point �the transfer function from w� to z�� is L��s� � �
s

�which is consistent with t���s� � �
��s � L�	s


��L�	s

�� This corresponds to an

in�nite gain margin and a phase margin of ���� On breaking the loop at the

second input we get the same result� This suggests good robustness properties

irrespective of the value of a� However� the design is far from robust as a further

analysis shows� Consider input gain uncertainty� and let �� and �� denote the

e

e

q

q�

�

�

�
�

�

�
�

�
�

�
�

�

�

�

z� w�

G
K

Figure ����
 Checking stability margins �one�loop�at�a�time��

relative error in the gain in each input channel� Then

u�� � �� � ���u�� u�� � �� � ���u� �����

where u�� and u�� are the actual changes in the manipulated inputs� while u�

and u� are the desired changes as computed by the controller� It is important

to stress that this diagonal input uncertainty� which stems from our inability

to know the exact values of the manipulated inputs� is always present� In

terms of a state�space description� ����� may be represented by replacing B

by

B� �
�
� � �� �

� � � ��
�



INTRODUCTION TO MULTIVARIABLE CONTROL 	

The corresponding closed�loop state matrix is

A�cl � A�B�KC �
�
� a

�a �
�
�

�
� � �� �

� � � ��
� �
� a

�a �
�

which has a characteristic polynomial given by

det�sI �A�cl� � s� � �� � �� � ���	 
z �
a�

s� � � �� � �� � �a� � ������	 
z �

a�

�����

The perturbed system is stable if and only if both the coe�cients a� and a�

are positive� We therefore see that the system is always stable if we consider

uncertainty in only one channel at a time �at least as long as the channel gain

is positive�� More precisely� we have stability for ���  ��  �� �� � �� and

��� � ����  ��  ��� This con�rms the in�nite gain margin seen earlier�

However� the system can only tolerate small simultaneous changes in the two

channels� For example� let �� � ���� then the system is unstable �a�  �� for

j��j � �p
a� � �

� ���

In summary� we have found that checking single�loop margins is inadequate

for MIMO problems� We have also observed that large values of ���T � or ���S�

indicate robustness problems� We will return to this in Chapter �� where we

show that with input uncertainty� j�ij  �
���T � guarantees robust stability

�even for �full�block complex perturbations���

In the next example we �nd that we may have sensitivity to diagonal input

uncertainty also in cases when ���T � and ���S� have no large peaks� This can

not happen for a diagonal controller� see ������� but it will happen if we use

an inverse�based controlled for a plant with large RGA�elements� see �������

����� Motivating robustness example no� �� Distillation

Process

The following is an idealized dynamic model of a distillation column

G�s� �

�

��s� �
�
���� �����

����� ������
�

�����

The physics of this example was discussed in Example ��� This is admittedly

a very crude model of a distillation column� there should be a high�order lag

in the transfer function from input � to output � to represent the liquid  ow

down to the column� and higher�order composition dynamics should also be

included� Nevertheless� the model is simple and displays important features

of distillation column behaviour� The plant is ill�conditioned with condition
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number ��G� � ����� at all frequencies� The plant is also strongly two�way

interactive and the RGA�matrix at all frequencies is

RGA�G� �
�
��� ����

���� ���
�

�����

The large elements in this matrix indicate that this process is fundamentally

di�cult to control �see section A���� It should be noted that with a more

detailed model as just discussed� the RGA�elements would approach � at

frequencies around � rad!min� indicating less of a control problem�

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

Time �min�

y�
y�

Nominal plant�

Perturbed plant�

Figure ����
 Response with decoupling controller to �ltered reference input r� �

���s� �� The perturbed plant has �	� gain uncertainty as given by ������

We consider the following inverse�based controller� which may also be looked

upon as a steady�state decoupler with a PI controller�

Kinv�s� �
k�

s
G���s� �

k��� � ��s�

s

�
����� ������

���� ������
�

� k� � ��� �����

We have GKinv � KinvG � ��
s

I � With no model error this controller should

counteract all the interactions in the plant and give rise to two decoupled �rst�

order responses each with time constant �
��� � ��� min� This is con�rmed

by the solid line in Figure ��� which shows the simulated response to a

reference change in y�� The responses are clearly acceptable� and we conclude

that nominal performance �NP� is achieved with the decoupling controller�

The resulting sensitivity and complementary sensitivity functions with this

controller are

S � SI �

s

s� ���
I � T � TI �

�

���s� �
I �����

Thus� ���S� and ���T � are both less than � at all frequencies� so there are no

peaks indicating robustness problems� We also �nd that this controller gives

an in�nite gain margin �GM� and a phase margin �PM� of ��� in each channel�
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Thus� use of the traditional margins and the peak values of S and T indicate

no robustness problems� However� from the large RGA�elements there is cause

for concern� and this is con�rmed in the following�

We consider again the input gain uncertainty ����� as in the previous

example� and we select �� � ��� and �� � ����� We then have

u�� � ���u�� u�� � ���u� �����

Note that the uncertainty is on the change in the inputs � ow rates�� and not

on their absolute values� A ��" error is typical for process control applications

�see Remark � on page ���� The uncertainty in ����� does not by itself yield

instability� This is veri�ed by computing the closed�loop poles� which assuming

no cancellations are solutions to det�I�L�s�� � det�I�LI�s�� � �� see ������

and �A����� In our case

L�I�s� � KinvG
� � KinvG

�
� � �� �

� � � ��
�

�
���

s
�
� � �� �

� � � ��
�

so the perturbed closed�loop poles are

s� � ������ � ���� s� � ������ � ��� �����

and we have closed�loop stability as long as the input gains � � �� and � � ��

remain positive� so we can have up to ���" error in each input channel� We

thus conclude that we have robust stability �RS� with respect to input gain

errors for the decoupling controller�

For SISO systems we generally have that nominal performance �NP� and

robust stability �RS� imply robust performance �RP�� but this is not the case

for MIMO systems� This is clearly seen from the dotted lines in Figure ���

which show the closed�loop response of the perturbed system� It di	ers

drastically from the nominal response represented by the solid line� and even

though it is stable� the response is clearly not acceptable� it is no longer

decoupled� and y��t� and y��t� reach a value of about ��� before settling at

their desired values of � and �� Thus RP is not achieved for the decoupling

controller�

Remark � There is a simple reason for the observed poor response to the reference

change in y�� To accomplish this change� which occurs mostly in the direction

corresponding to the low plant gain� the inverse�based controller generates relatively

large inputs u� and u�� while trying to keep u� � u� very small� However� the input

uncertainty makes this impossible � the result is an undesired large change in the

actual value of u�� � u��� which subsequently results in large changes in y� and y�

because of the large plant gain ����G� � ����� in this direction� as seen from �������

Remark � The system remains stable for gain uncertainty up to 		� because

the uncertainty occurs only at one side of the plant �at the input�� If we also
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consider uncertainty at the output then we �nd that the decoupling controller yields

instability for relatively small errors in the input and output gains� This is illustrated

in Exercise ��� below�

Remark � It is also di cult to get a robust controller with other standard design

techniques for this model� For example� an S�KS�design as in ������ withWP � wP I

�using M � � and �B � 	�	� in the performance weight� and Wu � I� yields a

good nominal response �it is not decoupled� but the inputs are smaller than for the

decoupling controller and remain less than  in magnitude�� but the system is very

sensitive to input uncertainty� and the outputs go up to about ��� and settle very

slowly when there is �	� input gain error�

Remark � Attempts to make the inverse�based controller robust using the second

step of the H� loop�shaping procedure are also unhelpful� see Exercise ��� This

shows that robustness with respect to coprime factor uncertainty does not necessarily

imply robustness with respect to input uncertainty� The solution is to avoid inverse�

based controllers for a plant with large RGA�elements� also see ��	�

Exercise ��
 Consider again the distillation process G�s� in ������� The response

using the inverse
based controller Kinv in ������ was found to be sensitive to input

gain errors� We want to see if controller can be modi�ed to yield a more robust system

by using the McFarlane
Glover H� loop
shaping procedure� To this e�ect� let the

shaped plant be Gs � GKinv� i�e�W� � Kinv� and design an H� controller Ks for the

shaped plant �see page ��� and Chapter ��� such that the overall controller becomes

K � KinvKs� �You will �nd that �min � ��� which indicates good robustness with

respect to coprime factor uncertainty� but the loop shape is almost unchanged and

the system remains sensitive to to input uncertainty��

Exercise ��� Design a SVD
controller K � W�KsW� for the distillation process

in ������� i�e� select W� � V and W� � UT where U and V are given in �������

Select Ks in the form

Ks �
�
c�
	�s
�

s

	

	 c�
	�s
�

s

�

and try the following values�

�a� c� � c� � 	�		��

�b� c� � 	�		�� c� � 	�	��

�c� c� � 	����� � 	�		��� c� � 	������ � 	��	��

Simulate the closed
loop reference response with and without uncertainty� Designs �a�

and �b� should be robust� Which has the best performance Design �c� should give

the response in Figure ��	�� In the simulations� include high
order plant dynamics

by replacing G�s� by �

�����s
���
G�s�� What is the condition number of the controller

in the three cases Discuss the results� �See also the conclusion on page �����

Exercise ��� Consider again the distillation process ������ with the decoupling

controller� but also include output gain uncertainty b	i� That is� let the perturbed loop
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transfer function be

L��s� � G�Kinv �
	��

s
�
 � b	� 	

	  �b	�
�

G
�
 � 	� 	

	  � 	�
�

G��	 
z �

L�

������

where L� has no dynamics for the distillation example� The closed
loop poles of

the perturbed system are solutions to det�I � L��s�� � det�I � �k��s�L�� � 	� or

equivalently

det�
s

k�
I � L�� � �s�k��

� � tr�L���s�k�� � det�L�� � 	 ������

For k� 
 	 we see that instability occurs if and only if the trace and�or the

determinant of L� are negative� Since det�L�� 
 	 for any gain error less than

		�� instability can only occur if tr�L�� � 	� Evaluate tr�L�� and show that with

gain errors of equal magnitude the combination of errors which most easily yields

instability is with b	� � �b	� � �	� � 	� � 	� Use this to show that the perturbed

system is unstable if

	 

r


���� �  ������

where ��� � g��g��� detG is the � 
element of the RGA of G� In our case

��� � ��� and we get instability for 	 
 	��	� Check this numerically�

Remark� The instability condition in ������ for simultaneous input and output

gain uncertainty� applies to the very special case of a � � � plant� in which all

elements share the same dynamics� G�s� � g�s�G�� and an inverse�based controller�

K�s� � �k��s�G
���s��

����� Robustness conclusions

From the two motivating examples above we found that multivariable plants

can display a sensitivity to uncertainty �in this case input uncertainty� which

is fundamentally di	erent from what is possible in SISO systems�

In the �rst example �spinning satellite�� we had excellent stability margins

�PM and GM� when considering one loop at a time� but small simultaneous

input gain errors gave instability� This could be expected from the peak values

�H� norms� for S and T � de�ned as

kTk� � max
�

���T �j���� kSk� � max
�

���S�j��� �����

which were both large �about ��� for this example�

In the second example �distillation process�� we again had excellent stability

margins �PM and GM�� and the system was also robustly stable to errors �even

simultaneous� of up to ���" in the input gains� However� in this case small

input gain errors gave terrible output performance� so robust performance
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was not satis�ed� and adding simultaneous output gain uncertainty resulted

in instability �see Exercise ���� These problems with the decoupling controller

could be expected because the plant has large RGA�elements� see ������� For

this example the H� norms of S and T were both about �� so the absence of

a peak in S and T does not guarantee robustness�

Although sensitivity peaks� RGA�elements� etc� are useful indicators of

robustness problems� they provide no exact answer to whether a given source

of uncertainty will yield instability or poor performance� This motivates the

need for better tools for analyzing the e	ects of model uncertainty� We want to

avoid a trial�and�error procedure based on checking stability and performance

for a large number of candidate plants� This is very time consuming� and in

the end one does not know whether those plants are the limiting ones� What

is desired� is a simple tool which is able to identify the worst�case plant� This

will be the focus of Chapters � and � where we show how to represent model

uncertainty in theH� framework� and introduce the structured singular value

� as our tool� The two motivating examples are studied in more detail in

Example ��� and Section ����� where a ��analysis predicts the robustness

problems found above�

��
 General control problem formulation

�

�

��

K
P

sensed outputscontrol signals

exogenous inputs

�weighted�

exogenous outputs

�weighted�

u v
zw

Figure ����
 General control con�guration for the case with no model uncertainty

In this section we consider a general method of formulating control problems

introduced by Doyle ����� ����� The formulation makes use of the general

control con�guration in Figure ��� where P is the generalized plant and K

is the generalized controller as explained in Table ��� on page �� Note that

positive feedback is used�

The overall control objective is to minimize some norm of the transfer

function from w to z� for example� the H� norm� The controller design
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problem is then�

� Find a controllerK which based on the information in v� generates an input

u which counteracts the in uence of w on z� thereby minimizing the norm

from w to z�

The con�guration in Figure �� may at �rst glance seem restrictive�

However� this is not the case� and we will demonstrate the generality of the

setup with a few examples� including the design of observers �the estimation

problem� and feedforward controllers� The most important point of this

section is to appreciate that almost any linear control problem can be

formulated using the block diagram in Figure �� �for the nominal case�

or in Figure ��� �with model uncertainty��

Remark� We may generalize the control con�guration still further by including

diagnostics as additional outputs from the controller giving the �
parameter

controller introduced by Nett ������ but this is not considered in this book�

����� Obtaining the generalized plant P

The routines in MATLAB for synthesizing H� and H� optimal controllers

assume that the problem is in the general form of Figure ��� that is� they

assume that P is given� To derive P �and K� for a speci�c case we must �rst

�nd a block diagram representation and identify the signals w� z� u and v� To

construct P one should note that it is an open�loop system and remember to

break all �loops� entering and exiting the controller K� Some examples are

given below and further examples are given in Section �� �Figures ���� �����

���� and ������

Example ���� One degree�of�freedom feedback control conguration�

We want to �nd P for the conventional one degree
of
freedom control con�guration

in Figure ��	�� The �rst step is to identify the signals for the generalized plant�

e

e e q

�

��

������

ym
u

�
�

�

�

n
y

d

GK

�

�r
Figure ����
 One degree�of�freedom control con�guration�
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Figure ����
 Equivalent representation of Figure ��� where the error signal to be

minimized is z � y � r and the input to the controller is v � r � ym�

w �
�
w�
w�
w�


�

�
d
r
n


� z � e � y � r� v � r � ym � r � y � n ������

With this choice of v� the controller only has information about the deviation r�ym�

Also note that z � y � r� which means that performance is speci�ed in terms of the

actual output y and not in terms of the measured output ym� The block diagram in

Figure ��	� then yields

z � y � r � Gu� d� r � Iw� � Iw� � 	w� �Gu

v � r � ym � r �Gu� d� n � �Iw� � Iw� � Iw� �Gu

and P which represents the transfer function matrix from �w u �T to � z v �T is

P �
�
I �I 	 G

�I I �I �G
�

������

Note that P does not contain the controller� Alternatively� P can be obtained by

inspection from the representation in Figure ��	��

Remark� Obtaining the generalized plant P may seem tedious� However� when

performing numerical calculations P can be generated using software� For example�

in MATLAB we may use the simulink program� or we may use the sysic program

in the �toolbox� The code in Table �� generates the generalized plant P in ������

for Figure ����
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Table ���
 MATLAB program to generate P in ���		��

� Uses the Mu�toolbox

systemnames � �G�� � G is the SISO plant�

inputvar � ��d�	
�r�	
�n�	
�u�	
��� � Consists of vectors w and u�

input to G � ��u���

outputvar � ��G�d�r� r�G�d�n��� � Consists of vectors z and v�

sysoutname � �P��

sysic�

����� Controller design� Including weights in P

To get a meaningful controller synthesis problem� for example� in terms of

the H� or H� norms� we generally have to include weights Wz and Ww in

the generalized plant P � That is� we consider the weighted or normalized

exogenous inputs w �where ew � Www consists of the �physical� signals

entering the system� disturbances� references and noise�� and the weighted or

normalized controlled outputs z �Wzez �where ez often consists of the control

error y � r and the manipulated input u�� and The weighting matrices are

usually frequency dependent and typically selected such that weighted signals

w and z are of magnitude �� that is� such that the norm from w to z should be

less than �� Thus� in most cases only the magnitude of the weights matter� and

we may without loss of generality assume that Ww�s� and Wz�s� are stable

and minimum phase �they need not even be rational transfer functions but if

not they will be unsuitable for controller synthesis using current software��

Example ���� Stacked S�T�KS problem� Consider an H� problem where we

want to bound ���S� �for performance�� ���T � �for robustness and to avoid sensitivity

to noise� and ���KS� �to penalize large inputs�� These requirements may be combined

into a stacked H� problem
min
K

kN�K�k�� N �
�
WuKS

WTT

WPS



������

where K is a stabilizing controller� In other words� we have z � Nw and the objective

is to minimize the H� norm from w to z� Except for some negative signs which have

no e�ect when evaluating kNk�� the N in ������ may be represented by the block

diagram in Figure ��	� �convince yourself that this is true�� Here w represents a

reference command �w � �r� where the negative sign does not really matter� or

a disturbance entering at the output �w � dy��� and z consists of the weighted

input z� � Wuu� the weighted output z� � WT y� and the weighted control error

z� �WP �y � r�� To �nd P we must also �pull out� the controller� that is� we must

break the loop before and after K in Figure ��	�� We get the following set of equations

z� � Wuu
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q q qee �
�

�

�

� � � � �
�

�Wu
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WPGuKv
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� �

�

���������������
z

Figure ����
 Block diagram corresponding to z � Nw in �������

z� � WTGu

z� � WPw �WPGu

v � �w�Gu

so the generalized plant P from �w u �T to � z v �T is

P �
��� 	 WuI

	 WTG

WP I WPG

�I �G
��� ����	�

����� Partitioning the generalized plant P

We often partition P as

P �
�
P�� P��

P�� P��
�

�����

such that its parts are compatible with the signals w� z� u and v in the

generalized control con�guration�

z � P��w � P��u �����

v � P��w � P��u ����

The reader should become familiar with this notation� For the above example�

we get

P�� �
�� �

�
WP I

�� � P�� �
�� WuI

WTG

WPG
�� �����
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P�� � �I� P�� � �G �����

Note that P�� has dimensions compatible with the controller� i�e�� if K is an

nu � nv matrix� then P�� is an nv � nu matrix� For cases with one degree�of�

freedom negative feedback control we have P�� � �G�

����� Analysis� Closing the loop to get N

�� z

N

w

Figure ����
 General block diagram for analysis with no uncertainty�

The general feedback con�guration in Figure �� with the generalized plant

P � has the controller K as a separate block� This con�guration is useful when

synthesizing the controller� However� for analysis of closed�loop performance

the controller is given� and we may absorbK into the interconnection structure

and obtain the system N as shown in Figure ��� where

z � Nw �����

To �nd N � �rst partition the generalized plant P as given in �����������

combine this with the controller equation

u � Kv �����

and eliminate u and v from equations ������ ���� and ����� to yield z � Nw

where N is given by

N � P�� � P��K�I � P��K���P��
�
� Fl�P�K� �����

Here Fl�P�K� denotes a lower Linear Fractional Transformation �LFT� of

K around P � To assist in remembering the sequence of P�� and P��� notice

that the �rst �last� index in P�� is the same as the �rst �last� index in

P��K�I � P��K���P��� Some properties of LFTs are given in Appendix A���

In words� N is obtained from Figure �� by using K to close a lower

feedback loop around P � Since positive feedback is used in the general

con�guration in Figure �� the term �I � P��K��� has a negative sign� The

lower LFT in ����� is also represented by the block diagram in Figure ���

The reader is advised to become comfortable with the above manipulations

before progressing much further�
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Example ���� We want to derive N for the partitioned P in ������ and ������

using the LFT
formula in ������� We get

N �
�
	
	
WP I


�

�
WuI

WTG

WPG


K�I �GK�����I� �
��WuKS

�WTT

WPS



where we have made use of the identities GKS � T and I�T � S� With exception of

the two negative signs this is identical to N given in ������� Of course� the negative

signs have no e�ect on the norm of N �

Again� it should be noted that deriving N from P is much simpler using

available software� For example in the MATLAB ��Toolbox we can evaluate

N � Fl�P�K� using the command N�starp�P�K� � Here starp denotes the

matrix star product which generalizes the use of LFTs �see Appendix A������

Exercise ��� Consider the two degrees
of
freedom feedback con�guration in

Figure 	���b�� �i� Find P when

w �
�
d
r
n


� z �

�
y � r
u

�
� v �

�
r
ym

�

������

�ii� Let z � Nw and derive N in two di�erent ways� directly from the block diagram

and using N � Fl�P�K��

����� Generalized plant P � Further examples

To illustrate the generality of the con�guration in Figure ��� we now present

two further examples� one in which we derive P for a problem involving

feedforward control� and one for a problem involving estimation�

Example ���	 Consider the control system in Figure ��	�� where y is the output

we want to control� y� is the secondary output �extra measurement�� and we also

measure the disturbance d� By secondary we mean that y� is of secondary importance

for control� that is� there is no control objective associated with it� The control

con�guration includes a two degrees
of
freedom controller� a feedforward controller

and a local feedback controller based on the extra measurement y�� To recast this into

our standard con�guration of Figure ��	� we de�ne

w �
�
d
r

�
� z � y � r� v �

��� r
y
y�
d

��� ���		�

Note that d and r are both inputs and outputs to P and we have assumed a perfect

measurement of the disturbance d� Since the controller has explicit information about
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ddd
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�

�
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�������� yy� �
�

�
� �

u

d
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K�
G�

Kd

K�Kr

�
�

r

Figure ���	
 System with feedforward� local feedback and two degrees�of�freedom

control�

r we have a two degrees
of
freedom controller� The generalized controller K may be

written in terms of the individual controller blocks in Figure ��	� as follows�

K � �K�Kr �K� �K� Kd � ���	�

By writing down the equations or by inspection from Figure ��	� we get

P �
����
G� �I G�G�

	 I 	

G� 	 G�G�

	 	 G�

I 	 	

���� ���	��

Then partitioning P as in ������ and ������ yields P�� � � 	 G�G� G� 	 �T �

Exercise ���� Cascade implementation Consider Example ��	�� The local

feedback based on y� is often implemented in a cascade manner� see also Figure 	����

In this case the output from K� enters into K� and it may be viewed as a reference

signal for y�� Derive the generalized controller K and the generalized plant P in this

case�

Remark� From the above exercises we see that a cascade implementation does

not usually limit the achievable performance since� unless the optimal K� or K�

have RHP�zeros� we can obtain from the optimal K the subcontrollers Kr and

K� �we may have to add a small D�term to K to make the controllers proper��

However� if we impose restrictions on the design such that� for example K� or K�
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are designed �locally� �without considering the whole problem�� then this will limit

the achievable performance� For example� for a two degrees
of
freedom controller

a common approach is to �rst design the feedback controller K� �or Ky� for

disturbance rejection �without considering reference tracking� and then design Kr

for reference tracking� This will generally give some performance loss compared to

a simultaneous design of Ky and Kr�

Example ���
 Output estimator� Consider a situation where we have no

measurement of the output y which we want to control� However� we do have a

measurement of another output variable y�� Let d denote the unknown external inputs

�including noise and disturbances� and uG the known plant inputs �a subscript G is

used because in this case the output u from K is not the plant input�� Let the model

be

y � GuG �Gdd� y� � FuG � Fdd

The objective is to design an estimator� Kest� such that the estimated outputby � Kest
h
y�
uG

i
is as close as possible in some sense to the true output y� see

Figure ��	�� This problem may be written in the general framework of Figure ��	�

with

w �
h
d
uG

i
� u � by� z � y � by� v � h y�
uG

i

Note that u � by� that is� the output u from the generalized controller is the estimate

of the plant output� Furthermore� K � Kest and

P �
�
Gd G �I

Fd F 	

	 I 	


���	��

We see that P�� �
h
�

�
i

since the estimator problem does not involve feedback�

Exercise ���� State estimator� In the Kalman �lter problem the objective is to

minimize x � bx �whereas in Example ��	� the objective was to minimize y � by��

Show how the Kalman Filter problem can be represented in the general con�guration

of Figure ��	� and �nd P �

���� Deriving P from N

For cases where N is given and we wish to �nd a P such that

N � Fl�P�K� � P�� � P��K�I � P��K���P��

it is usually best to work from a block diagram representation� This was

illustrated above for the stacked N in ������ Alternatively� the following

procedure may be useful�

�� Set K � � in N to obtain P���
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Figure ���

 Output estimation problem� One particular estimator Kest is a

Kalman Filter�

�� De�ne A � N � P�� and rewrite A such that each term has a common

factor B � K�I � P��K��� �this gives P����

� Since A � P��BP��� we can now usually obtain P�� and P�� by inspection�

Example ���� Weighted sensitivity� We will use the above procedure to derive

P when N � wPS � wP �I �GK��� where wP is a scalar weight�

	� P�� � N�K � 	� � wP I�

�� A � N � wP I � wP �S � I� � �wPT � �wPGK�I � GK���� and we have

B � K�I �GK��� so P�� � �G�

�� A � �wPGB so we have P�� � �wPG and P�� � I� and we get

P �
�
wP I �wPG

I �G
�

���	��

Remark�When obtaining P from a given N � we have that P�� and P�� are unique�

whereas from Step � in the above procedure we see that P�� and P�� are not unique�

For instance� let � be a real scalar then we may instead choose eP�� � �P�� andeP�� � ����P��� For P in ���	�� this means that we may move the negative sign

or the scalar wP from P�� to P���
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Exercise ���� Mixed sensitivity� Use the above procedure to derive the

generalized plant P for the stacked N in �������

����� Problems not covered by the general formulation

The above examples have demonstrated the generality of the control

con�guration in Figure ��� Nevertheless� there are some controller design

problems which are not covered� Let N be some closed�loop transfer function

whose norm we want to minimize� To use the general form we must �rst obtain

a P such that N � Fl�P�K�� However� this is not always possible� since there

may not exist a block diagram representation for N � As a simple example�

consider the stacked transfer function

N �
�
�I �GK���

�I �KG���
�

������

The transfer function �I � GK��� may be represented on a block diagram

with the input and output signals after the plant� whereas �I � KG���

may be represented by another block diagram with input and output signals

before the plant� However� in N there are no cross coupling terms between

an input before the plant and an output after the plant �corresponding to

G�I �KG����� or between an input after the plant and an output before the

plant �corresponding to �K�I�GK���� so N cannot be represented in block

diagram form� Equivalently� if we apply the procedure in Section ���� to N

in ������� we are not able to �nd solutions to P�� and P�� in Step �

Another stacked transfer function which cannot in general be represented

in block diagram form is

N �
�
WPS

SGd

�

������

Remark� The case where N cannot be written as an LFT of K� is a special case of

the Hadamard�weighted H� problem studied by van Diggelen and Glover ����a��

Although the solution to this H� problem remains intractable� van Diggelen and

Glover ����b� present a solution for a similar problem where the Frobenius norm

is used instead of the singular value to �sum up the channels��

Exercise ���� Show that N in ���	��� can be represented in block diagram form

if Wp � wpI where wp is a scalar�

����� A general control con�guration including model

uncertainty

The general control con�guration in Figure �� may be extended to include

model uncertainty as shown by the block diagram in Figure ���� Here the



Figure ����
 Rearranging a system with multiple perturbations into the N!�

structure�
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��� Additional exercises

Most of these exercises are based on material presented in Appendix A� The

exercises illustrate material which the reader should know before reading the

subsequent chapters�

Exercise ���� Consider the performance speci�cation kwPSk�� Suggest a

rational transfer function weight wP �s� and sketch it as a function of frequency

and suggest a rational transfer function wP �s� for the following two cases�

	� We desire no steady
state o�set� a bandwidth better than  rad�s and a resonance

peak �worst ampli�cation caused by feedback� lower than ���

�� We desire less than � steady
state o�set� less than 	� error up to frequency

� rad�s� a bandwidth better than 	 rad�s� and a resonance peak lower than ��

Hint� See ������ and �������

Exercise ���	 By kMk� one can mean either a spatial or temporal norm� Explain

the di�erence between the two and illustrate by computing the appropriate in�nity

norm for

M� �
�
� �

�� �
�

� M��s� �
s� 

s� 

�
s� �

Exercise ���
 What is the relationship between the RGA
matrix and uncertainty

in the individual elements Illustrate this for perturbations in the � 
element of the

matrix

A �
�
	 �

� �
�

���	��

Exercise ���� Assume that A is non
singular� �i� Formulate a condition in terms

of singular value of E for the matrix A�E to remain non
singular� Apply this to A

in ���	��� and �ii� �nd an E of minimum magnitude which makes A�E singular�

Exercise ���� Compute kAki�� ���A� � kAki�� kAki�� kAkF � kAkmax and

kAksum for the following matrices and tabulate your results�

A� � I� A� �
�
 	

	 	
�
�A� �

�
 

 
�
�A� �

�
 

	 	
�

� A� �
�
 	

 	
�

Show using the above matrices that the following bounds are tight �i�e� we may have

equality� for �� � matrices �m � ���

���A� � kAkF �
p
m ���A�

kAkmax � ���A� � mkAkmax

kAki��
p
m � ���A� � pmkAki�

kAki��
p
m � ���A� � pmkAki�

kAkF � kAksum
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Exercise ��� Find example matrices to illustrate that the above bounds are also

tight when A is a square m�m matrix with m 
 ��

Exercise ���� Do the singular values bound the magnitude of the elements of a

matrix That is� is ���A� larger or equal to the largest element �in magnitude�� and

is ��A� smaller or equal to the smallest element For a non
singular matrix� how is

��A� related to the largest element in A��

Exercise ���� Consider a lower triangular m�m matrix A with aii � �� aij � 

for all i 
 j� and aij � 	 for all i � j�

a� What is detA 

b� What are the eigenvalues of A 

c� Show that the smallest singular value is less than or equal to ��m�

d� What is the RGA of A

e� Let m � � and �nd an E with the smallest value of ���E� such that A � E is

singular�

Exercise ���� Find two matrices A and B such that ��A � B� 
 ��A� � ��B�

which proves that the spectral radius does not satisfy the triangle inequality and is

thus not a norm�

Exercise ���� Write T � GK�I �GK��� as an LFT of K� i�e� �nd P such that

T � Fl�P�K��

Exercise ���� Write K as an LFT of T � GK�I �GK���� i�e� �nd J such that

K � Fl�J� T ��

Exercise ���	 State
space descriptions may be represented as LFTs� To

demonstrate this �nd H for
Fl�H� �s� � C�sI �A���B �D

Exercise ���
 Show that the set of all stabilizing controllers in ������ can be

written as K � Fl�J�Q� and �nd J�

Exercise ���� In ���		� we stated that the sensitivity of a perturbed plant� S� �

�I �G�K���� is related to that of the nominal plant� S � �I �GK��� by

S� � S�I �EOT �
��

where EO � �G� � G�G��� This exercise deals with how the above result may

be derived in a systematic �though cumbersome� manner using LFTs �see also

�Skogestad and Morari� 	���a���

a� First �nd F such that S� � �I � G�K��� � Fl�F�K�� and �nd J such that

K � Fl�J� T � �see Exercise ������

b� Combine these LFTs to �nd S� � Fl�N� T �� What is N in terms of G and G��

Note that since J�� � 	 we have from �A�	���

N �
�
F�� F��J��

J��F�� J�� � J��F��J��
�
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c� Evaluate S� � Fl�N� T � and show that

S� � I �G�G��T �I � �I �G�G���T ���

d� Finally� show that this may be rewritten as S� � S�I �EOT �
���
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�
ELEMENTS OF LINEAR

SYSTEM THEORY

The main objective of this chapter is to summarize important results from linear

system theory which will be required latex in the book� The treatment is thorough�

but readers are encouraged to consult other books� such as Kailath ������ or Zhou�

Doyle and Glover ����	�� for more details and background information if these results

are new to them�

��� System descriptions

The most important property of a linear system �operator� is that it satis�es

the superposition principle�� Let f�u� be a linear operator and u� and u� two

independent variables then
f�u� � u�� � f�u�� � f�u�� �����

We use in this book various representations of time	invariant linear systems


all of which are equivalent for systems that can be described by linear ordinary

di�erential equations with constant coe�cients and which do not involve

di�erentiation of the inputs �independent variables�� The most important of

these representations are discussed in this section�

����� State�space representation

Consider a system with m inputs �vector u� and l outputs �vector y� which

has an internal description of n states �vector x�� A natural way to represent

many physical systems is by nonlinear state	space models of the form

x � f�x� u�� y � g�x� u� �����

where x � dx�dt� Linear state	space models may then be derived from the

linearization of such models� They provide a convenient means of describing

�
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the dynamic behaviour of proper
 rational
 linear systems� In terms of

deviation variables �where x represents a deviation from some nominal value

or trajectory
 etc�� we have
x�t� � Ax�t� �Bu�t� �����

y�t� � Cx�t� �Du�t� �����

where A
 B
 C and D are real matrices� If ����� is derived by linearizing �����

then A � �f��x and B � �f��u �see Section ��� for an example of such a

derivation�� A is sometimes called the state matrix� These equations may be

rewritten as �
x

y
�

�
�
A B

C D
��
x

u
�

which gives rise to the short	hand notation

G
s
�

�
A B

C D

�

�����

which is frequently used to describe a state	space model of a system G�

Note that the representation in ��������� is not a unique description of the

input	output behaviour of a linear system� First
 there exist realizations with

the same input	output behaviour
 but with additional unobservable and�or

uncontrollable states �modes�� Second
 even for a minimal realization �a

realization with the fewest number of states and consequently no unobservable

or uncontrollable modes� there are an in�nite number of possibilities� To see

this let S be an invertible constant matrix
 and introduce the new states

q � Sx
 i�e�
 x � S��q� Then an equivalent state	space realization �i�e�

one with the same input	output behaviour� in terms of these new states

��coordinates�� is
Aq � SAS��� Bq � SB�Cq � CS��� Dq � D �����

The most common realizations are given by a few canonical forms
 such as

the Jordan �diagonalized� canonical form 
 the observability canonical form


etc�
Given the linear dynamical system in ����� with an initial condition x�t��

and an input u�t�
 the dynamical system response x�t� for t � t� can be

determined from

x�t� � eA�t�t��x�t�� �
Z t

t�
eA�t���Bu���d� �����

where the matrix exponential is eAt � I �
P�

k���At�
k�k�� The output is

then given by y�t� � Cx�t� � Du�t�� For a diagonalized realization �where
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SAS�� � � is a diagonal matrix� we have that e�t � diagfe�i�A�tg
 where

�i�A� is the i�th eigenvalue of A�

For a system with disturbances d and measurement noise n the state	space	

model is written as

x � Ax�Bu�Ed �����

y � Cx�Du� Fd� n �����

����� Impulse response representation

The impulse response matrix is

g�t� �
�
� t � �

CeAtB �D��t� t � �

������

where ��t� is the unit impulse function which satis�es lim���
R �

�
��t�dt � ��

The ij�th element of the impulse response matrix
 gij�t�
 represents the

response yi�t� to an impulse uj�t� � ��t� for a system with a zero initial

state�
The dynamic response to an arbitrary input u�t� with initial conditions

x��� � � may then
 from �����
 be written as

y�t� � g�t� � u�t� �
Z t

�

g�t� ��u���d� ������

where � denotes the convolution operator�

����� Transfer function representation � Laplace

transforms

The transfer function representation is unique and is very useful for directly

obtaining insight into the properties of a system� It is de�ned as the Laplace

transform of the impulse response

G�s� �
Z �

�

g�t�e�stdt ������

Alternatively
 we may start from the state	space description� With the

assumption of zero initial conditions
 x�t � �� � �
 the Laplace transforms of

����� and ����� become�

sx�s� � Ax�s� �Bu�s� � x�s� � �sI �A���Bu�s� ������

� We make the usual abuse of notation and let f�s� �rather than e�g� �f�s�� denote the

Laplace transform of f�t��
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y�s� � Cx�s� �Du�s� � y�s� � �C�sI �A���B �D�� �z �

G�s�

u�s� ������

where G�s� is the transfer function matrix� Equivalently


G�s� �

�

det�sI �A�
�Cadj�sI �A�B �D det�sI �A�� ������

where adj�M� denotes the adjugate �or classical adjoint� of M which is the

transpose of the matrix of cofactors of M � From the Appendix

det�sI �A� �

nY
i��

�i�sI �A� �

nY
i��

�s� �i�A�� ������

When disturbances are treated separately
 see ����� and �����
 the

corresponding disturbance transfer function is

Gd�s� � C�sI �A���E � F ������

Note that any system written in the state	space form of ����� and ����� has a

transfer function
 but the opposite is not true� For example
 time delays and

improper systems can be represented by Laplace transforms
 but do not have a

state	space representation� On the other hand
 the state	space representation

yields an internal description of the system which may be useful if the model

is derived from physical principles� It is also more suitable for numerical

calculations�

����� Frequency response

An important advantage of transfer functions is that the frequency response

�Fourier transform� is directly obtained from the Laplace transform by setting

s � j� in G�s�� For more details on the frequency response the reader is

referred to Sections ��� and ����

����� Coprime factorization

Another useful way of representing systems is the coprime factorization which

may be used both in state	space and transfer function form� In the latter case

a right coprime factorization of G is

G�s� � Nr�s�M
��
r �s� ������

where Nr�s� and Mr�s� are stable coprime transfer functions� The stability

implies that Nr�s� should contain all the RHP	zeros of G�s� andMr�s� should
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contain as RHP	zeros all the RHP	poles of G�s�� The coprimeness implies that

there should be no common RHP	zeros in Nr andMr which result in pole	zero

cancellations when forming NrM
��
r � Mathematically
 coprimeness means that

there exist stable Ur�s� and Vr�s� such that the following Bezout identity is

satis�ed

UrNr � VrMr � I ������

Similarly
 a left coprime factorization of G is

G�s� � M��
l �s�Nl�s� ������

Here Nl and Ml are stable and coprime
 that is
 there exist stable Ul�s� and

Vl�s� such that the following Bezout identity is satis�ed

NlUl �MlVl � I ������

For a scalar system
 the left and right coprime factorizations are identical


G � NM�� �M��N �

Remark� Two stable scalar transfer functions� N�s� and M�s�� are coprime if and

only if they have no common RHP�zeros� In this case we can always �nd stable U

and V such that NU �MV � ��

Example ��� Consider the scalar system

G�s� �
�s� ���s� 
�

�s� ���s� ��

���

�

To obtain a coprime factorization� we �rst make all the RHP�poles of G zeros of M �

and all the RHP�zeros of G zeros of N � We then allocate the poles of N and M so

that N and M are both proper and the identity G � NM�� holds� Thus

N�s� �
s� �

s� �
� M�s� �

s� �

s� 


is a coprime factorization� Usually� we select N and M to have the same poles as

each other and the same order as G�s�� This gives the most degrees of freedom subject

to having a realization of �N M �T with the lowest order� We then have that

N�s� � k
�s� ���s� 
�

s� � k�s� k�
� M�s� � k

�s� ���s� ��

s� � k�s� k�

���
��

is a coprime factorization for any k and for any k�� k� � ��

From the above example
 we see that the coprime factorization is not unique�

Now introduce the operator M� de�ned as M��s� � MT ��s� �which for

s � j� is the same as the complex conjugate transpose MH �  MT �� Then

G�s� � Nr�s�M
��
r �s� is called a normalized right coprime factorization if

M�
rMr �N�
rNr � I ������

�
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In this case Xr�s� � �Mr Nr �
T

satis�es X�
rXr � I and is called an

inner transfer function� The normalized left coprime factorization G�s� �

M��
l �s�Nl�s� is de�ned similarly
 requiring that

MlM
�
l �NlN

�
l � I ������

In this case Xl�s� � �Ml Nl �
T

is co�inner which means XlX
�
l � I �

The normalized coprime factorizations are unique to within a right �left�

multiplication by a unitary matrix�

Exercise ��� We want to �nd the normalized coprime factorization for the scalar

system in ������� Let N and M be as given in ����	�� and substitute them into

������� Show that after some algebra and comparing of terms one obtains
 k � �����

k� � ��	 and k� � ��	�

To derive normalized coprime factorizations by hand
 as in the above

exercise
 is in general di�cult� Numerically
 however
 one can easily �nd a

state space realization� If G has a minimal state	space realization

G�s�
s
�

�
A B

C D

�

then a minimal state	space realization of a normalized left coprime

factorization is given �Vidyasagar
 ����� by

�
Nl�s� Ml�s�

� s
�

�
A�HC B �HD H

R����C R����D R����

�

where

H

�
� ��BDT � ZCT �R��� R

�
� I �DDT

and the matrix Z is the unique positive de�nite solution to the algebraic

Riccati equation

�A�BS��DTC�Z � Z�A�BS��DTC�T � ZCTR��CZ �BS��BT � �

������

where

S
�
� I �DTD	

Notice that the formulae simplify considerable for a strictly proper plant
 i�e�

when D � �� The MATLAB commands in Table ��� �nd the normalized

coprime factorization for G�s� in �������

Exercise ��� Verify numerically �e�g�� using the MATLAB �le in Table ��� or the

��toolbox command sncfbal� that the normalized coprime factors of G�s� in ������

are as given in Exercise ����
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Table ���� MATLAB commands to generate normalized

coprime factorization�

� Uses the Mu toolbox

G�zp�sys��� ���	�
 ���� � G�s� in ������

�a	b	c	d��unpck�G�

�
� Find Normalized Coprime factors of system �a	b	c	d��

�
S�eye�size�d��d���d��d

R�eye�size�d�d����d�d�

A� � a�b�inv�S��d��c

R� � c��inv�R��c

Q� � b�inv�S��b�

�z�	z�	fail	reig min� � ric schr��A�� �R� �Q� �A��� Z � z��z�

� Alternative� aresolv in Robust control toolbox�

� �z�	z�	eig	zerr	zwellposed	Z� � aresolv�A��	Q�	R��

H � ��b�d� � Z�c���inv�R�

A � a � H�c

Bn � b � H�d Bm � H

C � inv�sqrt�R���c

Dn � inv�sqrt�R���d Dm � inv�sqrt�R��

N � pck�A	Bn	C	Dn�

M � pck�A	Bm	C	Dm�

����� More on state�space realizations

Inversion� In some cases we may want to �nd a state	space description of

the inverse of a system� For a square G�s� we have

G���s� �
�
A�BD��C BD��

�D��C D��

�

������

where D is assumed to be nonsingular� For a non	square G�s� in which D has

full row �or column� rank
 a right �or left� inverse of G�s� can be found by

replacing D�� by Dy
 the pseudo	inverse of D�

For a strictly proper system with D � �
 one may obtain an approximate

inverse by including a small additional feed	through termD
 preferably chosen

on physical grounds� One should be careful
 however
 to select the signs of the

terms in D such that one does not introduce RHP	zeros in G�s� because this

will make G�s��� unstable�

Improper systems� Improper transfer functions
 where the order of the

s	polynomial in the numerator exceeds that of the denominator
 cannot be

represented in standard state	space form� To approximate improper systems

by state	space models
 we can include some high	frequency dynamics which

we know from physical considerations will have little signi�cance�

Realization of SISO transfer functions� Transfer functions are a

good way of representing systems because they give more immediate insight
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into a systems behaviour� However
 for numerical calculations a state	space

realization is usually desired� One way of obtaining a state	space realization

from a SISO transfer function is given next� Consider a strictly proper transfer

function �D � �� of the form

G�s� �


n��s
n�� � � � �� 
�s� 
�

sn � an��sn�� � � � �� a�s� a�

������

and the relationship y�s� � G�s�u�s�� Then
 since multiplication by s

corresponds to di�erentiation in the time domain
 ������ and the relationship

correspond to the following di�erential equation

yn�t��an��y
n���t��� � ��a�y
��t��a�y�t� � 
n��u
n���t��� � ��
�u
��t��
�u�t�

where yn���t� and un���t� represent n � ��th order derivatives
 etc� We can

further write this as

yn � ��an��y
n�� � 
n��u
n��� � � � �� ��a�y
� � 
�u
�� � ��a�y � 
�u�� �z �

x�n� �z �

x�
n��� �z �

xn
�

where we have introduced new variables x�� x�� 	 	 	 xn and we have y � x��

Note that xn� is the n�th derivative of x��t�� With the notation x � x��t� �

dx�dt
 we have the following state	space equations

xn � �a�x� � 
�u

xn�� � �a�x� � 
�u� xn

���
x� � �an��x� � 
n��u� x�

corresponding to the realization

A �
	







�
�an�� � � � � � � �

�an�� � � � �

���

���

� � �

���

�a� � � � �

�a� � � � � � � �

�a� � � � � � � �
�

� � B �
	







�

n��


n��
���


�

�


�
�

� ������

C � � � � � � � � � � �

This is sometimes called the observer canonical form� Two advantages of this

realization are that one can obtain the elements of the matrices directly from



ELEMENTS OF LINEAR SYSTEM THEORY ���

the transfer function
 and that the output y is simply equal to the �rst state�

Notice that if the transfer function is not strictly proper
 then we must �rst

bring out the constant term
 i�e� write G�s� � G��s� �D
 and then �nd the

realization of G��s� using �������

Example ��� To obtain the state�space realization� in observer canonical form�

of the SISO transfer function G�s� � s�a

s�a
� we �rst bring out a constant term by

division to get

G�s� �
s� a

s� a
�

�
a

s� a
� �

Thus D � �� For the term ��a

s�a

we get from ������ that �� � �
a and a� � a� and

therefore ����� yields A � �a�B � �
a and C � ��

Example ��� Consider an ideal PID�controller

K�s� � Kc�� �

�
�Is

� �Ds� � Kc
�I�Ds

� � �Is� �

�Is

������

Since this involves di�erentiation of the input� it is an improper transfer function and

cannot be written in state�space form� A proper PID controller may be obtained by

letting the derivative action be e�ective over a limited frequency range� For example

K�s� � Kc�� �

�
�Is

�

�Ds

� � ��Ds
� ������

where � is typically ��� or less� This can now be realized in state�space form in an

in�nite number of ways� Four common forms are given below� In all cases� the D�

matrix� which represents the controller gain at high frequencies �s���� is a scalar

given by

D � Kc
� � �

�

����
�

�� Diagonalized form �Jordan canonical form�

A �
�
� �

� � �
��D

�
� B �

�
Kc��I

Kc���
��D�

�
� C � � � �� � ������

�� Observability canonical form

A �
�
� �

� � �
��D

�
� B �

�
	�

	�
�

� C � � � � � ������

where 	� � Kc�
�

�I
�

�
���D

�� 	� �

Kc

��� �D

������

	� Controllability canonical form

A �
�
� �

� � �
��D

�
� B �

�
�

�
�

� C � � 	� 	� � ����	�

where 	� and 	� are as given above�

�� Observer canonical form in �����
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A �
�
� �
��D

�

� �
�

� B �
�
��

��
�

� C � � � � � �����

where �� �

Kc

��I�D
� �� � Kc

���D � �I

���I�D

������

On comparing these four realizations with the transfer function model in

������
 it is clear that the transfer function o�ers more immediate insight� One

can at least see that it is a PID controller�

Time delay� A time delay �or dead time� is an in�nite	dimensional system

and not representable as a rational transfer function� For a state	space

realization it must therefore be approximated� An n�th order approximation of

a time delay � may be obtained by putting n �rst	order Pad!e approximations

in series

e��s �
��� �
�ns�

n

�� � �
�ns�

n

������

Alternative �and possibly better� approximations are in use
 but the above

approximation is often preferred because of its simplicity�

��� State controllability and state

observability

De�nition ��� State controllability The dynamical system x � Ax�Bu

or the pair �A�B� is said to be state controllable if� for any initial state

x��� � x�� any time t� � � and any �nal state x�� there exists an input u�t�

such that x�t�� � x�� Otherwise the system is said to be state uncontrollable�

From ����� one can verify that a particular input which achieves x�t�� � x�

is

u�t� � �BT eA
T �t��t�Wc�t��
���eAt�x� � x�� ������

where Wc�t� is the Gramian matrix at time t


Wc�t�
�
�

Z t
�

eA�BBT eA
T �d� ������

There are many ways to check whether a system is state controllable� First
 we

have that �A�B� is state controllable if and only if the controllability matrix

C
�
� �B AB A�B � � � An��B � ������

has rank n �full row rank�� Here n is the number of states�
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Example ��� Consider a scalar system with two states and the following state�

space realization
A �

�
�
 �


� ��
�

� B �
�
�

�
�

� C � � � � � � D � �

The transfer function is

G�s� � C�sI �A���B �

�
s� �

and a minimal realization has only one state� In fact� the �rst state is not

controllable� This is veri�ed since the controllability matrix has two linearly

dependent rows


C � �B AB � �
�
� ��

� ��
�

�

Second
 from ������
 we have that the system �A�B� is state controllable

if and only if the Gramian matrix Wc�t� has full rank �and thus is positive

de�nite� for any t � �� For a stable system �A is stable� we only need to

consider P
�
�Wc���
 that is
 the pair �A�B� is state controllable if and only

if the controllability Gramian
P

�
�

Z �
�

eA�BBT eA
T �d� ������

is positive de�nite �P � �� and thus has full rank� P may also be obtained as

the solution to the Lyapunov equation

AP � PAT � �BBT ������

In words
 if a system is state controllable we can by use of its inputs u bring

it from any initial state to any �nal state within any given �nite time� State

controllability would therefore seem to be an important property for control


but it rarely is for the following four reasons"

�� It says nothing about how the states behave at intermediate and later

times
 e�g�
 it does not imply that one can hold �as t	�� the states at a

given value�

�� The required inputs may be very large with sudden changes�

�� Some of the states may be of no practical importance

�� The de�nition is an existence result which provides no degree of

controllability �see Hankel singular values for this��

The �rst two objections are illustrated in the following example�
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�b� Response of states �tank temperatures��

Figure ���� State controllability of four �rst�order systems in series�

Example ��� Controllability of tanks in series

Consider a system with one input and four states arising from four �rst�order

systems in series� G�s� � ����s� ���� A physical example could be four identical

tanks �e�g�� bath tubs� in series where water �ows from one tank to the next�

Energy balances� assuming no heat loss� yield T� � �
�s��
T�� T� � �
�s��
T�� T� �

�
�s��
T�� T� � �
�s��
T� where the states x � �T� T� T� T� �

T are the four tank

temperatures� the input u � T� is the inlet temperature� and � � ���s is the residence

time in each tank� A state�space realization is

A �
	


�
����� � � �

���� ����� � �

� ���� ����� �

� � ���� �����
�

�B �
	


�
����

�
�

�

�
� ������

In practice� we know that it is very di�cult to control the four temperatures

independently� since at steady�state all temperatures must be equal� However� the

controllability matrix C in ������ has full rank� so the system is state controllable

and it must be possible to achieve at any given time any desired temperature in

each of the four tanks simply by adjusting the inlet temperature� This sounds almost

too good to be true� so let us consider a speci�c case� Assume that the system is

initially at steady�state �all temperatures are zero�� and that we want to achieve at
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t � ��� s the following temperatures
 T������ � �� T������ � ��� T������ � � and

T������ � ��� The change in inlet temperature� T��t�� to achieve this was computed

from ������ and is shown as a function of time in Figure ��� �a�� The corresponding

tank temperatures are shown in Figure ��� �b�� Two things are worth noting


�� The required change in inlet temperature is more than ��� times larger than the

desired temperature changes in the tanks and it also varies widely with time�

�� Although the tank temperatures are indeed at their desired values of �� at t � ���s

they quickly diverge from these values for t � ���s� �Since T� is reset to � at

t � ���s� all temperatures will eventually approach � as t����

It is quite easy to explain the shape of the input T��t�
 The fourth tank is furthest

away and we want its temperature to decrease �T������ � ��� and therefore the

inlet temperature T� is initially decreased to about ���� Then� since T������ � �

is positive� T� is increased to about �� at t � 

�s� it is subsequently decreased to

about ���� since T������ � ��� and �nally increased to more than ��� to achieve

T������ � ��

From the above example
 we see clearly that the property of state

controllability may not imply that the system is �controllable� in a practical

sense �� This is because state controllability is concerned only with the value

of the states at discrete values of time �target hitting�
 while in most practical

cases we want the outputs to remain close to some desired value �or trajectory�

for all values of time
 and without using inappropriate control signals�

So now we know that state controllability does not imply that the system is

controllable from a practical point of view� But what about the reverse" If we

do not have state controllability
 is this an indication that the system is not

controllable in a practical sense# In other words
 should we be concerned if a

system is not state controllable# In many cases the answer is �no�
 since we

may not be concerned with the behaviour of the uncontrollable states which

may be outside our system boundary or of no practical importance� If we

are indeed concerned about these states then they should be included in the

output set y� State uncontrollability will then appear as a rank de�ciency in

the transfer function matrix G�s� �see functional controllability below��

So is the issue of state controllability of any value at all# Yes
 because it

tells us whether we have included some states in our model which we have

no means of a�ecting� It also tells us when we can save on computer time

by deleting uncontrollable states which have no e�ect on the output for zero

initial conditions�

In summary
 state controllability is a system theoretical concept which

is important when it comes to computations and realizations� However
 its

name is somewhat misleading
 and most of the above discussion might have

been avoided if only Kalman
 who originally de�ned state controllability
 had

used a di�erent terminology� For example
 better terms might have been

� In Chapter � we introduce a more practical concept of controllability which we call �input

output controllability�
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�pointwise controllability� or �state a�ect	ability� from which it would have

been understood that although all the states could be individually a�ected


we might not be able to control them independently over a period of time�

De�nition ��� State observability The dynamical system x � Ax � Bu�

y � Cx�Du �or the pair �A�C�� is said to be state observable if� for any time

t� � �� the initial state x��� � x� can be determined from the time history of

the input u�t� and the output y�t� in the interval ��� t��� Otherwise the system�

or �A�C�� is said to be state unobservable�

The system �A�C� is state observable if and only if the observability matrix

O
�
�

	


�

C
CA
���

CAn��
�

� ������

has rank n �full column rank�� We also have that the system �A�C� is state

observable if and only if the Gramian matrix

Wo�t�
�
�

Z t
�

eA
T �CTCeA�d� ������

has full rank �and thus is positive de�nite� for any t � �� For a stable

system �A is stable�
 we need only consider Wo���
 where Q � Wo��� is

the observability Gramian
Q

�
�

Z �
�

eA
T �CTCeA�d� ������

Q can also be found as the solution to the following Lyapunov equation

ATQ�QA � �CTC ������

A system is state observable if we can obtain the value of all individual states

by measuring the output y�t� over some time period� However
 even if a system

is state observable it may not be observable in a practical sense� For example


obtaining x��� may require taking high	order derivatives of y�t� which may

be numerically poor and sensitive to noise� This is illustrated in the following

example�

Example ��� continued� If we de�ne y � T� �the temperature of the last tank��

then C � � � � � � � and we �nd that the observability matrix O has full column

rank so all states are observable from y� However� consider a case where the initial

temperatures in the tanks� Ti���� i � �� � � � � �� are nonzero �and unknown�� and the

inlet temperature T��t� � u�t� is zero for t � �� Then� from a practical point of view�

it is clear that it is numerically very di�cult to back�calculate� for example T����

based on measurements of y�t� � T��t� over some interval ��� t��� although in theory

all states are observable from the output�
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De�nition ��� Minimal realization� McMillan degree and hidden

mode A state�space realization �A�B�C�D� of G�s� is said to be a minimal

realization of G�s� if A has the smallest possible dimension �i�e� the fewest

number of states�� The smallest dimension is called the McMillan degree of

G�s�� A mode is hidden if it is not state controllable or observable and thus

does not appear in the minimal realization�

Since only controllable and observable states contribute to the input	output

behaviour from u to y
 it follows that a state	space realization is minimal

if and only if �A�B� is state controllable and �A�C� is state observable�

Note that
 uncontrollable states will contribute to the output response y�t�

if x�t � �� 
� �
 but their e�ect will die out if the uncontrollable states

are stable�Unobservable states have no e�ect on the outputs whatsoever
 and

may be viewed as outside the system boundary
 and thus of no interest from

a control point of view� One possible exception is for unstable hidden modes


because we probably want to avoid the system �blowing up�� see remarks

following De�nition ����

��� Stability

There are a number of possible ways in which stability may be de�ned
 see

Willems ������� Fortunately
 for linear time	invariant systems these di�erences

do not matter
 and we use the following de�nition"

De�nition ��� A system is 	internally
 stable if none of its components

contain hidden unstable modes and the injection of bounded external signals

at any place in the system result in bounded output signals measured anywhere

in the system�

The word internally is included in the de�nition to stress that we do not only

require the response from one particular input to another particular output to

be stable
 but require stability for signals injected or measured at any point

of the system� This is discussed in more detail for feedback systems in Section

���� Similarly
 the components must contain no hidden unstable modes
 that

is
 any instability in the components must be contained in their input	output

behaviour�

De�nition ��� State stabilizable� state detectable and hidden

unstable modes� A system is state stabilizable if all unstable modes are

state controllable� A system is state detectable if all unstable modes are state

observable� A system with unstabilizable or undetectable modes is said to

contain hidden unstable modes�
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A linear system with a pair �A�B� is state stabilizable if and only if there

exists a matrix F such that A � BF is stable �Hurwitz
 see Theorem ����


that is
 there exists a state feedback u � Fx such that the system is stable�

If a system is not stabilizable then no such F exists� Similarly
 a pair �A�C�

is state detectable if and only if there exists a matrix L such that A � LC is

stable �Hurwitz�� If a system is not detectable
 then there is a state within

the system which will eventually grow out of bounds
 but we have no way of

observing this from the outputs y�t��

Any unstable linear system can be stabilized by feedback control �at

least in theory� provided the system contains no hidden unstable mode�s��

Systems with hidden unstable modes must be avoided both in practice and in

computations �since variables will eventually blow up on our computer if not

on the factory $oor�� In the book we always assume
 unless otherwise stated


that our systems contain no hidden unstable modes�

��� Poles

For simplicity
 we here de�ne the poles of a system in terms of the eigenvalues

of the state	space A	matrix� More generally
 the poles of G�s� may be

somewhat loosely de�ned as the �nite values s � p where G�p� has a

singularity ��is in�nite��
 see also Theorem ��� below�

De�nition ��� Poles� The poles pi of a system with state�space description

�����	����� are the eigenvalues �i�A�� i � �� 	 	 	 � n of the matrix A� The pole or

characteristic polynomial �s� is de�ned as �s�
�
� det�sI�A� �

Qn
i���s�pi��

Thus the poles are the roots of the characteristic equation

�s�
�
� det�sI �A� � � ������

To see that this de�nition is reasonable
 recall ������� Note that if A does

not correspond to a minimal realization then the poles by this de�nition

will include the poles �eigenvalues� corresponding to uncontrollable and�or

unobservable states�

����� Poles and stability

For linear systems
 the poles determine stability"

Theorem ��� A linear dynamic system x � Ax�Bu is stable if and only if

all the poles are in the open left half plane �LHP�� that is� Ref�i�A�g � ���i�

A matrix A with such a property is said to be 
stable� or Hurwitz�

Note that systems with poles on the j�	axis
 including integrators
 are

de�ned to be unstable� To illustrate Theorem ��� consider a diagonalized
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realization �Jordan form�
 from which we see that the time response in �����

can be written as a sum of terms each containing a mode e�i�A�t
 also see

Appendix A����� Eigenvalues in the RHP with Ref�i�A�g � � give rise to

unstable modes since in this case e�i�A�t is unbounded as t	�� Eigenvalues

in the open LHP give rise to stable modes where e�i�A�t 	 � as t	��

����� Poles from state�space realizations

Poles are usually obtained numerically by computing the eigenvalues of the A	

matrix� To get the fewest number of poles we should use a minimal realization

of the system�

����� Poles from transfer functions

The following theorem from MacFarlane and Karcanias ������ allows us to

obtain the poles directly from the transfer function matrix G�s� and is also

useful for hand calculations� It also has the advantage of yielding only the

poles corresponding to a minimal realization of the system�

Theorem �� The pole polynomial �s� corresponding to a minimal

realization of a system with transfer function G�s� is the least common

denominator of all non�identically�zero minors of all orders of G�s��

A minor of a matrix is the determinant of the matrix obtained by deleting

certain rows and�or columns of the matrix� We will use the notation Mr
c to

denote the minor corresponding to the deletion of rows r and columns c in

G�s�� In the procedure de�ned by the theorem we cancel common factors

in the numerator and denominator of each minor� It then follows that only

observable and controllable poles will appear in the pole polynomial�

Example ��� Consider the plant
 G�s� � ��s����

�s���

e��s which has no state�space

realization as it contains a delay and is also improper� Thus we can not compute

the poles from ������� However from Theorem ��� we have that the denominator is

�s� �� and as expected G�s� has a pole at s � ���

Example ��� Consider the square transfer function matrix

G�s� �

�

��
��s� ���s� 
�
�
s� � s

�	 s� 

�

������

The minors of order � are the four elements which all have �s � ���s � 
� in the

denominator� The minor of order 
 is the determinant

detG�s� �

�s� ���s� 
� � 	s

��
���s� ����s� 
��
�

�

��
���s� ���s� 
�

����
�
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Note the pole�zero cancellation when evaluating the determinant� The least common

denominator of all the minors is then


�s� � �s� ���s� 
� ������

so a minimal realization of the system has two poles
 one at s � �� and one at

s � �
�

Example �� Consider the 
� � system� with � inputs and 
 outputs�

G�s� �

�

�s� ���s� 
��s� ��
�
�s� ���s� 
� � �s� ���

��s� ���s� 
� �s� ���s� �� �s� ���s� ��
�

������

The minors of order � are the �ve non�zero elements �e�g�� M�
��� � g���s��


�
s� �

�

s� �

�s� ���s� 
�
�

��
s� �

�

�
s� 


�

�
s� 


������

The minor of order 
 corresponding to the deletion of column 
 is

M� �
�s� ���s� 
��s� ���s� �� � �s� ���s� 
��s� ���

��s� ���s� 
��s� ����

�




�s� ���s� 
�
����	�

The other two minors of order two are

M� �

��s� ��

�s� ���s� 
��
� M� �

�

�s� ���s� 
�

�����

By considering all minors we �nd their least common denominator to be


�s� � �s� ���s� 
���s� �� ������

The system therefore has four poles
 one at s � ��� one at s � � and two at s � �
�

From the above examples we see that the MIMO	poles are essentially the

poles of the elements� However
 by looking at only the elements it is not

possible to determine the multiplicity of the poles� For example
 let G��s� be

a square �� � transfer function matrix with no pole at s � �a
 and consider

G�s� �

�
s� a

G��s� ������

How many poles at s � �a does a minimal realization of G�s� have# Note

that if G�s� is an m�m matrix
 then from �A���


det �G�s�� � det
�
�

s� a
G��s�

�
�

�

�s� a�m
det �G��s�� ������

Therefore if G� has no zeros at s � �a
 then G�s� has m poles at s � �a�

Thus
 the answer is that G�s� in ������ may have two poles at s � �a �as
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for G�s� in ������
 or T �s� in �������
 one pole at s � �a �as in ������ where

detG��s� has a zero at s � �a� or no pole at s � �a �if all the elements of

G��s� have a zero at s � �a��

As noted above
 the poles are obtained numerically by computing the

eigenvalues of the A	matrix� Thus
 to compute the poles of a transfer function

G�s�
 we must �rst obtain a state	space realization of the system� Preferably

this should be a minimal realization� For example
 if we make individual

realizations of the �ve non	zero elements in Example ��� and then simply

combine them to get an overall state space realization
 we will get a system

with �� states
 where each of the three poles �in the common denominator�

are repeated �ve times� A model reduction to obtain a minimal realization

will subsequently yield a system with four poles as given in �������

��� Zeros

Zeros of a system arise when competing e�ects
 internal to the system
 are

such that the output is zero even when the inputs �and the states� are not

themselves identically zero� For a SISO system the zeros zi are the solutions

to G�zi� � �� In general
 it can be argued that zeros are values of s at which

G�s� loses rank �from rank � to rank � for a SISO system�� This is the basis

for the following de�nition of zeros for a multivariable system �MacFarlane

and Karcanias
 ������

De�nition ��� Zeros� zi is a zero of G�s� if the rank of G�zi� is less than

the normal rank of G�s�� The zero polynomial is de�ned as z�s� �
Qnz

i���s�zi�

where nz is the number of �nite zeros of G�s��

In this book we do not consider zeros at in�nity� we require that zi is �nite�

Recall that the normal rank of G�s� is the rank of G�s� at all values of s

except at a �nite number of singularities �which are the zeros�� Note that this

de�nition of zeros is based on the transfer function matrix
 corresponding

to a minimal realization of a system� These zeros are sometimes called

�transmission zeros�
 but we will simply call them �zeros�� We may sometimes

use the term �multivariable zeros� to distinguish them from the zeros of the

elements of the transfer function matrix�

����� Zeros from state�space realizations

Zeros are usually computed from a state	space description of the system� First

note that the state	space equations of a system may be written as

P �s�
�
x

u
�

�
�
�

y
�

� P �s� �
�
sI �A �B

C D

�

������
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The zeros are then the values s � z for which the polynomial system matrix


P �s�
 loses rank
 resulting in zero output for some nonzero input� Numerically


the zeros are found as non	trivial solutions �with uz 
� � and xz 
� �� to the

following problem

�zIg �M�
�
xz

uz
�

� � ������

M �
�
A B

C D
�

� Ig �
�
I �

� �
�

������

This is solved as a generalized eigenvalue problem % in the conventional

eigenvalue problem we have Ig � I � Note that we usually get additional zeros

if the realization is not minimal�

����� Zeros from transfer functions

The following theorem from MacFarlane and Karcanias ������ is useful for

hand calculating the zeros of a transfer function matrix G�s��

Theorem ���� The zero polynomial z�s�� corresponding to a minimal

realization of the system� is the greatest common divisor of all the numerators

of all order�r minors of G�s�� where r is the normal rank of G�s�� provided that

these minors have been adjusted in such a way as to have the pole polynomial

�s� as their denominators�

Example ��� Consider the 
� 
 transfer function matrix

G�s� �

�
s� 


�
s� � �

��� 
�s� ��
�

���	��

The normal rank of G�s� is 
� and the minor of order 
 is the determinant�

detG�s� � ��s������	

�s����

� 
 s��
s��
� From Theorem ���� the pole polynomial is 
�s� � s�


and therefore the zero polynomial is z�s� � s� �� Thus� G�s� has a single RHP�zero

at s � ��

This illustrates that in general multivariable zeros have no relationship with

the zeros of the transfer function elements� This is also shown by the following

example where the system has no zeros�

Example ��� continued� Consider again the 
 � 
 system in ������ where

detG�s� in ������ already has 
�s� as its denominator� Thus the zero polynomial

is given by the numerator of ������� which is �� and we �nd that the system has no

multivariable zeros�

The next two examples consider nonsquare systems�
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Example ���� Consider the �� 
 system

G�s� �
h
s� �

s� �

s� 


s� 

i

���	��

The normal rank of G�s� is �� and since there is no value of s for which both elements

become zero� G�s� has no zeros�

In general
 non	square systems are less likely to have zeros than square

systems� For instance
 for a square � � � system to have a zero
 there must

be a value of s for which the two columns in G�s� are linearly dependent� On

the other hand
 for a �� � system to have a zero
 we need all three columns

in G�s� to be linearly dependent�

The following is an example of a non	square system which does have a zero�

Example �� continued�Consider again the 
 � � system in ������� and

adjust the minors of order 
 in ������ and ������ so that their denominators are


�s� � �s� ���s� 
���s� ��� We get

M��s� �
��s� ���


�s�

� M��s� �

�s� ���s� 
�


�s�

� M��s� �
�s� ���s� 
�


�s�

���		�

The common factor for these minors is the zero polynomial

z�s� � �s� �� ���	�

Thus� the system has a single RHP�zero located at s � ��

We also see from the last example that a minimal realization of a MIMO

system can have poles and zeros at the same value of s
 provided their

directions are di�erent� This is discussed next�

��� More on poles and zeros

����� Directions of poles and zeros

In the following let s be a �xed complex scalar and consider G�s� as a

complex matrix� For example
 given a state	space realization
 we can evaluate

G�s� � C�sI �A���B �D�

Zero directions� Let G�s� have a zero at s � z� Then G�s� loses rank at

s � z
 and there will exist nonzero vectors uz and yz such that

G�z�uz � �� yHz G�z� � � ������

Here uz is de�ned as the input zero direction
 and yz is de�ned as the output

zero direction� We usually normalize the direction vectors to have unit length


i�e�
 kuzk� � � and kyzk� � �� From a practical point of view the output zero
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direction
 yz
 is usually of more interest than uz
 because yz gives information

about which output �or combination of outputs� may be di�cult to control�

In principle
 we may obtain uz and yz from an SVD of G�z� � U&V H � and

we have that uz is the last column in V �corresponding to the zero singular

value of G�z�� and yz is the last column of U � An example was given earlier

in ������� A better approach numerically
 is to obtain uz from a state	space

description using the generalized eigenvalue problem in ������� Similarly
 yz

may be obtained from the transposed state	space description
 using MT in

�������

Pole directions� Let G�s� have a pole at s � p� Then G�p� is in�nite
 and

we may somewhat crudely write

G�p�up ��� yHp G�p� �� ������

where up is the input pole direction
 and yp the output pole direction� As for uz

and yz
 the vectors up and yp may be obtained from an SVD of G�p� � U&V H �

Then up is the �rst column in V �corresponding to the in�nite singular value�


and yp the �rst column in U � If the inverse of G�p� exists then it follows from

the SVD that

G���p�yp � �� uHp G
���p� � � ������

However if we have a state	space realization of G�s�
 then it is better to

determine the pole directions from the right and left eigenvectors of A

�Havre
 ������ Speci�cally
 if p is pole of G�s�
 then p is an eigenvalue of

A� Let tp and qp be the corresponding right and left eigenvectors
 i�e�

Atp � ptp� qHp A � pqHp

then the pole directions are
yp � Ctp� up � BHqp ������

Example ���� Consider the 
�
 plant in ������� which has a RHP�zero at z � �

and a LHP�pole at p � �
� We will use an SVD of G�z� and G�p� to determine the

zero and pole directions �but we stress that this is not a reliable method numerically��

To �nd the zero direction consider

G�z� � G��� �
�

	
�
� �

��� 	
�

�
�

	
�
���� �����

���� ����
��
���� �

� �
��
��	 ����

��� ��	
�H

The zero input and output directions are associated with the zero singular value of

G�z� and we get uz �
h
�����

����
i

and yz �
h
�����

����
i

� We see from yz that the the

zero has a slightly larger component in the �rst output� Next� to determine the pole

directions consider
G�p� �� � G��
 � �� �

�
��

�
�� � � �

��� 
��� � ��
�

���
�
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The SVD as �� � yields

G��
 � �� �

�
��

�
����� �����

���� �����
��
���� �

� �
��
��	 ����

���� ���	
�H

The pole input and outputs directions are associated with the largest singular value�

�� � �������� and we get up �
h
����

�����
i

and yp �
h
�����

����
i

� We note from yp that

the pole has a slightly larger component in the second output�

Remark� It is important to note that although the locations of the poles and

zeros are independent of input and output scalings� their directions are not� Thus�

the inputs and outputs need to be scaled properly before attempting to make any

interpretations based on pole and zero directions�

����� Remarks on poles and zeros

�� The zeros resulting from a minimal realization are sometimes called the

transmission zeros� If one does not have a minimal realization� then numerical

computations �e�g�� using MATLAB� may yield additional invariant zeros� These

invariant zeros plus the transmission zeros are sometimes called the system zeros�

The invariant zeros can be further subdivided into input and output decoupling

zeros� These cancel poles associated with uncontrollable or unobservable states

and hence have limited practical signi�cance� We recommend that a minimal

realization is found before computing the zeros�


� Rosenbrock ���		� ���� �rst de�ned multivariable zeros using something similar

to the Smith�McMillan form� Poles and zeros are de�ned in terms of the McMillan

form in Zhou et al� ����	��

�� The presence of zeros implies blocking of certain input signals �MacFarlane and

Karcanias� ��	�� If z is a zero of G�s�� then there exists an input signal of the

form uze
zt���t�� where uz is a �complex� vector and ���t� is a unit step� and a

set of initial conditions xz� such that y�t� � � for t � ��

�� For square systems we essentially have that the poles and zeros of G�s� are the

poles and zeros of detG�s�� However� this crude de�nition may fail in a few cases�

For instance� when there is a zero and pole in di�erent parts of the system which

happen to cancel when forming detG�s�� For example� the system

G�s� �
�
�s� 
���s� �� �

� �s� ����s� 
�
�

�����

has detG�s� � �� although the system obviously has poles at �� and �
 and

�multivariable� zeros at �� and �
�

�� G�s� in ����� provides a good example for illustrating the importance of

directions when discussing poles and zeros of multivariable systems� We note

that although the system has poles and zeros at the same locations �at �� and

�
�� their directions are di�erent and so they do not cancel or otherwise interact

with each other� In ����� the pole at �� has directions up � yp � � � � �T �

whereas the zero at �� has directions uz � yz � � � � �T �

��	 MULTIVARIABLE FEEDBACK CONTROL

	� For square systems with a nonsingular D�matrix� the number of poles is the same

as the number of zeros� and the zeros of G�s� are equal to the poles G���s�� and

vice versa�

� There are no zeros if the outputs contain direct information about all the states�

that is� if from y we can directly obtain x �e�g�� C � I and D � ��� see

Example ����� This probably explains why zeros were given very little attention

in the optimal control theory of the ��	��s which was based on state feedback�

�� Zeros usually appear when there are fewer inputs or outputs than states� or when

D �� �� Consider a square m�m plant G�s� � C�sI�A���B�D with n states�

We then have for the number of ��nite� zeros of G�s� �Maciejowski� ����� p����

D �� � � At most n�m� rank�D� zeros �����

D � � � At most n� 
m � rank�CB� zeros �����

D � � and rank�CB� � m � Exactly n�m zeros ���	�

�� Poles may be moved by feedback control �whereas feedforward control can

cancel poles but not move them�� For example� for a strictly proper plant

G�s� � C�sI � A���B the open�loop poles are determined by the characteristic

polynomial 
ol�s� � det�sI�A�� If we apply constant gain negative feedback u �

�K�y� the poles are determined by the corresponding closed�loop characteristic

polynomial 
cl�s� � det�sI�A�BK�C�� Thus� unstable plants may be stabilized

by use of feedback control� Also see Example ���
�

��� In general� the zeros of G�I�KG��� are the zeros of G plus the poles of K� This

means that zeros inG are notmoved by feedback� Their e�ect can be counteracted

by a cascade compensator with poles at zero origins� but such calculations are

not possible for RHP�zeros due to internal stability �see Section ���� However� it

is possible to move a zero by adding a parallel branch� such as y � �G�K�u� but

since y is a physical output from the plant this corresponds to adding another

actuator�

��� The zero location� including its output direction� is una�ected by feedback�

However� even though yz is �xed it is still possible with feedback control to

move the deteriorating e�ect of a RHP�zero to a given output channel� provided

yz has a nonzero element for this output� This was illustrated by the example in

Section ���� and is discussed in more detail in Section 	�����

�
� Pinned zeros� A zero is pinned to a subset of the outputs if yz has one or more

elements equal to zero� In most cases� pinned zeros have a scalar origin� Pinned

zeros are quite common in practice� and their e�ect cannot be moved freely to

any output� For example� the e�ect of a measurement delay for output y� cannot

be moved to output y�� Similarly� a zero is pinned to certain inputs if uz has one

or more elements equal to zero� An example is G�s� in ������ where the zero at

�
 is pinned to input u� and to output y��

��� Zeros of nonsquare systems� The existence of zeros for non�square systems

is common in practice in spite of what is sometimes claimed in the literature�

In particular� they appear if we have a zero pinned to the side of the plant

with the fewest number of channels� As an example consider a plant with three

inputs and two outputs G��s� �

�
h�� h�� h��

h���s� z� h���s� z� h���s� z�
�

which
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has a zero at s � z which is pinned to output y�� i�e�� yz � � � � �T � This

follows because the second row of G��z� is equal to zero� so the rank of G��z�

is �� which is less than the normal rank of G��s� which is 
� On the other hand

G��s� �
�
h���s� z� h�� h��

h���s� z� h�� h��
�

does not have a zero at s � z since G��z� has

rank 
 which is equal to the normal rank of G��s� �assuming that the last two

columns of G��s� have rank 
��

��� There has been some discussion about whether multivariable zeros really exist

since they may be removed by adding extra outputs� To some extent this is

correct� It is well�known that there are no zeros if we use all the states as

outputs� However� to control all states independently we need as many inputs�

Thus� by adding states as outputs to remove the zeros� we get a plant which is

not functionally controllable�

��� The concept of functional controllability� see page 
��� is related to zeros� Loosely

speaking� one can say that a system which is functionally uncontrollable has in

a certain output direction �a zero for all values of s��

The control implications of RHP	zeros and RHP	poles are discussed for SISO

systems on pages ���	��� and for MIMO systems on pages ���	����

Example ���� E�ect of feedback on poles and zeros� Consider a SISO

negative feedback system with plant G�s� � z�s��
�s� and a constant gain controller�

K�s� � k� The closed�loop response from reference r to output y is

T �s� �

L�s�

� � L�s�
�

kG�s�

� � kG�s�
�

kz�s�


�s� � kz�s�
� k

zcl�s�


cl�s�

����

Note the following


�� The zero polynomial is zcl�s� � z�s�� so the zero locations are unchanged by

feedback�

�� The pole locations are changed by feedback� For example�

k � � � 
cl�s�� 
�s� �����

k �� � 
cl�s�� kz�s� �����

That is� as we increase the feedback gain� the closed�loop poles move from open�

loop poles to the open�loop zeros� RHP�zeros therefore imply high gain instability�

These results are well known from a classical root locus analysis�

Example ���� Consider a SISO system G�s� � C�sI � A���B � D which has

just one state� i�e� A is a scalar� The system has a zero at z � A� �CB��D� When

D � � the zero moves to in�nity� i�e�� no zero�

Example ���� We want to prove that G�s� � C�sI �A���B �D has no zeros if

D � � and rank �C� � n� where n is the number of states� Solution� Consider the

polynomial system matrix P �s� in ������� The �rst n columns of P are independent

because C has rank n� The last m columns are independent of s� The �rst n and
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last m columns are always independent since D � � and C has full column rank and

thus cannot have any columns equal to zero� We need to require D � � because if

D is nonzero then the �rst n columns of P may depend on the last m columns for

some value of s�

Exercise ��� Determine the poles and zeros of

G�s� �
�
��s���	s��
�s���

s�s�����s����s���

�s���

�s����s���

��s���

�s����s���

��s���

�s����s���
�

given that
detG�s� �

���s� � s� � ��s� � 
�s� ���

s�s� ����s� ����s � ���

�

���s� ����s� 
��s� ��

s�s� ����s� ����s� ���

How many poles does G�s� have�

Exercise ��� Given y�s� � G�s�u�s�� with G�s� � ��s

��s
� determine a state�space

realization of G�s� and then �nd the zeros of G�s� using the generalized eigenvalue

problem� What is the transfer function from u�s� to x�s�� the single state of G�s��

and what are the zeros of this transfer function�

Exercise ��� Find the zeros for a 
 � 
 plant with A �

�
a�� a��

a�� a��
�

� B ��
� �

b�� b��
�

� C � I�D � �

Exercise ��� For what values of c� does the following plant have RHP�zeros�

A �
�
�� �

� ��
�

� B � I�C �
�
�� c�

�� �
�

� D �
�
� �

� �
�

������

Exercise ��� Consider the plant in ������� but assume that both states are

measured and used for feedback control� i�e� ym � x �but the controlled output is

still y � Cx � Du�� Can a RHP�zero in G�s� give problems with stability in the

feedback system� Can we achieve �perfect� control of y in this case� �Answers
 No

and no��

��� Internal stability of feedback systems

To test for closed	loop stability of a feedback system it is usually enough to

check just one closed	loop transfer function
 e�g� S�s�� However
 this assumes

that there are no internal RHP pole	zero cancellations between the controller

and the plant� The point is best illustrated by an example�
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Example ���� Consider the feedback system shown in Figure ��� where G�s� �

s��

s��
� K�s� � k
s

s��

s��
� In forming the loop transfer function L � GK we cancel the

term �s� ��� a RHP pole�zero cancellation� to obtain

L � GK �
k

s
� and S � �I � L��� �

s
s� k

������

S�s� is stable� that is� the transfer function from dy to y is stable� However� the

transfer function from dy to u is unstable


u � �K�I �GK���dy � �

k�s� ��

�s� ���s� k�
dy ����
�

Consequently� although the system appears to be stable when considering the output

signal y� it is unstable when considering the �internal� signal u� so the system is

�internally� unstable�

eee q

�

��� ����� �

�

�

�

�

�

yu

dydu

G
s��

s��

k�s���

s�s���

K

r

Figure ���� Internally unstable system

Remark� In practice� it is not possible to cancel exactly a plant zero or pole because

of modelling errors� In the above example� therefore� L and S will also be unstable�

However� it is important to stress that even if we could achieve a perfect RHP

pole�zero cancellation� as in the above example� we would still get an internally

unstable system� This is a subtle but important point� In this ideal case the state�

space descriptions of L and S contain an unstable hidden mode corresponding to an

unstabilizable or undetectable state�

From the above example
 it is clear that to be rigorous we must consider

internal stability of the feedback system
 see De�nition ���� To this e�ect

consider the system in Figure ��� where we inject and measure signals at both

locations between the two components
 G and K� We get

u � �I �KG���du �K�I �GK���dy ������

y � G�I �KG���du � �I �GK���dy ������

The theorem below follows immediately"
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e

eq

q

�
� �

�
���

�
�

�

�

�

y
dy u

du

G
�K

Figure ���� Block diagram used to check internal stability of feedback system

Theorem ���� The feedback system in Figure ��� is internally stable if

and only if all four closed�loop transfer matrices in ������ and ������ are

stable�

In addition
 we assume as usual that the components G and K contain

no unstable hidden modes� The signal relationship in the block diagram of

Figure ��� may also be written as �see Exercise �����
u

y
�

�M�s�
�
du

dy
�

� M�s� �
�
I K

�G I
���

������

and we get that the system is internally stable if and only if M�s� is stable�

If we disallow RHP pole	zero cancellations between system components


such asG andK
 then stability of one of the four closed	loop transfer functions

implies stability of the other three� This is stated in the following theorem�

Theorem ���� Assume there are no RHP pole�zero cancellations between

G�s� and K�s�� that is� all RHP�poles in G�s� and K�s� are contained in the

minimal realizations of GK and KG� Then the feedback system in Figure ���

is internally stable if and only if one of the four closed�loop transfer function

matrices in ������ and ������ is stable�

Proof
 A detailed proof is rather involved� For more details the reader is referred to

Zhou et al� ����	� p��
��� �

Note how we de�ne pole	zero cancellations in the above theorem� In this

way
 RHP pole	zero cancellations resulting from G orK not having full normal

rank are also disallowed� For example
 with G�s� � ���s� a� and K � � we

get GK � � so the RHP	pole at s � a has disappeared and there is e�ectively

a RHP pole	zero cancellation� In this case
 we get S�s� � � which is stable


but internal stability is clearly not possible�
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Exercise �� Use �A��� to show that M�s� in ������ is identical to the block

transfer function matrix implied by ����	� at �������

��	�� Implications of the internal stability requirement

The requirement of internal stability is a feedback system leads to a number

of interesting results
 some of which are investigated below� Note in particular

Exercise ���� where we discuss alternative ways of implementing a two degrees	

of	freedom controller�

We �rst prove the following statements which apply when the overall

feedback system is internally stable �Youla
 Jabr and Lu
 �����"

� If G�s� has a RHP�zero at z� then L � GK�T � GK�I � GK����

SG � �I � GK���G� LI � KG and TI � KG�I � KG��� will each

have a RHP�zero at z�

�� If G�s� has a RHP�pole at p� then L � GK and LI � KG also have a RHP�

pole at p� while S � �I�GK����KS � K�I�GK��� and SI � �I�KG���

have a RHP�zero at p�

Proof of �
 To achieve internal stability RHP pole�zero cancellations between system

components� such as G and K� are not allowed� Thus L � GK must have a RHP�

zero when G has a RHP�zero� Now S is stable and thus has no RHP�pole which can

cancel the RHP�zero in L� and so T � LS must have a RHP�zero at z� Similarly�

SG � �I �GK���G must have a RHP�zero� etc� �

Proof of �
 Clearly� L has a RHP�pole at p� Since T is stable� it follows from T � LS

that S must have a RHP�zero which exactly cancels the RHP�pole in L� etc� �

We notice from this that a RHP pole	zero cancellation between two transfer

functions
 such as between L and S � �I � L���
 does not necessarily imply

internal instability� It is only between separate physical components that RHP

pole	zero cancellations are not allowed�

Exercise ��� Interpolation constraints� For internal stability prove the

following interpolation constraints which apply for SISO feedback systems when the

plant G�s� has a RHP�zero z or a RHP�pole p


G�z� � � � L�z� � � 	 T �z� � �� S�z� � � ����	�

G���p� � � � L�p� �� 	 T �p� � �� S�p� � � �����

Exercise ���� Given the complementary sensitivity functions

T��s� �


s� �

s� � ���s� �

T��s� �

�
s� �

s� � ���s� �

what can you say about possible RHP�poles or RHP�zeros in the corresponding loop

transfer functions� L��s� and L��s��
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A discussion of the signi�cance of these interpolation constraints is relevant�

Recall that for �perfect control� we want S � � and T � �� We note from

������ that a RHP	zero z puts constraints on S and T which are incompatible

with perfect control� On the other hand
 the constraints imposed by the RHP	

pole are consistent with what we would like for perfect control� Thus the

presence of RHP	poles mainly impose problems when tight �high gain� control

is not possible� We discuss this in more detail in Chapters � and ��

The following example demonstrates another application of the internal

stability requirement�

e
e

e

�
�

����

�

����

�
�

���

��
�

�d��c�

�b��a�

r

ym ym

K�

K�

Kr

�

�

ym
�

�

KyKr

u
ur

Ky
�

� u

Kr

r

ym

K

u

r
Figure ���� Di�erent forms of two degrees�of�freedom controller

�a� General form�

�b� Suitable when Ky�s� has no RHP�zeros�

�c� Suitable when Ky�s� is stable �no RHP�poles��

�d� Suitable when Ky�s� � K��s�K��s� where K��s� contains

no RHP�zeros and K��s� no RHP poles�

Exercise ���� Internal stability of two degrees�of�freedom control

con�gurations� A two degrees�of�freedom controller allows one to improve

performance by treating disturbance rejection and command tracking separately �at

least to some degree�� The general form shown in Figure ����a� is usually preferred

both for implementation and design� However� in some cases one may want to �rst

design the pure feedback part of the controller� here denoted Ky�s�� for disturbance

rejection� and then to add a simple precompensator� Kr�s�� for command tracking�

This approach is in general not optimal and may also yield problems when it comes

to implementation� in particular� if the feedback controller Ky�s� contains RHP poles

or zeros� which can happen� This implementation issue is dealt with in this exercise
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by considering the three possible schemes in Figure ��� �b����� �d�� In all these

schemes Kr must clearly be stable�

�� Explain why the con�guration in Figure ��� �b� should not be used if Ky

contains RHP�zeros �Hint
 Avoid a RHP�zero between r and y��

�� Explain why the con�guration in Figure ���c should not be used if Ky contains

RHP�poles� This implies that this con�guration should not be used if we want integral

action in Ky �Hint
 Avoid a RHP�zero between r and y��

	� Show that for a feedback controller Ky the con�guration in Figure ��� �d� may

be used� provided the RHP�poles �including integrators� of Ky are contained in K�

and the RHP�zeros in K�� Discuss why one may often set Kr � I in this case �to

give a fourth possibility��

The requirement of internal stability also dictates that we must exercise

care when we use a separate unstable disturbance model Gd�s�� To avoid this

problem one should for state space computations use a combined model for

inputs and disturbances
 i�e� write the model y � Gu�Gdd in the form

y � �G Gd �
�
u

d
�

where G and Gd share the same states
 see ������ and �������

��	 Stabilizing controllers

In this section
 we introduce a parameterization
 known as the Q	

parameterization or Youla	parameterization �Youla
 Jabr and Bongiorno


����� of all stabilizing controllers for a plant� By all stabilizing controllers we

mean all controllers that yield internal stability of the closed	loop system� We

�rst consider stable plants
 for which the parameterization is easily derived


and then unstable plants where we make use of the coprime factorization�

��
�� Stable plants

Theorem ���� For a stable plant G�s� the negative feedback system in

Figure ��� is internally stable if and only if Q � K�I �GK��� is stable�

Proof
 The four transfer functions in ������ and ������ are easily shown to be

K�I �GK��� � Q ������

�I �GK��� � I �GQ ������

�I �KG��� � I �QG ������

G�I �KG��� � G�I �QG� ������

which are clearly all stable if G and Q are stable� Thus� with G stable the system is

internally stable if and only if Q is stable� �
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As proposed by Zames ������
 by solving ������ with respect to the controller

K
 we obtain that a parameterization of all stabilizing negative feedback

controllers for the stable plant G�s� is

K � �I �QG���Q � Q�I �GQ��� ������

where the �parameter� Q is any stable transfer function matrix� If only proper

controllers are allowed then Q must be proper since the term �I � QG��� is

semi	proper�

Note� We have shown that by varying Q freely �but stably� we will always

have internal stability
 and thus avoid internal RHP pole	zero cancellations

between K and G� This means that although Q may generate unstable

controllers K
 there is no danger of getting a RHP	pole in K that cancels

a RHP	zero in G�

The parameterization in ������ is identical to the internal model control

�IMC� parameterization �Morari and Za�riou
 ����� of stabilizing controllers�

It may be derived directly from the IMC structure given in Figure ���� The

idea behind the IMC	structure is that the �controller�Q can be designed in an

open	loop fashion since the feedback signal only contains information about

the di�erence between the actual output and the output predicted from the

model�

e

e

e q q� ��

�

���
���

�

�
dy

�

�

model

G

�

�

y

plant
GQ

K

r
Figure ��	� The internal model control �IMC� structure�

Exercise ���� Show that the IMC�structure in Figure ��� is internally unstable if

either Q or G is unstable�

Exercise ���� Show that testing internal stability of the IMC�structure is

equivalent to testing for stability of the four closed�loop transfer functions in ������

�����
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Exercise ���� Given a stable controller K� What set of plants can be stabilized

by this controller� �Hint
 interchange the roles of plant and controller��

��
�� Unstable plants

For an unstable plant G�s�
 consider its coprime factorization as described in

������ and ������

G�s� � NrM
��
r �M��
l Nl ������

A parameterization of all stabilizing negative feedback controllers for the plant

G�s� is then �Vidyasagar
 �����

K�s� � �Vr �QNl�
���Ur �QMl� ������

where Vr and Ur satisfy the Bezout identity ������ for the right coprime

factorization
 and Q�s� is any stable transfer function satisfying the technical

condition det�Vr����Q���Nl���� 
� ��

Remark � With Q � � we have K� � V ��r Ur� so Vr and Ur can alternatively be

obtained from a left coprime factorization of some initial stabilizing controller K��

Remark � For a stable plant� we may write G�s� � Nr�s� � Nl�s� corresponding

to Mr �Ml � I� In this case Ur � � and Vr � I satis�es the Bezout identity �������

and ������ yields K � �I �QG���Q as found before in ����
��

Remark � All closed�loop transfer functions �S� T � etc�� will be in the form

H� � H�QH�� so they are a�ne� in Q� This can be useful when Q is varied to

minimize the norm of some closed�loop transfer function�

Remark � We can also formulate the parameterization of all stabilizing controllers

in state�space form� e�g� see page ��
 in Zhou et al� ����	� for details�

��
 Stability analysis in the frequency domain

As noted above the stability of a linear system is equivalent to the system

having no poles in the closed right	half plane �RHP�� This test may be used

for any system
 be it open	loop or closed	loop� In this section we will study

the use of frequency	domain techniques to derive from the open�loop transfer

matrix L�j��
 information about closed�loop stability� This provides a direct

generalization of Nyquist�s stability test for SISO systems�

Note that when we talk about eigenvalues in this section
 we refer to the

eigenvalues of a complex matrix
 usually L�j�� � GK�j��
 and not those of

the state matrix A�

� A function f�x� is a�ne in x if f�x� � a� bx it is linear in x if a � ��
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����� Open and closed�loop characteristic polynomials

e q

�

��� y

L

�

�r
Figure ��
� Negative feedback system�

Before deriving a multivariable Nyquist condition we need some preliminary

results involving the determinant of the return di�erence operator �I�L�j����

Consider the feedback system shown in Figure ���
 where L�s� is the loop

transfer function matrix� Stability of the open	loop system is determined by

the poles of L�s�� If L�s� has a state	space realization
�
Aol Bol

Col Dol
�


that is

L�s� � Col�sI �Aol�
��Bol �Dol ������

then the poles of L�s� are the roots of the open�loop characteristic polynomial

ol�s� � det�sI �Aol� ������

Assume there are no RHP pole	zero cancellations between G�s� and K�s��

Then from Theorem ���� internal stability of the closed�loop system is

equivalent to the stability of S�s� � �I �L�s����� The state matrix of S�s� is

given �assuming L�s� is well	posed i�e� Dol 
� �I� by

Acl � Aol �Bol�I �Dol�
��Col ������

This equation may be derived by writing down the state	space equations for

the transfer function from r to y in Figure ���

x � Aolx�Bol�r � y� ������

y � Colx�Dol�r � y� ������

and using ������ to eliminate y from ������� The closed	loop characteristic

polynomial is thus given by

cl�s�
�
� det�sI �Acl� � det�sI �Aol �Bol�I �Dol�
��Col� �������
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Relationship between characteristic polynomials

The above identities may be used to express the determinant of the return

di�erence operator
 I � L
 in terms of cl�s� and ol�s�� From ������ we get

det�I � L�s�� � det�I � Col�sI �Aol�
��Bol �Dol� �������

Schur�s formula �A���� then yields �with A�� � I �Dol� A�� � �Col� A�� �

sI �Aol� A�� � Bol�

det�I � L�s�� �
cl�s�

ol�s�
� c �������

where c � det�I�Dol� is a constant which is of no signi�cance when evaluating

the poles� Note that cl�s� and ol�s� are polynomials in s which have zeros

only
 whereas det�I � L�s�� is a transfer function with both poles and zeros�

From �������
 assuming no cancellations between ol�s� and cl�s�
 we have

that the closed	loop poles are solutions to

det�I � L�s�� � � �������

Example ���� We will rederive expression ������� for SISO systems� Let L�s� �

k z�s�

�ol�s�

The sensitivity function is given by

S�s� �

�

� � L�s�
�


ol�s�

kz�s� � 
ol�s�

�������

and the denominator is

d�s� � kz�s� � 
ol�s� � 
ol�s��� �

kz�s�


ol�s�
� � 
ol�s��� � L�s�� �������

which is the same as 
cl�s� in ������� �except for the constant c which is necessary

to make the leading coe�cient of 
cl�s� equal to �� as required by its de�nition��

Remark� One may be surprised to see from ������� that the zero polynomial of

S�s� is equal to the open�loop pole polynomial� 
ol�s�� but this is indeed correct� On

the other hand� note from ���� that the zero polynomial of T �s� � L�s�����L�s��

is equal to z�s�� the open�loop zero polynomial�

Expression ������� for det�I � L�s�� enables a straightforward generalization

of Nyquist�s stability condition to multivariable systems� This in turn is very

useful in developing robustness tests and so will be considered next in some

detail�

����� MIMO Nyquist stability criteria

We will consider the negative feedback system of Figure ���
 and assume

there are no internal RHP pole	zero cancellations in the loop transfer function
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Re

Im
�

Figure ���� Nyquist D�contour for system with no open�loop j��axis poles�

matrix L�s�
 i�e� L�s� contains no unstable hidden modes� Then the generalized

�or MIMO� Nyquist theorem
 which allows us to evaluate closed�loop stability

from the frequency response of L�j��
 can be stated as follows�

Theorem ���� Generalized Nyquist theorem�

Let Pol denote the number of open�loop unstable poles in L�s�� The closed�

loop system with loop transfer function L�s� and negative feedback is stable if

and only if the Nyquist plot of det�I � L�s��

i� makes Pol anti�clockwise encirclements of the origin� and

ii� does not pass through the origin�

Remark � By �Nyquist plot of det�I�L�s��� we mean �the image of det�I�L�s��

as s goes clockwise around the NyquistD�contour�� The NyquistD�contour includes

the entire j��axis �s � j�� and an in�nite semi�circle into the right�half plane as

illustrated in Figure ��� The D�contour must also avoid locations where L�s� has

j��axis poles by making small indentations �semi�circles� around these points�

Remark � In the following we de�ne for practical reasons unstable poles or RHP�

poles as poles in the open RHP� excluding the j��axis� In this case the Nyquist

D�contour should make a small semicircular indentation into the RHP at locations

where L�s� has j��axis poles� thereby avoiding the extra count of encirclements due

to j��axis poles�

Remark � Another practical way of avoiding the indentation is to shift all j��axis

poles into the LHP� for example� by replacing the integrator ��s by ���s� �� where

� is a small positive number�

Remark � We see that for stability det�I � L�j��� should make no encirclements

of the origin if L�s� is open�loop stable� and should make Pol anti�clockwise

encirclements if L�s� is unstable� If this condition is not satis�ed then the number of
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Figure ���� Typical Nyquist plot of � � detL�j���

closed�loop unstable poles of �I � L�s���� is Pcl � N � Pol where N is the number

of clockwise encirclements of the origin by the Nyquist plot of det�I � L�j���� see

��������

Remark 	 For any real system� L�s� is proper and so to plot det�I � L�s�� as s

traverses the D�contour we need only consider s � j� along the imaginary axis�

This follows since lims�� L�s� � Dol is �nite� and therefore for s �� the Nyquist

plot of det�I � L�s�� converges to det�I �Dol� which is on the real axis�

Remark 
 In many cases L�s� contains integrators so for � � � the plot of

det�I � L�j��� may �start� from �j�� A typical plot for positive frequencies is

shown in Figure ��� for the system

L � GK� G �

���
s� ��

��s� �����s� ��
� K � ����

�
�s � �

�
�s

�����	�

Note that the solid and dashed curves �positive and negative frequencies� need to

be connected as � approaches �� so there is also a large �in�nite� semi�circle �not

shown� corresponding to the indentation of the D�contour into the RHP at s � �

�the indentation is to avoid the integrator in L�s��� To �nd which way the large

semi�circle goes one can use the rule �based on conformal mapping arguments� that

a right�angled turn in the D�contour will result in a right�angled turn in the Nyquist

plot� It then follows for the example in �����	� that there will be an in�nite semi�

circle into the RHP� There are therefore no encirclements of the origin� Since there

are no open�loop unstable poles �j��axis poles are excluded in the counting�� Pol � ��

and we conclude that the closed�loop system is stable�

Proof of Theorem ����
 The proof makes use of the following result from complex

variable theory �Churchill� Brown and Verhey� �����

�	� MULTIVARIABLE FEEDBACK CONTROL

Lemma ���	 Argument Principle� Consider a �transfer� function f�s� and let

C denote a closed contour in the complex plane� Assume that

�� f�s� is analytic along C� that is� f�s� has no poles on C�

�� f�s� has Z zeros inside C�

	� f�s� has P poles inside C�

Then the image f�s� as the complex argument s traverses the contour C once in a

clockwise direction will make Z � P clockwise encirclements of the origin�

Let N �A� f�s�� C� denote the number of clockwise encirclements of the point A

by the image f�s� as s traverses the contour C clockwise� Then a restatement of

Lemma ���� is

N ��� f�s�� C� � Z � P ������

We now recall �����
� and apply Lemma ���� to the function f�s� � det�I�L�s�� �

�cl�s�

�ol�s�

 c selecting C to be the Nyquist D�contour� We assume c � det�I �Dol� �� �

since otherwise the feedback system would be ill�posed� The contour D goes along

the j��axis and around the entire RHP� but avoids open�loop poles of L�s� on the

j��axis �where 
ol�j�� � �� by making small semi�circles into the RHP� This is

needed to make f�s� analytic along D� We then have that f�s� has P � Pol poles

and Z � Pcl zeros inside D� Here Pcl denotes the number of unstable closed�loop

poles �in the open RHP�� ������ then gives

N ��� det�I � L�s��� D� � Pcl � Pol �������

Since the system is stable if and only if Pcl � �� condition i� of Theorem ���� follows�

However� we have not yet considered the possibility that f�s� � det�I � L�s��� and

hence 
cl�s�� has zeros on the D�contour itself� which will also correspond to a

closed�loop unstable pole� To avoid this det�I � L�j��� must not be zero for any

value of � and condition ii� in Theorem ���� follows� �

Example ���� SISO stability conditions� Consider an open�loop stable SISO

system� In this case� the Nyquist stability condition states that for closed�loop stability

the Nyquist plot of � � L�s� should not encircle the origin� This is equivalent to the

Nyquist plot of L�j�� not encircling the point �� in the complex plane

����� Eigenvalue loci

The eigenvalue loci �sometimes called characteristic loci� are de�ned as the

eigenvalues of the frequency response of the open	loop transfer function


�i�L�j���� They partly provide a generalization of the Nyquist plot of L�j��

from SISO to MIMO systems
 and with them gain and phase margins can be

de�ned as in the classical sense� However
 these margins are not too useful

as they only indicate stability with respect to simultaneous changes in all the

loops� Therefore
 although characteristic loci were well researched in the ���s

and greatly in$uenced the British developments in multivariable control
 e�g�

see Postlethwaite and MacFarlane ������
 they will not be considered further

in this book�
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����� Small gain theorem

The small gain theorem is a very general result which we will �nd useful

in the book� We present �rst a generalized version of it in terms of the

spectral radius
 ��L�j���
 which at each frequency is de�ned as the maximum

eigenvalue magnitude

��L�j��� � max
i

j�i�L�j���j �������

Theorem ���� Spectral radius stability condition� Consider a system

with a stable loop transfer function L�s�� Then the closed�loop system is stable

if

��L�j��� � � �� �������

The result is quite intuitive
 as it simply says that if the system gain is less

than � in all directions �all eigenvalues� and for all frequencies ����
 then all

signal deviations will eventually die out
 and the system is stable�

In general
 the spectral radius theorem is conservative because phase

information is not considered� For SISO systems ��L�j��� � jL�j��j
 so the

above stability condition requires that jL�j��j � � at all frequencies� This is

clearly conservative
 since from the Nyquist stability condition for a stable

L�s�
 we need only require jL�j��j � � at frequencies where the phase of

L�j�� is �����  n ����� As an example
 let L � k��s� ��� Since the phase

never reaches 	���� the system is closed loop stable for any value of k � ��

However
 to satisfy ������� we need k � �
 which for a small value of � is very

conservative indeed�

Later we will consider cases where the phase of L is allowed to vary freely


and in which case Theorem ���� is not conservative� Actually
 a clever use of

the above theorem is the main idea behind most of the conditions for robust

stability and robust performance presented later in this book�

Proof of Theorem ����
 The generalized Nyquist theorem �Theorem ����� says that

if L�s� is stable� then the closed�loop system is stable if and only if the Nyquist

plot of det�I �L�s�� does not encircle the origin� To prove condition ������� we will

prove the �reverse�� that is� if the system is unstable and therefore det�I�L�s�� does

encircle the origin then there is an eigenvalue� i�L�j���� which is larger than � at

some frequency� If det�I � L�s�� does encircle the origin� then there must exists a

gain � � ��� �� and a frequency �� such that

det�I � �L�j���� � � �������

This is easily seen by geometric arguments since det�I � �L�j���� � � for � � ��

������� is equivalent to �see eigenvalue properties in Appendix A�
���

	

Y
i

i�I � �L�j���� � � �����
�
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	 � � �i�L�j�
��� � � for some i �������

	 i�L�j�
��� � �
�

�

for some i �������

� ji�L�j�
���j � � for some i �������

	 ��L�j���� � � �����	�
�

The Small Gain Theorem below follows directly from Theorem ���� if we

consider a matrix norm satisfying kABk � kAk � kBk
 since at any frequency

we then have ��L� � kLk �see �A�������

Theorem ���� Small Gain Theorem� Consider a system with a stable

loop transfer function L�s�� Then the closed�loop system is stable if

kL�j��k � � �� �������

where kLk denotes any matrix norm satisfying kABk � kAk � kBk�

Remark � This result is only a special case of a more general small gain theorem

which also applies to some nonlinear systems �Vidyasagar� �����

Remark � The small gain theorem does not consider phase information� and is

therefore independent of the sign of the feedback�

Remark � Any induced norm can be used� for example� the singular value� ���L��

Remark � The small gain theorem can be extended to include more than one block

in the loop� e�g�� L � L�L�� In this case we get from �A���� that the system is stable

if kL�k 
 kL�k � �� ���

Remark 	 The small gain theorem is generally more conservative than the

spectral radius condition in Theorem ���	� Therefore� the arguments made following

Theorem ���	 on conservativeness also apply to Theorem ����

���� System norms

Consider the system in Figure ���
 with stable transfer function matrix G�s�

and impulse response matrix g�t�� To evaluate the performance we ask the

question" given information about the allowed input signals w
 how large

can the outputs z become# To answer this question we must evaluate the

system norm relevant to the input class and how we measure the outputs�

We here present three commonly used system norms
 namely the H�
 H�

and Hankel� We introduced the H� and H� norms in Section ���
 where we

also discussed the unusual terminology� In Appendix A���� we present a more

detailed interpretation and comparison of these and other norms�
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�� zw

G

Figure ��� System G�

������ H� norm

Consider a strictly proper system G�s�
 i�e� D � � in a state	space realization�

For the H� norm we use the Frobenius norm spatially �for the matrix� and

integrate over frequency
 i�e�

kG�s�k�
�
�

vuuut �
��

Z �
��

tr�G�j��HG�j���� �z �

kG�j��k�
F

�
P

ij
jGij�j��j�

d� �������

We see that G�s� must be strictly proper
 otherwise the H� norm is in�nite�

The H� norm can be given another interpretation� Let G�s� � C�sI�A���B�

By Parseval�s theorem ������� is equal to the H� norm of the impulse response

kG�s�k� � kg�t�k�
�
�

vuuut
Z �

�

tr�gT ���g����� �z �

kg���k�
F

�
P

ij
jgij���j�

d� �������

Remark� Note that G�s� and g�t� are dynamic systems while G�j�� and g�� � are

constant matrices �for a given value of � or ���

We can change the order of integration and summation in ������� to get

kG�s�k� � kg�t�k� �
vuutX

ij

Z �
�

jgij���j�d� �������

From this we see that the H� norm can be interpreted as the two	norm output

resulting from applying unit impulses �j�t� to each input
 one after another

�allowing the output to settle to zero before applying an impulse to the next

input�� This is seen more clearly seen by writing kG�s�k�� �
pPm

i�� kzi�t�k
�
�

where zi�t� is the output vector resulting from applying an unit impulse �i�t�

to the i�th input� In summary
 we have the following deterministic performance

interpretation of the H� norm"

kG�s�k� � max

w�t� unit impulses
kz�t�k� �������
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The H� norm can also be given a stochastic interpretation �see page ���� in

terms of the quadratic criterion in optimal control �LQG� where we measure

the expected root mean square �rms� value of the output in response to white

noise excitation�

By substituting ������ into ������� we �nd

kG�s�k� �
q

tr�BTQB� or kG�s�k� �
q

tr�CPCT � �������

where Q and P are the observability and controllability Gramians


respectively
 obtained as solutions to the Lyapunov equations ������ and

������� ������� is used for numerical computations of the H� norm�

������ H� norm

Consider a proper linear stable system G�s� �i�e� D 
� � is allowed�� For the

H� norm we use the singular value �induced �	norm� spatially �for the matrix�

and pick out the peak value as a function of frequency

kG�s�k�
�
� max
�

 ��G�j��� �������

In terms of performance we see from ������� that the H� norm is the peak

of the transfer function magnitude
 and by introducing weights the H� norm

can be interpreted as the magnitude of some closed	loop transfer function

relative to a speci�ed upper bound� This leads to specifying performance in

terms of weighted sensitivity
 mixed sensitivity
 and so on�

However
 the H� norm also has several time domain performance

interpretations� First
 as discussed in Section �����
 it is the worst case steady	

state gain to sinusoids at any frequency� Furthermore
 from Tables A�� and

A�� in the Appendix we see that theH� norm is equal to the induced ��worst	

case�� �	norm in the time domain"

kG�s�k� � max

w�t����
kz�t�k�

kw�t�k�
� max

kw�t�k���
kz�t�k� �������

This is a fortunate fact from functional analysis which is proved
 for example


in Desoer and Vidyasagar ������� In essence
 ������� forms because the worst

input signal w�t� is a sinusoid with frequency �� and a direction which gives

��G�j���� as the maximum gain� ������� also shows that the H� norm is

an induced norm
 and thus possesses all the nice properties of such norms


e�g� the multiplicative property in �������� The H� norm is also equal to

the induced power �rms� norm
 and also has an interpretation as an induced

norm in terms of the expected values of stochastic signals� All these various

interpretations make the H� norm useful in engineering applications�
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The H� norm is usually computed numerically from a state	space

realization as the smallest value of � such that the Hamiltonian matrix H

has no eigenvalues on the imaginary axis
 where

H �
�
A�BR��DTC BR��BT

�CT �I �DR��DT �C ��A�BR��DTC�T
�

�������

and R � ��I � DTD
 see Zhou et al� �����
 p������ This is an iterative

procedure where one may start with a large value of � and reduce it until

imaginary eigenvalues for H appear�

������ Dierence between the H� and H� norms

To understand the di�erence between the H� and H� norms note that from

�A����� we can write the Frobenius norm in terms of the singular values� We

then have

kG�s�k� �
s
�

��
Z �

��

X
i

��i �G�j���d� �������

From this we see that minimizing the H�	norm corresponds to minimizing

the peak of the largest singular value ��worst direction
 worst frequency��


whereas minimizing the H�	norm corresponds to minimizing the sum of the

square of all the singular values over all frequencies ��average direction


average frequency��� In summary
 we have

� H�" �push down peak of largest singular value��

� H�" �push down whole thing� �all singular values over all frequencies��

Example ��� We will compute the H� and H� norms for the following SISO

plant

G�s� �

�
s� a

����
�

The H� norm is

kG�s�k� � �
�


�
Z
�

��

jG�j��j�� �z �
�

���a�

d��
�
� � �
�


�a
�tan���

�
a

������
�
� �

r
�


a

����
��

To check Parseval�s theorem we consider the impulse response

g�t� � L��
�
�

s� a
�

� e�at� t � � ����
��

and we get

kg�t�k� �
sZ
�

�

�e�at��dt �
r
�


a

�������
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as expected� The H� norm is

jjG�s�jj� � sup
�

jG�j��j � sup
�

�

��� � a��
�
�

�
�

a

�������

For interest� we also compute the ��norm of the impulse response �which is equal to

the induced ��norm in the time domain�


kg�t�k� �
Z
�

�

j g�t���z�
e�at

jdt �
�

a

�����
�

In general� it can be shown that kG�s�k�  kg�t�k�� and this example illustrates

that we may have equality�

Example ���� There exists no general relationships between the H� and H�

norms� As an example consider the two systems

f��s� �

�
�s� �

� f��s� �

�s

s� � �s� �

�������

and let � � �� Then we have for f� that the H�norm is � and the H� norm

approaches in�nity� For f� the H�norm is again �� but now the H� norm approaches

zero�
Why is the H� norm so popular� In robust control we use the H�

norm mainly because it is convenient for representing unstructured model

uncertainty
 and because it satis�es the multiplicative property �A����"

kA�s�B�s�k� � kA�s�k� � kB�s�k� �������

What is wrong with the H� norm� The H� norm has a number of good

mathematical and numerical properties
 and its minimization has important

engineering implications� However
 the H� norm is not an induced norm and

does not satisfy the multiplicative property�

Example ���� Consider again G�s� � ���s � a� in �������� for which we found

kG�s�k� �
p
��
a� Now consider the H� norm of G�s�G�s�


kG�s�G�s�k� �
vuuut
Z
�

�

j L����

�
s� a

���� �z �
te�at

j� �
r
�

a
�


a
�

r
�

a
kG�s�k��

and we �nd� for a � �� that
kG�s�G�s�k� � kG�s�k� 
 kG�s�k� �������

which does not satisfy the multiplicative property �A���� On the other hand� the H�

norm does satisfy the multiplicative property� and for the speci�c example we have

equality with kG�s�G�s�k� � �
a�

� kG�s�k� 
 kG�s�k��



Figure ����� Pumping a swing� Illustration of Hankel operator� The input is applied

for t  � and the jump starts at t � � �

It may be shown that the Hankel norm is equal to

kG�s�kH �
p
��PQ� �������

where � is the spectral radius �maximum eigenvalue�
 P is the controllability

Gramian de�ned in ������ and Q the observability Gramian de�ned in �������

The name �Hankel� is used because the matrix PQ has the special structure

of a Hankel matrix �the transpose of which has identical elements along the

�wrong	way� diagonals�� The corresponding Hankel singular values are the

positive square roots of the eigenvalues of PQ


�i �
p
�i�PQ� �������
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The Hankel and H�norms are closely related and we have �Zhou et al�
 ����


p�����

kG�s�kH � �� � kG�s�k� � �
nX

i��
�i �������

Thus
 the Hankel norm is always smaller than �or equal to� the H�norm


which is also reasonable by comparing the de�nitions in ������� and ��������

Model reduction� Consider the following problem" given a state	space

description G�s� of a system
 �nd a model Ga�s� with fewer states such that

the input	output behaviour �from w to z� is changed as little as possible� Based

on the discussion above it seems reasonable to make use of the Hankel norm


since the inputs only a�ect the to outputs through the states at t � �� For

model reduction
 we usually start with a realization of G which is internally

balanced
 that is
 such that
 Q � P � & where & is the matrix of Hankel

singular values� We may then discard states �or rather combinations of states

corresponding to certain subspaces� corresponding to the smallest Hankel

singular values� The change in H� norm caused by deleting states in G�s� is

less than twice the sum of the discarded Hankel singular values
 i�e�


kG�s��Ga�s�k� � ���k	� � �k	� � � � �� �������

where Ga�s� denotes a truncated or residualized balanced realization with

k states� see Chapter ��� The method of Hankel norm minimization gives

a somewhat improved error bound
 where we are guaranteed that kG�s� �

Ga�s�k� is less than the sum of the discarded Hankel singular values� This

and other methods for model reduction are discussed in detail in Chapter ��

where a number of examples can be found�

Exercise ���� Let a � ��� and � � ������ and check numerically the results in

Examples ����� ��� and ���� using� for example� the MATLAB ��toolbox commands

h�norm and hinfnorm� Also compute the Hankel norm� e�g� using the commands

�sysb�hsig��sysbal�sys�� max�hsig��



�
LIMITATIONS ON

PERFORMANCE IN SISO

SYSTEMS

In this chapter� we discuss the fundamental limitations on performance in SISO

systems� We summarize these limitations in the form of a procedure for input�output

controllability analysis� which is then applied to a series of examples� Input�output

controllability of a plant is the ability to achieve acceptable control performance�

Proper scaling of the input� output and disturbance variables prior to this analysis

is critical�

��� Input�Output Controllability

In university courses on control� the methods for controller design and stability

analysis are usually emphasized� However� in practice the following three

questions are often more important�

I� How well can the plant be controlled� Before starting any controller

design one should �rst determine how easy the plant actually is to control� Is

it a di�cult control problem� Indeed� does there even exist a controller which

meets the required performance objectives�

II� What control structure should be used� By this we mean what

variables should we measure� which variables should we manipulate� and

how are these variables best paired together� In other textbooks one can

�nd qualitative rules for these problems� For example� in Seborg� Edgar

and Mellichamp ��	
	� in a chapter called �The art of process control� the

following rules are given�

�� Control the outputs that are not self�regulating�

�� Control the outputs that have favourable dynamic and static characteris�

tics� i�e� for each output� there should exist an input which has a signi�cant�

direct and rapid e�ect on it�
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�� Select inputs that have large e�ects on the outputs�

�� Select inputs that rapidly a�ect the controlled variables

These rules are reasonable� but what is �self�regulating� �large� �rapid and

�direct� A major objective of this chapter is to quantify these terms�

III� How might the process be changed to improve control� For

example� to reduce the e�ects a disturbance one may in process control

consider changing the size of a bu�er tank� or in automotive control one might

decide to change the properties of a spring� In other situations� the speed of

response of a measurement device might be an important factor in achieving

acceptable control�

The above three questions are each related to the inherent control

characteristics of the process itself� We will introduce the term input�output

controllability to capture these characteristics as described in the following

de�nition�

De�nition ��� �Input�output� controllability is the ability to achieve

acceptable control performance� that is� to keep the outputs �y� within speci�ed

bounds or displacements from their references �r�� in spite of unknown but

bounded variations� such as disturbances �d� and plant changes� using available

inputs �u� and available measurements �ym or dm��

In summary� a plant is controllable if there exists a controller �connecting

plant measurements and plant inputs� that yields acceptable performance

for all expected plant variations� Thus� controllability is independent of the

controller� and is a property of the plant �or process� alone� It can only be

a�ected by changing the plant itself� that is� by �plant� design changes� These

may include�

� changing the apparatus itself� e�g� type� size� etc�

� relocating sensors and actuators

� adding new equipment to dampen disturbances

� adding extra sensors

� adding extra actuators

� changing the control objectives

� changing the con�guration of the lower layers of control already in place

Whether or not the last two terms are as design modi�cations is arguable� but

at least they address important issues which are relevant before the controller

is designed�

Early work on input�output controllability analysis includes that of Ziegler

and Nichols ��	���� Rosenbrock ��	��� and Morari ��	
�� who made use of

the concept of �perfect control� Important ideas on performance limitations

are also found in Bode ��	���� Horowitz ��	���� Frank ��	�
a� �	�
b� �
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Horowitz and Shaked ��	���� Zames ��	
��� Doyle and Stein ��	
��� Francis

and Zames ��	
��� Boyd and Desoer ��	
��� Kwakernaak ��	
��� Freudenberg

and Looze ��	
�� �	

�� Engell ��	

�� Morari and Za�riou ��	
	�� Boyd

and Barratt ��		��� and Chen ��		��� We also refer the reader to two

IFAC workshops on Interactions between process design and process control

�Perkins� �		�� Za�riou� �		���

����� Input�output controllability analysis

Input�output controllability analysis is applied to a plant to �nd out

what control performance can be expected� Another term for input�output

controllability analysis is performance targeting�

Surprisingly� given the plethora of mathematical methods available for

control system design� the methods available for controllability analysis are

largely qualitative� In most cases the �simulation approach is used i�e�

performance is assessed by exhaustive simulations However� this requires a

speci�c controller design and speci�c values of disturbances and setpoint

changes� Consequently� with this approach� one can never know if the result is

a fundamental property of the plant� or if it depends on the speci�c controller

designed� the disturbances or the set points�

A rigorous approach to controllability analysis would be to formulate

mathematically the control objectives� the class of disturbances� the model

uncertainty� etc�� and then to synthesize controllers to see whether the

objectives can be met� With model uncertainty this involves designing a ��

optimal controller �see Chapter 
�� However� in practice such an approach

is di�cult and time consuming� especially if there are a large number of

candidate measurements or actuators� see Chapter ��� More desirable� is to

have a few simple tools which can be used to get a rough idea of how easy

the plant is to control� i�e� to determine whether or not a plant is controllable�

without performing a detailed controller design� The main objective of this

chapter is to derive such controllability tools based on appropriately scaled

models of G�s� and Gd�s��

An apparent shortcoming of the controllability analysis presented in this

book is that all the measures are linear� This may seem restrictive� but

usually it is not� In fact� one of the most important nonlinearities� namely

that associated with input constraints� can be handled quite well with a

linear analysis� Also� to deal with slowly varying changes one may perform

a controllability analysis at several selected operating points� Nonlinear

simulations to validate the linear controllability analysis are of course still

recommended� Experience from a large number of case studies con�rms that

the linear measures are often very good�
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����� Scaling and performance

The above de�nition of controllability does not specify the allowed bounds for

the displacements or the expected variations in the disturbance� that is� no

de�nition of the desired performance is included� Throughout this chapter and

the next� when we discuss controllability� we will assume that the variables and

models have been scaled as outlined in Section ���� so that the requirement

for acceptable performance is�

� To keep the output y�t� within the range r � � to r � � �at least most of

the time� for any disturbance d�t� between �� and � or any reference r�t�

between �R and R� using an input u�t� within the range �� to ��

We will interpret this de�nition from a frequency�by�frequency sinusoidal

point of view� i�e� d�t� � sin�t� and so on� We then have�

� At each frequency the performance requirement is to keep the control error

je���j � �� for any disturbance jd���j � � or any reference jr���j � R����

using an input ju���j � ��

It is impossible to track very fast reference changes� so we will assume

that R��� is frequency�dependent� for simplicity we assume that R��� is R �a

constant� up to the frequency �r and is � above that frequency�

It could also be argued that the magnitude of the sinusoidal disturbances

should approach zero at high frequencies� While this may be true� we really

only care about frequencies within the bandwidth of the system� and in

most cases it is reasonable to assume that the plant experiences sinusoidal

disturbances of constant magnitude up to this frequency� Similarly� it might

also be argued that the allowed control error should be frequency dependent�

For example� we may require no steady�state o�set� i�e� e should be zero at

low frequencies� However� including frequency variations is not recommended

when doing a preliminary analysis �however� one may take such considerations

into account when interpreting the results��

Recall that with r � Rer �see Section ���� the control error may be written

as

e � y � r � Gu�Gdd�Rer �����

where R is the magnitude of the reference and jer���j � � and jd���j � � are

unknown signals� We will use ����� to unify our treatment of disturbances and

references� Speci�cally� we will derive results for disturbances� which can then

be applied directly to the references by replacing Gd by �R�

����� Remarks on the term controllability

The above de�nition of 	input�output
 controllability is in tune with most engineers�

intuitive feeling about what the term means� and was also how the term was used
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historically in the control literature� For example� Ziegler and Nichols 	���
 de�ned

controllability as �the ability of the process to achieve and maintain the desired

equilibrium value�� Unfortunately� in the ���s �controllability� became synonymous

with the rather narrow concept of �state controllability� introduced by Kalman� and

the term is still used in this restrictive manner by the system theory community�

State controllability is the ability to bring a system from a given initial state to any

�nal state within a �nite time� However� as shown in Example ��� this gives no

regard to the quality of the response between and after these two states and the

required inputs may be excessive� The concept of state controllability is important

for realizations and numerical calculations� but as long as we know that all the

unstable modes are both controllable and observable� it usually has little practical

signi�cance� For example� Rosenbrock 	���� p� ���
 notes that �most industrial

plants are controlled quite satisfactorily though they are not �state� controllable��

And conversely� there are many systems� like the tanks in series Example ����

which are state controllable� but which are not input�output controllable� To avoid

any confusion between practical controllability and Kalman�s state controllability�

Morari 	���
 introduced the term dynamic resilience� However� this term does not

capture the fact that it is related to control� so instead we prefer the term input�

output controllability� or simply controllability when it is clear we are not referring

to state controllability�

Where are we heading� In this chapter we will discuss a number

of results related to achievable performance� Many of the results can be

formulated as upper and lower bounds on the bandwidth of the system�

However� as noted in Section ������ there are several de�nitions of bandwidth

��B � �c and �BT � in terms of the transfer functions S� L and T � but since we

are looking for approximate bounds we will not be too concerned with these

di�erences� The main results are summarized at end of the chapter in terms


 controllability rules�

��� Perfect control and plant inversion

A good way of obtaining insight into the inherent limitations on performance

originating in the plant itself� is to consider the inputs needed to achieve

perfect control� Let the plant model be

y � Gu�Gdd �����

�Perfect control �which� of course� cannot be realized in practice� is achieved

when the output is identically equal to the reference� i�e� y � r� To �nd the

corresponding plant input set y � r and solve for u in ������

u � G��r �G��Gdd �����
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����� represents a perfect feedforward controller� assuming d is measurable�

When feedback control u � K�r � y� is used we have from ������ that

u � KSr �KSGdd

or since the complementary sensitivity function is T � GKS�

u � G��Tr �G��TGdd �����

We see that at frequencies where feedback is e�ective and T � I �these

arguments also apply to MIMO systems�� the input generated by feedback

in ����� is the same as the perfect control input in ������ That is� high gain

feedback generates an inverse of G even though the controller K may be very

simple�

An important lesson therefore is that perfect control requires the controller

to somehow generate an inverse of G� From this we get that perfect control

cannot be achieved if

� G contains RHP�zeros �since then G�� is unstable�

� G contains time delay �since then G�� contains a prediction�

� G has more poles than zeros �since then G�� is unrealizable�

In addition� for feedforward control we have that perfect control cannot be

achieved if

� G is uncertain �since then G�� cannot be obtained exactly�

The last restriction may be overcome by high gain feedback � but we know

that we cannot have high gain feedback at all frequencies�

The required input in ����� must not exceed the maximum physically

allowed value� Therefore� perfect control cannot be achieved if

� jG��Gdj is large

� jG��Rj is large

where �large with our scaled models means larger than �� There are also

other situations which make control di�cult such as�

� G is unstable

� jGdj is large

If the plant is unstable then the outputs will �take o�� and eventually hit

physical constraints� unless feedback control is applied to stabilize the system�

Similarly� if jGdj is large� then without control a disturbance will cause the

outputs to move far away from their desired values� So in both cases control is

required� and problems occur if this demand for control is somehow in con�ict

with the other factors mentioned above which also make control di�cult� We
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have assumed perfect measurements in the discussion so far� but in practice�

noise and uncertainty associated with the measurements of disturbances and

outputs will present additional problems for feedforward and feedback control�

respectively�

��� Constraints on S and T

In this section� we present some fundamental algebraic and analytic

constraints which apply to the sensitivity S and complementary sensitivity

T �
����� S plus T is one

From the de�nitions S � �I � L��� and T � L�I � L��� we derive

S � T � � �����

�or S � T � I for a MIMO system�� Ideally� we want S small to obtain the

bene�ts of feedback �small control error for commands and disturbances��

and T small to avoid sensitivity to noise which is one of the disadvantages of

feedback� Unfortunately� these requirements are not simultaneously possible

at any frequency as is clear from ������ Speci�cally� ����� implies that at any

frequency either jS�j��j or jT �j��j must be larger than or equal to ����

����� The waterbed e�ects �sensitivity integrals	
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Figure ���� Plot of typical sensitivity� jSj� with upper bound ��jwP j

A typical sensitivity function is shown by the solid line in Figure ���� We

note that jSj has a peak value greater than �� we will show that this peak
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is unavoidable in practice� Two formulae are given� in the form of theorems�

which essentially say that if we push the sensitivity down at some frequencies

then it will have to increase at others� The e�ect is similar to sitting on a

waterbed� pushing it down at one point� which reduces the water level locally

will result in an increased level somewhere else on the bed In general� a trade�

o� between sensitivity reduction and sensitivity increase must be performed

whenever�

�� L�s� has at least two more poles than zeros ��rst waterbed formula�� or

�� L�s� has a RHP�zero �second waterbed formula��

Pole excess of two	 First waterbed formula

To motivate the �rst waterbed formula consider the open�loop transfer

function L�s� � �

s�s��� � As shown in Figure ���� there exists a frequency

range over which the Nyquist plot of L�j�� is inside the unit circle centred

on the point ��� such that j� � Lj� which is the distance between L and ���

is less than one� and thus jSj � j� � Lj�� is greater than one� In practice�

L�s� will have at least two more poles than zeros �at least at su�ciently high

frequency�� so there will always exist a frequency range over which jSj is

greater than one� This behaviour may be quanti�ed by the following theorem�

of which the stable case is a classical result due to Bode�

−1 1 2

−2

−1

1

2

Re

Im
L	s
 � �

s�s���

L	j�


Figure ���� jSj � � whenever the Nyquist plot of L is inside the circle

Theorem ��
 Bode Sensitivity Integral� Suppose that the open�loop

transfer function L�s� is rational and has at least two more poles than zeros
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�relative degree of two or more�� Suppose also that L�s� has Np RHP�poles at

locations pi� Then for closed�loop stability the sensitivity function must satisfy

Z �
�

ln jS�j��jdw � � �
NpX

i��
Re�pi� �����

where Re�pi� denotes the real part of pi�

Proof� See Doyle et al� 	��� p� ���
 or Zhou et al� 	��
� The generalization of

Bode�s criterion to unstable plants is due to Freudenberg and Looze 	���� ���
� �

For a graphical interpretation of ����� note that the magnitude scale is

logarithmic whereas the frequency�scale is linear�

Stable plant� For a stable plant we must haveZ �
�

ln jS�j��jdw � � �����

and the area of sensitivity reduction �ln jSj negative� must equal the area of

sensitivity increase �ln jSj positive�� In this respect� the bene�ts and costs of

feedback are balanced exactly� as in the waterbed analogy� From this we expect

that an increase in the bandwidth �S smaller than � over a larger frequency

range� must come at the expense of a larger peak in jSj� Although this is true

in most practical cases� the e�ect may not be so striking in some cases� and

it is not strictly implied by ��� anyway� This is because the increase in area

may come over an in�nite frequency range� imagine a waterbed of in�nite

size� Consider jS�j��j � � � � for � � ���� ���� where � is arbitrarily small

�small peak�� then we can choose �� arbitrary large �high bandwidth� simply

by selecting the interval ���� ��� to be su�ciently large� However� in practice

the frequency response of L has to roll o� at high frequencies so �� is limited�

and ����� and ����� impose real design limitations�

Unstable plant� The presence of unstable poles usually increases the peak

of the sensitivity� as seen from the positive contribution � �
PNp

i��Re�pi� in

������ Speci�cally� the area of sensitivity increase �jSj � �� exceeds that of

sensitivity reduction by an amount proportional to the sum of the distance

from the unstable poles to the left�half plane� This is plausible since we might

expect to have to pay a price for stabilizing the system�

RHP�zeros	 Second waterbed formula

For plants with RHP�zeros the sensitivity function must satisfy an additional

integral relationship� which has stronger implications for the peak of S� Before

stating the result� let us illustrate why the presence of a RHP�zero implies

that the peak of S must exceed one� First� consider the nonminimum phase
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Figure ���� Additional phase lag contributed by RHP�zero causes jSj � �

loop transfer function L�s� � �
��s

��s

��s and its minimum phase counterpart

Lm�s� �

�
��s � From Figure ��� we see that the additional phase lag contributed

by the RHP�zero and the extra pole causes the Nyquist plot to penetrate the

unit circle and hence causes the sensitivity function to be larger than one�

As a further example� consider Figure ��� which shows the magnitude of

the sensitivity function for the following loop transfer function

L�s� �
k

s
�� s

� � s

k � ���� ���� ���� ��� ���
�

The plant has a RHP�zero z � �� and we see that an increase in the controller

gain k� corresponding to a higher bandwidth� results in a larger peak for S�

For k � � the closed�loop system becomes unstable with two poles on the

imaginary axis� and the peak of S is in�nite�

Theorem ��� Weighted sensitivity integral� Suppose that L�s� has a

single real RHP�zero z or a complex conjugate pair of zeros z � x � jy� and

has Np RHP�poles� pi� Let �pi denote the complex conjugate of pi� Then for

closed�loop stability the sensitivity function must satisfy

Z �
�

ln jS�j��j � w�z� ��d� � � � ln
NpY

i��
����pi � z

�pi � z
���� ���	�

where if the zero is real
w�z� �� �

�z

z� � ��
�
�

z

�

� � ���z��

������
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Figure ���� E�ect of increased controller gain on jSj for system with RHP�zero at

z � �� L	s
 � k
s
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and if the zero pair is complex �z � x� jy�

w�z� �� �

x

x� � �y � ���
�

x

x� � �y � ���

������

Proof� See Freudenberg and Looze 	���� ���
� �

z

�
z

�
z

�
�log�

Magnitude

�log�

�� slope

jw	z� �
j

Figure ���� Plot of weight w	z� �
 for case with real zero at s � z

As shown graphically in Figure ���� the weight w�z� �� e�ectively �cuts o�

the contribution of lnjSj to the sensitivity integral at frequencies � � z� Thus�

for a stable plant where jSj is reasonably close to � at high frequencies we
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have the approximate relationshipZ z
�

ln jS�j��jd� � � � for jSj � � at � � z� ������

This is similar to Bode�s sensitivity integral relationship in ������ except that

the trade�o� between S less than � and S larger than �� is done over a limited

frequency range� Thus� in this case the waterbed is �nite� and a large peak for

jSj is unavoidable if we try to reduce jSj at low frequencies� This is illustrated

by the example in Figure ����

Note that when there is a RHP�pole close to the RHP�zero �pi � z� then

pi�z

pi�z
�	� This is not surprising as such plants are in practice impossible to

stabilize�

Exercise ��� Kalman inequality The Kalman inequality for optimal state

feedback� which also applies to unstable plants� says that jSj � �� ��� see Example ����

Explain why this does not con	ict with the above sensitivity integrals� 
Solution� ��

Optimal control with state feedback yields a loop transfer function with a pole�zero

excess of one so 
��� does not apply� �� There are no RHP�zeros when all states are

measured so 
��� does not apply�

The two sensitivity integrals �waterbed formulas� presented above are

interesting and provide valuable insights� but for a quantitative analysis of

achievable performance they are less useful� Fortunately� however� we can

derive lower bounds on the weighted sensitivity and weighted complementary

sensitivity� see ������� which are more useful for analyzing the e�ects of

RHP�zeros and RHP�poles� The basis for these bounds are the interpolation

constraints which we discuss �rst�

����� Interpolation constraints

If p is a RHP�pole of the loop transfer function L�s� then

T �p� � �� S�p� � � ������

Similarly� if z is a RHP�zero of L�s� then

T �z� � �� S�z� � � ������

These interpolation constraints follow from the requirement of internal

stability as shown in ���
�� and ���
��� These conditions clearly restrict the

allowable S and T and prove very useful in the next subsection�

����
 Sensitivity peaks

In Theorem ���� we found that a RHP�zero implies that a peak in jSj is

inevitable� and that the peak will increase if we reduce jSj at other frequencies�
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Here we will derive explicit bounds on the weighted peak of S� which are more

useful in applications than the integral relationship� Such lower bounds to

sensitivity were were originally derived by Zames ��	
��� We present below

results for three cases�

�� Bound on weighted sensitivity for plant with RHP�zero�

�� Bound on weighted complementary sensitivity for plant with RHP�pole�

�� Bounds for plant with both RHP�zero and RHP�pole�

The results are based on the interpolation constraints S�z� � � and T �p� � �

given above� In addition� we make use of maximum modulus principle for

complex analytic functions � e�g�� see maximum principle in Churchill et al�

��	���� which for our purposes can be stated as follows�

Maximum modulus principle� Suppose f�s� is stable �i�e� f�s� is

analytic in the complex RHP�� Then the maximum value of jf�s�j for s in

the right half plane is attained on the region�s boundary� i�e� somewhere along

the j��axis� Hence� we have for a stable f�s�

kf�j��k� � max
�

jf�j��j 
 jf�s��j �s�� RHP ������

Remark� 	����
 can be understood by imagining a ��D plot of jf	s
j as a function

of the complex variable s� In such a plot jf	s
j has �peaks� at its poles and �valleys�

at its zeros� Thus� if f	s
 has no poles 	peaks
 in the RHP� we �nd that jf	s
j slopes

downwards from the LHP and into the RHP�

To derive the results below we �rst consider f�s� � wP �s�S�s� �weighted

sensitivity� and then f�s� � wT �s�T �s� �weighted complementary sensitivity��

The weights are included to make the results more general� and we may select

wP �s� � � and wT �s� � ��

Theorem ��� Weighted sensitivity peak� Suppose that G�s� has a RHP�

zero z and let wP �s� be any stable weight function� Then for closed�loop

stability the weighted sensitivity function must satisfy

kwPSk� 
 jwP �z�j ������

Proof� Applying 	����
 to f	s
 � wP 	s
S	s
 and using the interpolation constraint

S	z
 � �� gives kwPSk� � jwP 	z
S	z
j � jwP 	z
j� �

Note that wP �s� � � in ������ yields the requirement kSk� 
 � which we

already know must hold� and which in any case is satis�ed for any real system

since jS�j��j must approach � at high frequencies� However� many useful

relationships are derived by making other choices for the weight wP �s�� This

is discussed later in this chapter�
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The following result is similar to Theorem ���� but it involves the

complementary sensitivity T � rather than S� The basis for the result is that

if G�s� has a RHP�pole at s � p� then for internal stability S�p� must have a

RHP�zero at s � p and from ������ we have T �p� � ��

Theorem ��� Weighted complementary sensitivity peak� Suppose that

G�s� has a RHP�pole p and let wT �s� be any stable weight function� Then

for closed�loop stability the weighted complementary sensitivity function must

satisfy

kwTTk� 
 jwT �p�j ������

Proof� Applying the maximum modulus principle in 	����
 to f	s
 � wT 	s
T 	s
 and

using the interpolation constraint T 	p
 � � gives kwT Tk� � jwT 	p
T 	p
j � jwT 	p
j�

�
Consider wT �s� � � which yields the requirement kTk� 
 �� and illustrates

that some control is needed to stabilize an unstable plant �since no control�

K � �� makes T � ���

The following theorem provides a generalization of Theorems ��� and

thmwtt�

Theorem �� Combined RHP�poles and RHP�zeros� Suppose that

G�s� has Nz RHP�zeros zj � and has Np RHP�poles pi� Then for closed�loop

stability the weighted sensitivity function must satisfy for each RHP�zero zj

kwpSk� 
 c�j jwp�zj�j� c�j �
NpY

i��
jzj � �pij

jzj � pij

 � ����
�

and the weighted complementary sensitivity function must satisfy for each

RHP�pole pi
kwTTk� 
 c�ijwT �pi�j� c�i �

NzY
j��

j�zj � pij

jzj � pij

 � ����	�

Proof� The basis for the theorem is a �trick� where we �rst factor out RHP�zeros

in S or T into an all�pass part 	with magnitude � at all points on the j��axis
�

Consider �rst S� Since G have RHP�poles at pi� S	s
 has RHP�zeros at pi and we

may write

S � SaSm� Sa	s
 �
Y

i

s� pi

s� �pi

	����


where� since Sa	s
 is all�pass� jSa	j�
j � � at all frequencies� 	Remark� There is

a technical problem here with j��axis poles� these must �rst be moved slightly

into the RHP
� Consider a RHP�zero located at z� for which we get from the

maximum modulus principle kwpSk� � max� jwPS	j�
j � max� jwPSm	j�
j �
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jwp	z
Sm	z
j� where since S	z
 � � we get Sm	z
 � ��Sa	z
 � c�� This proves

	����
�

Next consider T � G has RHP�zeros at zj � and therefore T must have RHP�zeros

at zj � so write T � TaTm with Ta �

Q
j

s�zj

s��zj
� 	Remark� There is a technical

problem here with j��axis zeros� these must �rst be moved slightly into the RHP
�

Consider a RHP�pole located at p� Since jTa	j�
j � � at all frequencies� we get from

the maximum modulus principle kwTTk� � max� jwTT 	j�
jmax� jwTTm	j�
j �

jwT 	p
Tm	p
j� where since T 	p
 � � we get Tm	p
 � ��Ta	p
 � c�� This proves

	���
� �

Notice that ������ is a special case of ����
� with c� � �� and ������ is a

special case of ����	� with c� � �� Also� if we select wP � wT � �� we derive

the following useful bounds on the peaks of S and T �

kSk� 
 max
j

c�j � kTk� 
 max
i

c�i ������

This shows that large peaks for S and T are unavoidable if we have a RHP�

zero and RHP�pole located close to each other� This is illustrated by examples

in Section ��	�

These bounds may be generalized to MIMO systems if the directions of

poles and zeros are taken into account� see Chapter ��

��� Ideal ISE optimal control

Another good way of obtaining insight into performance limitations� is to

consider an �ideal controller which is integral square error �ISE� optimal�

That is� for a given command r�t� �which is zero for t � ��� the �ideal

controller is the one that generates the plant input u�t� �zero for t � �� which

minimizes

ISE �
Z �

�

jy�t�� r�t�j�dt ������

This controller is �ideal in the sense that it may not be realizable in practice

because the cost function includes no penalty on the input u�t�� This particular

problem is considered in detail by Frank ��	�
a� �	�
b� and Morari and

Za�riou ��	
	�� and also Qiu and Davison ��		�� who study �cheap LQR

control� Morari and Za�riou show that for stable plants with RHP�zeros at zj

�real or complex� and a time delay 	� the �ideal response y � Tr when r�t�

is a unit step is given by

T �s� �
Y

i

�s� zj

s� �zj
e��s ������

where �zj is the complex conjugate of zj � The ideal T �s� is �all�pass with

jT �j��j � � at all frequencies� the result in ������ is derived by considering

��� MULTIVARIABLE FEEDBACK CONTROL

an �open�loop optimization problem� and applies to feedback as well as

feedback control� Note in the feedback case that the ideal sensitivity function

is jS�j��j � jL���j��T �j��j � ��jL�j��j at all frequencies�

The corresponding optimal value of the cost function is for three simple

cases

Delay 	 � ISE � 	 ������

Real RHP� zero z � ISE � ��z ������

Complex RHP� zeros z � x� jy � ISE � �x��x� � y�� ������

This quanti�es nicely the limitations imposed by non�minimum phase

behaviour� and the implications in terms if the achievable bandwidth are

considered below�

If r�t� is not a step then other expressions for T rather than that in ������

are derived� see Morari and Za�riou ��	
	� for details�

��� Limitations imposed by time delays
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Figure ���� �Ideal� sensitivity function 	����
 for a plant with delay�

Consider a plant G�s� that contains a time delay e��s �and no RHP�zeros��

Even the �ideal controller cannot remove this delay� For a step change in the

reference r�t�� we have to wait the a time 	 until perfect control is achieved�

Thus� as shown in ������� the �ideal complementary sensitivity function will

be T � e��s� The corresponding �ideal sensitivity function is

S � �� T � �� e��s ������

The magnitude jSj is plotted in Figure ���� At low frequencies� �	 
 �� we

have �� e��s � 	s �by a Taylor series expansion of the exponential� and the
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low�frequency asymptote of jS�j��j crosses � at a frequency of about ��	 �the

exact frequency where jS�j��j crosses � in Figure ��� is �
�

�
� � �����	�� Since

in this case jSj � ��jLj� we also have that ��	 is equal to the gain crossover

frequency for L� In practice� the �ideal controller cannot be realized� so we

expect this value to provide an approximate upper bound on wc� namely

�c 
 ��	 ����
�

This approximate bound is the same as derived in Section ����� by considering

the limitations imposed on a loop�shaping design by a time delay 	�

��� Limitations imposed by RHP�zeros

We here consider plants with a zero z in the closed right�half plane �and no

pure time delay�� In the following we attempt to build up insight into the

performance limitations imposed by RHP�zeros using a number of di�erent

results in both the time and frequency domains�

RHP�zeros typically appear when we have competing e�ects of slow and

fast dynamics� For example� the plant

G�s� �

�
s� �
�

�
s� ��
�

�s� 


�s� ���s� ���

has a real RHP�zero at z � 
� We may also have complex zeros� and since

these always occur in complex conjugate pairs we have z � x�jy where x 
 �

for RHP�zeros�

����� Inverse response

For a stable plant with nz RHP�zeros� it may be proven �Holt and Morari�

�	
�b� Rosenbrock� �	��� that the output in response to a step change

in the input will cross zero �its original value� nz times� that is� we have

inverse response behaviour� A typical response for the case with one RHP�

zero is shown in Figure ����� ��� We see that the output initially decreases

before increasing to its positive steady�state value� With two RHP�zeros the

output will initially increase� then decrease below its original value� and �nally

increase to its positive steady�state value�

����� High�gain instability

It is well�known from classical root�locus analysis that as the feedback gain

increases towards in�nity the closed�loop poles migrate to the positions of

��� MULTIVARIABLE FEEDBACK CONTROL

the open�loop zeros� also see ����	�� Thus� the presence of RHP�zeros implies

high�gain instability�

����� Bandwidth limitation I

For a step change in the reference we have from ������ that the �ideal

complementary sensitivity function is all�pass� and for a single real RHP�zero

the �ideal sensitivity function is
S �

�s
s� z

����	�

The Bode magnitude plot of jSj �� ��jLj� is shown in Figure ����a�� The low�

frequency asymptote of jS�j��j crosses � at the frequency z��� In practice�

the �ideal ISE optimal controller cannot be realized� and we derive �for a

real RHP�zero� the approximate requirement

�B � �c 

z
�

������

which we also derived in Section ����� using loop�shaping arguments�

For a complex pair of RHP�zeros� z � x� jy� we get from ������ the �ideal

sensitivity function

S �

�xs

�s� x� jy��s� x� jy�

������

In Figure ����b� we plot jSj for y�x equal to ���� �� �� and ��� An analysis of

������ and the �gure yields the following approximate bounds

�B � �c 

��

�
jzj�� Re�z�� Im�z�

jzj���
 Re�z� � Im�z�

jzj Re�z� Im�z�

������

In summary� RHP�zeros located close to the origin �with jzj small� are bad

for control� and it is worse for them to be located closer to the real axis then

the imaginary axis�

Remark� For a complex pair of zeros� z � x � jy� we notice from 	����
 and

Figure ��� that the resonance peak for S at � � y becomes increasingly �thin� as

the zero approaches the imaginary axis 	x � �
� Thus� for a zero located at the

imaginary axis 	x � �
 the ideal sensitivity function is zero at all frequencies� except

for a single �spike� at � � y where it jumps up to �� The integral under the curve

for jS	j�
j� thus approaches zero� as does the ideal ISE�value in response to a step

in the reference� see also 	����
� This indicates that purely imaginary zeros do not

always impose limitations� This is also con�rmed by see the �exible structure in

Example ����� for which the response to an input disturbance is satisfactory� even

though the plant has a pair of imaginary zeros� However� the �exible structure is
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Figure ���� �Ideal� sensitivity functions for plants with RHP�zeros
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a rather special case where the plant also has imaginary poles which counteracts

most of the e�ect of the imaginary zeros� Therefore� in other cases� the presence of

imaginary zeros may limit achievable performance� for example� in the presence of

sinusoidal disturbances with frequency close to y� or with uncertainty which makes

it di�cult to place poles in the controller to counteract the imaginary zero�

����
 Bandwidth limitation II

Another way of deriving bandwidth limitations is from the bound ������ on

weighted sensitivity given in Theorem ���� The idea is to select a form for

the performance weight wP �s�� and then derive a bound for the �bandwidth

parameter in the weight�

As usual� we select ��jwP j as an upper bound on the sensitivity function

�see Figure ��� on page ����� that is� we require

jS�j��j 
 ��jwP �j��j��� � kwPSk� 
 � ������

However� from ������ we have that kwPSk� 
 jwP �z�j� so to be able to satisfy

������ we must at least require that the weight satis�es

jwP �z�j 
 � ������

�We say �at least because condition ������ is not an equality�� We will now

use ������ to gain insight into the limitations imposed by RHP�zeros� �rst

by considering a weight that requires good performance at low frequencies�

and then by considering a weight that requires good performance at high

frequencies�

Performance at low frequencies

Consider the following performance weight

wP �s� �
s�M � ��B

s� ��BA

������

This is the same weight as in ������� From ������ it speci�es a minimum

bandwidth ��B �actually� ��B is the frequency where the straight�line

approximation of the weight crosses ��� a maximum peak of jSj less than

M � a steady�state o�set less than A 
 �� and at frequencies lower than the

bandwidth the sensitivity is required to improve by at least �� dB�decade

�i�e� jSj has slope � or larger on a log�log plot�� If the plant has a RHP�zero

at s � z� then from ������ we must require

jwP �z�j �
����z�M � ��B

z � ��BA

���� 
 � ������
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Real zero� Consider the case when z is real� Then all variables are real

and positive and ������ is equivalent to

��B���A� 
 z
�
��

�
M

�

������

For example� with A � � �no steady�state o�set� and M � � �kSk� 
 ��

we must at least require ��B 
 ���z� which is consistent with the requirement

�B 
 ���z in �������

Imaginary zero� For a RHP�zero on the imaginary axis� z � jjzj� a similar

derivation yields with A � ��
��B 
 jzj

r
��

�
M�

����
�

For example� with M � � we require ��B 
 ��
�jzj� which is very similar to

the requirement �B 
 jzj given in ������� peak The next two exercises show

that the bound on ��B does not depend much on the slope of the weight at

low frequencies� or on how the weight behaves at high frequencies�

Exercise ��
 Consider the weight

wP 	s
 �
s�M��B

s

s� fM��B

s� fM���B

	���


with f � �� This is the same weight as 
���� with A � � except that it approaches

� at high frequencies� and f gives the frequency range over which we allow a peak�

Plot the weight for f � �� and M � �� Derive an upper bound on ��B for the case

with f � �� and M � ��

Exercise ��� Consider the weight wP 	s
 �

�
M

�	
��
B
s


n which requires jSj to have

a slope of n at low frequencies and requires its low�frequency asymptote to cross �

at a frequency ��B� Note that n � � yields the weight 
���� with A � �� Derive

an upper bound on ��B when the plant has a RHP�zero at z� Show that the bound

becomes ��B � jzj as n�	�

Remark� The result for n�	 in exercise ��� is a bit surprising� It says that the

bound ��B � jzj� is independent of the required slope 	n
 at low frequency and is also

independent of M � This is surprising since from Bode�s integral relationship 	���


we expect to pay something for having the sensitivity smaller at low frequencies�

so we would expect ��B to be smaller for larger n� This illustrates that jwP 	z
j � �

in 	����
 is a necessary condition on the weight 	i�e� it must at least satisfy this

condition
� but since it is not su�cient it can be optimistic� For the simple weight

	����
� with n � �� condition 	����
 is not very optimistic 	as is con�rmed by other

results
� but apparently it is optimistic for n large�
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Performance at high frequencies

The bounds ������ and ����
� derived above assume tight control at low

frequencies� Here� we consider a case where we want tight control at high

frequencies� by use of the performance weight

wP �s� �

�
M

�

s
��B

������

This requires tight control �jS�j��j 
 �� at frequencies higher than ��B�

whereas the only requirement at low frequencies is that the peak of jSj is

less than M � Admittedly� the weight in ������ is unrealistic in that it requires

S � � at high frequencies� but this does not a�ect the result as is con�rmed

in Exercise ��� where a more realistic weight is studied� In any case� to satisfy

kwPSk� 
 � we must at least require that the weight satis�es jwP �z�j 
 ��

and with a real RHP�zero we derive for the weight in ������

��B � z

�

�� ��M

������

For example� with M � � the requirement is ��B � �z� so we can only achieve

tight control at frequencies beyond the frequency of the RHP�zero�

Exercise ��� Make an asymptotic magnitude Bode�plot of wP 	s
 in 
�����

Exercise ��� Consider the case of a plant with a RHP zero where we want to limit

the sensitivity function over some frequency range� To this e�ect let

wP 	s
 �
	����s���B �

�
M


	s�	M��B
 � �


	��s���B � �
	���s��
�
B � �


	����


This weight is equal to ��M at low and high frequencies� has a maximum value of

about ���M at intermediate frequencies� and the asymptote crosses � at frequencies

��B����� and ��B� Thus we require �tight� control� jSj � �� in the frequency range

between ��BL � ��B����� and ��BH � ��B�

a Make a sketch of ��jwP j 
which provides an upper bound on jSj�

b Show that the RHP�zero cannot be in the frequency range where we require tight

control� and that we can achieve tight control either at frequencies below about z��


the usual case or above about �z� To see this select M � � and evaluate wP 	z
 for

various values of ��B � kz� e�g�� k � ��� ��� �� ��� ���� ����� ����� ������ 
You will �nd

that wP 	z
 � ��� 
� � for k � ��� 
corresponding to the requirement ��BH � z��

and for k � ���� 
corresponding to the requirement ��BL � �z

����� Limitations at low or high frequencies

Based on ������ and ������ we see that a RHP�zero will pose control limitations

either at low or high frequencies� In most cases we desire tight control at low
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frequencies� and with a RHP�zero this may be achieved at frequencies lower

than about z��� However� if we do not need tight control at low frequencies�

then we may usually reverse the sign of the controller gain� and instead achieve

tight control at frequencies higher than about �z�

Remark� The reversal of the sign in the controller is probably best understood by

considering the inverse response behaviour of a plant with a RHP�zero� Normally�

we want tight control at low frequencies� and the sign of the controller is based

on the steady�state gain of the plant� However� if we instead want tight control at

high frequencies 	and have no requirements at low frequencies
 then we base the

controller design on the plants initial response where the gain is reversed because of

the inverse response�

Example ��� To illustrate this� consider in Figures ��� and ��� the use of negative

and positive feedback for the plant

G	s
 �
�s� z

s� z
� z � � 	����


More precisely� we show in the �gures the sensitivity function and the time response

to a step change in the reference using

�� PI�control with negative feedback 
Figure ���

�� derivative control with positive feedback 
Figure ����

Note that the time scales for the simulations are di�erent� For positive feedback

the step change in reference only has a duration of ��� s� because we cannot track

references over much longer times as the RHP�zero causes the the output to start

drifting away 
as can be seen in Figure ��� 
b�
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Figure ��	� Control of plant with RHP�zero at z � � using negative feedback

G	s
 � �s��

s��

� K�	s
 � Kc
s��
s

�

����s��

Note that G	s
 � � at low frequencies 
� 
 z� whereas G	s
 � �� at high

frequencies 
� � z� The negative plant gain in the latter case explains why we then

use positive feedback in order to achieve tight control at high frequencies�
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Short�term control� In this book� we generally assume that the system

behaviour as t � 	 is important� However� this is not true in some cases

because the system may only be under closed�loop control for a �nite time tf �

In which case� the presence of a �slow RHP�zero �with jzj small�� may not

be signi�cant provided tf  ��jzj� For example� in Figure ��	 �b� if the total

control time is tf � �����s�� then the RHP�zero at z � ��rad�s� is insigni�cant�

Remark � As a example of short�term control� consider treating a patient with

some medication� Let u be the dosage of medication and y the condition of the

patient� With most medications we �nd that in the short�term the treatment has

a positive e�ect� whereas in the long�term the treatment has a negative e�ect 	due

to side e�ects which may eventually lead to death� However� this inverse�response

behaviour 	characteristic of a plant with a RHP�zero
 may be largely neglected

during limited treatment� although one may �nd that the dosage has to be increased

during the treatment to have the desired e�ect� Interestingly� the last point is

illustrated by the upper left curve in Figure ����� which shows the input u	t
 using

an internally unstable controller which over some �nite time may eliminate the e�ect

of the RHP�zero�

Remark � An important case� where we can only achieve tight control at high

frequencies� is characterized by plants with a zero at the origin� for example

G	s
 � s�	�s��
� In this case� good transient control is possible� but the control has

no e�ect at steady�state� The only way to achieve tight control at low frequencies is

to use an additional actuator 	input
 as is often done in practice�

Exercise �� In the simulations in Figures ��� and ���� we use simple PI� and

derivative controllers� As an alternative use the S�KS method in 
���� to synthesize

H� controllers for both the negative and positive feedback cases� Use performance

weights in the form given by 
���� and 
����� respectively� With ��B � ���� and
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M � � in 
���� and wu � � 
for the weight on KS you will �nd that the time

response is quite similar to that in Figure ��� with Kc � ���� Try to improve the

response� for example� by letting the weight have a steeper slope at the crossover near

the RHP�zero�

����� Remarks on the e�ects of RHP�zeros

�� The derived bound �c � z�� for the case of tight control at low frequencies is

consistent with the bound �c � ��� found earlier for a time delay� This is seen

from the following Pad�e approximation of a delay� e��s � 	�� �
�
s
�	� � �
�
s
�

which has a RHP�zero at ����

�� LHP�zero� Zeros in the left�half plane� usually corresponding to �overshoots�

in the time response� do not present a fundamental limitation on control� but

in practice a LHP�zero located close to the origin may cause problems� First�

one may encounter problems with input constraints at low frequencies 	because

the steady�state gain maybe too low
� Second� a simple controller can probably

not then be used� For example� a simple PID controller as in 	���
 contains no

adjustable poles that can be used to counteract the e�ect of a LHP�zero�

�� For uncertain plants� zeros can cross from the LHP to the RHP both through

zero and through in�nity� We discuss this in Chapter ��

��	 Non�causal controllers

Perfect control can be achieved for a plant with a time delay or RHP�zero if we

use a non�causal controller�� i�e� a controller which uses information about the

future� This may be relevant for certain servo problems� e�g� in robotics and

batch processing� A brief discussion is given here� but non�causal controllers

are not considered in the rest of the book because future information is usually

not available�

Time delay� For a delay e��s we may achieve perfect control with a non�

causal feedforward controller Kr � e�s �a prediction�� Such a controller may

be used if we have knowledge about future changes in r�t� or d�t�� For example�

if we know that we should be at work at 
���� and we know that it takes ��

min to get to work� then we make a prediction and leave home at �����

RHP�zero� Future knowledge can also be used to give perfect control in

the presence of a RHP�zero� As an example� consider a plant with a real

RHP�zero given by

G�s� �
�s� z

s� z
� z � � ������

� A system is causal if its outputs depends only on past inputs
 and non�causal if its outputs

also depends on future inputs	
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and a desired reference change
r�t� �

�
� t 
 �

� t 
 �

With a feedforward controller Kr the response from r to y is y � G�s�Kr�s�r�

In theory we may achieve perfect control �y�t��r�t�� with the following two

controllers �Eaton and Rawlings� �		���

�� A causal unstable controller
Kr�s� �

s� z

�s� z

For a step in r from � to � at t � �� this controller generates the following

input signal

u�t� �
�
� t 
 �

�� �ezt t 
 �

However� since the controller cancels the RHP�zero in the plant it yields

an internally unstable system�

�� A stable non�causal controller that assumes that the future setpoint change

is known� This controller cannot be represented in the usual transfer

function form� but it will generate the following input

u�t� �
�
�ezt t 
 �

� t 
 �

These input signals u�t� and the corresponding outputs y�t� are shown in

Figure ���� for a plant with z � �� Note that for perfect control the non�causal

controller needs to start changing the input at t � �	� but for practical

reasons we started the simulation at t � �� where u�t� � �e�
 � ������

The �rst option� the unstable controller� is not acceptable as it yields an

internally unstable system in which u�t� goes to in�nity as t increases �an

exception may be if we want to control the system only over a limited time

tf � see Remark ����� on page �	���

The second option� the non�causal controller� is usually not possible because

future setpoint changes are unknown� However� if we have such information�

it is certainly bene�cial for plants with RHP�zeros�

However� in most cases we have to accept the poor performance resulting

from the RHP�zero and use a stable causal controller� the third option� The

ideal causal feedforward controller in terms of minimizing the ISE �H� norm�

of y�t� for the plant in ������ is to use Kr � �� and the corresponding plant

input and output responses are shown in the lower plots in Figure �����
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Figure ����� Feedforward control of plant with RHP�zero

��
 Limitations imposed by RHP�poles

We here consider the limitations imposed when the plant has a RHP�pole

�unstable pole� at s � p� For example� the plant G�s� � ���s� �� has a

RHP�pole at s � ��

For unstable plants we need feedback for stabilization� Thus� whereas

the presence of RHP�zeros usually places an upper bound on the allowed

bandwidth� the presence of RHP�poles generally imposes a lower bound� It

also follows that it may be more di�cult to stabilize an unstable plant if there

are RHP�zeros or a time delay present ��the system goes unstable before we

have time to react�� These qualitative statements are quanti�ed below where

we derive bounds on the bandwidth in terms of T �

We start by selecting a weight wT �s� such that ��jwT j is a reasonable upper

bound on the complementary sensitivity function�

jT �j��j 
 ��jwT �j��j� �� � kwTTk� 
 � ������

However� from ������ we have that kwTTk� 
 jwT �p�j� so to be able to satisfy

������ we must at least require that the weight satis�es

jwT �p�j 
 � ������
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Now consider the following weight

wT �s� �

s
��BT
�

�
MT

������

which requires T �like jLj� to have a roll�o� rate of at least � at high frequencies

�which must be satis�ed for any real system�� that jT j is less than MT at low

frequencies� and that jT j drops below � at frequency ��BT � The requirement

on jT j is shown graphically in Figure �����

Real RHP�pole at s � p� For the weight ������ condition ������ yields

��BT � p

MT

MT � �

����
�

Thus� the presence of the RHP�pole puts a lower limit on the bandwidth in

terms of T � that is� we cannot let the system roll�o� at frequencies lower

than p� For example� with MT � � we get �
�
BT � �p� which is approximately

achieved if

�c � �p ����	�

Imaginary RHP�pole� For a purely imaginary pole located at p � jjpj

a similar analysis of the weight ������ with MT � �� shows that we must at

least require ��BT � ����jpj� which is achieved if

�c � ����jpj ������

In conclusion� we �nd that stabilization with reasonable performance requires

a bandwidth which is larger than the distance jpj of the RHP�pole from the

origin�

Exercise ��� Derive the bound in 
�����
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��� Combined RHP�poles and RHP�zeros

Performance�We have above considered separately the e�ects of RHP�zeros

and RHP�poles� In order to get acceptable performance and robustness� we

derived for a real RHP�zero� the approximate bound �c 
 z�� �assuming we

want tight control below this frequency�� and for a real RHP�pole� we derived

the approximate bound �c � �p� From these we get that for a system with a

single real RHP�pole and a RHP�zero we must approximately require z � �p

in order to get acceptable performance and robustness�

Stabilization� In theory� any linear plant may be stabilized irrespective of

the location of its RHP�poles and RHP�zeros� However� for practical purposes

it is sometimes desirable that the controller itself is stable� If such a controller

exists the plant is said to be strongly stabilizable� It has been proved by Youla

et al� ��	��� that a strictly proper plant is strongly stabilizable if and only if

every real RHP�zero in G�s� lies to the left of an even number �including zero�

of real RHP�poles in G�s�� Note that the presence of any complex RHP�poles

or complex RHP�zeros does not a�ect this result� We then have�

� A strictly proper plant with a single real RHP�zero z and a single real RHP�

pole p� e�g�� G�s� � s�z

�s�p���s��� � can be stabilized by a stable controller if

and only if z � p

This shows that for plants with a single RHP�pole and RHP�zero our

approximate performance requirement z � �p is quite close to the strong

stabilizability requirement z � p�

The following example for a plant with z � �p shows that we can indeed get

acceptable performance when the RHP�pole and zero are located this close�

Example ��
 H� design for plant with RHP�pole and RHP�zero� We

want to design an H� controller for a plant with z � � and p � ��

G	s
 �

s� �

	s� �
	���s � �
 	����


We use the S�KS design method as in Example ���� with input weight Wu � �

and performance weight 
���� with A��� M � �� ��B � �� The software gives a

stable and minimum phase controller with an H� norm of ���� The corresponding

sensitivity and complementary sensitivity functions� and the time response to a unit

step reference change are shown in Figure ����� The response is good� taking into

account the closeness of the RHP�pole and zero�

Sensitivity peaks In Theorem ��� we derived lower bounds on the

weighted sensitivity and complementary sensitivity� For example� for a plant

with a single real RHP�pole p and a single real RHP�zero z� we always have

kSk� 
 c� kTk� 
 c� c �
jz � pj

jz � pj

������
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Figure ����� H� design of a plant with RHP�zero at z � � and RHP�pole at p � �

Example ��
 continued�With z � �p� 
���� gives c � ��� � ���� and it follows

from that for any controller we must at least have kSk� � ���� and kTk� � �����

The actual peak values for the above S�KS�design are ���� and ����� respectively�

Example ��� Balancing a rod� This example is taken from Doyle et al� 
����

Consider the problem of balancing a rod in the palm of one�s hand� The objective

is to keep the rod upright� by small hand movements� based on observing the rod

either at its far end 
output y� or the end in one�s hand 
output y�� The linearized

transfer functions for the two cases are

G�	s
 �

�g

s� 	Mls� � 	M �m
g

� G�	s
 �

ls� � g

s� 	Mls� � 	M �m
g


Here l �m� is the length of the rod and m �kg� its mass� M �kg� is the mass of your

hand and g �� �� m�s�� is the acceleration due to gravity� In both cases� the plant

has three unstable poles� two at the origin and one at p �
q

�M�m�g

Ml

� A short rod

with a large mass gives a large value of p� and this in turn means that the system is

more di�cult to stabilize� For example� with M � m and l � � �m� we get p � ���

�rad�s� and from 
���� we desire a bandwidth of about  �rad�s� 
response time less

than about ��� �s��

If one is measuring y� 
looking at the far end of the rod then achieving this

bandwidth is the main requirement� However� if one tries to balance the rod by looking

at one�s hand 
y�
 there is also a RHP�zero at z �
p
g
l
� If the mass of the rod is

small 
m�M is small� then p is close to z and stabilization is in practice impossible

with any controller� However� even with a large mass� stabilization is very di�cult

because p � z whereas we would normally prefer to have the RHP�zero far from the

origin and the RHP�pole close to the origin 
z � p� So although in theory the rod

may be stabilized by looking at one�s hand 
G�� it seems doubtful that this is possible
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for a human� To quantify these problems use 
����� We get

c �
jz � pj

jz � pj �
j� � �j

j�� �j � � �
r
M �m

M

Consider a light weight rod with m�M � ���� for which we expect stabilization to be

di�cult� We obtain c � ��� and we must have kSk� � �� and kTk� � ��� so poor

control performance is inevitable if we try to balance the rod by looking at our hand


y��
The di�erence between the two cases� measuring y� and measuring y�� highlights

the importance of sensor location on the achievable performance of control�

���� Performance requirements imposed by

disturbances and commands

The question we here want to answer is� How fast must the control system be

in order to reject disturbances and track commands of a given magnitude� We

�nd that some plants have better �built�in disturbance rejection capabilities

than others� This may be analyzed directly by considering the appropriately

scaled disturbance model� Gd�s�� Similarly� for tracking we may consider the

magitude R of the reference change�

Disturbance rejection� Consider a single disturbance d and assume

that the reference is constant� i�e�� r � �� Without control the steady�state

sinusoidal response is e��� � Gd�j��d���� recall ���	�� If the variables have

been scaled as outlined in Section ��� then the worst�case disturbance at any

frequency is d�t� � sin�t� i�e�� jd���j � �� and the control objective is that

at each frequency je�t�j 
 �� i�e�� je���j 
 �� From this we can immediately

conclude that

� no control is needed if jGd�j��j 
 � at all frequencies �in which case the

plant is said to be 	self�regulated
��

If jGd�j��j � � at some frequency� then we need control �feedforward or

feedback�� In the following� we consider feedback control� in which case we

have

e�s� � S�s�Gd�s�d�s� ������

The performance requirement je���j 
 � for any jd���j � � at any frequency�

is satis�ed if and only if

jSGd�j��j 
 � �� � kSGdk� 
 � ������

� jS�j��j 
 ��jGd�j��j �� ������
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A typical plot of ��jGd�j��j is shown in Figure ���� �dotted line�� If the plant

has a RHP�zero at s � z� which �xes S�z� � �� then using ������ we have the

following necessary condition for satisfying kSGdk� 
 ��

jGd�z�j 
 � ������

From ������ we also get that the frequency �d where jGdj crosses � from above

yields a lower bound on the bandwidth�

�B � �d where �d is de�ned by jGd�j�d�j � � ������

A plant with a small jGdj or a small �d is preferable since the need for feedback

control is then less� or alternatively� given a feedback controller �which �xes

S� the e�ect of disturbances on the output is less�
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Figure ����� Typical performance requirement on S imposed by disturbance

rejection

Example ��� Assume that the disturbance model is Gd	s
 � kd�	� � 	ds
 where

kd � �� and 	d � ��� �seconds�� Scaling has been applied to Gd so this means

that without feedback� the e�ect of disturbances on the outputs at low frequencies is

kd � �� times larger than we desire� Thus feedback is required� and since jGdj crosses

� at a frequency �d � kd�	d � ��� rad�s� the minimum bandwidth requirement for

disturbance rejection is �B � ��� �rad�s��

Remark� Gd is of high order� The actual bandwidth requirement imposed by

disturbances may be higher than �d if jGd	j�
j drops with a slope steeper than ��

	on a log�log plot
 just before the frequency �d� The reason for this is that we must�

in addition to satisfying 	����
� also ensure stability with reasonable margins� so as

discussed in Section ����� we cannot let the slope of jL	j�
j around crossover be

much larger than ���
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An example� in which Gd	s
 is of high order� is given later in Section ������ for

a neutralization process� There we actually overcome the limitation on the slope

of jL	j�
j around crossover by using local feedback loops in series� We �nd that�

although each loop has a slope �� around crossover� the overall loop transfer function

L	s
 � L�	s
L�	s
 � � �Ln	s
 has a slope of about �n� see the example for more

details� This is a case where stability is determined by each I � Li separately� but

the bene�ts of feedback are determined by ��
Q

i
Li 	also see Horowitz 	��� p� ���


who refers to lectures by Bode
�

Command tracking� Assume there are no disturbances� i�e�� d � �� and

consider a reference change r�t� � Rer�t� � R sin��t�� Since e � Gu�Gdd�Rer�

the same performance requirement as found for disturbances� see �������

applies to command tracking with Gd replaced by �R� Thus for acceptable

control �je���j 
 �� we must have

jS�j��Rj 
 ���� � �r ����
�

where �r is the frequency up to which performance tracking is required�

Remark� The bandwidth requirement imposed by 	����
 depends on on how sharply

jS	j�
j increases in the frequency range from �r 	where jSj � ��R
 to �B 	where

jSj � �
� If jSj increases with a slope of � then the approximate bandwidth

requirement becomes �B � R�r� and if jSj increases with a slope of � it becomes

�B �
p
R�r�

���� Limitations imposed by input constraints

In all physical systems there are limits to the changes that can be made to

the manipulated variables� In this section� we assume that the model has been

scaled as outlined in Section ���� so that at any time we must have ju�t�j � ��

The question we want to answer is� Can the expected disturbances be rejected

and can we track the reference changes while maintaining ju�t�j � �� We will

consider separately the two cases of perfect control �e � �� and acceptable

control �jej 
 ��� These results apply to both feedback and feedforward

control�

At the end of the section we consider the additional problems encountered

for unstable plants �where feedback control is required��

Remark � We use a frequency�by�frequency analysis and assume that at each

frequency jd	�
j � � 	or jer	�
j � �
� The worst�case disturbance at each frequency

is jd	�
j � � and the worst�case reference is r � Rer with jer	�
j � ��

Remark � Note that rate limitations� jdu�dtj � �� may also be handled by our

analysis� This is done by considering du�dt as the plant input by adding a term ��s

to the plant model G	s
�
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Remark � Below we require juj � � rather than juj � �� This has no practical

e�ect� and is used to simplify the writing�

������ Inputs for perfect control

From ����� the input required to achieve perfect control �e � �� is

u � G��r �G��Gdd ����	�

Disturbance rejection� With r � � and jd���j � � the requirement

ju�j��j 
 � is equivalent to
jG���j��Gd�j��j 
 � �� ������

In other words� to achieve perfect control and avoid input saturation we need

jGj � jGdj at all frequencies� �However� as is discussed below� we do no really

need control at frequencies where jGdj 
 ���

Command tracking� Next let d � � and consider the worst�case reference

command which is jr���j � R at all frequencies up to �r� To keep the inputs

within their constraints we must then require from ����	� that

jG���j��Rj 
 � �� � �r ������

In other words� to avoid input saturation we need jGj � R at all frequencies

where perfect command tracking is required�

Example ��� Consider a process with

G	s
 �

��

	�s� �
	���s� �

� Gd	s
 � �

��s� �

	�� � �
	s� �


From Figure ����� we see that condition 
���� is not satis�ed for � � ��� However�

for frequencies � � �d we do not really control� Thus� in practice� we expect that

disturbances in the frequency range between �� and �d may cause input saturation�

������ Inputs for acceptable control

Above we assumed for simplicity perfect control� However� perfect control

is never really required� especially not at high frequencies� and the input

magnitude required for acceptable control �namely je�j��j 
 �� is somewhat

smaller� For disturbance rejection we must require

jGj � jGdj � � at frequencies where jGdj � � ������
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Figure ����� Input saturation is expected for disturbances at intermediate

frequencies from �� to �d

Proof� Consider a �worst�case� disturbance with jd	�
j � �� The control error is

e � y � Gu�Gdd� Thus at frequencies where jGd	j�
j � � the smallest input needed

to reduce the error to je	�
j � � is found when u	�
 is chosen such that the complex

vectors Gu and Gdd have opposite directions� That is� jej � � � jGddj � jGuj� and

with jdj � � we get juj � jG��j	jGdj��
� and the result follows by requiring juj � ��

�

Similarly� to achieve acceptable control for command tracking we must

require

jGj � jRj � � 
 � �� � �r ������

In summary� if we want �acceptable control �jej 
 �� rather than �perfect

control �e � ��� then jGdj in ������ should be replaced by jGdj � �� and

similarly� R in ������ should be replaced by R� �� The di�erences are clearly

small at frequencies where jGdj and jRj are much larger than ��

The requirements given by ������ and ������ are restrictions imposed on

the plant design in order to avoid input constraints and they apply to any

controller �feedback or feedforward control�� If these bounds are violated at

some frequency then performance will not be satisfactory �i�e� je���j � �� for

a worst�case disturbance or reference occurring at this frequency�

������ Unstable plant and input constraints

Feedback control is required to stabilize an unstable plant� However� input

constraints combined with large disturbances may make stabilization di�cult�

For example� for an unstable plant with a real RHP�pole at s � p we

approximately need

jGj � jGdj �� 
 p ������
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Otherwise� the input will saturate when there is a sinusoidal disturbance

d�t� � sin�t� and we may not be able to stabilize the plant� Note that the

frequency p may be larger than the frequency �d at which jGd�j�d�j � ��

Proof of 
������ With feedback control the input signal is u � �KSGdd �

�G��TGdd� We showed in 	����
 that we need jT 	j�
j � � up to the frequency

p� Thus we need juj � jG��Gdj � jdj up to the frequency p� and to have juj � � for

jdj � � 	the worst�case disturbance
 we must require jG��Gdj � �� �

Example �� Consider

G	s
 �

�

	��s� �
	s� �
 � Gd	s
 �

kd

	s� �
	���s� �

� kd � � 	����


Since kd � � and the performance objective is jej � �� we do not really need control

for disturbance rejection� but feedback control is required for stabilization� since the

plant has a RHP�pole at p � �� We have jGj � jGdj 
i�e�� jG��Gdj � � for

frequencies lower than ����kd� so from 
���� we do not expect problems with input

constraints at low frequencies� However� at frequencies higher than ����kd we have

jGj � jGdj� as is illustrated in Figure ���� 
a� Thus from 
����� we may expect to

have problems with instability if ����kd � p� i�e� if kd � ����
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Figure ����� Instability caused by input saturation for unstable plant

To check this for a particular case we select kd � ��� 
the limiting value and use

the controller

K	s
 �
����

s

	��s� �
�

	���s� �
�

	����


which without constraints yields a stable closed�loop system with a gain crossover

frequency� �c� of about ���� The closed�loop response to a unit step disturbance

occurring after � second is shown in Figure ���� 
b both for the linear case when

there are no input constraints 
dashed line� and where u is constrained to be within

the interval ��� �� 
solid lines� We see from the latter response that the system is

indeed unstable when there is a disturbance that drives the system into saturation�
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Remark� Interestingly� for this example� a small reduction in the disturbance

magnitude from kd � ��� to kd � ���� results in a stable closed�loop response in

the presence of input constraints 
not shown� Since kd � ��� is the limiting value

obtained from 
����� this seems to indicate that 
���� is a very tight condition� but

one should be careful about making such a conclusion� First� 
���� was derived by

considering sinusoids and the responses in this example are for a step disturbance�

Furthermore� for other controllers the values of kd for which instability occurs will

be di�erent�

For unstable plants� reference changes can also drive the system into input

saturation and instability� But in contrast to disturbance changes� one then

has the option to use a two degrees�of�freedom controller to �lter the reference

signal and thus reduce the magnitude of the manipulated input�

���� Limitations imposed by phase lag

We already know that phase lag from RHP�zeros and time delays is a

fundamental problem� but are there any limitations imposed by the phase

lag resulting from minimum�phase elements� The answer is both no and yes�

No� there are no fundamental limitations� but Yes� there are often limitations

on practical designs�

As an example� consider a minimum�phase plant of the form

G�s� �

k

�� � ��s��� � ��s��� � ��s� � � �
�

kQn
i���� � �is�

������

where n is three or larger� At high frequencies the gain drops sharply with

frequency� jG�j��j � �k�
Q
�i��
�n� From condition ������� it is therefore likely

�at least if k is small� that we encounter problems with input saturation�

Otherwise� the presence of high�order lags does not present any fundamental

limitations�

However� in practice a large phase lag at high frequencies� e�g� � G�j�� �

�n � 	�� for the plant in ������� poses a problem �independent of K� even

when input saturation is not an issue� This is because for stability we need a

positive phase margin� i�e� the phase of L � GK must be larger than ��
��

at the gain crossover frequency �c That is� for stability we need �c 
 ��	��

see ����
��

In principle� ��	� �the frequency at which the phase lag around the loop is

��
��� is not directly related to phase lag in the plant� but in most practical

cases there is a close relationship� De�ne �u as the frequency where the phase

lag in the plant G is ��
��� i�e�
� G�j�u� � ��
�
�
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Note that �u depends only on the plant model� Then� with a proportional

controller we have that ��	� � �u� and with a PI�controller ��	� 
 �u� Thus

with these simple controllers a phase lag in the plant does pose a fundamental

limitation�

Stability bound for P� or PI�control� �c 
 �u ����
�

Note that this is a strict bound to get stability� and for performance �phase

and gain margin� we typically need �c less than bout ����u�

If we want to extend the gain crossover frequency �c beyond �u� we must

place zeros in the controller �e�g� �derivative action� to provide phase lead

which counteracts the negative phase in the plant� A commonly used controller

is the PID controller which has a maximum phase lead of 	�� at high frequency�

In practice� the maximum phase lead is smaller than 	��� For example� an

industrial cascade PID controller typically has derivative action over only one

decade�

K�s� � Kc
�Is� �

�Is

�Ds� �

����Ds� �

����	�

and the maximum phase lead is ��� �which is the maximum phase lead of the

term �Ds��

����Ds�� �� This is also a reasonable value for the phase margin� so for

performance we approximately require

Practical performance bound �PID control�� �c 
 �u ������

We stress again that plant phase lag does not pose a fundamental limitation if

a more complex controller is used� Speci�cally� if the model is known exactly

and there are no RHP�zeros or time delays� then one may in theory extend �c

to in�nite frequency� For example� one may simply invert the plant model by

placing zeros in the controller at the plant poles� and then let the controller

roll o� at high frequencies beyond the dynamics of the plant� However� in

many practical cases the bound in ������ applies because we may want to use

a simple controller� and also because uncertainty about the plant model often

makes it di�cult to place controller zeros which counteract the plant poles at

high frequency�

Remark� Relative order� The relative order 	relative degree
 of the plant is

sometimes used as a input�output controllability measure 	e�g� Daoutidis and

Kravaris 	��
� The relative order may be de�ned also for nonlinear plants� and it

corresponds for linear plants to the pole excess of G	s
� For a minimum�phase plant

the phase lag at in�nite frequency is the relative order times ���� Of course� we

want the inputs to directly a�ect the outputs� so we want the relative order to be

small� However� the practical usefulness of the relative order is rather limited since

it only gives information at in�nite frequency� The phase lag of G	s
 as a function

of frequency� including the value of �u� provides much more information�
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���� Limitations imposed by uncertainty

The presence of uncertainty requires us to use feedback control rather than

just feedforward control� The main objective of this section is to gain more

insight into this statement� A further discussion is given in Section ����� where

we consider MIMO systems�

������ Feedforward control

Consider a plant with the nominal model y � Gu � Gdd� Assume that G�s�

is minimum phase and stable and assume there are no problems with input

saturation� Then perfect control� � e � y � r � �� is obtained using a perfect

feedforward controller which generates the following control inputs

u � G��r �G��Gdd ������

Now consider applying this perfect controller to the actual plant with model

y� � G�u�G�
dd ������

Substituting ������ into ������� we �nd that the actual control error with the

�perfect feedforward controller is

e� � y� � r �

�
G�

G

� �
�

� 	z 


rel� error in G
r �

�
G��G�
d

G�Gd

� �
�

� 	z 


rel� error in G�Gd

G�
dd ������

Thus� we �nd for feedforward control that the model error propagates directly

to the control error� From ������ we see that to achieve je�j 
 � for jdj � �

we must require that the relative model error in G�Gd is less than ��jG
�
dj�

This requirement is clearly very di�cult to satisfy at frequencies where jG�
dj

is much larger than �� and this motivates the need for feedback control�

������ Feedback control

With feedback control the closed�loop response with no model error is y�r �

S�Gd�r� where S � �I�GK�
�� is the sensitivity function� With model error

we get

y� � r � S��G�
dd� r� ������

where S� � �I �G�K��� can be written �see �A���
�� as

S� � S

�

� �ET

������
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Here E � �G��G��G is the relative error for G� and T is the complementary

sensitivity function�

From ������ we see that the control error is only weakly a�ected by model

error at frequencies where feedback is e�ective �where jSj 

 � and T � ���

For example� if we have integral action in the feedback loop and if the feedback

system with model error is stable� then S��� � S���� � � and the steady�state

control error is zero even with model error�

Uncertainty at crossover� However� although feedback control counter�

acts the e�ect of uncertainty at frequencies where the loop gain is large� un�

certainty in the crossover frequency region can result in poor performance

and even instability� This may be analyzed by considering the e�ect of the

uncertainty on the gain margin� GM � ��jL�j��	��j� where ��	� is the fre�

quency where � L is ��
��� see ������� Most practical controllers behave as

a constant gain Ko in the crossover region� so jL�j��	�j approxKojG�j��	�j

where ��	� � �u �since the phase lag of the controller is approximately zero

at this frequency� see also Section ������ Here �u is the frequency where

� G�j�u� � ��
�
�� This observation yields the following approximate rule�

� Uncertainty which keeps jG�j�u�j approximately constant will not change

the gain margin� Uncertainty which increases jG�j�u�j may yield instability�

This rule is useful� for example� when evaluating the e�ect of parametric

uncertainty� This is illustrated in the following example�

Example ��� Consider a stable �rst�order delay process� G	s
 � ke��s�	� � 	s
�

where the parameters k� 	 and � are uncertain in the sense that they may vary with

operating conditions� If we assume 	 � � then �u � 	
��
�	 and we derive

jG	j�u
j � �



k
�

	

	����


We see that to keep jG	j�u
j constant we want k �
�

constant� From 
���� we see�

for example� that an increase in � increases jG	j�u
j� and may yield instability�

However� the uncertainty in the parameters is often coupled� For example� the ratio

	�� may be approximately constant� in which case an increase in � may not a�ect

stability� In another case the steady�state gain k may change with operating point�

but this may not a�ect stability if the ratio k�	 � which determines the high�frequency

gain� is unchanged�

The above example illustrates the importance of taking into account the

structure of the uncertainty� for example� the coupling between the uncertain

parameters� A robustness analysis which assumes the uncertain parameters

to be uncorrelated is generally conservative� This is further discussed in

Chapters � and 
�
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���� Summary Controllability analysis with

feedback control

e e q� � � ��
�

�

�

�

r

K G

Gd

Gm

d

y�

�

�

�

Figure ����� Feedback control system

We will now summarize the results of this chapter by a set of �controllability

rules� We use the term ��input�output� controllability since the bounds

depend on the plant only� that is� are independent of the speci�c controller�

Except for Rule �� all requirements are fundamental� although some of the

expressions� as seen from the derivations� are approximate �i�e� they may be

o� by a factor of � or thereabouts�� However� for practical designs the bounds

will need to be satis�ed to get acceptable performance�

Consider the control system in Figure ����� for the case when all blocks are

scalar� The model is
y � G�s�u�Gd�s�d� ym � Gm�s�y ������

Here Gm�s� denotes the measurement transfer function and we assume

Gm��� � � �perfect steady�state measurement�� The variables d� u� y and r

are assumed to have been scaled as outlined in Section ���� and therefore G�s�

and Gd�s� are the scaled transfer functions� Let �c denote the gain crossover

frequency� de�ned as the frequency where jL�j��j crosses � from above� Let

�d denote the frequency at which jGd�j�d�j �rst crosses � from above� The

following rules apply�

Rule � Speed of response to reject disturbances� We approximately

require �c � �d� More speci�cally� with feedback control we require

jS�j��j � j��Gd�j��j ��� �See ������ and ��������

Rule 
 Speed of response to track reference changes� We require

jS�j��j � ��R up to the frequency �r where tracking is required� �See

����
���
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Rule � Input constraints arising from disturbances� For acceptable

control �jej 
 �� we require jG�j��j � jGd�j��j � � at frequencies

where jGd�j��j � �� For perfect control �e � �� the requirement is

jG�j��j � jGd�j��j� �See ������ and ��������

Rule � Input constraints arising from setpoints� We require jG�j��j �

R� � up to the frequency �r where tracking is required� �See ��������

Rule � Time delay 	 in G�s�Gm�s�� We approximately require �c 
 ��	�

�See ����
���

Rule  Tight control at low frequencies with a RHP�zero z in

G�s�Gm�s�� For a real RHP�zero we require �c 
 z�� and for an

imaginary RHP�zero we approximately require �c 
 jzj� �See ������ and

��������

Remark�Strictly speaking� a RHP�zero only makes it impossible to have tight

control in the frequency range close to the location of the RHP�zero� If we

do not need tight control at low frequencies� then we may reverse the sign of

the controller gain� and instead achieve tight control at higher frequencies� In

this case we must for a RHP�zeros approximately require �c � �z� A special

case is for plants with a zero at the origin� here we can achieve good transient

control even though the control has no e�ect at steady�state�

Rule � Phase lag constraint� We require in most practical cases �e�g��

with PID control�� �c 
 �u� Here the ultimate frequency �u is where

� GGm�j�u� � ��
�
�� �See ��������

Since time delays �Rule �� and RHP�zeros �Rule �� also contribute to

the phase lag� one may in in most practical cases combine Rules �� �

and � into the single rule� �c 
 �u �Rule ���

Rule � Real open�loop unstable pole in G�s� at s � p� We need

high feedback gains to stabilize the system and we approximately require

�c � �p� �See ����	���

In addition� for unstable plants we need jGj � jGdj up to the frequency

p �which may be larger than �d where jGdj � �j�� Otherwise� the input

may saturate when there are disturbances� and the plant cannot be

stabilized� �See ��������

Most of the rules are illustrated graphically in Figure �����

We have not formulated a rule to guard against model uncertainty� The

reason is that� as shown in ������ and ������� uncertainty has only a minor

e�ect on feedback performance for SISO systems� except at frequencies where

the relative uncertainty E approaches ��� � and we obviously have to detune
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�p �d �c z�� �u ���

�

jGj
jGdj

jLj
M�

M�

Control needed to

reject disturbances

M	
M�
M


M�

Margins for stability and performance�

M� � Margin to stay within constraints� juj � ��

M� � Margin for performance� jej � ��

M� � Margin because of RHP�pole� p�

M	 � Margin because of RHP�zero� z�

M� � Margin because of frequency where plant has ����o phase lag� �u�

M
 � Margin because of delay� ��

Figure ����� Illustration of controllability requirements

��� MULTIVARIABLE FEEDBACK CONTROL

the system� Also� since ��� uncertainty at a given frequency allows for the

presence of a RHP�zero on the imaginary axis at this frequency �G�j�� � ���

it is already covered by Rule ��

The rules are necessary conditions ��minimum requirements� to achieve

acceptable control performance� They are not su�cient since among other

things we have only considered one e�ect at a time�

The rules quantify the qualitative rules given in the introduction� For

example� the rule �Control outputs that are not self�regulating may be

quanti�ed as� �Control outputs y for which jGd�j��j � � at some frequency

�Rule ��� The rule �Select inputs that have a large e�ect on the outputs may

be quanti�ed as� �In terms of scaled variables we must have jGj � jGdj � �

at frequencies where jGdj � � �Rule ��� and we must have jGj � R � � at

frequencies where setpoint tracking is desired �Rule ��� Another important

insight from the above rules is that a larger disturbance or a smaller

speci�cation on the control error requires faster response �higher bandwidth��

In summary� Rules �� � and 
 tell us that we need high feedback gain ��fast

control� in order to reject disturbances� to track setpoints and to stabilize

the plant� On the other hand� Rules �� � and � tell us that we must use low

feedback gains in the frequency range where there are RHP�zeros or delays or

where the plant has a lot of phase lag� We have formulated these requirements

for high and low gain as bandwidth requirements� If they somehow are in

con�ict then the plant is not controllable and the only remedy is to introduce

design modi�cations to the plant�

Sometimes the problem is that the disturbances are so large that we hit

input saturation� or the required bandwidth is not achievable� To avoid the

latter problem� we must at least require that the e�ect of the disturbance is

less than � �in terms of scaled variables� at frequencies beyond the bandwidth�

�Rule ��

jGd�j��j 
 �� �� 
 �c ����
�

where as found above we approximately require �c 
 ��	 �Rule ��� �c 
 z��

�Rule �� and �c 
 �u �Rule ��� Condition ����
� may be used� as in the

example of Section ������ below� to determine the size of equipment�

���� Controllability analysis with feedforward

control

The above controllability rules apply to feedback control� but we �nd that

essentially the same conclusions apply to feedforward control where relevant�

That is� if a plant is not controllable using feedback control� it is usually not

controllable with feedforward control� A major di�erence� as shown below� is
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that a delay in Gd�s� is an advantage for feedforward control ��it gives the

feedforward controller more time to make the right action�� Also� a RHP�zero

in Gd�s� is also an advantage for feedforward control if G�s� has a RHP�zero

at the same location� Rules � and � on input constraints apply directly to

feedforward control� but Rule 
 does not apply since unstable plants can only

be stabilized by feedback control� The remaining rules in terms of performance

and �bandwidth do not apply directly to feedforward control�

Controllability can be analyzed by considering the feasibility of achieving

of perfect control� The feedforward controller is

u � Kd�s�dm

where dm � Gmd�s�d is the measured disturbance� The disturbance response

with r � � becomes
e � Gu�Gdd � �GKdGmd �Gd�d ����	�

�Reference tracking can be analyzed similarly by setting Gmd � � and

Gd � �R��

Perfect control� e � � is from ����	� achieved with the

Kperfect

d � �G��GdG
��
md ���
��

This assumes that Kperfect

d is stable and causal �no prediction�� and so

G��
d GGmd should have no RHP�zeros and no �positive� delay� From this we

�nd that a delay �or RHP�zero� in Gd�s� is an advantage if it cancels a delay

�or RHP�zero� in GGmd�

Ideal control� If perfect control is not possible� then one may analyze

controllability by considering an �ideal feedforward controller� K ideal

d � which

is ���
�� modi�ed to be stable and causal �no prediction�� The controller

is ideal in that it assumes we have a perfect model� Controllability is then

analyzed by using K ideal

d in ����	�� An example is given below in ���
	� and

���	�� for a �rst�order delay process�

Model uncertainty� As discussed in Section ����� model uncertainty is a

more serious problem for feedforward than for feedback control because there

is no correction from the output measurement� For disturbance rejection� we

have from ������ that the plant is not controllable with feedforward control if

the relative model error for G�Gd at any frequency exceeds ��jGdj� Here Gd

is the scaled disturbance model� For example� if jGd�j��j � �� then the error

in G�Gd must not exceed �� at this frequency� In practice� this means that

feedforward control has to be combined with feedback control if the output

is sensitive to the disturbance ��i�e� if jGdj is much larger than � at some

frequency��

Combined feedback and feedforward control� To analyze controllabil�

ity in this case we may assume that the feedforward controllerKd has already
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been designed� Then from ����	� the controllability of the remaining feedback

problem can be analyzed using the rules in Section ���� if Gd�s� is replaced

by bGd�s� � GKdGmd �Gd ���
��

However� one must beware that the feedforward control may be very sensitive

to model error� so the bene�ts of feedforward may be less in practice�

Conclusion� From ���
�� we see that the primary potential bene�t of

feedforward control is to reduce the e�ect of the disturbance and make bGd

less than � at frequencies where feedback control is not e�ective due to� for

example� a delay or a large phase lag in GGm�s��

���� Applications of controllability analysis

������ First�order delay process

Problem statement� Consider disturbance rejection for the following

process

G�s� � k
e��s

� � �s
� Gd�s� � kd

e��ds

� � �ds

���
��

In addition there are measurement delays 	m for the output and 	md for

the disturbance� All parameters have been appropriately scaled such that at

each frequency juj 
 �� jdj 
 � and we want jej 
 �� Assume jkdj � �� Treat

separately the two cases of i� feedback control only� and ii� feedforward control

only� and answer the following�

a� For each of the eight parameters in this model explain qualitatively what

value you would choose from a controllability point of view �with answers such

as large� small� value has no e�ect��

b� Give quantitative relationships between the parameters which should be

satis�ed to achieve controllability� Assume that appropriate scaling has been

applied in such a way that the disturbance is less than � in magnitude� and

that the input and the output are required to be less than � in magnitude�

Solution� a�Qualitative� We want the input to have a �large� direct and fast

e�ect on the output� while we want the disturbance to have a �small� indirect

and slow e�ect� By �direct we mean without any delay or inverse response�

This leads to the following conclusion� For both feedback and feedforward

control we want k and �d large� and � � 	 and kd small� For feedforward control

we also want 	d large �we then have more time to react�� but for feedback the

value of 	d does not matter� it translates time� but otherwise has no e�ect�

Clearly� we want 	m small for feedback control �it is not used for feedforward��

and we want 	md small for feedforward control �it is not used for feedback��
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b� Quantitative� To stay within the input constraints �juj 
 �� we must

from Rule � require jG�j��j � jGd�j��j for frequencies � 
 �d� Speci�cally�

for both feedback and feedforward control

k � kd� k�� � kd��d ���
��

Now consider performance where the results for feedback and feedforward

control di�er� i� First consider feedback control� From Rule � we need for

acceptable performance �jej 
 �� with disturbances

�d � kd��d 
 �c ���
��

On the other hand� from Rule � we require for stability and performance

�c 
 ��	tot ���
��

where 	tot � 	 � 	m is the total delay around the loop� The combination of

���
�� and ���
�� yields the following requirement for controllability

Feedback� 	 � 	m 
 �d�kd ���
��

ii� For feedforward control� any delay for the disturbance itself yields a

smaller �net delay� and to have jej 
 � we need �only require

Feedforward� 	 � 	md � 	d 
 �d�kd ���
��

Proof of 
����� Introduce b� � ���md��d� and consider �rst the case with b� � � 	so

	����
 is clearly satis�ed
� In this case perfect control is possible using the controller

	����
�

Kperfect

d � �G��GdG
��
md � �

kd
k

� � 	s

� � 	ds
eb�s 	����


so we can even achieve e � �� Next� consider b� � �� Perfect control is not possible�

so instead we use the �ideal� controller obtained by deleting the prediction eb�s�

Kideal

d � �kd
k

� � 	s

� � 	ds

	���


From 	���
 the response with this controller is

e � 	GKideal

d Gmd �Gd
d �
kde
��ds

� � 	ds
	�� e�b�s
d 	���


and to achieve jej�jdj � � we must require kd
�d
b� � � 	using asymptotic values and

�� e�x � x for small x
 which is equivalent to 	����
� �
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������ Application� Room heating

Consider the problem of maintaining a room at constant temperature� as

discussed in Section ���� Let y be the room temperature� u the heat input

and d the outdoor temperature� Feedback control should be used� Let the

measurement delay for temperature �y� be 	m � ��� s�

�� Is the plant controllable with respect to disturbances�

�� Is the plant controllable with respect to setpoint changes of magnitude

R � � ��� K� when the desired response time for setpoint changes is

�r � ���� s ��� min� �

Solution� A critical part of controllability analysis is scaling� A model in

terms of scaled variables was derived in ������

G�s� �

��

����s� �
� Gd�s� �

��

����s� �

���	��

The frequency responses of jGj and jGdj are shown in Figure ���
�
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Figure ���	� Frequency responses for room heating example

�� Disturbances� From Rule � feedback control is necessary up to the

frequency �d � ������� � ���� rad�s� where jGdj crosses � in magnitude

��c � �d�� This is exactly the same frequency as the upper bound given by

the delay� ��	 � ���� rad�s ��c 
 ��	�� We therefore conclude that the system

is barely controllable for this disturbance� From Rule � no problems with input

constraints are expected since jGj � jGdj at all frequencies� These conclusions

are supported by the closed�loop simulation in Figure ���	 �a� for a unit

step disturbance �corresponding to a sudden �� K increase in the outdoor

temperature� using a PID�controller of the form in ����	� with Kc � ���

�scaled variables�� �I � ��� s and �D � �� s� The output error exceeds its
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�b� Setpoint change ������s���	

Figure ���
� PID feedback control of room heating example

allowed value of � for a very short time after about ��� s� but then returns

quite quickly to zero� The input goes down to about ���
 and thus remains

within its allowed bound of ���

� Setpoints� The plant is controllable with respect to the desired setpoint

changes� First� the delay is ��� s which is much smaller than the desired

response time of ���� s� and thus poses no problem� Second� jG�j��j 
 R � �

up to about �� � ����� �rad�s� which is seven times higher than the required

�r � ���r � ����� �rad�s�� This means that input constraints pose no problem�

In fact� we should be able to achieve response times of about ���� � ��� s

without reaching the input constraints� This is con�rmed by the simulation

in Figure ���	 �b� for a desired setpoint change ������s� �� using the same

PID controller as above�

������ Application� Neutralization process

The following application is interesting in that it shows how the controllability

analysis tools may assist the engineer in redesigning the process to make it

controllable�

One tank� Consider the process in Figure ����� where a strong acid with

pH� �� �yes� a negative pH is possible ! it corresponds to cH� � �� mol�l� is

neutralized by a strong base �pH���� in a mixing tank with volume V� ��m��

The problem is to use feedback control to keep the pH in the product stream

�output y� in the range � � � ��salt water� by manipulating the amount of

base� qB �input u� in spite of variations in the �ow of acid� qA �disturbance

d�� The delay in the pH�measurement is 	m � �� s�

To achieve the desired product with pH�� one must exactly balance the

in�ow of acid �the disturbance� by addition of base �the manipulated input��

Intuitively� one might expect that the main control problem is to adjust the
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Figure ����� Neutralization process with one mixing tank

base accurately by means of a very accurate valve� However� as we will see

this �feedforward way of thinking is misleading� and the main hurdle to good

control is the need for very fast response times�

We the controlled output to be the excess of acid� c �mol�l�� de�ned as

c � cH� � cOH� � In terms of this variable the control objective is to keep

jcj � cmax � ��
�� mol�l� and the plant is a simple mixing process modelled

by

d
dt
�V c� � qAcA � qBcB � qc ���	��

The nominal values for the acid and base �ows are q�A � q�B � ����� � m
��s�

resulting in a product �ow q� � ���� �m��s�� �� �l�s�� Here superscript �

denotes the steady�state value� Divide each variable by its maximum deviation

to get the following scaled variables

y �

c
����
� u �

qB
q�B
� d �

qA
���q�A

���	��

Then appropriately scaled linear model for one tank becomes

Gd�s� �

kd

� � �hs
� G�s� �

��kd

� � �hs
� kd � ��� � ��

� ���	��

where �h � V�q � ���� s is the residence time for the liquid in the tank� Note

that the steady�state gain in terms of scaled variables is more than a million

so the output is extremely sensitive to both the input and the disturbance�

The reason for this high gain is the much higher concentration in the two feed

streams� compared to that desired in the product stream�



LIMITATIONS ON PERFORMANCE IN SISO SYSTEMS ��

10
−4

10
−2

10
0

10
2

10
4

10
0

10
5

Frequency �rad�s�

M
a
g
n
it
u
d
e

jGj

jGdj

�d

Figure ����� Frequency responses for the neutralization process with one mixing

tank
We now proceed with the controllability analysis� The frequency responses

of Gd�s� and G�s� are shown graphically in Figure ����� From Rule �� input

constraints do not pose a problem since jGj � �jGdj at all frequencies� The

main control problem is the high disturbance sensitivity� and from ���
�� �Rule

�� we �nd the frequency up to which feedback is needed

�d � kd�� � ���� rad�s ���	��

This requires a response time of ������ � ��� millisecond which is clearly

impossible in a process control application� and is in any case much less than

the measurement delay of �� s�

��
��

��
��

� �

����

�

�
�

�

�ACID BASE

pHI

pHC

Figure ����� Neutralization process with two tanks and one controller

Design change	 Multiple tanks� The only way to improve controllability
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is to modify the process� This is done in practice by performing the

neutralization in several steps as illustrated in Figure ���� for the case of

two tanks� This is similar to playing golf where it is often necessary to use

several strokes to get to the hole� With n equal mixing tanks in series the

transfer function for the e�ect of the disturbance becomes

Gd�s� � kdhn�s�� hn�s� �

�

� �hn s� ��
n

���	��

where kd � ��� � ��
� is the gain for the mixing process� hn�s� is the transfer

function of the mixing tanks� and �h is the total residence time� Vtot�q� The

magnitude of hn�s� as a function of frequency is shown in Figure ���� for one

to four equal tanks in series�
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Figure ����� Frequency responses for n tanks in series with the same total residence

time 	h� hn	s
 � ��	
�h
n

s� �
n� n � �� �� �� �

From controllability Rules � and � we must at least require for acceptable

disturbance rejection that
jGd�j���j � � ��

�
� ��	 ���	��

where 	 is the delay in the feedback loop� Thus� one purpose of the mixing

tanks hn�s� is to reduce the e�ect of the disturbance by a factor kd�� ��� ���
��

at the frequency ���� ��� �rad�s��� i�e� jhn�j���j � ��kd� With �h � Vtot�q we

obtain the following minimum value for the total volume for n equal tanks in

series

Vtot � q	n
q
�kd���n � � ���	
�

where q � ���� m��s� With 	 � �� s we then �nd that the following designs
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have the same controllability with respect to disturbance rejection�

No� of Total Volume

tanks volume each tank

n Vtot �m
�� �m��

� ������ ������

� ��� ���

� ���� ����

� ��� ���

� ��� ���

� ��� ����

� ���� ����

With one tank we need a volume corresponding to that of a supertanker to

get acceptable controllability� The minimum total volume is obtained with �


tanks of about ��� liters each ! giving a total volume of ����� m�� However�

taking into account the additional cost for extra equipment such as piping�

mixing� measurements and control� we would probably select a design with �

or � tanks for this example�

Control system design

The condition jGd�j���j � � in ���	��� which formed the basis for redesigning

the process� may be optimistic because it only ensures that we have jSj 


��jGdj at the crossover frequency �B � �c � ��� However� from Rule � we

also require that jSj 
 ��jGdj� or approximately jLj � jGdj� at frequencies

lower than wc� and this may be di�cult to achieve since Gd�s� � kdh�s�

is of high order� The problem is that this requires jLj to drop steeply with

frequency� which results in a large negative phase for L� whereas for stability

and performance the slope of jLj at crossover should not be greater than ���

approximately �see Section �������

Thus� the control system in Figure ���� with a single feedback controller

will not achieve the desired performance� The solution is to install a local

feedback control system on each tank and to add base in each tank as shown in

Figure ����� This is another plant design change since it requires an additional

measurement and actuator for each tank� Consider the case of n tanks in series�

With n controllers the overall closed�loop response from a disturbance into

the �rst tank to the pH in the last tank becomes

y � Gd

nY
i��

�

�
� � Li
�d �

Gd
L

d� L
�
�

nY
i��

Li ���		�

where Gd �
Qn

i��Gi and Li � GiKi� and the approximation applies at low

frequencies where feedback is e�ective�
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Figure ����� Neutralization process with two tanks and two controllers�

In this case� we can design each loop Li�s� with a slope of�� and bandwidth

�c � ��� such that the overall loop transfer function L has slope �n and

achieves jLj � jGdj at all frequencies lower than �d �the size of the tanks

are selected as before such that �d � ���� Thus� our analysis con�rms the

usual recommendation of adding base gradually and having one pH�controller

for each tank �McMillan� �	
�� p� ��
�� It is unlikely that any other control

strategy can achieve a su�ciently high roll�o� for jLj�

In summary� this application has shown how a simple controllability analysis

may be used to make decisions on both the appropriate size of the equipment�

and the selection of actuators and measurements for control� Our conclusions

are in agreement with what is used in industry� Importantly� we arrived at

these conclusions� without having to design any controllers or perform any

simulations� Of course� as a �nal test� the conclusions from the controllability

analysis should be veri�ed by simulations using a nonlinear model�

Exercise ��� Comparison of local feedback and cascade control� Explain

why a cascade control system with two measurements 
pH in each tank and only

one manipulated input 
the base 	ow into the �rst tank will not achieve as good

performance as the control system in Figure ���� where we use local feedback with

two manipulated inputs 
one for each tank� 
Hint� Show �rst that the closed�loop

response for the cascade control system is as in 
���� but with

L� � G�K�� L� � G�G�K�K�� � � � � Li �

iY
j��

GjKj

rather than Li � GiKi�
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The following exercise considers the use of bu�er tanks for reducing quality

�concentration� temperature� disturbances in chemical processes�

Exercise ��� 
a The e�ect of a concentration disturbance must be reduced by a

factor of ��� at the frequency ��� rad�min� The disturbances should be dampened

by use of bu�er tanks and the objective is to minimize the total volume� How many

tanks in series should one have� What is the total residence time�


b The feed to a distillation column has large variations in concentration and the

use of one bu�er tank is suggest to dampen these� The e�ect of the feed concentration

d on the product composition y is given by 
scaled variables� time in minutes

Gd	s
 � e�s��s


that is� after a step in d the output y will� after an initial delay of � min� increase in

a ramplike fashion and reach its maximum allowed value 
which is � after another

� minutes� Feedback control should be used and there is a additional measurement

delay of � min� What should the residence time in the tank be�


c Show that in terms of minimizing the total volume for bu�er tanks in series�

it is optimal to have bu�er tanks of equal size�


d Is there any reason to have bu�er tanks in parallel 
they must not be of equal

size because then one may simply combine them�


e What about parallel pipes in series 
pure delay� Is this a good idea�

Bu�er tanks are also used in chemical processes to dampen liquid �owrate

disturbances �or gas pressure disturbances�� This is the topic of the following

exercise�

Exercise ���� Let d � qin �m��s� denote a 	owrate which acts a disturbance to

the process� We add a bu�er tank 
with liquid volume V �m��� and use a �slow� level

controller K such that the out	ow d� � qout 
the �new� disturbance is smoother

then the in	ow qin 
the �original� disturbance� The idea is to temporarily increase

or decrease the liquid volume in the tank to avoid sudden changes in qout� Note that

the steady�state value of qout must equal that of qin�

A material balance yields V 	s
 � 	qin	s
 � qout�s
 and with a level controller

qout	s
 � K	s
V 	s
i we �nd that
d�	s
 �

K	s


s�K	s
� 	z 

h�s�

d�	s
 	�����


The design of a bu�er tank for a 	owrate disturbance then consists of two steps

�� Design the level controller K	s
 such has h	s
 has the desired shape 
e�g��

determined by a controllability analysis of how d� a�ects the remaining process�

note that we always must have h	�
 � ��

�� Design the size of the tank 
determine its volume Vmax such that the tanks does

not over	ow or go empty for the expected disturbances in qin�
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Assume the in	ow varies in the range q�in � ��� where q�in is its nominal value�

and apply this stepwise procedure to two cases�


a The desired transfer function is h	s
 � ��		s� �
�


b The desired transfer function is h	s
 � ��		�s� �!

��


c Explain why it is usually not recommended to have integral action in K	s
�


d In case 
b one could alternatively use two tanks in series with controllers

designed as in 
a� Explain why this is most likely not a good solution� 
Solution�

The required total volume is the same� but the cost of two small tanks is larger than

one large tank�

���	 Additional Exercises

Exercise ���� What information about a plant is important for controller design�

or more speci�cally� in which frequency range is it important to know the model well�

To answer this problem you may think about the following sub�problems�


a Explain what information about the plant is used for Ziegler�Nichols tuning of

a SISO PID�controller�


b Is the steady�state plant gain G	�
 important for controller design� 
As an

example consider the plant G	s
 � �
s�a

with jaj � � and design a P�controller

K	s
 � Kc such that �c � ���� How does the controller design and the closed�loop

response depend on the steady�state gain G	�
 � ��a�

Exercise ���
 Let H	s
 � K�e
���s� G	s
 � K�e
����s �

���s����Ts���
� and Gd	s
 �

G	s
H	s
� The measurement device for the output has transfer function Gm	s
 �

e���s� The unit for time is seconds� The nominal parameter values are� K� � �����

�� � � �s�� K� � ��� �� � � �s�� and T � � �s��


a Assume all variables have been appropriately scaled� Is the plant input�output

controllable�


b What is the e�ect on controllability of changing one model parameter at a time

in the following ways�

�� �� is reduced to ��� �s��

�� �� is reduced to � �s��

�� K� is reduced to ������

�� K� is reduced to ��

�� T is increased to �� �s��

Exercise ���� A heat exchanger is used to exchange heat between two streams� a

coolant with 	owrate q 
��� kg�s is used to cool a hot stream with inlet temperature

T� 
��� � ���C to the outlet temperature T 
which should be �� � ���C� The

measurement delay for T is �s� The main disturbance is on T�� The following model

in terms of deviation variables is derived from heat balances

T 	s
 �

�

	��s� �
	��s� �

q	s
 �

���	��s � �


	��s� �
	��s� �

T�	s
 	�����


where T and T� are in �C� q is in kg�s� and the unit for time is seconds� Derive the

scaled model� Is the plant controllable with feedback control� 
Solution� The delay
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poses no problem �performance�� but the e�ect of the disturbance is a bit too large

at high frequencies �input saturation�� so the plant is not controllable��

Exercise ���� The model of an industrial robot arm is as follows

G�s� �

����as� � ������s � ����

s�as� � ����������a � ��s� �������a � ���

where a � 	������� �����
� Sketch the Bode plot for the two extreme values of a� What

kind of control performance do you expect� Discuss how you may best represent this

uncertainty �see Chapter ���

���� Conclusion

The chapter has presented a frequency domain controllability analysis for

scalar systems applicable to both feedback and feedforward control� We

derived on page ��� a set of controllability rules which are necessary conditions

��minimum requirements�� to achieve acceptable control performance� They

are not su	cient since among other things they only consider one e
ect at

a time� The rules may be used to determine whether or not a given plant is

controllable� indicators�� The method has been applied to a pH neutralization

process� and it is found that the heuristic design rules given in the literature

follow directly� The key steps in the analysis are to consider disturbances and

to scale the variables properly�

The tools presented in this chapter may also be used to study the

e
ectiveness of adding extra manipulated inputs or extra measurements

�cascade control�� They may also be generalized to multivariable plants

where directionality becomes a further crucial consideration� Interestingly� a

direct generalization to decentralized control of multivariable plants is rather

straightforward and involves CLDG and PRGA� see page �� in Chapter ���
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�
LIMITATIONS ON

PERFORMANCE IN MIMO

SYSTEMS

In this chapter we generalize results of Chapter � to MIMO systems� We rst discuss

fundamental limitations on the sensitivity and complementary sensitivity functions

imposed by the presence of RHP�zeros� We then consider separately the issues of

functional controllability� RHP�zeros� RHP�poles� disturbances� input constraints

and uncertainty� Finally� we summarize the main steps in a procedure for analyzing

the input�output controllability of MIMO plants�

��� Introduction

In a MIMO system� disturbances� the plant� RHP�zeros� RHP�poles and delays

each have directions associated with them� This makes it more di	cult to

consider their e
ects separately� as we did in the SISO case where we were

able to reformulate the imposed limitations in terms of bounds on the loop

gain� jLj� and its crossover frequency� �c� For example� a multivariable plant

may have a RHP�zero and a RHP�pole at the same location� but their e
ects

may not interact if they are in completely di
erent parts of the system� recall

������

We will quantify the directionality of the various e
ects in G and Gd mainly

by their output directions�

� yz� output direction of a RHP�zero� see �����

� yp� output direction of a RHP�pole� see �����

� yd� output direction of a disturbance� see ������

� ui� i�th output direction �singular vector� of the plant� see �������

All these are l � � vectors where l is the number of outputs� yz and yp are

� Note that ui here is the i�th output singular vector� and not the i�th input�
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�xed complex vectors� while yd�s� and ui�s� are frequency�dependent �s may

here be viewed as a generalized complex frequency� in most cases s � j��� All

output vectors are normalized such that they have Euclidean length ��

kyzk� � �� kypk� � �� kyd�s�k� � �� kui�s�k� � �

We may also consider the associated input directions of G� However� these

directions are usually of less interest since we are primarily concerned with

the performance at the output of the plant�

The angles between the various output directions can be quanti�ed using

their inner products� jyHz ypj� jyHz ydj� etc� The inner product gives a number

between � and �� and from this we can de�ne the angle in the �rst quadrant�

see �A������ For example� the output angle between a pole and a zero is

� � arccos jyHz ypj

to characterize directions�

We assume throughout this chapter that the models have been scaled as

outlined in Section ��� The scaling procedure is the same as that for SISO

systems� except that the scaling factors Du� Dd� Dr and De are diagonal

matrices with elements equal to the maximum change in each variable ui� di�

ri and ei� The control error in terms of scaled variables is then

e � y � r � Gu�Gdd�Rer

where at each frequency we have ku���kmax � �� kd���kmax � �� and

ker���kmax � �� and the control objective is to achieve kekmax��� � �� Here

k � kmax is the vector in�nity�norm� that is� the largest element in the vector�

This norm is sometimes denoted k � k�� but this is not used here to avoid

confusing it with the H� norm of the transfer function �where the � denotes

the maximum over frequency rather than the maximum over the elements

of the vector�� As for SISO� systems we see that reference changes may be

analyzed as a special case of disturbances by replacing Gd by �R�

Whether various disturbances and reference changes should be considered

separately or simultaneously is a matter of design philosophy� In this chapter

we mainly consider their e
ects separately� on the grounds that it is unlikely

that for several disturbances to attain their worst values simultaneously� This

leads to necessary conditions for acceptable performance� which involve the

elements of di
erent matrices rather than the matrix norms�
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��� Constraints on S and T

����� S plus T is the identity matrix

From the identity S � T � I and �A���� we get

j�� ���S�j � ���T � � � � ���S� �����

j�� ���T �j � ���S� � � � ���T � �����

This shows that we cannot have both S and T small simultaneously and that

���S� is large if and only if ���T � is large�

����� Sensitivity integrals

For SISO systems we presented several integral constraints on the sensitivity

�the waterbed e
ects�� These may be generalized to MIMO systems by using

the determinant or singular value of S� see Boyd and Barratt ������ and

Freudenberg and Looze ������� For example� the generalization of the Bode

sensitivity integral in ����� may be written

Z �
�

ln j detS�j��jd� �
X

j

Z �
�

ln�j�S�j���d� � � �
NpX

i��
Re�pi� �����

For a stable L�s� the integrals are zero� Other generalizations are also

available� see Zhou et al� ������� However� although these relationships are

interesting� it seems di	cult to derive from them concrete bounds on the

achievable performance�

����� Interpolation constraints

RHP�zero� If G�s� has a RHP�zero at z with output direction yz� then for

internal stability of the feedback system the following interpolation constraints

must apply�

yHz T �z� � �� yHz S�z� � yHz ����

In words� ���� says that T must have a RHP�zero in the same direction as G

and that S�z� has an eigenvalue of � corresponding to the left eigenvector yz�

Proof of ���	�
 From ������ there exists an output direction yz such that y
H
z G�z� � ��

For internal stability� the controller cannot cancel the RHP�zero and it follows that

L � GK has a RHP�zero in the same direction� i�e�� yHz L�z� � �� Now S � �I�L���

is stable and thus has no RHP�pole at s � z� It then follows from T � LS that

yHz T �z� � � and yHz �I � S� � �� �
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RHP�pole� If G�s� has a RHP pole at p with output direction yp� then for

internal stability the following interpolation constraints apply

S�p�yp � �� T �p�yp � yp �����

Proof of �����
 The square matrix L�p� has a RHP�pole at s � p� and if we assume

that L�s� has no RHP�zeros at s � p then L���p� exists and from ������ there exists

an output pole direction yp such that
L���p�yp � � �����

Since T is stable� it has no RHP�pole at s � p� so T �p� is nite� It then follows� from

S � TL��� that S�p�yp � T �p�L���p�yp � �� �

Similar constraints apply to LI � SI and TI � but these are in terms of the input

zero and pole directions� uz and up�

����� Sensitivity peaks

Based on the above interpolation constraints we here derive lower bounds on

the weighted sensitivity functions� The results show that a peak on ���S� larger

than � is unavoidable if the plant has a RHP�zero� and that a peak on ���T �

larger � is unavoidable if the plant has a RHP�pole� In particular� the peaks

may be large if the plant has both RHP�zeros and RHP�poles�

The �rst result� originally due to Zames ������� directly generalizes the

SISO condition in �������

Theorem ��� Weighted sensitivity� Suppose the plant G�s� has a RHP�

zero at s � z� Let wP �s� be any stable scalar weight� Then for closed�loop

stability the weighted sensitivity function must satisfy

kwPS�s�k� � max
�

���wPS�j��� � jwP �z�j �����

Proof
 Introduce the scalar function f�s� � yHz wp�s�S�s�yz which is analytic in the

RHP� We then have
kwPS�s�k� � kf�s�k� � jf�z�j � jwP �z�j �����

The rst inequality follows because the singular value measures the maximum gain

of a matrix independent of direction� and so ���A� � kAwk� and ���A� � kwAk�

�see �A������ for any vector w with kwk� � �� The second inequality follows

from the maximum modulus principle as in the SISO case� The nal equality

follows since wP �s� is a scalar and from the interpolation constraint ����� we get

yHz S�z�yz � yHz yz � �� �

The next theorem generalizes the SISO�condition in �������
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Theorem ��� Weighted complementary sensitivity� Suppose the plant

G�s� has a RHP�pole at s � p� Let wT �s� be any stable scalar weight� Then

for closed�loop stability the weighted complementary sensitivity function must

satisfy

kwT �s�T �s�k� � max
�

���wTT �j��� � jwT �p�j �����

Proof
 Introduce the scalar function f�s� � yHp wT �s�T �s�yp which is analytic in the

RHP since wTT �s� is stable� We then have

kwTT �s�k� � kf�s�k� � jf�p�j � jwT �p�j ������

The rst inequality follows because the singular value measures the maximum gain

of a matrix independent of direction and kypk� � �� The second inequality follows

from the maximum modulus principle� The nal equality follows since wT �s� is a

scalar and from ����� we get yHp T �p�yp � yHp yp � �� �

The third theorem� which is a direct extension of the SISO result in �������

generalizes the two above theorems� Consider a plant G�s� with RHP�poles

pi and RHP�zeros zj � and factorize G�s� in terms of the Blaschke products as

follows

G�s� � Bp�s�Gp�s�� G�s� � B��
z �s�Gz�s�

where Bp�s� and Bz�s� are stable all�pass transfer matrices �all singular values

are � for s � j�� containing the RHP�poles and RHP�zeros� respectively�Bp�s�

is obtained by factorizing to the output one RHP�pole at a time� starting with

G�s� � Bp��s�Gp��s� where Bp��s� � I � �Rep�

s�p�
byp�byHp� where byp� � yp� is the

output pole direction for p�� This procedure may be continued to factor out

p� from Gp��s� where byp� is the output pole direction of Gp� �which need not

coincide with yp�� the pole direction of Gp�� and so on� A similar procedure

may be used for the RHP�zeros� We get

Bp�s� �
NpY

i��
�I �

�Re�pi�

s� pi
bypibyHpi�� Bz�s� �

NzY
j��

�I �
�Re�zj�

s� zj
byzjbyHzj� ������

Remark� State�space realizations are provided by Zhou et al� ������ p������ Note

that the realization may be complex�

With this factorization we have the following theorem�

Theorem ��� MIMO sensitivity peak� Suppose that G�s� has Nz RHP�

zeros zj with output directions yzj � and has Np RHP�poles pi with output

directions ypi� De�ne the all�pass transfer matrices given in ������ and

compute the real constants

c�j � kyHzjBp�zj�k� � �� c�i � kBz�pi�ypik� � � ������
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Then for closed�loop stability the weighted sensitivity function must satisfy for

each zj

kwPSk� � c�j jwP �zj�j ������

and the weighted complementary sensitivity function must satisfy for each pi	

kwTTk� � c�i jwT �pi�j �����

Proof of c�j in �����
 Consider here a RHP�zero z with direction yz �the subscript

j is omitted�� Since G has RHP�poles at pi� S must have RHP�zeros at pi� such that

T � SGK is stable� We may factorize S � TL�� � S�B
��
p �s� and introduce the

scalar function f�s� � yHz wp�s�S��s�y which is analytic �stable� in the RHP� y is a

vector of unit length which is free to choose� We then have

kwPS�s�k� � kwPS�k� � kf�s�k� � jf�z�j � jwP �z�j � jyHz Bp�z�yj ������

The nal equality follows since wp is a scalar and yHz S��z� � yHz S�z�Bp�z� �

yHz Bp�z�� We nally select y such that the lower bound is as large as possible and

derive c�� To prove that c� � �� we follow Chen ������ and introduce the matrix

Vi whose columns together with bypi form an orthonormal basis for Cl�l� Then�

I � bypibyHpi � ViV
H
i � and

Bpi�s� � I �
�Re�pi�

s� pi
bypibyHpi � s� �pi

s� pi
bypibyHpi � ViV

H
i � 	 bypi Vi 


�
s��pi

s�pi

�

� I
�� byHpi

V H
i

�
������

and we see that all singular values of Bpi�z� are equal to �� except for one which is

jz � �pij�jz � pij � � �since z and pi are both in the RHP�� Thus all singular values

of Bp�z� are � or larger� so Bp�z� is larger or equal to � in all directions and c� � ��

The proof of c�i is similar� �

From Theorem ��� we get by selecting wP �s� � � and wT �s� � �

kSk� � max

zeros zj
c�j � kTk� � max

poles pi
c�i ������

Thus� a peak for ���S�j��� and ���T �j��� larger than � is unavoidable if the

plant has both a RHP�pole and a RHP�zero �unless their relative angle is �����

One RHP�pole and RHP�zero� For the case with one RHP�zero z and

one RHP�pole p we derive from ������

c� � c� �
s

sin� ��
jz � �pj�

jz � pj� cos
� � ������

where � � arccos jyHz ypj is the angle between the output directions for the

pole and zero� We then get that if the pole and zero are aligned in the same

direction such that yz � yp and � � �� then ������ simpli�es to the SISO�

conditions in ������ and ������ with c� � c� � jz��pj

jz�pj � �� Conversely� if

the pole and zero are aligned orthogonally to each other then � � ��� and

c� � c� � � and there is no additional penalty for having both a RHP�pole

and a RHP�zero�
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Proof of ������
 From ������ c� � kyHz Bp�z�k�� From ������ the projection of yz in

the direction of the largest singular value of Bp�z� has magnitude jz��pj�jz�pj cos��

and the projection onto the remaining subspace is � � sin�� and ������ follows� The

result was rst proved by Boyd and Desoer ������ and an alternative proof is given

in Chen ������ who presents a slightly improved bound� �

Below we discuss the implications of these results and provide some

examples�

��� Functional controllability

Consider a plant G�s� with l outputs and let r denote the normal rank of

G�s�� In order to control all outputs independently we must require r � l�

that is� the plant must be functionally controllable� This term was introduced

by Rosenbrock ������ p� ��� for square systems� and related concepts are �right

invertibility� and �output realizability�� We will use the following de�nition�

De	nition ��� Functional controllability� An m�input l�output system

G�s� is functionally controllable if the normal rank of G�s�� denoted r� is

equal to the number of outputs� l� that is� if G�s� has full row rank� A system

is functionally uncontrollable if r � l�

The normal rank of G�s� is the rank of G�s� at all values of s except

at a �nite number of singularities �which are the zeros of G�s��� The only

example of a SISO system which is functionally uncontrollable is the system

G�s� � �� A square MIMO system is functional uncontrollable if and only if

detG�s� � ���s�

A plant is functional uncontrollable if �and only if� �l�G�j��� � ����� As

a measure of how close a plant is to being functional uncontrollable we may

therefore consider �l�G�j��� �which for the interesting case with as least as

many inputs as outputs� m � l� is the minimum singular value� ��G�j�����

In most cases functional uncontrollability is a structural property of the

system� that is� it does not depend on speci�c parameter values� and it may

often be evaluated from cause�and�e
ect graphs� A typical example of this is

when none of the inputs ui a
ect a particular output yj which would be the

case if one of the rows in G�s� was identically zero� Another example is when

there are fewer inputs than outputs�

For strictly proper systems� G�s� � C�sI � A���B� we have that G�s� is

functionally uncontrollable if rank�B� � l �the system is input de�cient�� or

if rank�C� � l �the system is output de�cient�� or if rank�sI �A� � l �fewer

states than outputs�� This follows since the rank of a product of matrices is

less than or equal to the minimum rank of the individual matrices� see �A����
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If the plant is not functional controllable� i�e� r � l� then there are l � r

output directions� denoted y�� which cannot be a
ected� These directions will

vary with frequency� and we have �analogous to the concept of a zero direction�

yH� �j��G�j�� � � ������

From an SVD of G�j�� � U�V H � the uncontrollable output directions y��j��

are the last l � r columns of U�j��� By analyzing these directions� an

engineer can then decide on whether it is acceptable to keep certain output

combinations uncontrolled� or if additional actuators are needed to increase

the rank of G�s��

Example ��� The following plant is singular and thus not functionally controllable

G�s� �
�
�
s��

�
s��

�
s��

�
s��

�

This is easily seen since column � of G�s� is two times column �� The uncontrollable

output directions at low and high frequencies are� respectively

y���� �

�p
�

h
�

��
i
y���� � �p
�

h
�

��
i

��� Limitations imposed by time delays

Time delays pose limitations also in MIMO systems� Speci�cally� let �ij denote

the time delay in the ij�th element of G�s�� Then a lower bound on the time

delay for output i is given by the smallest delay in row i of G�s�� that is�

�min

i � min
j

�ij

This bound is obvious since �min

i is the minimum time for any input to a
ect

output i� and �min

i can be regarded as a delay pinned to output i�

Holt and Morari �����a� have derived additional bounds� but their

usefulness is sometimes limited since they assume a decoupled closed�loop

response �which is usually not desirable in terms of overall performance� and

also assume in�nite power in the inputs�

For MIMO systems we have the surprising result that an increased time

delay may sometimes improve the achievable performance� As a simple

example� consider the plant
G�s� �

�
� e��s

� �

�

������

With � � �� the plant is singular �not functionally controllable�� and

controlling the two outputs independently is clearly impossible� On the other
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hand� for � � �� e
ective feedback control is possible� provided the bandwidth

is larger than about �	�� That is� for this example control is easier the larger

� is� To see that this is true� we may compute the condition number �or

the RGA� of G as a function of frequency� and note that it approaches �

at frequencies higher than about �	�� In words� the presence of the delay

decouples the initial �high�frequency� response� so we can obtain tight control

if the controller reacts within this initial time period�

Exercise ��� To illustrate the above arguments� determine the sensitivity function

S for the plant ����� using a simple diagonal controller K � k
s
I� Use the

approximation e��s � ���s to show that at low frequencies the elements of S�s� are

of magnitude k���k � �� How large must k be to have acceptable performance �less

than ��� o�set at low frequencies�� What is the corresponding bandwidth� �Answer


Need k � ���� Bandwidth is equal to k��

Remark� The observant reader may have noted that G�s� in ������ is singular at

s � � �even with � nonzero� and thus has a zero at s � �� Therefore� a controller

with integral action which cancels this zero� yields an internally unstable system�

�e�g� the transfer function KS contains an integrator�� This means that although

the conclusion that the time delay helps is correct� the derivations given in Exercise

��� are not strictly correct� To �x� the results we may assume that the plant is

only going to be controlled over a limited time so that internal instability and input

saturation are not issues� Alternatively� we may assume� for example� that e��s is

replaced by ����e��s so that the plant is not singular at steady�state �but it is close

to singular��

Exercise ��� Repeat Exercise ��� with e��s replaced by ���� �����s

�����s
� plot the

elements of S�j�� as a function of frequency for k � ������ k � ��� and k � ����

��� Limitations imposed by RHP	zeros

RHP�zeros are common in many practical multivariable problems� The

limitations they impose are similar to those for SISO systems� although often

not quite so serious as they only apply in particular directions�

For ideal ISE�optimal control �the �cheap� LQR problem�� the SISO

results in ������ and ������ can be generalized� see Qiu and Davison �������

Speci�cally� they show for a MIMO plant with RHP�zeros at zi that the ideal

ISE�value �the �cheap� LQR cost function� for a step disturbance or reference

is directly related to
P

i �	zi� Thus� as for SISO systems� RHP�zeros close to

the origin imply poor control performance�

The limitations of a RHP�zero located at z may also be derived from the

bound

kwPS�s�k� � max
�

jwP �j��j���S�j��� � jwP �z�j ������
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in ����� where wP �s� is a scalar weight� All the results derived in Section ����

for SISO systems� therefore generalize if we consider the �worst� direction

corresponding to the maximum singular value� ���S�� For instance� by selecting

the weight wP �s� such that we require tight control at low frequencies and a

peak for ���S� less than �� we derive from ������ that the bandwidth �in the

�worst� direction� must for a real RHP�zero satisfy ��B � z	�� Alternatively� if

we require tight control at high frequencies� then we must from ����� satisfy

��B � �z�

Remark � The use of a scalar weight wP �s� in ������ is somewhat restrictive�

However� the assumption is less restrictive if one follows the scaling procedure

in Section ��� and scales all outputs by their allowed variations such that their

magnitudes are of approximately equal importance�

Remark � Note that condition ������ involves the maximum singular value �which

is associated with the �worst� direction�� and therefore the RHP�zero may not be a

limitation in other directions� Furthermore� we may to some extent choose the worst

direction� This is discussed next�

����� Moving the e�ect of a RHP	zero to a speci
c

output

In MIMO systems one can often move the deteriorating e
ect of a RHP�zero

to a given output� which may be less important to control well� This is possible

because� although the interpolation constraint yHz T �z� � � imposes a certain

relationship between the elements within each column of T �s�� the columns of

T �s� may still be selected independently� Let us �rst consider an example to

motivate the results that follow� Most of the results in this section are from

Holt and Morari �����b� where further extensions can also be found�

Example ��� Consider the plant

G�s� �

�

����s� ���s� ��
�
� �

� � �s �
�

which has a RHP�zero at s � z � ���� This is the same plant considered in Section

��� where we performed some H� controller designs� The output zero direction

satis�es yHz G�z� � � and we �nd

yz �

�p
�

h
�

��
i
�

h
����

���	

i

Any allowable T �s� must satisfy the interpolation constraint yHz T �z� � � in ���	��

and this imposes the following relationships between the column elements of T �s�


�t���z�� t���z� � �� �t���z�� t���z� � � ������
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We will consider reference tracking y � Tr and examine three possible choices for

T 
 T� diagonal �a decoupled design�� T� with output � perfectly controlled� and T�

with output � perfectly controlled� Of course� we cannot achieve perfect control in

practice� but we make the assumption to simplify our argument� In all three cases�

we require perfect tracking at steady�state� i�e� T ��� � I�

A decoupled design has t���s� � t���s� � �� and to satisfy ���� we then need

t���z� � � and t���z� � �� so the RHP�zero must be contained in both diagonal

elements� One possible choice� which also satis�es T ��� � I� is

T��s� �
�
�s�z

s�z

�

� �s�z

s�z

�

For the two designs with one output perfectly controlled we choose

T��s� �
�
� �

��s

s�z

�s�z

s�z

�
T��s� �

�
�s�z

s�z

��s

s�z

� �

�

The basis for the last two selections is as follows� For the output which is not perfectly

controlled� the diagonal element must have a RHP�zero to satisfy ����� and the o��

diagonal element must have an s term in the numerator to give T ��� � I� To satisfy

����� we must then require for the two designs

	� � �� 	� � �

The RHP�zero has no e�ect on output � for design T��s�� and no e�ect on output �

for design T��s�� We therefore see that it is indeed possible to move the e�ect of the

RHP�zero to a particular output� However� we must pay for this by having to accept

some interaction� We note that the magnitude of the interaction� as expressed by 	k�

is largest for the case where output � is perfectly controlled� This is reasonable since

the zero output direction yz � 	 ���� ����� 
T is mainly in the direction of output

�� so we have to �pay more� to push its e�ect to output �� This was also observed

in the controller designs in Section ���� see Figure �����

We see from the above example that by requiring a decoupled response from

r to y� as in design T��s�� we have to accept that the multivariable RHP�zero

appears as a RHP�zero in each of the diagonal elements of T �s�� In other

words� requiring a decoupled response generally leads to the introduction of

additional RHP zeros in T �s� which are not present in the plant G�s��

We also see that we can move the e
ect of the RHP�zero to a particular

output� but we then have to accept some interaction� This is stated more

exactly in the following Theorem�

Theorem ��� Assume that G�s� is square� functionally controllable and

stable and has a single RHP�zero at s � z and no RHP�pole at s � z� Then

if the k
th element of the output zero direction is nonzero� i�e� yzk 	� �� it is

possible to obtain �perfect� control on all outputs j 	� k with the remaining
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output exhibiting no steady�state oset� Speci�cally� T can be chosen of the

form
T �s� �

�������������
� � � � � � � � � � � �

� � � � � � � � � � � �

���

���

��s

s�z

��s

s�z � � � �k��s

s�z

�s�z

s�z

�k��s

s�z � � � �ns

s�z

���

� � �

���

� � � � � � � � � � � �
�������������

������

where


j � �� yzj
yzk

for j 	� k �����

Proof
 It is clear that ������ satises the interpolation constraint yHz T �z� � �� see

also Holt and Morari �����b�� �

The e
ect of moving completely the e
ect of a RHP�zero to output k is

quanti�ed by ������ We see that if the zero is not �naturally� aligned with

this output� i�e�� if jyzkj is much smaller than �� then the interactions will

be signi�cant� in terms of yielding some 
j � ��yzj	yzk much larger than �

in magnitude� In particular� we cannot move the e
ect of a RHP�zero to an

output corresponding to a zero element in yz� which occurs frequently if we

have a RHP�zero pinned to a subset of the outputs�

Exercise ��� Consider the plant
G�s� �

�

 �

�
s��



�

������

a� Find the zero and its output direction� �Answer
 z � �
��

� � and yz �

	�
 � 
T ��

b� Which values of 
 yield a RHP�zero� and which of these values is best�worst in

terms of achievable performance� �Answer
 We have a RHP�zero for j
j � �� Best

for 
 � � with zero at in�nity� if control at steady�state required then worst for 
 � �

with zero at s � ���

c� Suppose 
 � ���� Which output is the most di�cult to control� Illustrate your

conclusion using Theorem ���� �Answer
 Output � is the most di�cult since the

zero is mainly in that direction� we get interaction 	 � �� if we want to control y�

perfectly��

Exercise ��� Repeat the above exercise for the plant


G�s� �

�
s� �

�
s� 
 �

�
� ��� s� 

�

������
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��� Limitations imposed by RHP	poles

From the bound kwT �s�T �s�k� � jwT �p�j in ����� we �nd that a RHP�pole

p imposes restrictions on ���T � which are identical to those derived on jT j for

SISO systems in Section ���� Thus� we need feedback to stabilize an unstable

plant and must require that ���T �j�� is about � or larger up to the frequency

�jpj� approximately�

��
 RHP	poles combined with RHP	zeros

For SISO systems we found that performance is poor if the plant has a RHP�

pole located close to a RHP�zero� This is also the case in MIMO systems�

provided also the directions coincide� This was quanti�ed in Theorem ���� For

example� for a MIMO plant with single RHP�zero z and single RHP�pole p

we derive from ������ and ������

kSk� � c� kTk� � c� c �
s

sin� ��
jz � pj�

jz � pj� cos
� � ������

where � � arccos jyHz ypj is the angle between the RHP�zero and RHP�pole� We

next consider an example which demonstrates the importance of the directions

as expressed by the angle ��

Example ��� Consider the plant

G��s� �
�
�
s�p

�

� �
s�p

��
cos
 � sin


sin
 cos


�

	 
z �
U�

�
s�z

���s��

�

� s�z

���s��
�

� z � �� p � � ������

which has for all values of 
 has a RHP�zero at z � � and a RHP�pole at p � ��

For 
 � �� the rotation matrix U� � I� and the plant consists of two decoupled

subsystems

G��s� �
�
s�z

����s����s�p�

�

� s�z

����s����s�p�
�

Here the subsystem g�� has both a RHP�pole and a RHP�zero� and closed�loop

performance is expected to be poor� On the other hand� there are no particular control

problems related to the subsystem g��� Next� consider 
 � ��� for which we have

U� �
�
� ��

� �
�

� and G	��s� �
�
� s�z

����s����s�p�

� s�z

����s����s�p�

�

�

and we again have two decoupled subsystems� but this time in the o��diagonal

elements� The main di�erence� however� is that there is no interaction between the
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RHP�pole and RHP�zero in this case� so we expect this plant to be easier to control�

For intermediate values of 
 we do not have decoupled subsystems� and there will be

some interaction between the RHP�pole and RHP�zero�

Since in ����� the RHP�pole is located at the output of the plant� its output

direction is �xed and we �nd yp � 	 � � 
T for all values of 
� On the other hand�

the RHP�zero output direction changes from 	 � � 
T for 
 � �� to 	 � � 
T for


 � ���� Thus� the angle � between the pole and zero direction also varies between

�� and ���� but � and 
 are not equal� This is seen from the Table below� where we

also give c in �combined	a�� for four rotation angles� 
 � ��� ���� ��� and ����

� �� ��� ��� ���

yz

h
�

�
i h
����

����	
i h
����

�����
i h
�

�
i

� � cos�� jyHz ypj �� ����� ���� ���

c ��� ���� ���� ���

kSk� ���� ���� ���� ����

kTk� ��� ���� ���� ����

�S	KS� ���� ���� ���� ����

0 1 2 3 4 5
−2

−1

0

1

2
phi = 0

0 1 2 3 4 5
−2

−1

0

1

2
phi = 70.9

0 1 2 3 4 5
−2

−1

0

1

2
phi = 83.4

0 1 2 3 4 5
−2

−1

0

1

2
phi = 90

Time Time

Figure ���� MIMO plant with angle � between RHP�pole and RHP�zero� Response

to step in reference with H� controller for four di�erent values of �� Solid line� y��

Dashed line� y��
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The table also shows the values of kSk� and kTk� obtained by an H� optimal

S�KS design using the following weights

Wu � I� WP �
�
s�M � ��B

s


I� M � �� ��B � ��� ������

The weight WP indicates that we require kSk� less than �� and require tight control

up to a frequency of about ��B � ���rad�s� The minimum H� norm for the overall

S�KS problem is given by the value of � in Table ���� The corresponding responses

to a step change in the reference� r � 	 � �� 
� are shown in Figure ����

Several things about the example are worth noting


�� We see from the simulation for � � 
 � �� in Figure ��� that the response for

y� is very poor� This is as expected because of the closeness of the RHP�pole and

zero �z � �� p � ���

� The bound c on kSk� in ����� is tight in this case� This can be shown

numerically by selecting Wu � ����I� ��B � ���� and M � � �Wu and

�B are small so the main objective is to minimize the peak of S�� We �nd

with these weights that the H� designs for the four angles yield kSk� �

����� ������ ������ ������ which are very close to c�

�� The angle � between the pole and zero� is quite di�erent from the rotation angle


 at intermediate values between �� and ���� This is because of the in�uence of

the RHP�pole in output �� which yields a strong gain in this direction� and thus

tends to push the zero direction towards output ��

	� For 
 � �� we have c � � so kSk� � � and kTk� � � and it is clearly impossible

to get kSk� less than �� as required by the performance weight WP �

�� The H� optimal controller is unstable for 
 � �� and ���� This is not altogether

surprising� because for 
 � �� the plant becomes two SISO systems one of which

needs an unstable controller to stabilize it since p � z �see Section �����

In conclusion� pole and zero directions provide useful information about

a plant� as does the values of c in ������� However� the output pole and

zero directions do depend on the relative scaling of the outputs� which must

therefore be done appropriately prior to any analysis�

��� Performance requirements imposed by

disturbances

For SISO systems we found that large and �fast� disturbances require tight

control and a large bandwidth� The same results apply to MIMO systems� but

again the issue of directions is important�

De	nition ��� Disturbance direction� Consider a single �scalar� distur�

bance and let the vector gd represent its eect on the outputs �y � gdd�� The
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disturbance direction is de�ned as
yd �

�
kgdk�Gd ������

The associated disturbance condition number is de�ned as

d�G� � ���G� ���Gyyd� ������

Here Gy is the pseudo�inverse which is G�� for a non�singular G�

Remark� We here use gd �rather than Gd� to show that we consider a single

disturbance� For a plant with many disturbances gd corresponds to a given column

of the matrix Gd�

The disturbance condition number provides a measure of how a disturbance

is aligned with the plant� It may vary between � �for yd � �u� if the disturbance

is in the �good� direction� and the condition number �G� � ���G����Gy� �for

yd � u� if it is in the �bad� direction� Here �u and u are the output directions

in which the plant has its largest and smallest gain� see Chapter ��

In the following� let r � �and assume that the disturbance has been scaled

such that at each frequency the worst�case disturbance may be selected as

jd���j � �� Also assume that the outputs have been scaled such that the

performance objective is that at each frequency the ��norm of the error should

be less than �� i�e� ke���k� � �� With feedback control e � Sgdd and the

performance objective is then satis�ed if

kSgdk� � ���Sgd� � � �� 
 kSgdk� � � ������

For SISO systems� we used this to derive tight bounds on the sensitivity

function and the loop gain� jSj � �	jGdj and j� � Lj � jGdj� A similar

derivation is complicated for MIMO systems because of directions� To see

this� we can use ������ to get the following requirement� which is equivalent

to �������

kSydk� � �	kgdk� �� ������

which shows that the S must be less than �	kgdk� only in the direction of yd�

We can also derive bounds in terms of the singular values of S� Since gd is a

vector we have from �����

��S�kgdk� � kSgdk� � ���S�kgdk� �����

Now ��S� � �	���I � L� and ���S� � �	��I � L�� and we therefore have�

� For acceptable performance �kSgdk� � �� we must at least require that

���I � L� is larger than kgdk� and we may have to require that ��I � L� is

larger than kgdk��
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Plant with RHP�zero� If G�s� has a RHP�zero at s � z then the

performance may be poor if the disturbance is aligned with the output

direction of this zero� To see this apply the maximum modulus principle to

f�s� � yHz SGd to get
kSgdk� � jyHz gd�z�j � jyHz ydj � kgd�z�k� ������

To satisfy kSgdk� � � we must then for a given disturbance d at least require

jyHz gd�z�j � � ������

where yz is the direction of the RHP�zero� This provides a generalization of

the SISO�condition jGd�z�j � � in �������

Remark� In the above development we consider at each frequency performance

in terms of kek� �the ��norm�� However� the scaling procedure presented in

Section ��� leads naturally to the vector max�norm as the way to measure signals

and performance� Fortunately� this di�erence is not too important� and we will

neglect it in the following� The reason is that for an m � � vector a we have

kakmax � kak� � p
m kakmax �see �A����� so the values of max� and ��norms

are at most a factor
p
m apart�

Example ��� Consider the following plant and disturbance models

G�s� �

�
s� �

�
s� � �

��� ��s� ��
�

� gd�s� �

�
s� �

�
k
�

�
� jkj � � ������

It is assumed that the disturbance and outputs have been appropriately scaled� and

the question is whether the plant is input�output controllable� i�e� whether we can

achieve kSgdk� � �� for any value of jkj � �� G�s� has a RHP�zero z � � and in

Example 	��� on page �		 we have already computed the zero direction� From this

we get

jyHz Gd�z�j � j 	 ���� ����� 
 �
�
k
�

�
j � j����k � ����j

and from ������ we conclude that the plant is not input�output controllable if

j����k � ����j � �� i�e� if k � ������ We cannot really conclude that the plant

is controllable for k � ����� since ������ is only a necessary �and not su�cient�

condition for acceptable performance� and there may also be other factors that

determine controllability� such as input constraints which are discussed next�

Exercise ��� Show that the disturbance condition number may be interpreted as

the ratio between the actual input for disturbance rejection and the input that would

be needed if the same disturbance was aligned with the �best� plant direction�
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��� Limitations imposed by input constraints

Manipulated variable constraints can limit the ability to reject disturbances

and track references� As was done for SISO plants in Chapter �� we will

consider the case of perfect control �e � �� and then of acceptable control

�kek � ��� We derive the results for disturbances� and the corresponding

results for reference tracking are obtained by replacing Gd by �R� The results

in this section apply to both feedback and feedforward control�

Remark� For MIMO systems the choice of vector norm� k � k� to measure the vector

signal magnitudes at each frequency makes some di�erence� The vector max�norm

�largest element� is the most natural choice when considering input saturation and is

also the most natural in terms of our scaling procedure� However� for mathematical

convenience we will also consider the vector ��norm �Euclidean norm�� In most cases

the di�erence between these two norms is of little practical signicance�

����� Inputs for perfect control

We here consider the question� Can the disturbances be rejected perfectly

while maintaining kuk � �� To answer this question we must quantify the set

of possible disturbances and the set of allowed input signals� We will consider

both the max�norm and ��norm�

Max�norm and square plant� For a square plant the input needed

for perfect disturbance rejection is u � �G��Gdd �as for SISO systems��

Consider a single disturbance �gd is a vector�� Then the worst�case disturbance

is jd���j � �� and we get that input saturation is avoided �kukmax � �� if all

elements in the vector G��gd are less than � in magnitude� that is�

kG��gdkmax � ����

For simultaneous disturbances �Gd is a matrix� the corresponding requirement

is

kG��Gdki� � ���� ������

where k�ki� is the induced max�norm �induced��norm� maximum row sum�

see �A������� However� it is usually recommended in a preliminary analysis

to consider one disturbance at a time� for example� by plotting as a function

of frequency the individual elements of the matrix G��Gd� This yields more

information about which particular input is most likely to saturate and which

disturbance is the most problematic�

Two�norm�We here measure both the disturbance and the input in terms

of the ��norm� Assume that G has full row rank so that the outputs can be

perfectly controlled� Then the smallest inputs �in terms of the ��norm� needed

for perfect disturbance rejection are

u � �GyGdd ������
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where Gy � GH�GGH ��� is the pseudo�inverse from �A����� Then with a

single disturbance we must require kGygdk� � �� With combined disturbances

we must require ���GyGd� � �� that is� the induced ��norm is less than �� see

�A�����

For combined reference changes� ker���k� � �� the corresponding condition

for perfect control with kuk� � � becomes ���GyR� � �� or equivalently �see

�A�����

��R��G� � �� �� � �r �����

where �r is the frequency up to which reference tracking is required� Usually

R is diagonal with all elements larger than �� and we must at least require

��G�j��� � ���� � �r �����

or� more generally� we want ��G�j��� large�

����� Inputs for acceptable control

Let r � � and consider the response e � Gu � Gdd to a disturbance d� The

question we want to answer in this subsection is� Is it possible to achieve

kek � � for any kdk � � using inputs with kuk � �� We use here the max�

norm� k � kmax �the vector in�nity�norm�� for the vector signals�

We consider this problem frequency�by�frequency� This means that we

neglect the issue of causality which is important for plants with RHP�zeros

and time delays� The resulting conditions are therefore only necessary �i�e�

minimum requirements� for achieving kekmax � ��

Exact conditions

Mathematically� the problem can be formulated in several di
erent ways�

by considering the maximum allowed disturbance� the minimum achievable

control error or the minimum required input� e�g� see Skogestad and Wol


������� We here use the latter approach� To simplify the problem� and also to

provide more insight� we consider one disturbance at a time� i�e� d is a scalar

and gd a vector� The worst�case disturbance is then jdj � � and the problem

is at each frequency to compute

Umin
�
� min
u

kukmax such that kGu� gddkmax � �� jdj � � �����

A necessary condition for avoiding input saturation �for each disturbance� is

then

Umin � ���� �����

IfG and gd are real �i�e� at steady�state� then ����� can be formulated as linear

programming �LP� problem� and in the general case as a convex optimization

problem�
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SISO systems� For SISO systems we have an analytical solution� From

the proof of ������ the minimum input for acceptable control �ke���kmax � ��

with a given disturbance is juj � �jGddj � ��	jGj� Thus� to keep juj � � for

the worst�case disturbance �jdj � �� we must require

SISO � jGj � jGdj � �� at frequencies where jGdj � � ����

We would like to generalize this result to MIMO systems� Unfortunately� we

do not have an exact analytical result� but by making the approximation in

����� below a nice approximate generalization is available�

Approximate conditions in terms of the SVD

At each frequency the singular value decomposition of the plant �possibly

non�square� is G � U�V H � Introduce the rotated control error and rotated

input be � UHe� bu � V u �����

and assume that the max�norm is approximately unchanged by these rotations

kbekmax � kekmax� kbukmax � kukmax �����

From �A����� this would be an equality for the ��norm� so from �A���� the

error by using the approximation for the max�norm is at most a factor
p
m

where m is the number of elements in the vector� We then �nd that each

singular value of G� �i�G�� must approximately satisfy

MIMO � �i�G� � juHi gdj � �� at frequencies where jUH
i gdj � � �����

where ui is the i�th output singular vector of G� and gd is a vector since we

consider a single disturbance� More precisely� ����� is a necessary condition

for achieving acceptable control �kekmax � �� for a single disturbance �jdj � ��

with kukmax � �� assuming that ����� holds�

Condition ����� provides a nice generalization of ����� uHi gd may be

interpreted as the projection of gd onto the i�th output singular vector of

the plant�

Proof of ���	��
 Let r � � and consider the response e � Gu � gdd to a single

disturbance d� We have
be � UHe � UH�Gu� gdd� � �bu� UHgdd ������

where the last equality follows since UHG � �V � For the worst�case disturbance

�jdj � ��� we want to nd the smallest possible input such that kekmax � kbekmax

is less than �� This is equivalent to requiring jbeij � �� 	i� where from ������
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bei � �i�G�bui �UH
i gdd� Here Note� ui �a vector� is the i�th column of U � whereas bui

�a scalar� is the i�th rotated plant input� This is a scalar problem similar to that for

the SISO�case in ������� and if we assume juHi gddj � � �otherwise we may simply

set bui � � and achieve jbeij � �� then the smallest jbuij is achieved when the right

hand side is �lined up� to make jbeij � �� Thus� the minimum input is

jbuij � �juHi gdj � ����i�G� ������

and ������ follows by requiring that kukmax � kbukmax is less than �� �

Based on ����� we can �nd out�

�� For which disturbances and at which frequencies input constraints may

cause problems� This may give ideas on which disturbances should be

reduced� for example by redesign or use of feedforward control�

�� In which direction i the plant gain is too small� By looking at the

corresponding input singular vector� vi� one can determine which actuators

should be redesigned �to get more power in certain directions� and by

looking at the corresponding output singular vector� ui� one can determine

on which outputs we may have to reduce our performance requirements�

Several disturbances� For combined disturbances� one requires the i�th

row sum of UHGd to be less than �i�G� �at frequencies where the i�th row

sum is larger than ��� However� usually we derive more insight by considering

one disturbance at a time�

Reference commands� Similar results are derived for references by

replacing Gd by �R�

Example ��� Distillation process Consider a ��� plant with two disturbances�

The appropriately scaled steady�state model is

G � ���
�
���� �����

����� ������
�

� Gd �
�
���� ����

����� �����
�

������

This is a model of a distillation column with product compositions as outputs� re�ux

and boilup as inputs� and feed rate ���� change� and feed composition ���� change�

as disturbances� The elements in G are scaled by a factor ��� compared to ���	��

because the allowed input changes are a factor � smaller� From an SVD of G we

have ���G� � ���� and ��G� � ����� Some immediate observations


�� The elements of the matrix Gd are larger than � so control is needed to reject

disturbances�

� Since ��G� � ��� we are able to perfectly track reference changes of magnitude

��� �in terms of the �norm� without reaching input constraints�

�� The elements in G are about � times larger than those in Gd� which suggests that

there should be no problems with input constraints� On the other hand� ��G� � ���

is much less than the elements in Gd� so input constraints may be an issue after

all�
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	� The disturbance condition numbers� �d�G�� for the two disturbances� are �����

and ����� respectively� This indicates that the direction of disturbance � is less

favourable than that of disturbance ��

�� The condition number ��G� � ���G����G� � ����� is large� but this does not by

itself imply control problems� In this case� the large value of the condition number

is not caused by a small ��G� �which would be a problem�� but rather by a large

���G��

We will now analyze whether the disturbance rejection requirements will cause

input saturation by considering separately the two cases of perfect control �e � ��

and acceptable control �kekmax � ���

�� Perfect control� The inputs needed for perfect disturbance rejection are u �

G��Gd where

G��Gd �
�
����� ������

����� ������
�

We note that perfect rejection of disturbance d� � � requires an input u �

	����� ����� 
T which is larger than � in magnitude� Thus� perfect control of

disturbance � is not possible without violating input constraints� However� perfect

rejection of disturbance d� � � is possible as it requires a much smaller input

u � 	������ ������ 
T �

�� Approximate result for acceptable control� We will use the approximate

requirement ���	�� to evaluate the inputs needed for acceptable control� We have

UHGd �
�
����� �����

���� ����
�
���G� � ����

���G� � ����

and the magnitude of each element in the i�th row of UHGd should be less than

�i�G��� to avoid input constraints� In the high�gain direction this is easily satis�ed

since ����� and ����� are both much less than ���G� � � � ����� and from ���	��

the required input in this direction is thus only about jbu�j � ��� � ������� � ����

for both disturbances which is much less than �� The requirement is also satis�ed

in the low�gain direction since ���� and ���� are both less than ���G� � � � ����

but we note that the margin is relatively small for disturbance �� More precisely� in

the low�gain direction disturbance � requires an input magnitude of approximately

jeu�j � ������ ������ � ����� whereas disturbance � requires no control �as its e�ect

is ���� which is less than ���

In conclusion� we �nd that the results based on perfect control are misleading�

as acceptable control is indeed possible� Again we �nd disturbance � to be more

di�cult� but the di�erence is much smaller than with perfect control� The reason is

that we only need to reject about ��� ������������� of disturbance � in the low�gain

direction�

However� this changes drastically if disturbance � is larger� since then a much

larger fraction of it must be rejected� The fact that disturbance � is more di�cult is

con�rmed in Section ����� on page 	�	 where we also present closed�loop responses�

�� Exact numerical result for acceptable control� The exact value of the minimum

inputs needed to achieve acceptable control are kukmax � ����� for disturbance �

and kukmax � ����� for disturbance �� which con�rms that input saturation is not a

problem�
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However� the values of kukmax � ���� indicate that the two disturbances are about

equally di�cult� This seems inconsistent with the above approximate results� where

we found disturbance � to be more di�cult� However� the results are consistent if

for both disturbances control is only needed in the high�gain direction� for which

the approximate results gave the same value of ���� for both disturbances� �The

approximate results indicated that some control was needed for disturbance � in the

low�gain direction� since ���� was just above �� but apparently this is inaccurate��

The discussion at the end of the example illustrates an advantage with the

approximate method� since there we can easily see whether we are close to a

borderline value where control may be needed in some direction� On the other

hand� no such �warning� is provided by the exact numerical method�

From the example we conclude that it is di	cult to judge� simply by looking

at the magnitude of the elements in Gd� whether a disturbance is di	cult to

reject or not� In the above example� it would appear from the column vectors of

Gd in ������ that the two disturbances have almost identical e
ects� However�

we found that disturbance � may be much more di	cult to reject because

it has a component of ���� in the low�gain direction of G which is about ��

times larger than the value of ���� for disturbance �� This can be seen from

the second row of UHGd�

Exercise ��� Consider again the plant in ������� Let k � � and compute� as a

function of frequency� the required inputs G��gd�j�� for perfect control� You will

�nd that both inputs are about � in magnitude at low frequency� so if the inputs and

disturbances have been appropriately scaled� we conclude that perfect control is not

possible� Next� evaluate G�j�� � U�V H� and compute UHgd�j�� as a function of

frequency and compare with the elements of ��j�� � I to see whether �acceptable

control� �jei�j��j � �� is possible�

���� Limitations imposed by uncertainty

The presence of uncertainty requires the use of feedback� rather than simply

feedforward control� to get acceptable performance� This sensitivity reduction

with respect to uncertainty is achieved with high�gain feedback� but for any

real system we have a crossover frequency range where the loop gain has to

drop below �� and the presence of uncertainty in this frequency range may

result in poor performance or even instability� These issues are the same for

SISO and MIMO systems�

However� with MIMO systems there is an additional problem in that there is

also uncertainty associated with the plant directionality� The main objective of

this section is to introduce some simple tools� like the RGA and the condition

number� which are useful in indicating for which plants one might expect

sensitivity to directional uncertainty�
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Remark� In Chapter � we discuss more exact methods for analyzing performance

with almost any kind of uncertainty and a given controller� This involves analyzing

the robust performance by use of the structured singular value� However� in this

section the treatment is kept at a more elementary level and we are looking for

results which depend on the plant only�

������ Input and output uncertainty

In practice the di
erence between the true perturbed plant G� and the plant

model G is caused by a number of di
erent sources� In this section� we focus

on input uncertainty and output uncertainty� In a multiplicative �relative�

form� the output and input uncertainties �as in Figure ���� are given by

Output uncertainty� G� � �I �EO�G or EO � �G� �G�G�� ������

Input uncertainty� G� � G�I �EI � or EI � G���G� �G� ������

These forms of uncertainty may seem similar� but we will show that their

implications for control may be very di
erent� If all the elements in the

matrices EI or EO are non�zero� then we have full block ��unstructured��

uncertainty� However� in many cases the source of uncertainty is in the

individual input or output channels� and we have that EI or EO are diagonal

matrices� for example�

EI � diagf��� ��� � � �g ������

It is important to stress that this diagonal diagonal output uncertainty� input

dq dq

� �

� �� ���

EI Eo

G

�

�

�

�

Figure ���� Plant with multiplicative input and output uncertainty

uncertainty is always present in real systems�

������ E�ect of uncertainty on feedforward control

Consider a feedforward controller u � Krr for the case with no disturbances

�d � ��� We assume that the plant G is invertible such that we can select

Kr � G�� and achieve perfect control� e � y � r � Gu � r � GKrr � r � ��

for the nominal case with no uncertainty� However� for the actual plant G�

�with uncertainty� the actual control error becomes e� � y�� r � G�G��r� r�
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We then get for the two sources of uncertainty

Output uncertainty� e� � EOr �����

Input uncertainty� e� � GEIG
��r ������

For output uncertainty� we see that ����� is identical to the result in ������

for SISO systems� That is� the worst�case relative control error ke�k�	krk� is

equal to the magnitude of the relative output uncertainty ���EO�� However� for

input uncertainty the sensitivity may be much larger because the elements in

the matrix GEIG
�� can be much larger than the elements in EI � In particular�

for diagonal input uncertainty the elements of GEIG
�� are directly related

to the RGA� see �A�����

Diagonal uncertainty� �GEIG
�� �ii �

nX
j��

�ij�G��j ������

The RGA�matrix is scaling independent� which makes the use of condition

������ attractive� Since diagonal input uncertainty is always present we can

conclude that

� if the plant has large RGA elements within the frequency range where

e
ective control is desired� then it is not possible to achieve good reference

tracking with feedforward control because of strong sensitivity to diagonal

input uncertainty�

The reverse statement is not true� that is� if the RGA has small elements

we cannot conclude that the sensitivity to input uncertainty is small� This is

seen from the following expression for the �� � case

GEIG
�� �

�
����� � ����� � g��
g��
������ � ���

g��
g��
������ � ��� ����� � �����

�
������

For example� consider a triangular plant with g�� � �� In this case the RGA

is � � I so the diagonal elements of GEIG
�� are �� and ��� Still� the system

may be sensitive to input uncertainty� since from ������ the �� ��element of

GEIG
�� may be large if g��	g�� is large�

������ Uncertainty and the bene
ts of feedback

To illustrate the bene�ts of feedback control in reducing the sensitivity to

uncertainty� we consider the e
ect of output uncertainty on reference tracking�

As a basis for comparison we �rst consider feedforward control�

Feedforward control� Let the nominal transfer function with feedforward

control be y � Trr where Tr � GKr and Kr denotes the feedforward
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controller� Ideally� Tr � I � With model error T �
r � G�Kr� and the change

in response is y� � y � �T �
r � Tr�r where

T �
r � Tr � �G� �G�G��Tr � EOTr ������

Thus� y��y � EOTrr � EOy� and with feedforward control the relative control

error caused by the uncertainty is equal to the relative output uncertainty�

Feedback control� With one degree�of�freedom feedback control the

nominal transfer function is y � Tr where T � L�I � L��� is the

complementary sensitivity function� Ideally� T � I � The change in response

with model error is y� � y � �T � � T �r where from �A����

T � � T � S�EOT ������

Thus� y� � y � S�EOTr � S�EOy� and we see that

� with feedback control the e
ect of the uncertainty is reduced by a factor S�

relative to that with feedforward control�

Thus� feedback control is much less sensitive to uncertainty than feedforward

control at frequencies where feedback is e
ective and the elements in S� are

small� �However� the opposite may be true in the crossover frequency range

where S� may have elements larger than �� see Section �������

Remark � For square plants� EO � �G� �G�G�� and ������ becomes

�T � T�� � S� ��G �G�� ������

where �T � T � � T and �G � G� �G� Equation ������ provides a generalization

of Bode�s di�erential relationship ������ for SISO systems� To see this� consider a

SISO system and let �G
 �� Then S� 
 S and we have from ������

dT
T

� S
dG

G

������

Remark � Alternative expressions showing the benets of feedback control are

derived by introducing the inverse output multiplicative uncertainty G� � �I �

EiO�
��G� We then get �Horowitz and Shaked� ������

Feedforward control� T �r � Tr � EiOT
�
r ������

Feedback control� T � � T � SEiOT
� ������

�Simple proof for square plants� switch G and G� in ������ and ������ and use

EiO � �G� �G�G�����

Remark � Another form of ������ is �Zames� �����

T � � T � S��L� � L�S ������
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Conclusion� From ������� ������ and ����� we see that with feedback control

T � � T is small at frequencies where feedback is e
ective �i�e� S and S� are

small�� This is usually at low frequencies� At higher frequencies we have for

real systems that L is small� so T is small� and again T � � T is small� Thus

with feedback� uncertainty only has a signi�cant e
ect in the crossover region

where S and T both have norms around ��

������ Uncertainty and the sensitivity peak

We demonstrated above how feedback may reduce the e
ect of uncertainty�

but we also pointed out that uncertainty may pose limitations on achievable

performance� especially at crossover frequencies� The objective in the following

is to investigate how the magnitude of the sensitivity� ���S��� is a
ected by the

multiplicative output uncertainty and input uncertainty given as ������ and

������� We will derive upper bounds on ���S�� which involve the plant and

controller condition numbers

�G� �

���G�

��G�
� �K� �

���K�

��K�

������

and the following minimized condition numbers of the plant and the controller

�I �G� � min
DI

�GDI�� �O�K� � min
DO

�DOK� ������

where DI and DO are diagonal scaling matrices� These minimized condition

numbers may be computed using �A���� and �A���� Similarly� we state a lower

bound on ���S�� for an inverse�based controller in terms of the RGA�matrix of

the plant�

The following factorization� of S� in terms of the nominal sensitivity S �see

Appendix A��� form the basis for the development�

Output uncertainty� S� � S�I �EOT �
�� ������

Input uncertainty� S� � S�I �GEIG
��T ��� � SG�I �EITI�
��G�� ������

S� � �I � TK��EIK�
��S � K���I � TIEI�
��KS ������

We assume that G and G� are stable� We also assume closed�loop stability� so

that both S and S� are stable� We then get that �I�EOT �
�� and �I�EITI�
��

are stable� In most cases we assume that the magnitude of the multiplicative

�relative� uncertainty at each frequency can be bounded in terms of its singular

value

���EI � � jwI j� ���EO� � jwO j ������

where wI�s� and wO�s� are scalar weights� Typically the uncertainty bound�

jwI j or jwO j� is ��� at low frequencies and exceeds � at higher frequencies�

��� MULTIVARIABLE FEEDBACK CONTROL

We �rst state some upper bounds on ���S��� These are based on identities

������������� and singular value inequalities �see Appendix A���� of the kind

����I �EITI�
��� � �

��I�EITI 	

� �

�����EITI 	

� �

�����EI	���TI	
� �

��jwI j���TI 	

Of course these inequalities only apply if we assume ���EITI� � ��

���EI ����TI� � � and jwI j���TI� � �� For simplicity� we will not state these

assumptions each time�

Upper bound on ���S�� for output uncertainty

From ������ we derive

���S�� � ���S�����I �EOT �
��� � ���S	

��jwO j���T 	

������

From ������ we see that output uncertainty� be it diagonal or full block� poses

no particular problem when performance is measured at the plant output�

That is� if we have a reasonable margin to stability �k�I � EOT �
��k� is not

too much larger than ��� then the nominal and perturbed sensitivities do not

di
er very much�

Upper bounds on ���S�� for input uncertainty

The sensitivity function can be much more sensitive to input uncertainty than

output uncertainty�

�� General case �full block or diagonal input uncertainty and any controller��

From ������ and ������ we derive

���S�� � �G����S�����I �EITI�
��� � �G�

���S�

�� jwI j���TI� ������

���S�� � �K����S�����I � TIEI �
��� � �K�

���S�

�� jwI j���TI� ������

From ������ we have the important result that if we use a �round� controller�

meaning that �K� is close to �� then the sensitivity function is not sensitive to

input uncertainty� In many cases ������ and ������ are not very useful because

they yield unnecessarily large upper bounds� To improve on this we present

below some bounds for special cases� where we either restrict the uncertainty

to be diagonal or restrict the controller to be of a particular form�

�� Diagonal uncertainty and decoupling controller� Consider a

decoupling controller in the formK�s� � D�s�G���s� whereD�s� is a diagonal

matrix� In this case� KG is diagonal so TI � KG�I � KG��� is diagonal�

and EITI is diagonal� The second identity in ������ may then be written
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S� � S�GDI��I �EITI�
���GDI �
�� where DI is freely chosen� and we get

���S�� � �I �G����S�����I �EITI�
��� � �I �G�

���S�

�� jwI j���TI� �����

���S�� � �O�K����S�����I � TIEI �
��� � �O�K�

���S�

�� jwI j���TI� ������

The bounds ����� and ������ apply to any decoupling controller in the form

K � DG��� In particular� they apply to inverse�based control� D � l�s�I �

which yields input�output decoupling with TI � T � t � I where t � l
��l �

Remark� A diagonal controller has ��O�K� � �� so from ������ we see that ������

applies to both a diagonal and decoupling controller� Another bound which does

apply to any controller is given in �������

�� Diagonal uncertainty �Any controller�� From the �rst identity in ������

we get S� � S�I � �GDI�EI �GDI�
��T ��� and we derive by singular value

inequalities

���S�� � ���S�

�� �I �G�jwI j���T �

������

���S�� � ���S�

�� �O�K�jwI j���T � ������

Note that �O�K� � � for a diagonal controller so ������ shows that diagonal

uncertainty does not pose much of a problem when we use decentralized

control�

Lower bound on ���S�� for input uncertainty

Above we derived upper bounds on ���S��� we will next derive a lower bound�

A lower bound is more useful because it allows us to make de�nite conclusions

about when the plant is not input�output controllable�

Theorem ��
 Input uncertainty and inverse�based control� Consider

a controller K�s� � l�s�G���s� which results in a nominally decoupled

response with sensitivity S � s�I and complementary sensitivity T � t�I where

t�s� � � � s�s�� Suppose the plant has diagonal input uncertainty of relative

magnitude jwI �j��j in each input channel� Then there exists a combination of

input uncertainties such that at each frequency

���S�� � ���S�
�

� �

jwItj

� � jwI tj k��G�ki�


������

where k��G�ki� is the maximum row sum of the RGA and ���S� � jsj�
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The proof is given below� From ������ we see that with an inverse based

controller the worst case sensitivity will be much larger than the nominal at

frequencies where the plant has large RGA�elements� At frequencies where

control is e
ective �jsj is small and jtj � �� this implies that control is not

as good as expected� but it may still be acceptable� However� at crossover

frequencies where jsj and jtj � j�� sj are both close to �� we �nd that ���S��

in ������ may become much larger than � if the plant has large RGA�elements

at these frequencies� The bound ������ applies to diagonal input uncertainty

and therefore also to full�block input uncertainty �since it is a lower bound��

Worst�case uncertainty� It is useful to know which combinations of input

errors give poor performance� For an inverse�based controller a good indicator

results if we consider GEIG
��� where EI � diagf�kg� If all �k have the same

magnitude jwI j� then the largest possible magnitude of any diagonal element

in GEIG
�� is given by jwI j � k��G�ki�� To obtain this value one may select

the phase of each �k such that � �k � �� �ik where i denotes the row of ��G�

with the largest elements� Also� if ��G� is real �e�g�� at steady�state�� the signs

of the �k�s should be the same as those in the row of ��G� with the largest

elements�

Proof of Theorem ���
 �From Skogestad and Havre ������ and Gj�s�ter ��������

Write the sensitivity function as

S� � �I �G�K��� � SG �I �EITI�
��	 
z �

D

G��� EI � diagfkg� S � sI ������

Since D is a diagonal matrix� we have from ������ that the diagonal elements of S�

are given in terms of the RGA of the plant G as

s�ii � s
nX

k
�
�ikdk� dk �

�

� � tk
�  � G� �G���T ������

�Note that s here is a scalar sensitivity function and not the Laplace variable�� The

singular value of a matrix is larger than any of its elements� so ���S�� � maxi js�iij�

and the objective in the following is to choose a combination of input errors k such

that the worst�case js�iij is as large as possible� Consider a given output i and write

each term in the sum in ������ as

�ikdk �

�ik

� � tk
� �ik � �iktk

� � tk

������

We choose all k to have the same magnitude jwI�j��j� so we have k�j�� �

jwI jej � �k � We also assume that jtkj � � at all frequencies� such that the phase

of � � tk lies between ���� and ���� � It is then always possible to select � k �the

� The assumption jt�kj � � is not included in the theorem since it is actually needed

for robust stability� so if it does not hold we may have ��S�� in�nite for some allowed

uncertainty� and ����� clearly holds�
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phase of k� such that the last term in ������ is real and negative� and we have at

each frequency� with these choices for k�

s�ii
s

�

nX
k
�

�ikdk � � �

nX
k
�

j�ikj � jtkj

j� � tkj

� � �

nX
k
�

j�ikj � jwItj

� � jwI tj � � �

jwI tj

� � jwI tj
nX

k
�
j�ikj ������

where the rst equality makes use of the fact that the row�elements of the RGA

sum to �� �
Pn

k
�
�ik � ��� The inequality follows since jkj � jwI j and j� � tkj �

� � jtkj � � � jwI tj� This derivation holds for any i �but only for one at a time��

and ������ follows by selecting i to maximize
Pn

k
�
j�ikj �the maximum row�sum of

the RGA of G�� �

We next consider three examples� In the �rst two� we consider feedforward

and feedback control of a plant with large RGA�elements� In the third� we

consider feedback control of a plant with a large condition number� but with

small RGA�elements� The �rst two are sensitive to diagonal input uncertainty�

whereas the third is not�

Example ��� Feedforward control of distillation process� Consider the

distillation process in �������

G�s� �

�

��s� �
�
���� �����

����� ������
�

�  �G� �
�
���� �����

����� ����
�

������

With EI � diagf�� �g we get for all frequencies

GEIG
�� �

�
����� � ����� ������ � �����

����� � ����� ������ � �����
�

������

We note as expected from ������ that the RGA�elements appear on the diagonal

elements in the matrix GEIG
��� The elements in the matrix GEIG
�� are largest

when � and � have opposite signs� With a ��� error in each input channel we may

select � � ��� and � � ���� and �nd

GEIG
�� �

�
���� �����

���� �����
�

������

Thus with an �ideal� feedforward controller and ��� input uncertainty� we get from

������ that the relative tracking error at all frequencies� including steady�state� may

exceed ������ This demonstrates the need for for feedback control� However� this is

also di�cult for this plant as seen in Example ����

Example ��
 Feedback control of distillation process� Consider again the

distillation process G�s� in ������ for which we have k �G�j���ki� � ���� and

��G� � ��I �G� � ����� at all frequencies�
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�� Inverse based feedback controller� Consider the controller K�s� �

�����s�G���s� corresponding to the nominal sensitivity function

S�s� �

s

s� ���
I

The nominal response is excellent� but we found from simulations in Figure ���

that the closed�loop response with ��� input gain uncertainty was extremely poor

�we used � � ��� and � � ������ The poor response is easily explained from the

lower RGA�bound on ���S�� in ������� With the inverse�based controller we have

l�s� � k�s which has a nominal phase margin of PM� ��� so from ��	�� we have�

at frequency �c� that js�j�c�j � jt�j�c�j � ��
p
� � ������ With jwI j � ���� we then

get from ������ that

���S��j�c�� � �����
�
� �
����� � ��� � ����

����

�
� ����� � ���� � ���� ������

�This is close to the peak value in ������ of ���� at frequency ���� rad�min�� Thus� we

have that with ��� input uncertainty we may have kS�k� � ���� and this explains

the observed poor closed�loop performance� For comparison� the actual peak value

of ���S��� with the inverse�based controller and uncertainty EI � diagf�� �g �

diagf��������g� is computed numerically �using skewed�� as discussed below� to be

kS�k� �
�����I � ���

s
G

h
���

���
i
G��

�������
�

� ����

and occurs at frequency ���� rad�min� The di�erence between the values ���� and

���� illustrates that the bound in terms of the RGA is not generally tight� but it is

nevertheless very useful�

Next� we look at the upper bounds� Unfortunately� in this case ��I �G� � ��O�K� �

������ so the upper bounds on ���S�� in ����	� and ������ are not very tight �they

are of magnitude ����� at high frequencies��

�� Diagonal �decentralized� feedback controller� Consider the controller

Kdiag�s� �

k���s� ��

s

�
� �

� ��
�

� k� � ��� � ���� 	min��


The peak value for the upper bound on ���S�� in ������ is ����� so we are guaranteed

kS�k� � ����� even with ��� gain uncerainty� For comparison� the actual peak

in the perturbed sensitivity function with EI � diagf��������g is kS�k� � ����� Of

course� the problem with the simple diagonal controller is that �although robust� even

the nominal response is poor�

The following example demonstrates that a large plant condition number�

�G�� does not necessarily imply sensitivity to uncertainty even with an

inverse�based controller�

Example ��� Feedback control of distillation process� DV�model� In this

example we consider the following distillation model given by Skogestad� Morari and
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Doyle ������ �it is the same system as studied above but with the DV� rather than

the LV�con�guration for the lower control levels� see Example �����


G �

�

��s� �
�
����� ���

������ ����
�

�  �G� �
�
����� �����

����� �����
�

������

We have that k �G�j���ki� � �� ��G� � ����� and ��I �G� � ���� at all frequencies�

Since both the RGA�elements and ��I �G� are small we do not expect problems

with input uncertainty and an inverse based controller� Consider an inverse�based

controller Kinv�s� � �����s�G���s� which yields ��K� � ��G� and ��O�K� � ��I �G��

In Figure ��� we show the lower bound ������ given in terms of k ki� and the two

upper bounds ����	� and ������ given in terms of ��I �G� for two di�erent uncertainty

weights wI � From these curves we see that the bounds are close� and we conclude

that the plant in ������ is robust against input uncertainty even with a decoupling

controller�
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Figure ���� Bounds on the sensitivity function for the distillation column with the

DV conguration� lower bound L� from ������� upper bounds U� from ������ and

U� from �������

Remark� Relationship with the structured singular value� skewed��� To

analyze exactly the worst�case sensitivity with a given uncertainty jwI j we may

compute skewed�� ��s�� With reference to Section ���� this involves computing

�e��N� with e� � diag��I ��P � and N �
h
wITI wIKS

SG��s S��s
i
and varying �s until

��N� � �� The worst�case performance at a given frequency is then ���S�� � �s�N��

Example ��� Consider the plant
G�s� �

�
� ���

� �
�

for which at all frequencies  �G� � I� ��G� � ���� ���G� � ���� and ��I �G� � ����

The RGA�matrix is the identity� but from the large value of ��I �G� and ������ we
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know that this plant will be sensitive to diagonal input uncertainty if we use inverse�

based feedback control� K � c
s
G��� This is con�rmed if we compute the worst�case

sensitivity function S� for G� � G�I � wI�I� where �I is diagonal and jwI j � ����

We �nd by computing �s�N�� that the peak of ���S�� is kS�k� � ������

Note that the peak is independent of the controller gain c in this case since G�s� is

a constant matrix� Also note that with full�block ��unstructured�� input uncertainty

��I is a full matrix� the worst�case sensitivity is kS�k� � ������

Conclusions on input uncertainty and feedback control

The following statements apply to the frequency range around crossover� By

�small�� we mean about � or smaller� By �large� we mean about �� or larger�

�� Condition number �G�� or �K�� small� robust to both diagonal and

full�block input uncertainty� see ������ and �������

�� Minimized condition numbers �I �G� or 
�
O�K� small� robust to diagonal

input uncertainty� see ������ and ������� Note that a diagonal controller

always has �O�K� � ��

�� RGA�G� has large elements� inverse�based controller is not robust to

diagonal input uncertainty� see ������� Since diagonal input uncertainty

is unavoidable in practice� the rule is never to use a decoupling controller

for a plant with large RGA�elements� Furthermore� a diagonal controller

will most likely yield poor nominal performance for a plant with large

RGA�elements� so we conclude that plants with large RGA�elements are

fundamentally di	cult to control�

� �I �G� is large while at the same time the RGA has small elements� cannot

make any de�nite conclusion about the sensitivity to input uncertainty

based on the bounds in this section� However� as found in Example ��� we

may expect there to be problems�

������ Element	by	element uncertainty

Above we introduced the RGA as a sensitivity measure with respect to input

gain uncertainty� In fact� the RGA is an even better sensitivity measure

with respect to element�by�element uncertainty in the matrix� Consider

any complex matrix G and let �ij denote the ij�th element in the RGA�

matrix of G� The following result holds �Yu and Luyben� ����� Hovd and

Skogestad� ������ Appendix A���

Theorem ��� The �complex� matrix G becomes singular if we make a relative

change ��	�ij in its ij�th element� that is� if a single element in G is perturbed

from gij to gpij � gij��� �
�ij
��
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Thus� the RGA�matrix is a direct measure of sensitivity to element�by�

element uncertainty and matrices with large RGA�values become singular for

small relative errors in the elements�

Example ��� The matrix G in ������ is non�singular� The �� ��element of the

RGA is ����G� � ������ Thus� the matrix G becomes singular if g�� � ����� is

perturbed to

gp�� � ������� � ���������� � ����� ������

The above result is an important algebraic property of the RGA� but it also

has important implications to improve control�

�� Identi	cation� Models of multivariable plants� G�s�� are often obtained

by identifying one element at a time� for example� using step responses� From

Theorem ��� it is clear that this simple identi�cation procedure will most

likely give meaningless results �eg�� the wrong sign of the steady�state RGA�

if there are large RGA� elements within the bandwidth where the model is

intended to be used�

�� RHP�zeros� Consider a plant with transfer function matrix G�s�� If

the relative uncertainty in an element at a given frequency is larger than

j�	�ij�j��j then the plant may be singular at this frequency� implying that the

uncertainty allows for a RHP�zero on the j��axis� This is of course detrimental

to performance both in terms of feedforward and feedback control�

Remark� Theorem ��� seems to �prove� that plants with large RGA�elements are

fundamentally di!cult to control� However� although the statement may be true �see

the conclusions on page ����� we cannot draw this conclusion from Theorem ����

This is because the assumption of element�by�element uncertainty is often unrealistic

from a physical point of view� since the elements are usually coupled in some way�

For example� this is the case for the distillation column process where we know that

the elements are coupled due to an underlying physical constraint in such a way

that the model ������ never becomes singular even for large changes in the transfer

function matrix elements�

������ Steady	state condition for integral control

Feedback control reduces the sensitivity to model uncertainty at frequencies

where the loop gains are larger� Speci�cally� with integral action in the

controller we can achieve zero steady�state control error� even with large model

errors� provided the sign of the plant� as expressed by detG���� does not

change� The statement applies for stable plants� or more generally for cases

where the number of unstable poles in the plant does not change� and the

conditions are stated more exactly in the following theorem�

Theorem ��� Let the number of open�loop unstable poles �excluding poles at

s � �� of G�s�K�s� and G��s�K�s� be P and P �� respectively� Assume that
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the controller K is such that GK has integral action in all channels� and that

the transfer functions GK and G�K are strictly proper� Then if

detG����	 detG���
�
� � for P � P � even� including zero

� � for P � P � odd

������

at least one of the following instabilities will occur	 a� The negative feedback

closed�loop system with loop gain GK is unstable� b� The negative feedback

closed�loop system with loop gain G�K is unstable�

Proof
 For stability of both �I�GK��� and �I�G�K��� we have from Lemma A���

in Appendix A���� that det�I � EOT �s�� needs to encircle the origin P � P � times

as s traverses the Nyquist D�contour� Here T ��� � I because of the requirement for

integral action in all channels of GK� Also� since GK and G�K are strictly proper�

EOT is strictly proper� and hence EO�s�T �s� 
 � as s 
 �� Thus� the map of

det�I�EOT �s�� starts at detG
����� detG��� �for s � �� and ends at � �for s ����

A more careful analysis of the Nyquist plot of det�I � EOT �s�� reveals that the

number of encirclements of the origin will be even for detG����� detG��� � �� and

odd for detG����� detG��� � �� Thus� if this parity �odd or even� does not match

that of P � P � we will get instability� and the theorem follows� �

Example ���� Suppose the true model of a plant is given by G�s�� and that we

by careful identi�cation obtain a model G��s��

G �

�

��s� �
�
���� �����

����� ������
�

� G��s� �

�

��s� �
�
�� ���

��� ����
�

At �rst glance� the identi�ed model seems very good� but it is actually useless

for control purposes since detG���� has the wrong sign� detG��� � ������ and

detG���� � ��� �also the RGA�elements have the wrong sign� the �� ��element in the

RGA is ����� instead of ������� From Theorem ��� we then get that any controller

with integral action designed based on the model G�� will yield instability when applied

to the plant G�

���� Summary Input	output controllability

We now summarize the main �ndings of this chapter in an analysis procedure

for input�output controllability of a MIMO plant� The presence of directions

in MIMO systems makes it more di	cult to give a precise description of the

procedure in terms of a set of rules as was done in the SISO case�

������ Controllability analysis procedure

The following procedure assumes that we have made a decision on the plant

inputs and plant outputs �manipulations and measurements�� and we want to

analyze the model G to �nd out what control performance can be expected�
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The procedure can also be used to assist in control structure design �the

selection of inputs� outputs and control con�guration�� but it must then be

repeated for each candidate set of inputs and outputs� In some cases the

number of possibilities is so large that such an approach becomes prohibitive�

In this case some pre�screening is required� for example� based on physical

insight or by analyzing the �large� model� Gall� with all the candidate inputs

and outputs included� This is brie y discussed in Section ����

A typical MIMO controllability analysis may proceed as follows�

�� Scale all variables �inputs u� outputs y� disturbances d� references� r� to

obtain a scaled model� y � G�s�u�Gd�s�d� r � Rer� see Section ���

�� Obtain a minimal realization�

�� Check functional controllability� To be able to control the outputs

independently� we �rst need at least as many inputs u as outputs y� Second�

we need the rank of G�s� to be equal to the number of outputs� l� i�e� the

minimum singular value ofG�j��� ��G� � �l�G�� should be nonzero �except

at possible the j��axis zeros�� If the plant is not functional controllable then

compute the output direction where the plant has no gain� see ������� to

obtain insight into the source of the problem�

� Compute the poles� For RHP �unstable� poles obtain their locations and

associated directions� see ������ �Fast� RHP�poles far from the origin are

bad�

�� Compute the zeros� For RHP�zeros obtain their locations and associated

directions� Look for zeros pinned into certain outputs� �Small� RHP�zeros

�close to the origin� are bad!

�� Obtain the frequency response G�j�� and compute the RGA matrix�

� � G � �Gy�T � Plants with large RGA�elements at crossover frequencies

are di	cult to control and should be avoided� For more details about the

use of the RGA see below�

�� From now on scaling is critical� Compute the singular values of G�j�� and

plot them as a function of frequency� Also consider the associated input

and output singular vectors�

�� The minimum singular value� ��G�j���� is a particularly useful

controllability measure� It should generally be as large as possible at

frequencies where control is needed� If ��G�j��� � � then we cannot at

frequency � make independent output changes of unit magnitude by using

inputs of unit magnitude�

�� For disturbances and need for control consider the elements of the matrix

Gd� At frequencies where one� or more elements� is larger than �� we need

control� We get more information by considering one disturbance at a time

�the columns gd of Gd�� We must require for each disturbance that S is less

than �	kgdk� in the disturbance direction yd� i�e� kSydk� � �	kgdk�� see

������� Thus� at least we must require ��S� � �	kgdk� and we may have to
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require ���S� � �	kgdk�� see ������

Remark� If feedforward control is already used� then one may instead analyzebGd�s� � GKdGmd�Gd where Kd denotes the feedforward controller� see �������

��� Disturbances and input saturation�

First step� Consider the input magnitudes needed for perfect control by

computing the elements in the matrix GyGd� If all elements are less

than � at all frequencies then input saturation is not expected to be

a problem� If some elements of GyGd are larger than �� then perfect

control �e � �� cannot be achieved at this frequency� but �acceptable�

control �kek� � �� may be possible� and this may be tested in the

second step�

Second step� Check condition ������ that is� consider the elements of

UHGd and make sure that the elements its the i�th row are smaller

than �i�G� � �� at all frequencies�

��� Are the requirements compatible� Look at disturbances� RHP�poles and

RHP�zeros and their associated locations and directions� For example� we

must require for each disturbance and each RHP�zero that jyHz gd�z�j � ��

see ������� For combined RHP�zeros and RHP�poles see ������ and ������

��� Uncertainty� If the condition number �G� is small then we expect no

particular problems with uncertainty� If the RGA�elements are large then

we expect strong sensitivity to uncertainty� For a more detailed analysis

see the conclusion on page ��� for a more detailed summary�

��� If decentralized control �diagonal controller� is of interest see the summary

on page ���

�� The use of the condition number and RGA are summarized separately in

Section ���� page ��

A controllability analysis may also be used to obtain initial performance

weights for controller design� After a controller design one may analyze the

controller by plotting� for example� its elements� singular values� RGA and

condition number as a function of frequency�

������ Plant design changes

If a plant is not input�output controllable� then it must somehow be modi�ed�

Some possible modi�cations are listed below�

Controlled outputs� Identify the output�s� which cannot be controlled

satisfactorily� Can the speci�cations for these be relaxed�

Manipulated inputs� If input constraints are encountered then consider

replacing or moving actuators� For example� this could mean replacing a

control valve with a larger one� or moving it closer to the controlled output�
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If there are RHP�zeros which cause control problems then the zeros may

often be eliminated by adding another input �possibly resulting in a nonsquare

plant�� This may not be possible if the zero is pinned to a particular output�

Extra Measurements� If the e
ect of disturbances� or uncertainty� is

large� and the dynamics of the plant are such that acceptable control cannot be

achieved� then consider adding �fast local loops� based on extra measurements

which are located close to the inputs and disturbances� see Section ������ and

the example on page ����

Disturbances� If the e
ect of disturbances is too large� then see whether

the disturbance itself may be reduced� This may involve adding extra

equipment to dampen the disturbances� such as a bu
er tank in a chemical

process or a spring in a mechanical system� In other cases this may involve

improving or changing the control of another part of the system� e�g� we may

have that a disturbance is actually the manipulated input for another part of

the system�

Plant dynamics and time delays� In most cases� controllability is

improved by making the plant dynamics faster and by reducing time delays�

An exception to this is a strongly interactive plant� where an increased

dynamic lag or time delay� may be helpful if it somehow �delays� the e
ect of

the interactions� see ������� Another more obvious exception is for feedforward

control of a measured disturbance� where a delay for the disturbance�s e
ect

on the outputs is an advantage�

Example ���� Consider a stable �� � plant

G��s� �

�

f�s�
�
s� � s� �

� �

�

which has a RHP�zero at s � � which limits achievable performance� The zero is

not pinned to a particular output� so it will most likely disappear if we add a third

manipulated input� Suppose the new plant is

G��s�� �

�

f�s�
�
s� � s� � s� �

� � �

�

which has no zeros� It is interesting to note that all the three �� sub�plants do have

RHP�zeros �located at s � �� s � ��� and s � �� respectively��

Exercise ��
 Design multivariable controllers for the two plants G��s� and G��s�

in Example ���� Perform closed�loop simulations to illustrate that RHP�zeros pose

no limitations in the latter case� You may use the H�S�KS design method� e�g� see

page ���
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���� Additional exercises

Some of these exercises may bene�t from a reading of Chapter �� on

decentralized control� In all cases the variables are assumed to be scaled as

outlined in Section ���

Exercise ��� Analyze input�output controllability for

G�s� �

�

s� � ���
�
�

����s��

�

s����

s��

�
�

Compute the zeros and poles� plot the RGA as a function of frequency� etc�

Exercise ��� Analyze the input�output controllability for

G�s� �

�

��s� ����s� � � �
�
�
�s� � � 
 



 �s� � � 

�

where � � ���� consider two cases
 �a� 
 � ��� and �b� 
 � ��

Remark� This is a simple �two�mixing�tank� model of a heat exchanger where

u �
h
T�in

T�in
i

� y �
h
T�out

T�out
i

and 
 is the number of heat transfer units�

Exercise ��� Let

A �
�
��� �

� ��
�

� B � I�C �
�
�� ���

�� �
�

� D �
�
� �

� �
�

a� Perform a controllability analysis of G�s��

b� Let "x � Ax � Bu � d and consider a unit disturbance d � � z� z� �
T � Which

direction �value of z��z�� gives a disturbance that is most di�cult to reject �consider

both RHP�zeros and input saturation��

c� Discuss decentralized control of the plant� How would you pair the variables�

Exercise ���� Consider the following two plants� Do you expect any control

problems� Could decentralized or inverse�based control be used� What pairing would

you use for decentralized control�

Ga�s� �

�

�����s � ���s� ���
�
s� � s

��� s� ��
�

Gb�s� �

�

�s� � ����
�
� ����s� ��

���s� �����s �s� �����s
�

Exercise ���� Order the following three plants in terms of their expected ease of

controllability

G��s� �
�
��� ��

��� ���
�

� G��s� �
�
���e�s ��e�s

��� ���
�

� G�s� �
�
��� ��e�s

��� ���
�

Remember to also consider the sensitivity to input gain uncertainty�
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Exercise ���� Analyze the input�output controllability for

G�s� �
�
����s

�����s�����s���

����s���

���s��


�s��


�s��

�

Exercise ���� Analyze the input�output controllability for

G�s� �
�
��� ���

��� ���
�

� gd��s� �
�
��
s��
��
s��

�
� gd� �

�
�
s��

��

s��
�

Which disturbance is the worst�

Exercise ���� Analyze the input�output controllability for the following three

plants with � inputs and � output
 G�s� � �g��s� g��s��

�a� g��s� � g��s� �
s��

s��
�

�b� g��s� �
s��

s��
� g��s� �
s����

s����
�

�c� g��s� �
s��

s��
� g��s� �
s���

s���
�

Design controllers and perform closed�loop simulations of reference tracking to

complement your analysis� Consider also the input magnitudes�

Exercise ���� Find the poles and zeros and analyze the input�output controllabil�

ity for

G�s� �
�
c� �
s

�
s

c� �
s

�
s

�

�Remark� A similar model form is encountered for distillation columns controlled

with the DB�con�guration� In which case the physical reason for the model being

singular at steady�state is that the sum of the two manipulated inputs is �xed at

steady�state� D �B � F ��

Exercise ���
 Controllability of an FCC process� Consider the following

�� � plant �
y�

y�
y

�
� G�s�

�
u�

u�
u

�
� f�s� �

�

�����s � �������s � ��

G�s� � f�s�
�
�������s� � ���	s� �� ���

���s � �� 	�������s � ��

������
�
s � �� �����
��s � ����
�s � �� ���	��	��s� ��

��������s � �� 
	��
���s � �� 
�	�

�

It turns out that this ��� plant is di�cult to control� but that acceptable control can

be achieved with partial control of two outputs with input � in manual �not used��

That is� we have a �� � control problem� Consider three options for the controlled

outputs


Y� �
�
y�

y�
�

� Y� �
�
y�

y
�

� Y �
�
y�

y� � y
�

In all three case the inputs are u� and u�� Assume that the third input is a disturbance

�d � u��
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a� Based on the zeros of the three � � � plants� G��s�� G��s� and G�s�� which

choice of outputs do you prefer� Which seems to be the worst�

It may be useful to know that the zero polynomials�

a 
��
 � ���s� � ���� � ���s � ���
 � ���s� � ���� � ���s� ���� � ��

b 	�		 � ���s � ���
 � ���s� � ���� � ���s� ��	� � ���

c 
��
 � ���s� � ���
 � ���s � 
��� � ���s� � ���
 � ��s� ���� � ���

have the following roots�

a ���
�� ����
�� ����	
� �������

b ����� ����
�� �������

c ����� ����
�� ������ �������

b� For the preferred choice of outputs in a� do a more detailed analysis of the

expected control performance �compute poles and zeros� sketch RGA��� comment on

possible problems with input constraints �assume the inputs and outputs have been

properly scaled�� discuss the e�ect of the disturbance� etc��� What type of controller

would you use� What pairing would you use for decentralized control�

c� Discuss why the �� � plant may be di�cult to control�

Remark� This is actually a model of a �uid catalytic cracking �FCC� reactor

where u � �Fs Fa kc�
T represents the circulation� air�ow and feed composition�

and y � �T� Tcy Trg�
T represents three temperatures� G��s� is called Hicks control

structure and G�s� the conventional structure� More details are found in Hovd and

Skogestad �������

���� Conclusion

We have found that most of the insights into the performance limitations

of SISO systems developed in Chapter � carry over to MIMO systems� For

RHP�zeros� RHP�poles and disturbances� the issue of directions usually makes

the limitations less severe for MIMO than for SISO systems� However� the

situation is usually the opposite with model uncertainty because for MIMO

systems there is also uncertainty associated with plant directionality� This is

an issue which is unique to MIMO systems�

We summarized on page ��� the main steps involved in an analysis of

input�output controllability of MIMO plants� In particular� we discussed the

use of the condition number and the RGA as an input�output controllability

measures�
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UNCERTAINTY AND

ROBUSTNESS FOR SISO

SYSTEMS

In this chapter� we show how to represent uncertainty by real or complex

perturbations and we analyze robust stability �RS� and robust performance �RP�

for SISO systems using elementary methods� Chapter � is devoted to a more general

treatment�

��� Introduction to robustness

A control system is robust if it is insensitive to di�erences between the actual

system and the model of the system which was used to design the controller�

These di�erences are referred to as model�plant mismatch or simply model

uncertainty� The key idea in the H� robust control paradigm we use is to

check whether the design speci�cations are satis�ed even for the �worst�case�

uncertainty�

Our approach is then as follows�

	� Determine the uncertainty set� �nd a mathematical representation of the

model uncertainty 
�clarify what we know about what we don�t know���

� Check Robust Stability 
RS�� determine whether the system remains stable

for all plants in the uncertainty set�

�� Check Robust Performance 
RP�� if RS is satis�ed� determine whether the

performance speci�cations are met for all plants in the uncertainty set�

This approach may not always achieve optimal performance� In particular�

if the worst�case plant rarely or never occurs� other approaches� such

as optimizing some average performance or using adaptive control� may

yield better performance� Nevertheless� the linear uncertainty descriptions

presented in this book are very useful in many practical situations�
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It should also be appreciated that model uncertainty is not the only

concern when it comes to robustness� Other considerations include sensor

and actuator failures� physical constraints� changes in control objectives�

the opening and closing of loops� etc� Furthermore� if a control design is

based on an optimization� then robustness problems may also be caused by

the mathematical objective function not properly describing the real control

problem� Also� the numerical design algorithms themselves may not be robust�

However� when we refer to robustness in this book� we mean robustness with

respect to model uncertainty� and assume that a �xed 
linear� controller is

used�
To account for model uncertainty we will assume that the dynamic

behaviour of a plant is described not by a single linear time invariant model

but by a set � of possible linear time invariant models� sometimes denoted

the �uncertainty set�� We adopt the following notation�

� � a set of possible perturbed plant models�

G
s� � � � nominal plant model 
with no uncertainty��

Gp
s� � � and G�
s� � � � particular perturbed plant models�

Sometimes Gp is used rather than � to denote the uncertainty set� whereas

G� always refers to a speci�c uncertain plant� The subscript p stands for

perturbed or possible or � 
pick your choice�� This should not be confused

with the subscript capital P � e�g� in wP � which denotes performance�

We will use a �norm�bounded uncertainty description� where the set �

is generated by allowing H� norm�bounded perturbations to the nominal

plant G
s�� We let � denote a normalized perturbation with H� norm less

than or equal to 	� This corresponds to a continuous description of the model

uncertainty� and there will be an in�nite number of possible plants Gp in the

set ��

Next� we need to decide on how to quantify performance for plants Gp

belonging to the set �� In the robust H� framework� performance is analyzed

by considering all possible responses� and requiring that even the worst�

case response satis�es our speci�cation� One disadvantage with this approach

is that when the uncertainty arises from a large number of independent

parameters it is unlikely that the worst�case situation will occur� so the

resulting design may be conservative�

We will next discuss some sources of model uncertainty and outline how to

represent these mathematically�
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��� Representing uncertainty

Uncertainty in the plant model may have several origins�

	� There are always parameters in the linear model which are only known

approximately or are simply in error�

� The parameters in the linear model may vary due to nonlinearities or

changes in the operating conditions�

�� Measurement devices have imperfections� This may even give rise to

uncertainty on the manipulated inputs� since the actual input is often

measured and adjusted in a cascade manner� For example� this is often

the case with valves used to measure �ow� In other cases limited valve

resolution may cause input uncertainty�

�� At high frequencies even the structure and the model order is unknown�

and the uncertainty will always exceed 	��� at some frequency�

�� Even when a very detailed model is available we may choose to work with

a simpler 
low�order� nominal model and represent the neglected dynamics

as �uncertainty��

�� Finally� the controller implemented may di�er from the one obtained by

solving the synthesis problem� In which case one may include uncertainty

to allow for controller order reduction and implementation inaccuracies�

The various sources of model uncertainty mentioned above may be grouped

into two main classes�

	� Parametric uncertainty� Here the structure of the model 
including the

order� is known� but some of the parameters are unknown�

� Neglected and unmodelled dynamics uncertainty� Here the model

is in error because of missing dynamics� usually at high frequencies� either

through deliberate neglect or because of a lack of understanding of the

physical process� Any model of a real system will contain this source of

uncertainty�

Parametric uncertainty will be quanti�ed by assuming that each uncertain

parameter is bounded within some region ��min� �max�� That is� we have

parameter sets of the form

�p � ��
	 � r���

where �� is the mean parameter value� r� � 
�max � �min��
�max � �min� is

the relative uncertainty in the parameter� and � is any real scalar satisfying

j�j � 	�

Neglected and unmodelled dynamics uncertainty is somewhat less precise

and thus more di�cult to quantify� but it appears that the frequency domain

is particularly well suited for this class� This leads to complex perturbations
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which we normalize such that k�k� � 	� In this chapter� we will deal mainly

with this class of perturbations�

For completeness one may consider a third class of uncertainty 
which is

really a combination of the other two��

�� Lumped uncertainty� Here the uncertainty description represents one

or several sources of parametric and�or unmodelled dynamics uncertainty

combined into a single lumped perturbation of a chosen structure�

The frequency domain is also well suited for describing lumped uncertainty� In

most cases we prefer to lump the uncertainty into a multiplicative uncertainty

of the form

eq

� �

� � ��

wI �I

G
Gp

�

�

Figure ���
 Plant with multiplicative uncertainty

�I � Gp
s� � G
s�
	 � wI
s��I 
s��� j�I
j��j � 	 ��� �z �
k����


 �	�

which may be represented by the block diagram in Figure  �	� Here �I 
s� is

any stable transfer function which at each frequency is less than or equal to

one in magnitude� The stability assumption on �I
s� may be removed if one

instead assumes that the number of RHP poles in G
s� and Gp
s� remains

unchanged� but to simplify the stability proofs we will in this book assume

that the perturbations are stable� Some examples of allowable �I 
s��s with

H� norm less than one� k�Ik� � 	� are

s� z

s� z
�

	
�s� 	

�

	


�s� 	��
�

��	

s� � ��	s� 	

The subscript I denotes �input�� but for SISO systems it doesn�t matter

whether we consider the perturbation at the input or output of the plant�

since
G
	 � wI�I � � 
	 � wO�O�G with �I
s� � �O
s� and wI 
s� � wO
s�
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Another uncertainty form� which is better suited for representing pole

uncertainty is the inverse multiplicative uncertainty

�iI � Gp
s� � G
s�
	 � wiI 
s��iI 
s��
��� j�iI
j��j � 	 �� 
 ��

Even with a stable �iI 
s� this form allows for uncertainty in the location of

an unstable pole� and it also allows for poles crossing between the left and

right�half planes�

Parametric uncertainty is sometimes called structured uncertainty as

it models the uncertainty in a structured manner� Analogously� lumped

dynamics uncertainty is sometimes called unstructured uncertainty� However�

one should be careful about using these terms because there can be several

levels of structure� especially for MIMO systems�

Remark� Alternative approaches for describing uncertainty and the resulting

performance may be considered� One approach for parametric uncertainty is to

assume a probabilistic �e�g� normal� distribution of the parameters� and to consider

the �average response� This stochastic uncertainty is� however� di�cult to analyze

exactly�

Another approach is the multi�model approach in which one considers a �nite set

of alternative models� This approach is well suited for parametric uncertainty as it

eases the burden of the engineer in representing the uncertainty� Performance may

be measured in terms of the worst�case or some average of these models� responses�

The multi�model approach can also be used when there is unmodelled dynamics

uncertainty� A problem with the multi�model approach is that it is not clear how to

pick the set of models such that they represent the limiting ��worst�case� plants�

A third approach is di�erential sensitivity �or local robustness��

To summarize� there are many ways to de�ne uncertainty� from di�erential

sensitivity 
local robustness�� to stochastic uncertainty and multi�models�

Weinmann 
	!!	� gives a good overview� In particular� there are several ways

to handle parametric uncertainty� and of these the H� frequency�domain

approach� used in this book� may not be the best or the simplest� but it can

handle most situations as we will see" In addition� the frequency�domain is

excellent for describing neglected or unknown dynamics� and it is very well

suited when it comes to making simple yet realistic uncertainty descriptions�

��� Parametric uncertainty

In spite of what is sometimes claimed� parametric uncertainty may also be

represented in the H� framework� at least if we restrict the perturbations �

to be real� This is discussed in more detail in Section  � � Here we provide

just two simple examples�
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Example ��� Gain uncertainty� Let the set of possible plants be

Gp�s� � kpG��s�� kmin � kp � kmax �����

where kp is an uncertain gain and G��s� is a transfer function with no uncertainty�

By writing

kp � �k�	 � rk��� rk
�

�
kmax � kmin

kmax � kmin
� �k

�
�

kmin � kmax

�

�����

where rk is the relative magnitude of the gain uncertainty and �k is the average gain�

����� may be rewritten as multiplicative uncertainty

Gp�s� � �kG��s�� �z �
G�s�

�	 � rk��� j�j � 	 �����

where � is a real scalar and G�s� is the nominal plant� We see that the uncertainty

in ����� is in the form of ����� with a constant multiplicative weight wI �s� � rk�

The uncertainty description in ����� can also handle cases where the gain changes

sign �kmin � � and kmax � �� corresponding to rk � 	� The usefulness of this is

rather limited� however� since it is impossible to get any bene	t from control for a

plant where we can have Gp � �� at least with a linear controller�

Example ��� Time constant uncertainty� Consider a set of plants� with an

uncertain time constant� given by

Gp�s� �

	

�ps � 	
G��s�� �min � �p � �max �����

By writing �p � ���	 � r���� similar to ���
� with j�j � 	� the model set ����� can

be rewritten as

Gp�s� �

G�

	 � ��s � r� ��s�

�

G�

	 � ��s� �z �
G�s�

	

	 � wiI�s��
� wiI�s� �

r� ��s

	 � ��s

�����

which is in the inverse multiplicative form of ������ Note that it does not make

physical sense for �p to change sign� because a value �p � �� corresponds to a pole

at in	nity in the RHP� and the corresponding plant would be impossible to stabilize�

To represent cases in which a pole may cross between the half planes� one should

instead consider parametric uncertainty in the pole itself� 	��s � p�� as described in

������

As shown by the above examples one can represent parametric uncertainty

in the H� framework� However� parametric uncertainty is often avoided for

the following reasons�

	� It usually requires a large e�ort to model parametric uncertainty�
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� A parametric uncertainty model is somewhat deceiving in the sense that

it provides a very detailed and accurate description� even though the

underlying assumptions about the model and the parameters may be much

less exact�

�� The exact model structure is required and so unmodelled dynamics cannot

be dealt with�

�� Real perturbations are required� which are more di�cult to deal with

mathematically and numerically� especially when it comes to controller

synthesis�

Instead� it is more usual to represent parametric uncertainty by complex

perturbations� For example� simply replace the real perturbation� �	 � � � 	

by a complex perturbation with j�
j��j � 	� This is of course conservative as

it introduces possible plants that are not present in the original set� However�

if there are multiple real perturbations� then the conservatism may be reduced

by lumping these perturbations into a single complex perturbation 
at least

for the SISO case�� Typically� a complex multiplicative perturbation is used�

e�g� Gp � G
I � wI���

How is it possible that we can reduce conservatism by lumping together

several real perturbations# This will become clearer from the examples in the

next section� but simply stated the answer is that the complicated uncertainty

region may become more �disk�shaped�� and may then be more accurately

represented by a single complex perturbation�

��� Representing uncertainty in the frequency

domain

In terms of quantifying unmodelled dynamics uncertainty the frequency�

domain approach 
H�� does not seem to have much competition 
when

compared with other norms�� In fact� Owen and Zames 
	!!� make the

following observation� �The design of feedback controllers in the presence

of non�parametric and unstructured uncertainty ��� is the reason d��etre for

H� feedback optimization� for if disturbances and plant models are clearly

parameterized then H� methods seem to o�er no clear advantages over more

conventional state�space and parametric methods��

����� Uncertainty regions

To illustrate how parametric uncertainty translates into frequency domain

uncertainty� consider in Figure  � the Nyquist plots 
or regions� generated

��� MULTIVARIABLE FEEDBACK CONTROL

by the following set of plants

Gp
s� �

k
�s� 	

e��s�  � k� �� � � � 
 �$�

Step �� At each frequency� a region of complex numbers Gp
j�� is generated

by varying the three parameters in the ranges given by 
 �$�� In

general� these uncertainty regions have complicated shapes and complex

mathematical descriptions� and are cumbersome to deal with in the

context of control system design�

Step �� We therefore approximate such complex regions as discs 
circles�

as shown in Figure  ��� resulting in a 
complex� additive uncertainty

description as discussed next�
Im

Re

� � ���	

� � ����

� � ���

� � ���

� � 	 � � �

� � �

Figure ���
 Uncertainty regions of the Nyquist plot at given frequencies� Data from

������

Remark � There is no conservatism introduced in the �rst step when we go

from a parametric uncertainty description as in ����� to an uncertainty region

description as in Figure ���� This is somewhat surprising since the uncertainty

regions in Figure ��� seem to allow for more uncertainty� For example� they allow

for �jumps in Gp�j�� from one frequency to the next �e�g� from one corner of a

region to another�� Nevertheless� we derive in this and the next chapter necessary and

su�cient frequency�by�frequency conditions for robust stability based on uncertainty

regions� Thus� the only conservatism is in the second step where we approximate the

original uncertainty region by a larger disc�shaped region as shown in Figure ����

Remark � Exact methods do exist using region mapping techniques iwhich avoid

the second conservative step� However� as already mentioned these methods are
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+

��
��

�	

	 �

Figure ���
 Disc approximation �solid line� of the original uncertainty region

�dashed line�� Plot corresponds to � � ��� in Figure ����

rather complex� and although they may be used in analysis� at least for simple

systems� they are not really suitable for controller synthesis and will not be pursued

further in this book�

����� Representing uncertainty regions by complex

perturbations

We will use disc�shaped regions to represent uncertainty regions as illustrated

by the Nyquist plots in Figures  �� and  ��� These disc�shaped regions may

be generated by additive complex norm�bounded perturbations 
additive

uncertainty� around a nominal plant G

�A � Gp
s� � G
s� � wA
s��A
s�� j�A
j��j � 	�� 
 �!�

where �A
s� is any stable transfer function which at each frequency is less

than one in magnitude� How is this possible# If we consider all possible �A�s�

then at each frequency �A
j�� �generates� a disc�shaped region with radius

	 centred at �� so G
j���wA
j���A
j�� generates at each frequency a disc�

shaped region of radius jwA
j��j centred at G
j�� as shown in Figure  ���

In most cases wA
s� is a rational transfer function 
although this need not

always be the case��

One may also view wA
s� as a weight which is introduced in order to

normalize the perturbation to be less than 	 in magnitude at each frequency�

Thus only the magnitude of the weight matters� and in order to avoid
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+

+

+

  

G�j��

jwA�j��j

Im

Re

�

Figure ���
 Disc�shaped uncertainty regions generated by complex additive

uncertainty� Gp � G � wA�

unnecessary problems we always choose wA
s� to be stable and minimum

phase 
this applies to all weights used in this book��

The disk�shaped regions may alternatively be represented by amultiplicative

uncertainty description as in 
 �	��

�I � Gp
s� � G
s�
	 � wI 
s��I
s��� j�I 
j��j � 	��� 
 �	��

By comparing 
 �!� and 
 �	�� we see that for SISO systems the additive and

multiplicative uncertainty descriptions are equivalent if at each frequency

jwI 
j��j � jwA
j��j�jG
j��j 
 �		�

However� multiplicative 
relative� weights are often preferred because their

numerical value is more informative� At frequencies where jwI 
j��j � 	 the

uncertainty exceeds 	��� and the Nyquist curve may pass through the origin�

This follows since� as illustrated in Figure  ��� the radius of the discs in

the Nyquist plot� jwA
j��j � jG
j��wI 
j��j� then exceeds the distance from

G
j�� to the origin� At these frequencies we do not know the phase of the

plant� and we allow for zeros crossing from the left to the right�half plane�

To see this� consider a frequency �� where jwI 
j���j � 	� Then there exists a

j�I j � 	 such that Gp
j��� � � in 
 �	��� that is� there exists a possible plant

with zeros at s � �j��� For this plant at frequency �� the input has no e�ect

on the output� so control has no e�ect� It then follows that tight control is
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G �centre�

jwAj

Im

Re�

Figure ���
 The set of possible plants includes the origin at frequencies where

jwA�j��j � jG�j��j� or equivalently jwI�j��j � 	�

not possible at frequencies where jwI 
j��j � 	 
this condition is derived more

exactly in 
 ����

����� Obtaining the weight for complex uncertainty

Consider a set � of possible plants resulting� for example� from parametric

uncertainty as in 
 �$�� We now want to describe this set of plants by a

single 
lumped� complex perturbation� �A or �I � This complex 
disk�shaped�

uncertainty description may be generated as follows�

	� Select a nominal model G
s��

� Additive uncertainty� At each frequency �nd the smallest radius lA
��

which includes all the possible plants ��

lA
�� � max

GP��
jGp
j���G
j��j 
 �	�

If we want a rational transfer function weight� wA
s� 
which may not be

the case if we only want to do analysis�� then it must be chosen to cover

the set� so

jwA
j��j � lA
�� �� 
 �	��

Usually wA
s� is of low order to simplify the controller design� Furthermore�

an objective of frequency�domain uncertainty is usually to represent

uncertainty in a simple straightforward manner�
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�� Multiplicative �relative� uncertainty� This is often the preferred uncertainty

form� and we have

lI
�� � max

Gp��
����Gp
j���G
j��

G
j��

���� 
 �	��

and with a rational weight
jwI
j��j � lI
����� 
 �	��

Example ��� Multiplicative weight for parametric uncertainty� Consider

again the set of plants with parametric uncertainty given in ����

� 
 Gp�s� �

k
�s� 	

e��s� � � k� �� � � � ���	��

We want to represent this set using multiplicative uncertainty with a rational weight

wI�s�� To simplify subsequent controller design we select a delay�free nominal model

G�s� �

�k
��s � 	

�

���

���s � 	

���	��

To obtain lI��� in ����
� we consider three values ��� ��� and �� for each of the three

parameters �k� �� ��� �This is not in general guaranteed to yield the worst case as the

worst case may be at the interior of the intervals�� The corresponding relative errors

j�Gp �G��Gj are shown as functions of frequency for the �� � �� resulting Gp�s in

Figure ���� The curve for lI��� must at each frequency lie above all the dotted lines�
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Figure ���
 Relative errors for �� combinations of k� � and � with delay�free nominal

plant �dotted lines�� Solid line
 First�order weight jwI�j in ���	��� Dashed line
 Third�

order weight jwI j in ���	���

and we 	nd that lI��� is ��� at low frequencies and ��� at high frequencies� To derive

wI�s� we 	rst try a simple 	rst�order weight that matches this limiting behaviour�

wI��s� �

Ts� ���

�T�����s � 	
� T � � ���	��
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As seen from the solid line in Figure ��� this weight gives a good 	t of lI���� except

around � � 	 where jwI��j��j is slightly too small� and so this weight does not include

all possible plants� To change this so that jwI�j��j � lI��� at all frequencies� we can

multiply wI� by a correction factor to lift the gain slightly at � � 	� The following

works well

wI�s� � �I��s�
s� � 	��s � 	

s� � 	��s � 	

���	��

as is seen from the dashed line in Figure ���� The magnitude of the weight crosses

	 at about � � ����� This seems reasonable since we have neglected the delay in

our nominal model� which by itself yields 	��� uncertainty at a frequency of about

	��max � ���� �see Figure �� �a� below��

An uncertainty description for the same parametric uncertainty� but with a

mean�value nominal model 
with delay�� is given in Exercise  �!� Parametric

gain and delay uncertainty 
without time constant uncertainty� is discussed

further in Example  ���

Remark� Pole uncertainty� In the example we represented pole �time constant�

uncertainty by a multiplicative perturbation� �I � We may even do this for unstable

plants� provided the poles do not shift between the half planes and one allows �I�s�

to be unstable� However� if the pole uncertainty is large� and in particular if poles

can cross form the LHP to the RHP� then one should use an inverse ��feedback�

uncertainty representation as in ������

-4

-3

-2

-1

0

1

2

-2 -1 0 1 2 3 4

+ +
+ 	� �

Figure ���
 Nyquist plot of Gp�j�� at frequency � � ��� �dashed region� showing

complex disc approximations using three options for the nominal model


	� Simpli�ed nominal model with no time delay�

�� Mean parameter values�

�� Nominal model corresponding to the smallest radius�
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����� Choice of nominal model

For the case with parametric uncertainty� three options for the choice of

nominal model are

	� Use a simpli�ed nominal model� e�g� a low�order or delay�free model�

� Use the mean parameter values� G
s� � �G
s�

�� Use the central plant in the Nyquist plot 
yielding the smallest disc��

Example ��� Consider again the uncertainty set ������ used in Example ��	�

The Nyquist plot of the three resulting discs at frequency � � ��� are shown

in Figure ���� Option �
 with the nominal model

G�
s� �

�k
��s� 	

yields the largest uncertainty region
 but the nominal model is simpler and this

facilitates controller design in later stages� Option �
 with the nominal model

G�
s� �

�k
��s� 	

e�
��s

is probably the most straightforward choice� Option 	 yields the smallest set


but in this case it requires a signi�cant eort to obtain the nominal model� it

is not even a rational transfer function and an approximation could yield a

very high order nominal model�

A similar example was studied by Wang� Lundstr%om and Skogestad


	!!��� who obtained the best controller designs with option 	� although the

uncertainty region is clearly much larger in this case� The reason for this is

that the �worst�case region� in the Nyquist plot in Figure  � corresponds

quite closely to those plants with the most negative phase 
at coordinates

about 
�	����	����� Thus� the additional plants included in the largest region


option 	� are generally easier to control and do not really matter when

evaluating the worst�case plant with respect to stability or performance� In

conclusion� at least for SISO plants� we �nd that for plants with an uncertain

time delay� it is simplest and sometimes best 
"� to use a delay�free nominal

model� and representing the nominal delay as additional uncertainty�

Remark� The choice of nominal is only an issue since we are lumping several sources

of parametric uncertainty into a single multiplicative perturbation� Of course� if we

use a parametric uncertainty description� based on multiple real perturbations� then

we should always use the mean parameter values in the nominal model�

����� Neglected dynamics represented as uncertainty

We saw above that one advantage of frequency domain uncertainty

descriptions is that one can choose to work with a simple nominal model�
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and represent neglected dynamics as uncertainty� We will now consider this

in a little more detail� Consider a set of plants

Gp
s� � G�
s�f
s�

where G�
s� is �xed 
and certain�� We want to neglect the term f
s�


which may be �xed or may be an uncertain set �f �� and represent Gp by

multiplicative uncertainty with a nominal model G � G�� From 
 �	�� we

get that the magnitude of the relative uncertainty caused by neglecting the

dynamics in f
s� is
lI
�� � max
Gp

����Gp �G
G

���� � max

f�s	��f

jf
j��� 	j 
 ���

Two simple examples illustrate the procedure�

�� Neglected delay� Let f
s� � e��s where � � � � �max� We want

to represent Gp � G�
s�e
��s by a delay�free plant G�
s� and multiplicative

uncertainty� Let us �rst consider the maximum delay� for which the relative

error j	� e�j��maxj is shown as a function of frequency in Figure  �$
a�� The

relative uncertainty crosses 	 in magnitude at about frequency 	��max� reaches

 at frequency 	�� 
since at this frequency ej�� � �	�� and oscillates between

� and  at higher frequencies 
which corresponds to the Nyquist plot of e�j��

going around and around the unit circle�� Similar curves are generated for

smaller values of the delay� and they also oscillate between � and  but at

higher frequencies� It then follows that if we consider all � � ��� �max� then the

relative error bound is  at frequencies above 	��max� and we have

lI
�� �
�
j	� e�j��maxj � 
 	��max

 � � 	��max


 �	�

Rational approximations of 
 �	� are given in 
 ��� and 
 ��� with rk � ��

�� Neglected lag� Let f
s� � 	�
�s� 	� where � � � � �max� In this case

the resulting lI
��� which is shown in Figure  �$ 
b�� can be represented by a

rational transfer function with jwI 
j��j � lI
�� where

wI 
s� � 	�

	

�maxs� 	
�

�maxs

�maxs� 	

This weight approaches 	 at high frequency� and the low�frequency asymptote

crosses 	 at frequency 	��max�

Example ��� Multiplicative weight for gain and delay uncertainty�

Consider the following set of plants

Gp�s� � kpe
��psG��s�� kp � �kmin� kmax �� �p � ��min� �max� ������
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Figure ��	
 Multiplicative uncertainty resulting from neglected dynamics

which we want to represent by multiplicative uncertainty and a delay�free nominal

model� G�s� � �kG��s�� Lundstr�om ����
� derived the following exact expression for

the relative uncertainty weight

lI��� �

� p
r�k � ��	 � rk��	� cos ��max��� for � � 	��max

� � rk for � � 	��max

������

where rk is the relative uncertainty in the gain� This bound is irrational� To derive a

rational weight we 	rst approximate the delay by a 	rst�order Pad�e approximation

to get
kmaxe
��maxs � �k � �k�	 � rk�
	� �max
�

s

	 � �max
�

s
� �k � �k

�
�

	 � rk
�

�
�maxs � rk

�max
�

s � 	

������

Since only the magnitude matters this may be represented by the following 	rst�order

weight

wI�s� �
�	 � rk
�

��maxs � rk

�max
�

s � 	

������

However� as seen from Figure ��� by comparing the dotted line �representing wI�

with the solid line �representing lI�� this weight wI is somewhat optimistic �too

small�� especially around frequencies 	��max� To make sure that jwI �j��j � lI��� at

all frequencies we apply a correction factor and get a third�order weight

wI �s� �
�	 � rk
�

��maxs � rk

�max
�

s � 	

�
�
�max

�����
��
s� � � � ����� � �max
�����
s � 	�

�max

�����
��
s� � � � ����� � �max
�����
s � 	

������

The improved weight wI�s� in ������ is not shown in Figure ���� but it would be

almost indistinguishable from the exact bound given by the solid curve� In practical

applications� it is suggested that one starts with a simple weight as in ������� and if

it later appears important to eke out a little extra performance then one can try a

higher�order weight as in �������
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 Multiplicative weight for gain and delay uncertainty

����� Unmodelled dynamics uncertainty

Although we have spent a considerable amount of time on modelling

uncertainty and deriving weights� we have not yet addressed the most

important reason for using frequency domain 
H�� uncertainty descriptions

and complex perturbations� namely the incorporation of unmodelled

dynamics� Of course� unmodelled dynamics is close to neglected dynamics

which we have just discussed� but it is not quite the same� In unmodelled

dynamics we also include unknown dynamics of unknown or even in�nite

order� To represent unmodelled dynamics we usually use a simple

multiplicative weight of the form

wI 
s� �

�s� r�


��r��s� 	


 � �

where r� is the relative uncertainty at steady�state� 	�� is 
approximately�

the frequency at which the relative uncertainty reaches 	���� and r� is

the magnitude of the weight at high frequency 
typically� r� � �� Based

on the above examples and discussions it is hoped that the reader has

now accumulated the necessary insight to select reasonable values for the

parameters r�� r� and � for a speci�c application� The following exercise

provides further support and gives a good review of the main ideas�

Exercise ��� Suppose that the nominal model of a plant is

G�s� �

	
s � 	

and the uncertainty in the model is parameterized by multiplicative uncertainty with

the weight

wI�s� �

��	��s � ����

���	�����s � 	
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Call the resulting set �� Now 	nd the extreme parameter values in each of the plants

�a���g� below so that each plant belongs to the set �� All parameters are assumed

to be positive� One approach is to plot lI��� � jG��G� � 	j in ����
� for each G�

�Ga� Gb� etc�� and adjust the parameter in question until lI just touches jwI �j��j�

�a� Neglected delay� Find the largest � for Ga � Ge��s �Answer� ��	���

�b� Neglected lag� Find the largest � for Gb � G �
�s	�

�Answer� ��	���

�c� Uncertain pole� Find the range of a for Gc � �
s	a

�Answer� ��� to 	�����

�d� Uncertain pole �time constant form�� Find the range of T for Gd � �
Ts	�

�Answer� ��� to 	����

�e� Neglected resonance� Find the range of 
 for Ge � G �

�s�
���	���s�
��	�

�Answer� ���� to �����

�f� Neglected dynamics� Find the largest integer m for Gf � G
�
�

����s	�
�m

�Answer� 	���

�g� Neglected RHP�zero� Find the largest �z for Gg � G��zs	�

�zs	�

�Answer� ������

These results imply that a control system which meets given stability and

performance requirements for all plants in �� is also guaranteed to satisfy the same

requirements for the above plants Ga� Gb� � � � � Gg

�h� Repeat the above with a new nominal plant G � 	��s�	� �and with everything

else the same except Gd � 	��Ts� 	��� �Answer� Same as above��

�i� Repeat the above with a new weight

wI�s� �

s � ���

�	���s � 	

We end this section with a couple of remarks on uncertainty modelling�

	� We can usually get away with just one source of complex uncertainty for

SISO systems�

� With an H� uncertainty description� it is possible to represent time delays


corresponding to an in�nite�dimensional plant� and unmodelled dynamics

of in�nite order � even though the nominal model and associated weights

have �nite order�

��� SISO Robust Stability

We have so far discussed how to represent the uncertainty mathematically� In

this section� we derive conditions which will ensure the system remains stable

for all perturbations in the uncertainty set� and then in the subsequent section

we study robust performance�

����� RS with multiplicative uncertainty

We want to determine the stability of the uncertain feedback system in

Figure  �	� when there is multiplicative 
relative� uncertainty of magnitude
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Figure ����
 Feedback system with multiplicative uncertainty

jwI 
j��j� With uncertainty the loop transfer function becomes

Lp � GpK � GK
	 � wI�I� � L� wIL�I � j�I
j��j � 	��� 
 �$�

As always� we assume 
by design� stability of the nominal closed�loop system


i�e� with �I � ��� For simplicity� we also assume that the loop transfer

function Lp is stable� We now use the Nyquist stability condition to test for

robust stability of the closed�loop system� We have

RS

def
� System stable �Lp

� Lp should not encircle the point � 	� �Lp 
 �!�

L
j��

Re

Im
�

�	

j	 � L
j��j

jwILj

Figure ����
 Nyquist plot of Lp for robust stability
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�� Graphical derivation of RS�condition� Consider the Nyquist plot of

Lp as shown in Figure  �		� Convince yourself that j � 	�Lj � j	�Lj is the

distance from the point �	 to the centre of the disc representing Lp� and that

jwILj is the radius of the disc� Encirclements are avoided if none of the discs

cover �	� and we get from Figure  �		

RS � jwILj 
 j	 � Lj� �� 
 ����

�

���� wIL

	 � L
���� 
 	� �� � jwIT j 
 	� �� 
 ��	�

def
� kwITk� 
 	 
 ���

Note that for SISO systems wI � wO and T � TI � GK
	 �GK���� so the

condition could equivalently be written in terms of wITI or wOT � Thus� the

requirement of robust stability for the case with multiplicative uncertainty

gives an upper bound on the complementary sensitivity�

RS� jT j 
 	�jwI j� �� 
 ����

We see that we have to detune the system �i�e�
 make T small� at frequencies

where the relative uncertainty jwI j exceeds 	 in magnitude� Condition 
 ����

is exact 
necessary and su�cient� provided there exist uncertain plants such

that at each frequency all perturbations satisfying j�
j��j � 	 are possible�

If this is not the case� then 
 ���� is only su�cient for RS� For example� this

is the case if the perturbation is restricted to be real� as for the parametric

gain uncertainty in 
 ����

Example ��	 Consider the following nominal plant and PI�controller

G�s� �

����s � 	�

��s � 	��	�s � 	�

K�s� � Kc
	���s � 	

	���s

Recall that this is the inverse response process from Chapter �� Initially� we select

Kc � Kc� � 	�	� as suggested by the Ziegler�Nichols tuning rule� It results in a

nominally stable closed�loop system� Suppose that one �extreme� uncertain plant is

G��s� � ����s�	����s�	��� For this plant the relative error j�G��G��Gj is ���� at

low frequencies� it is 	 at about frequency ��	 rad�s� and it is ���� at high frequencies�

Based on this and ������ we choose the following uncertainty weight

wI�s� �

	�s � ����

�	�������s � 	

which closely matches this relative error� We now want to evaluate whether the

system remains stable for all possible plants as given by Gp � G�	 � wI�I� where

�I�s� is any perturbation satisfying k�k� � 	� This is not the case as seen

from Figure ���� where we see that the magnitude of the nominal complementary

sensitivity function T� � GK���	 � GK�� exceeds the bound 	�jwI j from about ��	

to 	 rad�s� so ������ is not satis	ed� To achieve robust stability we need to reduce

the controller gain� By trial and error we 	nd that reducing the gain to Kc� � ���	

just achieves RS� as is seen from the curve for T� � GK���	�GK�� in Figure �����
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Figure ����
 Checking robust stability with multiplicative uncertainty�

Remark� For the �extreme� plant G��s� we 	nd as expected that the closed�loop

system is unstable with Kc� � 	�	�� However� with Kc� � ���	 the system is

stable with reasonable margins �and not on the limit of instability as one might have

expected�� we can increase the gain by almost a factor of two to Kc � ���� before

we get instability� This illustrates that condition ������ is only a su�cient condition

for stability� and a violation of this bound does not imply instability for a speci	c

plant G�� However� with Kc� � ���	 there exists an allowed �I and a corresponding

Gp � G�	 � wI�I� which yields T�p �

GpK�

�	GpK�

on the limit of instability�

�� Algebraic derivation of RS�condition� Since Lp is assumed stable�

and the nominal closed�loop is stable� the nominal loop transfer function L
j��

does not encircle �	� Therefore� since the set of plants is norm�bounded� it

then follows that if some Lp� in the uncertainty set encircles �	� then there

must be another Lp� in the uncertainty set which goes exactly through �	 at

some frequency� Thus�

RS � j	 � Lpj �� �� �Lp��� 
 ����

� j	 � Lpj � �� �Lp��� 
 ����

� j	 � L� wIL�I j � �� �j�I j � 	��� 
 ����

At each frequency the last condition is most easily violated 
the worst case�

when the complex number �I
j�� is selected with j�I
j��j � 	 and with

phase such that the terms 
	 � L� and wIL�I have opposite signs 
point in

the opposite direction�� Thus

RS� j	 � Lj � jwILj � �� �� � jwIT j 
 	� �� 
 �� �

and we have rederived 
 ����

Remark� Unstable plants� The stability conditions ������ and ������ also apply

to the case when L and Lp are unstable as long as the number of RHP�poles remains

��� MULTIVARIABLE FEEDBACK CONTROL

the same for each plant in the uncertainty set� This follows since the nominal closed�

loop system is assumed stable� so we must make sure that the perturbation does not

change the number of encirclements� and ������ is the condition which guarantees

this�

�

�

�
M

y�u�
Figure ����
 M �� structure

�� M��structure derivation of RS�condition� This derivation is a

preview of a general analysis presented in the next chapter� The reader should

not be too concerned if he or she does not fully understand the details at this

point� The derivation is based on applying the Nyquist stability condition to

an alternative �loop transfer function� M� rather than Lp� The argument

goes as follows� If the nominal 
�I � �� feedback system is stable then the

stability of the system in Figure  �	� is equivalent to stability of the system

in Figure  �	�� where � � �I and

M � wIK
	 �GK���G � wIT 
 ��$�

is the transfer function from the output of �I to the input of �I � Notice

that the only source of instability in Figure  �	� is the new feedback loop

created by �I � We now apply the Nyquist stability condition to Figure  �	��

We assume that � and M � wIT are stable� the former implies that G and

Gp must have the same unstable poles� the latter is equivalent to assuming

nominal stability of the closed�loop system� The Nyquist stability condition

then determines RS if and only if the �loop transfer function� M� does not

encircle �	 for all �� Thus�

RS � j	 �M�j � �� ����j�j � 	 
 ��!�

The last condition is most easily violated 
the worst case� when � is selected

at each frequency such that j�j � 	 and the terms M� and 	 have opposite

signs 
point in the opposite direction�� We therefore get

RS � 	� jM
j��j � �� �� 
 ����

� jM
j��j 
 	� �� 
 ��	�
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which is the same as 
 ��� and 
 �� � since M � wIT � The M��structure

provides a very general way of handling robust stability� and we will discuss

this at length in the next chapter where we will see that 
 ��	� is essentially

a clever application of the small gain theorem where we avoid the usual

conservatism since any phase in M� is allowed�

����� Comparison with gain margin

We want to compare the above robustness results with the classical concept

of gain margin� To this e�ect� consider a given plant G� and given controller

K� we want to evaluate the factor� kmax� by which we can multiply the loop

gain L� � G�K before we get instability� This problem may be formulated as�

given

Lp � kpL�� kp � �	� kmax� 
 ���

�nd the largest value of kmax such that the closed�loop system is stable�

�� Real perturbation� The exact value of kmax� which is obtained with �

real� is the gain margin 
GM� from classical control� We have 
recall 
�����

kmax � � GM �

	

jL�
j��
��j


 ����

where ��
� is the frequency where � L� � �	$���

�� Complex perturbation� Alternatively� represent the gain uncertainty

as complex multiplicative uncertainty� Lp � kpL� � �kL�
	 � rk�� where

�k �
kmax � 	



� rk �
kmax � 	

kmax � 	


 ����

Note that the nominal L � �kL� is not �xed� but depends on kmax� The

robust stability condition kwITk� 
 	 
which is derived for complex �� with

wI � rk then gives ����rk �kL�

	 � �kL�
����

�


 	 
 ����

Here both rk and �k depend on kmax� and 
 ���� must be solved iteratively to

�nd kmax �� Condition 
 ���� would be exact if � were complex� but since it

is not we expect kmax � to be somewhat smaller than GM�

Example ��� To check this numerically consider a system with L� � �
s

�s	�

s	�

� We

	nd ���� � � �rad�s� and jL��j�����j � ���� and the exact factor by which we can

increase the loop gain is� from ���
��� kmax � � GM � �� On the other hand� use of

���
�� yields kmax � � 	���� which as expected is less than GM��� This illustrates

the conservatism involved in replacing a real perturbation by a complex one�
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Exercise ��� Represent the gain uncertainty in ���
�� as multiplicative complex

uncertainty with nominal model G � G� �rather than G � �kG� used above�� �a� Find

wI and use the RS�condition kwITk� � 	 to 	nd kmax �� Note that no iteration is

needed in this case since the nominal model and thus T � T� is independent of

kmax� �b� One expects kmax � to be even more conservative than kmax � since this

uncertainty description is not even tight when � is real� Show that this is indeed the

case using the numerical values from Example ����

����� RS with inverse multiplicative uncertainty

dd q q �� ��

� �

�

�� �

�

wiI �iI

u� y�

K G

Figure ����
 Feedback system with inverse multiplicative uncertainty

We will derive a corresponding RS�condition for a feedback system with

inverse multiplicative uncertainty 
see Figure  �	�� in which

Gp � G
	 � wiI 
s��iI �
�� 
 ����

Algebraic derivation� Assume for simplicity that the loop transfer function

Lp is stable� and assume stability of the nominal closed�loop system� Robust

stability is then guaranteed if encirclements by Lp
j�� of the point �	 are

avoided� and since Lp is in a norm�bounded set we have

RS � j	 � Lpj � �� �Lp��� 
 �� �

� j	 � L
	 � wiI�iI �
��j � �� �j�iI j � 	��� 
 ��$�

� j	 � wiI�iI � Lj � �� �j�iI j � 	��� 
 ��!�

The last condition is most easily violated 
the worst case� when �iI is selected

at each frequency such that j�iI j � 	 and the terms 	 � L and wiI�iI have

opposite signs 
point in the opposite direction�� Thus

RS � j	 � Lj � jwiI j � �� �� 
 ����

� jwiISj 
 	� �� 
 ��	�
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In this derivation we have assumed that Lp is stable� but this is not necessary

as one may show by deriving the condition using the M��structure� Actually�

the RS�condition 
 ��	� applies even when the number of RHP�poles of Gp

can change�

Control implications� From 
 ��	� we �nd that the requirement of robust

stability for the case with inverse multiplicative uncertainty gives an upper

bound on the sensitivity�

jSj 
 	�jwiI j� �� 
 ���

We see that we need tight control and have to make S small at frequencies

where the uncertainty is large and jwiI j exceeds 	 in magnitude� This may be

somewhat surprising since we intuitively expect to have to detune the system


and make S 	 	� when we have uncertainty� while this condition tells us to do

the opposite� The reason is that this uncertainty represents pole uncertainty�

and at frequencies where jwiI j exceeds 	 we allow for poles crossing from the

left to the right�half plane 
Gp becoming unstable�� and we then know that

we need feedback 
jSj 
 	� in order to stabilize the system�

However� jSj 
 	 may not always be possible� In particular� assume that

the plant has a RHP�zero at s � z� Then we have the interpolation constraint

S
z� � 	 and we must as a prerequisite for RS� kwiISk� 
 	� require

that wiI 
z� � 	 
recall the maximum modulus theorem� see 
��	���� Thus�

we cannot have large pole uncertainty with jwiI 
j��j � 	 
and hence the

possibility of instability� at frequencies where the plant has a RHP�zero� This

is consistent with the results we obtained in Section ��!�

Exercise ��� Represent the gain uncertainty in ���
�� by inverse gain uncertainty

as in ���
�� Find the largest value of kmax which satis	es the RS�condition

kwiISk� � 	 �solve iteratively�� Compare with kmax � found in Example ����

��� SISO Robust Performance

����� SISO nominal performance in the Nyquist plot

Consider performance in terms of the weighted sensitivity function as

discussed in Section � �� The condition for nominal performance 
NP� is

then

NP � jwPSj 
 	 �� � jwP j 
 j	 � Lj �� 
 ����

j	 � Lj represents at each frequency the distance of L
j�� from the point

�	 in the Nyquist plot� so L
j�� must be at least a distance of jwP 
j��j from

�	� This is illustrated graphically in Figure  �	�� where we see that for NP�

L
j�� must stay outside a disc of radius jwP 
j��j centred on �	�
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jwP 
j��j

L
j��

Re

Im
�

�	

j	 � L
j��j

Figure ����
 Nyquist plot illustration of nominal performance condition jwP j �

j	 � Lj

����� Robust Performance
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�

wP
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Figure ����
 Diagram for robust performance with multiplicative uncertainty

For robust performance we require the performance condition 
 ���� to be

satis�ed for all possible plants� that is� including the worst�case uncertainty�

RP

def
� jwPSpj 
 	 �Sp��� 
 ����

� jwP j 
 j	 � Lpj �Lp��� 
 ����

This corresponds to requiring jby�dj 
 	��I in Figure  �	�� where we consider

multiplicative uncertainty� and the set of possible loop transfer functions is

Lp � GpK � L
	 � wI�I� � L� wIL�I 
 ����

�� Graphical derivation of RP�condition� Condition 
 ���� is

illustrated graphically by the Nyquist plot in Figure  �	 � For RP we must
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require that all possible Lp
j�� stay outside a disc of radius jwP 
j��j centred

on �	� Since Lp at each frequency stays within a disc of radius wIL centred

on L� we see from Figure  �	 that the condition for RP is that the two discs�

with radii wP and wI � do not overlap� Since their centres are located a distance

j	 � Lj apart� the RP�condition becomes

RP � jwP j� jwILj 
 j	 � Lj� �� 
 �� �

� jwP 
	 � L���j� jwIL
	 � L���j 
 	� �� 
 ��$�

or in other words

RP � max� 
jwPSj� jwIT j� 
 	 
 ��!�

jwP 
j��j

L
j��

Re

Im
�

�	

j	 � L
j��j

jwILj

Figure ����
 Nyquist plot illustration of robust performance condition jwpj �

j	 � Lpj
�� Algebraic derivation of RP�condition� From the de�nition in 
 ����

we have that RP is satis�ed if the worst�case 
maximum� weighted sensitivity

at each frequency is less than 	� that is�

RP � max
Sp

jwPSpj 
 	� �� 
 ����


strictly speaking� max should be replaced by sup�� The perturbed sensitivity

is Sp � 
I � Lp�
�� � 	�
	 � L� wIL�I�� and the worst�case 
maximum� is

obtained at each frequency by selecting j�I j�	 such that the terms 
	 � L�
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and wIL�I 
which are complex numbers� point in opposite directions� We

get

max
Sp

jwPSpj �

jwpj

j	 � Lj � jwILj
�

jwPSj

	� jwIT j


 ��	�

and by substituting 
 ��	� into 
 ���� we rederive the RP�condition in 
 ��!��

Remarks on RP�condition ���
��

	� The term ��NRP� � jwPSj� jwIT j in ������ is the structured singular value ���

for RP for this particular problem� see ���	���� We will discuss � in much more

detail in the next chapter�

�� Note that the structured singular value � is not equal to the worst�case weighted

sensitivity� maxSp jwPSpj� given in ����	� �although many people seem to think

it is�� The worst�case weighted sensitivity is equal to skewed�� ��s� with �xed

uncertainty for this problem� see Section ��	���� Thus� in summary we have for

this particular robust performance problem


� � jwPSj� jwIT j� �s �

jwPSj

	 � jwIT j ������

Note that � and �s are closely related since � � 	 if and only if �s � 	�

�� The RP�condition ������ for this problem is closely approximated by the following

mixed sensitivity H� condition
����wPS

wIT
����

�

� max
�

p
jwPSj� � jwIT j� � 	 ������

To be more precise� we �nd from �A���� that condition ������ is within a factor of

at most
p

� to condition ������� This means that for SISO systems we can closely

approximate the RP�condition in terms of an H� problem� so there is little need

to make use of the structured singular value� However� we will see in the next

chapter that the situation can be very di�erent for MIMO systems�

�� The RP�condition ������ can be given a loop�shaping interpretation� At a given

frequency we have that jwPSj� jwIT j � 	 �RP� is satis�ed if �see Exercise ����

jLj � 	 � jwP j

	� jwI j � �at frequencies where jwI j � 	� ������

or if

jLj � 	� jwP j

	 � jwI j � �at frequencies where jwP j � 	� ������

Conditions ������ and ������ may be combined over di�erent frequency ranges�

Condition ������ is most useful at low frequencies where generally jwI j � 	 and

jwP j � 	 �tight performance requirement� and we need jLj large� Conversely�

condition ������ is most useful at high frequencies where generally jwI j � 	�

�more than 	��� uncertainty�� jwP j � 	 and we need L small� The loop�shaping

conditions ������ and ������ may in the general case be obtained numerically from

��conditions as outlined in Remark 	� on page ���� This is discussed by Braatz�
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Morari and Skogestad �	���� who derive bounds also in terms of S and T � and

also derive necessary bounds for RP in addition to the su�cient bounds in ������

and ������� see also Exercise ����

Exercise ��� Derive the loop�shaping bounds in ����
� and ������ which are

su�cient for jwPSj � jwIT j � 	 �RP�� Hint� Start from the RP�condition in the

form jwP j�jwILj � j	�Lj and use the facts that j	�Lj � 	�jLj and j	�Lj � jLj�	�

Exercise ��� Also derive� from jwpSj� jwIT j � 	� the following necessary bounds

for RP �which must be satis	ed�

jLj � jwP j � 	

	� jwI j � �for jwP j � 	 and jwI j � 	�

jLj � 	� jwP j

jwI j � 	
� �for jwP j � 	 and jwI j � 	�

Hint� Use j	 � Lj � 	 � jLj�

Example ��
 Robust performance Problem� Consider robust performance of

e e eq q�
� �

� ��� � ��

�

wu �u

d

�

K G

�

�

�

�

wP

by

Figure ���	
 Diagram for robust performance in Example ���

the SISO system in Figure ���� for which we have

RP
def�

����byd
���� � 	� �j�uj � 	� ��� wP �s� � ���� �

��	
s

� wu�s� � ru

s
s � 	

������

a� Derive a condition for robust performance �RP��

b� For what values of ru is it impossible to satisfy the robust performance

condition�

c� Let ru � ���� Consider two cases for the nominal loop transfer function� ��

GK��s� � ����s and �� GK��s� � ���
s

��s

�	s
� For each system� sketch the magnitudes

of S and its performance bound as a function of frequency� Does each system satisfy

robust performance�

Solution� a� The requirement for RP is jwPSpj � 	� �Sp� ��� where the possible

sensitivities are given by
Sp �

	

	 � GK � wu�u

�

S

	 � wu�uS

������
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The condition for RP then becomes

RP �

��� wPS

	 �wu�uS
��� � 	� ��u� �� ������

A simple analysis shows that the worst case corresponds to selecting �u with

magnitude � such that the term wu�uS is purely real and negative� and hence we

have

RP � jwPSj � 	 � jwuSj� �� ������

� jwPSj� jwuSj � 	� �� ������

� jS�jw�j � 	

jwP �jw�j� jwu�jw�j � �� ����	�

b� Since any real system is strictly proper we have jSj � 	 at high frequencies and

therefore we must require jwu�j��j � jwP �j��j � 	 as � 	 
� With the weights

in ������ this is equivalent to ru � ���� � 	� Therefore� we must at least require

ru � ���� for RP� and RP cannot be satis	ed if ru � �����
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 Robust performance test

c� Design S� yields RP� while S� does not� This is seen by plotting the RP�

condition ������ graphically as shown in Figure ����� jS�j has a peak of 	 while jS�j

has a peak of about �����

����� The relationship between NP	 RS and RP

Consider a SISO system with multiplicative uncertainty� and assume that the

closed�loop is nominally stable 
NS�� The conditions for nominal performance�

robust stability and robust performance can then be summarized as follows

NP � jwPSj 
 	��� 
 � �

RS � jwIT j 
 	��� 
 � ��

RP � jwPSj� jwIT j 
 	��� 
 � ��
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From this we see that a prerequisite for RP is that we satisfy NP and RS 
i�e��

RP
 RS� and RP
 NP�� This applies in general� both for SISO and MIMO

systems and for any uncertainty� In addition� for SISO systems� if we satisfy

both RS and NP� then we have at each frequency

jwPSj� jwIT j � maxfjwPSj� jwIT jg 
  
 � ��

It then follows that� within a factor of at most � we will automatically get

RP when the subobjectives of NP and RS are satis�ed 
i�e�� �NP � RS 


RP within a factor ��� Thus� RP is not a �big issue� for SISO systems� and

this is probably the main reason why there is little discussion about robust

performance in the classical control literature� On the other hand� as we shall

see in the next chapter� for MIMO systems we may get very poor RP even

though the subobjectives of NP and RS are individually satis�ed�

To satisfy RS we generally want T small� where as to satisfy NP we generally

want S small� However� we cannot make both S and T small at the same

frequency because of the identity S�T � 	� This has implications for RP� since

jwP jjSj� jwI jjT j � minfjwP j� jwI jg
jSj� jT j�� where jSj� jT j � jS � T j � 	�

and we derive at each frequency

jwPSj� jwIT j � minfjwP j� jwI jg 
 � ��

We conclude that we cannot have both jwP j � 	 �i�e� good performance�

and jwI j � 	 �i�e� more than 	��� uncertainty� at the same frequency� One

explanation for this is that at frequencies where jwI j � 	 the uncertainty will

allow for RHP�zeros� and we know that we cannot have tight performance in

the presence of RHP�zeros�

����� The similarity between RS and RP

There is a strong similarity between RS with multiple perturbations and RP�

To see this consider the following two cases as illustrated in Figure  ���


a� RP with multiplicative uncertainty


b� RS with combined multiplicative and inverse multiplicative uncertainty

As usual the uncertain perturbations are normalized such that k��k� � 	

and k��k� � 	� Since we use the H� norm to de�ne both uncertainty and

performance and since the weights in 
a� and 
b� are the same� the tests for

RP and RS in 
a� and 
b�� respectively� are identical� This may be argued

from the block diagrams� or by simply evaluating the conditions for the two

cases as shown below�


a� The condition for RP with multiplicative uncertainty was derived above�

but with w� replaced by wP and with w� replaced by wI � We found

RP � jw�Sj� jw�T j 
 	� �� 
 �  �
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Figure ����
 �a� Robust performance with multiplicative uncertainty�

�b� Robust stability with combined multiplicative and inverse multiplicative

uncertainty�


b� We will now derive the RS�condition for the case where Lp is stable 
this

assumption may be relaxed if the more general M��method and the

structured singular value are used�� We want the system to be closed�

loop stable for all possible �� and ��� RS is equivalent to avoiding

encirclements of �	 by the Nyquist plot of Lp� That is� the distance

between Lp and �	 must be larger than zero� i�e�� j	 � Lpj � �� and

therefore

RS � j	 � Lpj � � �Lp��� 
 � $�

� j	 � L
	 � w����
	� w����
��j � �� ���������� 
 � !�

� j	 � L� Lw��� � w���j � �� ���������� 
 �$��

Here the worst case is obtained when we choose �� and �� with

magnitudes 	 such that the terms Lw��� and w��� are in the opposite

direction of the term 	 � L� We get

RS � j	 � Lj � jLw�j � jw�j � �� �� 
 �$	�

� jw�Sj� jw�T j 
 	� �� 
 �$�

which is the same condition 
 � �� found for RP�
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����� What we would really like to do 
 consider

multiple perturbations�

To get a better description of the uncertainty� in particular for MIMO systems

and for parametric uncertainty� we need to use multiple perturbations 
��s��

For example� we just considered the case with both multiplicative input

uncertainty� ��� and inverse multiplicative output uncertainty� ��� In the

general case� we will not be able to derive RS�conditions using simple algebra

as above� However� we will see in the next chapter that the M��structure

together with the structured singular value provides a very general way of

deriving necessary and su�cient RS�conditions even for complex cases� The

extension to include RP is then straightforward because of the equivalence

between RP and RS as discussed above�

��� Examples of parametric uncertainty

We now provide some further examples of how to represent parametric

uncertainty� The perturbations � must be real to exactly represent parametric

uncertainty�

����� Parametric gain uncertainty

We showed in Example  �	 how to represent scalar parametric gain uncertainty

Gp
s� � kpG�
s� where

kmin � kp � kmax 
 �$��

as multiplicative uncertainty Gp � G
	 �wI�I � with nominal model G
s� �

�kG�
s� and uncertainty weight wI � rk � 
kmax� kmin��
kmax � kmin�� �I is

a real scalar� �	 � �I � 	�

Inverse form� Alternatively� we can represent gain uncertainty as inverse

multiplicative uncertainty�

�iI � Gp
s� � G
s�
	 � wiI 
s��iI �
��� �	 � �iI � 	 
 �$��

with wiI � rk and G
s� � kiG where

ki � 
kminkmax

kmax � kmin


 �$��

Exercise ��	 Derive ���
� and ������ �Hint� The gain variation in ����� can be

written exactly as kp � ki��	� rk���� Show that the form in ���
� does not allow

for kp � � �even with � large�� and discuss why this may be a possible advantage�
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����� Parametric pole uncertainty

Consider uncertainty in the parameter a in a state space model� &y � ay� bu�

corresponding to the uncertain transfer function Gp
s� � b�
s � ap�� More

generally� consider the following set of plants

Gp
s� �

	
s� ap

G�
s�� amin � ap � amax 
 �$��

If amin and amax have di�erent signs then this means that the plant can

change from stable to unstable with the pole crossing through the origin


which happens in some applications�� This set of plants can be written as

Gp �

G�
s�

s� �a
	 � ra��
� �	 � � � 	 
 �$ �

which can be exactly described by inverse multiplicative uncertainty as in


 �$�� with nominal model G � G�
s��
s� �a� and

wiI 
s� �

ra�a

s� �a


 �$$�

The magnitude of the weight wiI 
s� is equal to ra at low frequencies� If ra is

larger than 	 then the plant can be both stable and unstable� As seen from

the RS�condition in 
 ��	�� a value of jwiI j larger than 	 means that jSj must

be less than 	 at the same frequency� which is consistent with the fact that

we need feedback 
S small� to stabilize an unstable plant�

It is also interesting to consider another form of pole uncertainty� namely

that associated with the time constant�

Gp
s� �

	

�ps� 	
G�
s�� �min � �p � �max 
 �$!�

This results in uncertainty in the pole location� but the set of plants is entirely

di�erent from that in 
 �$��� The reason is that in 
 �$�� the uncertainty

a�ects the model at low frequency� whereas in 
 �$!� the uncertainty a�ects

the model at high frequency� The corresponding uncertainty weight as derived

in 
 � � is

wiI 
s� �

r� ��s

	 � ��s


 �!��

This weight is zero at � � � and approaches r� at high frequency� whereas the

weight wiI in 
 �$$� is ra at � � � and approaches zero at high frequencies�

����� Parametric zero uncertainty

Consider zero uncertainty in the �time constant� form� as in

Gp
s� � 
	 � �ps�G�
s�� �min � �p � �max 
 �!	�
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where the remaining dynamics G�
s� are as usual assumed to have no

uncertainty� For example� let �	 � �p � �� Then the possible zeros zp � �	��p

cross from the LHP to the RHP through in�nity� zp � �	�� 
in LHP� and

zp � 	 
in RHP�� The set of plants in 
 �!	� may be written as multiplicative


relative� uncertainty with
wI 
s� � r� ��s�
	 � ��s� 
 �!�

The magnitude jwI
j��j is small at low frequencies� and approaches r� 
the

relative uncertainty in �� at high frequencies� For cases with r� � 	 we allow

the zero to cross from the LHP to the RHP 
through in�nity��

Exercise ��� Parametric zero uncertainty in zero form�

Consider the following alternative form of parametric zero uncertainty

Gp�s� � �s � zp�G��s�� zmin � zp � zmax ������

which caters for zeros crossing from the LHP to the RHP through the origin

�corresponding to a sign change in the steady�state gain�� Show that the resulting

multiplicative weight is wI�s� � rz�z��s � �z� and explain why the set of plants given

by ������ is entirely di�erent from that with the zero uncertainty in �time constant�

form in ������� Explain what the implications are for control if rz � 	�

Remark� Both of the two zero uncertainty forms� ����	� and ������ can occur in

practice� An example of the zero uncertainty form in ������� which allows for changes

in the steady�state gain� is given in Example ��	��

����� Parametric uncertainty in state�space form

We here introduce the reader to parametric state�space uncertainty by way of

a few examples� A general procedure for handling this kind of uncertainty is

given by Packard 
	!$$�� Consider an uncertain state�space model

&x � Apx�Bpu 
 �!��

y � Cpx�Dpu 
 �!��

or equivalently

Gp
s� � Cp
sI �Ap�
��Bp �Dp 
 �!��

Assume that the underlying cause for the uncertainty is uncertainty in some

real parameters ��� ��� � � � 
these could be temperature� mass� volume� etc���

and assume in the simplest case that the state�space matrices depend linearly

on these parameters i�e�

Ap � A�
X
�iAi� Bp � B�

X
�iBi Cp � C�

X
�iCi� Dp � D�

X
�iDi


 �! �
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where A�B�C and D model the nominal system� This description has multiple

perturbations� so it cannot be represented by a single perturbation� but it

should be fairly clear that we can separate out the perturbations a�ecting

A�B�C and D� and then collect them in a large diagonal matrix � with the

real �i�s along its diagonal� Some of the �i�s may have to be repeated� For

example� we may write
Ap � A�

X
�iAi � A�W��W� 
 �!$�

where � is diagonal with the �i�s along its diagonal� Writing H
s� � 
sI �

A���� we get


sI �Ap�
�� � 
sI �A�W��W��
�� � 
I �H
s�W��W��
��H
s� 
 �!!�

This is illustrated in the block diagram of Figure  �	� which is in the form

of an inverse additive perturbation 
see Figure $�� 
d���

rf� ��

�� �

�
sI �A���

w�w� �


sI �Ap�
��

�

�
Figure ����
 Uncertainty in state space A�matrix

Example ��� Suppose Ap is a function of two parameters kp � 	 � w��� ��	 �

�� � 	� and p � � � w��� ��	 � �� � 	� as follows�

Ap �
	
��� kp kp � p

kp � �p �kp



���	���

Then

Ap �

	
�� ��

� �	



� �z �
A

���
	
�w� w�

w� �w�



� �z �
A�

���
	

� �w�

�w� �




� �z �
A�

���	�	�

� A �
	
�w� � �w�

w� �w� �




� �z �
W�

�
�� � �

� �� �

� � ��
�

� �z �
�

�
	 �	

	 �

� 	
�

� �z �
W�

���	���
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Note that �� appears only once in �� whereas �� needs to be repeated� This is related

to the ranks of the matrices A� �which has rank 	� and A� �which has rank ���

Additional repetitions of the parameters �i may be necessary if we also

have uncertainty in B�C and D� It can be shown that the minimum number

of repetitions of each �i in the overall ��matrix is equal to the rank of each

matrix
h
Ai Bi

Ci Di
i


Packard� 	!$$� Zhou et al�� 	!!��� Also� note that seemingly

nonlinear parameter dependencies may be rewritten in our standard linear

block diagram form� for example� we can handle ��� 
which would need ��

repeated�� ��w�����

��w���

� etc� This is illustrated next by an example�

Example ���� Parametric uncertainty and repeated perturbations�

This example illustrates how most forms of parametric uncertainty can be

represented in terms of the ��representation using linear fractional transformations

�LFTs�� Consider the following state space description of a SISO plant�

 x � Apx � Bpu� y � Cx ���	���

Ap �
	
��	 � k� �

	 ��	 � k�



� Bp �
	
��k
k
�	



� C � � � 	 � ���	���

The constant k � � may vary during operation� so the above description generates

a set of possible plants� Assume that k � ��� � ��	� which may be written as

k � ��� � ��	�� j�j � 	 ���	���

Note that the parameter k enters into the plant model in several places� and we will

need to use repeated perturbations in order to rearrange the model to 	t our standard

formulation with the uncertainty represented as a block�diagonal ��matrix�

Let us 	rst consider the input gain uncertainty for state 	� that is� the variations in

bp� � �	�k��k� Even though bp� is a nonlinear function of �� it has a block�diagram

� This is actually a simple model of a chemical reactor �CSTR� where u is the feed �owrate�

x� is the concentration of reactant A� y � x� is the concentration of intermediate product

B and k � q� is the steady�state value of the feed �owrate� Component balances yield

V �cA � qcAf � qcA � k�cAV 	mol A�s


V �cB � �qcB � k�cAV � k�cBV 	mol B�s


where V is the reactor volume� Linearization and introduction of deviation variables�

x� � �cA� x� � �cB� and u � �q� yields� with k� � � k� � � V �  and c�A � c�B � �

�x� � �� � q��x� � �c�Af � �u

�x� � x� � � � q��x� � u

where the superscript � signi�es a steady�state value� The values of q� and c�
Af

depend

on the operating point� and it is given that at steady�state we always have q�c�
Af

� 

�physically� we may have an upstream mixing tank where a �xed amount of A is fed in��

By introducing k � q� we get the model in �������
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representation and may thus be written as a linear fractional transformation �LFT��

We have

bp���� �
	� k

k

�
���� ��	�

��� � ��	�
�

	� ����

	 � ����

���	���

which may be written as a scalar LFT �see �������

bp���� � Fu�N� �� � n�� � n����	� n����
��n�� ���	���

with n�� � 	� n�� � ����� n��n�� � ����� Next consider the pole uncertainty caused

by variations in the A�matrix� which may be written as

Ap �
	
�	�� �

	 �	��



�
	
���	 �

� ���	

	
� �

� �



���	���

For our speci	c example with uncertainty in both B and A� the plant uncertainty

may be represented as shown in Figure ���� where K�s� is a scalar controller�

Consequently� we may pull out the perturbations and collect them in a ��� diagonal

��block with the scalar perturbation � repeated three times�

� �
�
�

�

�
�

���	���

and we may then obtain the interconnection matrix P by rearranging the block

diagram of Figure ���� to 	t Figure ����� It is rather tedious to do this by hand� but

it is relatively straightforward with the appropriate software tools� These issues are

discussed in more detail in the next chapter�

d�K�s� �q
u

����� d� �

�
q����

�

	
	
�	


B

� d� d �

� d � �sI �A���

�q

�q

�
�

	
��	 �

� ��	



�
�

	
� �

� �



�
� � � 	 �

C

�qy

��

Figure ����
 Block diagram of parametric uncertainty

Remark� The above example is included in order to show that quite complex

uncertainty representations can be captured by the general framework of block�

diagonal perturbations� It is not suggested� however� that such a complicated

description should be used in practice for this example� A little more analysis will

show why� The transfer function for this plant is

Gp�s� �
��s � �k	�����k�����

k

�

�s� 	 � k��

���		��
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and we note that it has a RHP�zero for k � ���	�� and that the steady state gain is

zero for k � ���	�� The three plants corresponding to k � ���� ��� and ��� are

G�s� � � �s � ����

�s � 	����
� Gp��s� � � �s� ��	�

�s� 	����
� Gp��s� � � �s� �����

�s� 	����

���			�

From a practical point of view the pole uncertainty therefore seems to be of very

little importance and we may use a simpli�ed uncertainty description with zero

uncertainty only� e�g�
gp�s� � � �s � zp�

�s � 	����
� ���	 � zp � ���� ���		��

In any case� we know that because of the RHP�zero crossing through the origin� the

performance at low frequencies will be very poor for this plant�

��	 Additional exercises

Exercise ��
 Consider a �true� plant

G��s� �

�e����s

��s � 	����	s � 	��

i� Derive and sketch the additive uncertainty weight when the nominal model is

G�s� � ����s� 	�� ii� Derive the corresponding robust stability condition� iii� Apply

this test for the controller K�s� � k�s and 	nd the values of k that yield stability�

Is this condition tight�

Exercise ��� Uncertainty weight for a �rst�order model with delay�

Laughlin and Morari ����� considered the following parametric uncertainty

description

Gp�s� �

kp

�ps � 	
e��ps� kp � �kmin� kmax �� �p � ��min� �max�� �p � ��min� �max�

���		��

where all parameters are assumed positive� They chose the mean parameter values

as ��k� ��� ��� giving the nominal model

G�s� � �G�s�
�

�

�k
��s � 	

e�
��s ���		��

and suggested use of the following multiplicative uncertainty weight

wIL�s� �
kmax

�k

� ��s � 	

�mins � 	
� Ts� 	

�Ts� 	
� 	� T �

�max � �min

�

���		��

a� Show that the resulting stable and minimum phase weight corresponding to the

uncertainty description in ������ is

wIL�s� � �	���s� � 	���s � �������s � 	������s � 	� ���		��
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Note that this weight cannot be compared with ����� or ������ since the nominal

plant is di�erent�

b� Plot the magnitude of wIL as a function of frequency� Find the frequency where

the weight crosses 	 in magnitude� and compare this with 	��max� Comment on your

answer�

c� Find lI�j�� using ����
� and compare with jwILj� Does the weight �������

and the uncertainty model ����� include all possible plants� �Answer� No� not quite

around frequency � � ���

Exercise ���� Consider again the system in Figure ���� What kind of

uncertainty might wu and �u represent�

Exercise ���� Neglected dynamics� Assume we have derived the following

detailed model

Gdetail�s� �

������s � 	�

��s � 	����	s � 	��

���		��

and we want to use the simpli	ed nominal model G�s� � ����s�	� with multiplicative

uncertainty� Plot lI��� and approximate it by a rational transfer function wI�s��

��
 Conclusion

In this chapter we have shown how model uncertainty can be represented in

the frequency domain using complex norm�bounded perturbations� k�k� � 	�

At the end of the chapter we also discussed how to represent parametric

uncertainty using real perturbations�

We showed that the requirement of robust stability for the case of

multiplicative complex uncertainty imposes an upper bound on the allowed

complementary sensitivity� jwIT j 
 	���� Similarly� the inverse multiplicative

uncertainty imposes an upper bound on the sensitivity� jwiISj 
 	���� We also

derived a condition for robust performance with multiplicative uncertainty�

jwPSj� jwIT j 
 	� ���

The approach in this chapter was rather elementary� and to extend the

results to MIMO systems and to more complex uncertainty descriptions we

need to make use of the structured singular value� �� This is the theme of the

next chapter� where we �nd that jwIT j and jwiISj are the structured singular

values for evaluating robust stability for the two sources of uncertainty in

question� whereas jwPSj�jwIT j is the structured singular value for evaluating

robust performance with multiplicative uncertainty�
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ROBUST STABILITY AND

PERFORMANCE ANALYSIS

The objective of this chapter is to present a general method for analyzing robust

stability and performance of MIMO systems with multiple perturbations� Our main

analysis tool will be the structured singular value� �� We also show how the �optimal�

robust controller� in terms of minimizing �� can be designed usingDK�iteration� This

involves solving a sequence of scaled H� problems�

��� General control formulation with

uncertainty

subscript

For useful notation and an introduction to model uncertainty the reader is

referred to Sections ��� and ����

The starting point for our robustness analysis is a representation of the

system in which the uncertain perturbations are collected together in a block�

diagonal matrix of stable perturbations�

� �
�����
��

� � �

�i

� � �
����� 	
���

where each �i may represent a speci�c source of uncertainty� such as input

uncertainty� �I � or parametric uncertainty� �i� where �i is real�

If we also pull out� the controller K� then we may represent the the system

as shown in Figure 
�� where P is the generalized plant� This form is useful

for controller synthesis�

Alternatively� if the controller is given and we want to analyze the uncertain

system� we use the N��structure in Figure 
��� where� as shown in 	�������
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�

�

�

�

�
�

�

y�u�

P
K

zw

vu

Figure ���	 General control con
guration �for controller synthesis�

�

�
� �

�

y�u�

N zw

Figure ���	 N structure for robust performance analysis

N is related to P and K by a lower linear fractional transformation

N � Fl	P�K� � P�� � P��K	I � P��K���P�� 	
���

The uncertain closed�loop transfer function from w to z 	z � F 	��w� is

related to N and � by an upper linear fractional transformation 	LFT� 	see

	����
���

F � Fu	N��� � N�� �N���	I �N������N�� 	
���

If we only need to analyze robust stability of F � then we rearrange the system

�

�

�
M

y�u�

Figure ���	 M�structure for robust stability analysis
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into M��strucure in Figure 
�� where M � N�� is the transfer function from

the output to the input of the perturbations�

In Section ��
�
 we discussed how to �nd P and N for cases without

uncertainty� The procedure with uncertainty is similar and is illustrated by

examples below� see page ���� To illustrate the main idea� consider Figure 
��

where it shown how to pull out the perturbation blocks to form the nominal

system N and the block�diagonal perturbations ��

��� Representing uncertainty

As before� each individual perturbation is normalized�

��	�i	j��� � � ��� j�ij � � 	
���

and since from 	A���� the maximum singular value of a block diagonal matrix

is equal to the largest of the maximum singular values of the individual blocks�

it then follows that
��	�	j��� � � �� � k�k� � � 	
���

Note that � has structure� and therefore in the robustness analysis we do not

want to allow all � such that 	
��� is satis�ed� but only the subset which has

the structure in 	
��� should be considered� In some cases the blocks in � may

be repeated� that is� we have additional structure� For example� as shown in

Section ������ repetition is often needed to handle parametric uncertainty�

Remark� The assumption about  being stable may be relaxed� but then the

resulting robust stability and performance conditions will be harder to state and

to prove� Furthermore� if we use the right form for the uncertainty and allow for

multiple perturbations� then we can always generate the desired class of plants with

stable perturbations� so assuming  stable is not really a restriction�

����� Di�erences between SISO and MIMO systems

The main di�erence between SISO and MIMO systems is the concept of

directions which is not relevant in the former� As a consequence MIMO

systems may experience much larger sensitivity to uncertainty than SISO

systems� The following example illustrates that for MIMO systems it is

sometimes critical to represent the coupling between uncertainty in di�erent

transfer function elements�

Example ��� Coupling between transfer function elements� Consider a

distillation process where at steady�state

G �
�
���� �����

����� ������
�

� � � RGA�G� �
�
���� �����

����� ����
�
�����

��� MULTIVARIABLE FEEDBACK CONTROL

��

��

��

�

��

�

�

�

w

�
z

�

�a� Original system with multiple perturbations
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�b� Pulling out the perturbations

Figure ���	 Rearranging an uncertain system into the N�structure
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From the large RGA�elements we know that G becomes singular for small relative

changes in the individual elements� For example� from ������ we know that perturbing

the �� ��element from ����� to ����� makes G singular� Since variations in the

steady�state gains of ���� or more may occur during operation of the distillation

process� this seems to indicate that independent control of both outputs is impossible�

However� this conclusion is incorrect since� for a distillation process� G never

becomes singular� The reason is that the transfer function elements are coupled

due to underlying physical constraints �e�g�� the material balance�� Speci	cally� for

the distillation process a more reasonable description of the gain uncertainty is

�Skogestad et al�� 
����
Gp � G� w

�
� ��

�� �
�

� j�j � � �����

and for the numerical data above detGp � detG irrespective of �� so Gp is never

singular for this uncertainty� �Note that detGp � detG is not generally true for the

uncertainty description given in �������

Exercise ��� The uncertain plant in ����� may be represented in the additive

uncertainty form Gp � G�W�AW� where A � � is a single scalar perturbation�

Find W� and W��

����� Parametric uncertainty

The representation of parametric uncertainty� as discussed in Chapter � for

SISO systems� carries straight over to MIMO systems� However� the inclusion

of parametric uncertainty may be more signi�cant for MIMO plants because it

o�ers a simple method of representing the coupling between uncertain transfer

function elements� For example� the simple uncertainty description used in

	
��� originated from a parametric uncertainty description of the distillation

process�

����� Unstructured uncertainty

Unstructured perturbations are often used to get a simple uncertainty model�

We here de�ne unstructured uncertainty as the use of a full� complex

perturbation matrix �� usually with dimensions compatible with those of the

plant� where at each frequency any �	j�� satisfying ��	�	j��� � � is allowed�

Six common forms of unstructured uncertainty are shown in Figure 
���

In Figure 
�� 	a�� 	b� and 	c�� are shown three feedforward forms� additive

uncertainty� multiplicative input uncertainty and multiplicative output

uncertainty�

�A � Gp � G �EA� Ea � wA�a 	
�
�

�I � Gp � G	I �EI�� EI � wI�I 	
���

�O � Gp � 	I �EO�G� EO � wO�O 	
����
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Figure ���	 �a� Additive uncertainty� �b� Multiplicative input uncertainty� �c�

Multiplicative output uncertainty� �d� Inverse additive uncertainty� �e� Inverse

multiplicative input uncertainty� �f� Inverse multiplicative output uncertainty�

In Figure 
�� 	d�� 	e� and 	f�� are shown three feedback or inverse forms�

inverse additive uncertainty� inverse multiplicative input uncertainty and

inverse multiplicative output uncertainty�

�iA � Gp � G	I �EiAG���� EiA � wiA�iA 	
����

�iI � Gp � G	I �EiI �
��� EiI � wiI�iI 	
����

�iO � Gp � 	I �EiO���G� EiO � wiO�iO 	
����

The negative sign in front of the E�s does not really matter here since we will

assume that � can have any sign� � denotes the normalized perturbation and

E the actual� perturbation� We have here used scalar weights w� so E � w��

but sometimes one may want to use matrix weights� E � W��W� where W�

and W� are given transfer function matrices�

Another common form of unstructured uncertainty is coprime factor

uncertainty discussed later in Section 
�����

Remark� In practice� one can have several perturbations which themselves are

unstructured� For example� we may have I at the input and O at the output�
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which may be combined into a larger perturbation�  � diagfI �Og� However�

this  is a block�diagonal matrix and is therefore no longer unstructured�

Lumping uncertainty into a single perturbation

For SISO systems we usually lump multiple sources of uncertainty into a single

complex perturbation� often in multiplicative form� This may also be done for

MIMO systems� but then it makes a di�erence whether the perturbation is at

the input or the output�

Since output uncertainty is usually less restrictive than input uncertainty

in terms of control performance 	see Section �������� we usually �rst attempt

to lump the uncertainty at the output� For example� a set of plants � may be

represented by multiplicative output uncertainty with a scalar weight wO	s�

using

Gp � 	I � wO�O�G� k�Ok� � � 	
����

where� similar to 	������

lO	�� � max

GP��
��

	
	Gp �G�G��	j���



� jwO	j��j � lO	�� �� 	
����

and we can use the pseudo�inverse if G is singular� If the resulting uncertainty

weight is reasonable 	i�e� it must at least be less than � in the frequency

range where we want control�� and the subsequent analysis shows that robust

stability and performance may be achieved� then this lumping of uncertainty

at the output is �ne� If this is not the case� then one may try to lump the

uncertainty at the input instead� using multiplicative input uncertainty with

a scalar weight�

Gp � G	I � wI�I�� k�Ik� � � 	
����

where� similar to 	������

lI	�� � max

GP��
��

	
G��	Gp �G�	j���



� jwI 	j��j � lI	�� �� 	
����

However� in many cases this approach of lumping uncertainty either at the

output or the input does not work well� This is because one cannot in general

shift a perturbation from one location in the plant 	say at the input� to

another location 	say the output� without introducing candidate plants which

were not present in the original set� In particular� one should be careful when

the plant is ill�conditioned� This is discussed next�

Moving uncertainty from the input to the output

For a scalar plant� we have Gp � G	� � wI�I� � 	� � wO�O�G and we

may simply move� the multiplicative uncertainty from the input to the
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output without changing the value of the weight� i�e�� wI � wO � However�

for multivariable plants we usually need to multiply by the condition number

�	G� as is shown next�

As an example� suppose the true uncertainty is represented as input

multiplicative uncertainty on the form

Gp � G	I �EI � 	
��
�

Then from 	
���� the magnitude of multiplicative input uncertainty is

lI	�� � max
EI

��	G��	Gp �G�� � max
EI

��	EI � 	
����

On the other hand� if we want to represent 	
��
� as multiplicative output

uncertainty� then from 	
����

lO	�� � max
EI

��		Gp �G�G��� � max
EI

��	GEIG
��� 	
����

which is much larger than lI	�� if the condition number of the plant is

large� To see this� write EI � wI�I where we allow any �I 	j�� satisfying

��	�I 	j��� � ����� Then at a given frequency

lO	�� � jwI jmax
�I

��	G�IG
��� � jwI 	j��j �	G	j��� 	
����

Proof Write at each frequency G � U�V H and G�� � eUe�eV H � Select I � V eUH

�which is a unitary matrix with all singular values equal to ��� Then ���GIG
��� �

���U�e�V H� � ���� gSigma� � ���G����G��� � ��G�� �

Example ��� Assume the relative input uncertainty is ���� that is� wI � ����

and the condition number of the plants is ������ Then we must select l� � wO �

��� � ����� � ���� in order to represent this as multiplicative output uncertainty

�this is larger than 
 and therefore not useful for controller design��

Also for diagonal perturbations 	EI diagonal� we may have a similar

situation� For example� if the plant has large RGA�elements then the elements

in GEIG
�� will be much larger than those of EI � see 	A���� making it

impractical to move the uncertainty from the input to the output�

Example ��� Let � be the set of plants generated by the additive uncertainty in

����� with w � �� �corresponding to about ��� uncertainty in each element�� Then

from ����� one plant G� in this set �corresponding to � � �� has

G� � G�
�
�� ���

��� ��
�

������

for which we have lI � ���G
���G� �G�� � ����� Therefore� to represent G� in terms

of input uncertainty we would need a relative uncertainty of more than ������ This
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would imply that the plant could become singular at steady�state and thus impossible

to control� which we know is incorrect� Fortunately� we can instead represent this

additive uncertainty as multiplicative output uncertainty �which is also generally

preferable for a subsequent controller design� with lO � ����G� � G�G��� � �����

Therefore so output uncertainty works well for this particular example�

Conclusion� Ideally� we would like to lump several sources of uncertainty

into a single perturbation to get a simple uncertainty description� Often an

unstructured multiplicative output perturbations is used� However� from the

above discussion we have learnt that we should be careful about doing this� at

least for plants with a large condition number� In such cases we may have to

represent the uncertainty as it occurs physically 	at the input� in the elements�

etc�� thereby generating several perturbations�

For uncertainty associated with unstable plant poles� we should use one of

the inverse forms in Figure 
���

�

�
� �

F�� F��

F�� F��

�

yu

Figure ���	 Uncertain plant� y � Gpu� represented by LFT� see �������

Exercise ��� A fairly general way of representing an uncertain plant Gp is in

terms of a linear fractional transformation �LFT� of  as shown in Figure ����

Here

Gp � Fu�
h
F�� F��

F�� F��
i
�� � F�� � F���I � F���
��F�� ������

where G � F�� is the nominal plant model� Obtain F for each of the six

uncertainty forms in ���������
�� using E � W�W� �Hint for the inverse forms

�I �W�W��
�� � I �W��I �W�W��
��W�� see ������������

Exercise ��� Find F in Figure ��� for the uncertain plant in Figure �����

����� Diagonal uncertainty

By diagonal uncertainty� we mean that the perturbation is a complex

diagonal matrix

�	s� � diagf�i	s�g� j�i	j��j � ������i 	
����
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	usually of the same size as the plant�� For example� this is the case if

� is diagonal in any of the six uncertainty forms in Figure 
��� Diagonal

uncertainty arises from a consideration of uncertainty or neglected dynamics in

the individual input channels 	actuators� or in the individual output channels

	sensors�� This type of diagonal uncertainty is always present� and since it has

a scalar origin it may be represented using the methods presented in Chapter

�� To make this clearer� let us consider uncertainty in the input channels�

With each input ui there is associated a separate physical system 	ampli�er�

signal converter� actuator� valve� etc�� which based on the controller output

signal� ui� generates a physical plant input mi

mi � hi	s�ui 	
����

The scalar transfer function hi	s� is often absorbed into the plant model G	s��

but for representing the uncertainty it is important to notice that it originates

at the input� We can represent this actuator uncertainty as multiplicative

	relative� uncertainty given by

hpi	s� � hi	s�	� � wIi	s��i	s��� j�i	j��j � ���� 	
����

which after combining all input channels results in diagonal input uncertainty

for the plant

Gp	s� � G	� �WI�I�� �I � diagf�ig�WI � diagfwIig 	
����

Normally we would represent the uncertainty in each input or output channel

using a simple weight in the form given in 	������ namely

w	s� �

�s � r�

	��r��s � �

	
��
�

where r� is the relative uncertainty at steady�state� ��� is 	approximately�

the frequency where the relative uncertainty reaches ����� and r� is the

magnitude of the weight at higher frequencies� Typically� the uncertainty jwj�

associated with each input� is at least ��� at steady�state 	r� � ����� and it

increases at higher frequencies to account for neglected or uncertain dynamics

	typically� r� � ���

Remark � The diagonal uncertainty in ������ originates from independent scalar

uncertainty in each input channel� If we choose to represent this as unstructured

input uncertainty �I is a full matrix� then we must realize that this will introduce

non�physical couplings at the input to the plant� resulting in a set of plants which is

too large� and the resulting robustness analysis may be conservative �meaning that

we may incorrectly conclude that the system may not meet its speci
cations��

Remark � The claim is often made that one can easily reduce static �gain� input

uncertainty to signi
cantly less than ���� but this is probably not true in most
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cases� Consider again ������� A commonly suggested method to reduce static gain

uncertainty is to measure the actual input �mi� and employ local feedback �cascade

control� to readjust ui� As a simple example� consider a bathroom shower� in which

the input variables are the �ows of hot and cold water� One can then imagine

measuring these �ows and using cascade control so that each �ow can be adjusted

more accurately� However� even in this case there will be uncertainty related to the

accuracy of each measurement� Note that it is not the absolute measurement error

that yields problems� but rather the error in the sensitivity of the measurement

with respect to changes �i�e�� the �gain� of the sensor�� For example� assume that

the nominal �ow in our shower is � l�min and we want to increase it to ��� l�min�

that is� in terms of deviation variables we want u � ��� �l�min�� Suppose the vendor

guarantees that the measurement error is less than ��� But� even with this small

absolute error� the actual �ow rate may have increased from ���� l�min �measured

value of � l�min is �� too high� to ���� l�min �measured value of ��� l�min is ��

too low�� corresponding to a change u� � ���� �l�min�� and an input gain uncertainty

of ����

In conclusion� diagonal input uncertainty� as given in 	
����� should always be

considered because�

�� It is always present and a system which is sensitive to this uncertainty will

not work in practice�

�� It often restricts achievable performance with multivariable control�

��� Obtaining P � N and M

We here illustrate� by way of an example� how to obtain the interconnection

matrices P � N and M in a given situation�

ddd qq

�

� �����

��

��

�
�

�

�

WP

z

w

G

u�

�I

y�

WI

K uv

�
Figure ��		 System with multiplicative input uncertainty and performance

measured at the output

Example ��� System with input uncertainty� Consider a feedback system

with multiplicative input uncertainty I as shown in Figure ���� Here WI is a
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normalization weight for the uncertainty and WP is a performance weight� We want

to derive the generalized plant P in Figure ��
 which has inputs � u� w u �T and

outputs � y� z v �T � By writing down the equations �e�g� see Example ��
�� or

simply inspecting Figure ��� �remember to break the loop before and after K� we get

P �
�
� � WI

WPG WP WPG

�G �I �G
�

������

It is recommended that the reader carefully derives P �as instructed in Exercise �����

Note that the transfer function from u� to y� �upper left element in P � is � because

u� has no direct e�ect on y� �except through K�� Next� we want to derive the matrix

N corresponding to Figure ���
� First� partition P to be compatible with K� i�e�

P�� �
�
� �

WPG WP

�
� P�� �

�
WI

WPG
�

������

P�� � ��G �I � � P�� � �G ������

and then 	nd N � Fl�P�K� using ������ We get �see Exercise ����

N �
�
�WIKG�I �KG��� �WIK�I �GK���

WPG�I �KG��� WP �I �GK���

�

������

Alternatively� we can derive N directly from Figure ��� by evaluating the closed�loop

transfer function from inputs � u� w �T to outputs � y� z �T �without breaking the

loop before and after K�� For example� to derive N��� which is the transfer function

from w to y�� we start at the output �y�� and move backwards to the input �w�

using the MIMO Rule in Section ��� �we 	rst meet WI � then �K and we then exit

the feedback loop and get the term �I �GK�����

The upper left block� N��� in ������ is the transfer function from u� to y�� This

is the transfer function M needed in Figure ��� for evaluating robust stability� Thus�

we have M � �WIKG�I �KG��� � �WITI �

Exercise ��� Show in detail how P in ������ is derived�

Exercise ��� For the system in Figure ��� we see easily that the uncertain transfer

function from w to z is F �WP �I �G�I �WII�K�
��� Show that this is identical

to Fu�N�� evaluated using ������ where from ������ we have N�� � �WITI �

N�� � �WIKS� N�� �WPSG and N�� �WPS�

Exercise ��� Derive N in ������ from P in ������ using the lower LFT in ������

You will note that the algebra is quite tedious� and that it is much simpler to derive

N directly from the block diagram as described above�

Remark� Of course� deriving N from P is straightforward using available software�

For example� in the MATLAB ��toolbox we can evaluate N � Fl�P�K� using the

command N�starp�P�K� � and with a speci
c  the perturbed transfer function

Fu�N�� from w to z is obtained with the command starp�delta�N��
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Exercise ��	 Derive P and N for the case when the multiplicative uncertainty is

at the output rather than the input�

Exercise ��� Find P for the uncertain system in Figure ��
��

Exercise ��
 Find P for the uncertain plant Gp in ������ when w � r and

z � y � r�

Exercise ���� Find the interconnection matrix N for the uncertain system in

Figure ��
�� What is M�

Exercise ���� Find the transfer function M � N�� for studying robust stability

for the uncertain plant Gp in �������

c c cq qK G

W�I �I W�I W�O �O W�O

� � � �

� � �

�

� � �

�

��

�

�

�

�

Figure ���	 System with input and output multiplicative uncertainty

Exercise ���� M
structure for combined input and output uncertain


ties� Consider the block diagram in Figure ��� where we have both input and output

multiplicative uncertainty blocks� The set of possible plants is given by

Gp � �I �W�OOW�O�G�I �W�IIW�I � ������

where kIk� � � and kOk� � �� Collect the perturbations into  �

diagfI �Og and rearrange Figure ��� into the M�structure in Figure ��� Show

that

M �
�
W�I �

� W�O

��
�TI �KS

SG �T
��
W�I �

� W�O

�

������

��� De�nition of robust stability and

performance

We have discussed how to represent an uncertain set of plants in terms of the

N��structure in Figure 
��� The next step analysis where we check whether

we have stability and acceptable performance for all plants in the set�
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�� Robust stability �RS� analysis� with a given controller K we determine

whether the system remains stable for all plants in the uncertainty set�

�� Robust performance �RP� analysis� if RS is satis�ed� we determine how

large� the transfer function from exogenous inputs w to outputs z may

be for all plants in the uncertainty set�

Before proceeding we need to de�ne more performance more precicely�

In Figure 
��� w represents the exogenous inputs 	normalized disturbances

and references�� and z the exogenous outputs 	normalized errors�� We have

z � F 	��w where from 	
���

F
�

� Fu	N��� � N�� �N���	I �N������N�� 	
����

We here use the H� norm to de�ne performance and require for RP that

kF 	��k� � � for all allowed ��s� A typical choice is F � wPSp� the

weighted sensitivity function� where wP is the performance weight 	capital P

for performance� and Sp represents the set of perturbed sensitivity functions

	lower�case p for perturbed��

In terms of the N��structure in Figure 
�� our requirements for stability

and performance can then be summarized as follows

NS

def� N is internally stable 	
����

NP

def� kN��k� 	 �� and NS 	
����

RS

def� F � Fu	N��� is stable ��� k�k� � �� and NS 	
��
�

RP

def� kFk� 	 �� ��� k�k� � �� and NS 	
����

Remark � Important� As a prerequisite for nominal performance �NP�� robust

stability �RS� and robust performance �RP�� we must 
rst satisfy nominal stability

�NS�� The reason is that our frequency�by�frequency conditions can be satis
ed

also for unstable systems�

Remark � The de
nitions of RS and RP are useful only if we can test them in

an e cient manner� that is� without having to search through the in
nite set of

allowable perturbations � We will show how this can be done by introducing

the structured singular value� �� as our analysis tool� At the end of the chapter

we also discuss how to synthesize controllers such that we have �optimal robust

performance� by minimizing � over the set of stabilizing controllers�

Remark � Convention for inequalities� In this book we use the convention

that the perturbations are bounded to be less than or equal to one� This results

in a stability condition with a strict inequality� for example� RS �kk� � � if

kMk� � �� �We could alternatively have bounded the uncertainty with a strict

inequality� yielding the equivalent condition RS �kk� � � if kMk� � ���
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Remark � Allowed perturbations� For simplicity below we will use the

shorthand notation

� and max
�

������

to mean �for all !s in the set of allowed perturbations�� and �maximizing over all

!s in the set of allowed perturbations�� By allowed perturbations we mean that 

has H� norm less than �� kk� � �� and that  has a speci
ed block�diagonal

structure where certain blocks may be restricted to be real� To be mathematically

exact� we should replace  in ������ by  � B�� where

B� � f �� 	 kk� � �g

is the set of unity norm�bounded perturbations with a given structure �� The

allowed structure should also be de
ned� for example by

� � fdiag ���Ir�� � � � � �SIrS ��� � � � �F � 	 �i � R�j � Cmj�mj g

where in this case S denotes the number of real scalars �some of which may

be repeated�� and F the number of complex blocks� This gets rather involved�

Fortunately� this amount of detail is rarely required as it is usually clear what we

mean by �for all allowed perturbations� or � ���

��	 Robust stability of the M�
structure

Consider the uncertain N��system in Figure 
�� for which the transfer

function from w to z is� as in 	
����� given by

Fu	N��� � N�� �N���	I �N������N�� 	
����

Suppose that the system is nominally stable 	with � � ��� that is� N is stable

	which means that the whole of N � and not only N�� must be stable �� We

also assume that � is stable� We then see directly from 	
���� that the only

possible source of instability is the feedback term 	I �N������� Thus� when

we have nominal stability 	NS�� the stability of the system in Figure 
�� is

equivalent to the stability of the M��structure in Figure 
�� where M � N���

We thus need to derive conditions for checking the stability of the M��

structure� The next theorem follows from the generalized Nyquist Theorem

����� It applies to H� norm�bounded ��perturbations� but as can be seen

from the statement it also applies to any other convex set of perturbations

	e�g�� sets with other structures or sets bounded by di�erent norms��

Theorem ��� Determinant stability condition �Real or complex

perturbations� Assume that the nominal system M	s� and the

perturbations �	s� are stable� Consider the convex set of perturbations ��

such that if �� is an allowed perturbation then so is c�� where c is any real
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scalar such that jcj � �� Then the M��system in Figure ��� is stable for all

allowed perturbations �we have RS� if and only if

Nyquist plot of det 	I �M�	s�� does not encircle the origin� �� 	
����

� det 	I �M�	j��� �� �� ����� 	
����

� 
i	M�� �� �� �i������ 	
����

Proof Condition ������ is simply the generalized Nyquist Theorem �page ����

applied to a positive feedback system with a stable loop transfer function M�

������ � ������	 This is obvious since by �encirclement of the origin� we also

include the origin itself�

������ � ������ is proved by proving not������ � not������	 First note that with

 � �� det�I �M� � � at all frequencies� Assume there exists a perturbation

� such that the image of det�I �M��s�� encircles the origin as s traverses the

Nyquist D�contour� Because the Nyquist contour and its map is closed� there then

exists another perturbation in the set� �� � �� with � � ��� ��� and an 	� such that

det�I �M���j	��� � ��

������ is equivalent to ������ since det�I � A� �
Q

i

i�I � A� and 
i�I � A� �

�� 
i�A� �see Appendix A������ �

The following is a special case of Theorem 
�� which applies to complex

perturbations�

Theorem ��� Spectral radius condition for complex perturbations�

Assume that the nominal system M	s� and the perturbations �	s� are

stable� Consider the class of perturbations� �� such that if �� is an allowed

perturbation then so is c�� where c is any complex scalar such that jcj � ��

Then the M�� system in Figure ��� is stable for all allowed perturbations �we

have RS� if and only if

�	M�	j��� 	 �� ����� 	
����

or equivalently

RS � max
�

�	M�	j��� 	 �� �� 	
����

Proof ������ � ������ �	 RS� is �obvious�	 It follows from the de
nition of the

spectral radius �� and applies also to real !s�

������ � ������ is proved by proving not������ � not������	 Assume there exists

a perturbation � such that ��M�� � � at some frequency� Then j
i�M��j � � for

some eigenvalue i� and there always exists another perturbation in the set� �� � c�

where c is a complex scalar with jcj � �� such that 
i�M��� � �� �real and positive�

and therefore det�I �M��� �
Q

i

i�I �M��� �

Q
i
��� 
i�M
���� � �� Finally�

the equivalence between ������ and ������ is simply the de
nition of max�� �

Remark � The proof of ������ relies on adjusting the phase of 
i�Mc�� using the

complex scalar c and thus requires the perturbation to be complex�
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Remark � In words� Theorem ��� tells us that we have stability if and only if

the spectral radius of M is less than � at all frequencies and for all allowed

perturbations� � The main problem here is of course that we have to test the

condition for an in
nite set of !s� and this is di cult to check numerically�

Remark � Theorem ���� which applies to both real and complex perturbations�

forms the basis for the general de
nition of the structured singular value in �������

��� RS for complex unstructured uncertainty

In this section� we consider the special case where �	s� is allowed to be any

	full� complex transfer function matrix satisfying k�k� � �� This is often

referred to as unstructured uncertainty or as full�block complex perturbation

uncertainty�

Lemma ��� Let � be the set of all complex matrices such that ��	�� � ��

Then the following holds

max
�

�	M�� � max
�

��	M�� � max
�

��	����	M� � ��	M� 	
����

Proof In general� the spectral radius ��� provides a lower bound on the spectral

norm ���� �see �A������� and we have

max
�

��M� � max
�

���M� � max
�

�������M� � ���M� ������

where the second inequality in ������ follows since ���AB� � ���A����B�� Now� we need

to show that we actually have equality� This will be the case if for anyM there exists

an allowed � such that ��M�� � ���M�� Such a � does indeed exist if we allow

� to be a full matrix such that all directions in � are allowed	 Select � � V UH

where U and V are matrices of the left and right singular vectors of M � U�V H �

Then ����� � � and ��M�� � ��U�V HV UH� � ��U�UH� � ���� � ���M�� The

second to last equality follows since UH � U�� and the eigenvalues are invariant

under similarity transformations� �

that is�

Lemma 
�� together with Theorem 
�� directly yields the following theorem�

Theorem ��� RS for unstructured ��full� perturbations� Assume

that the nominal system M	s� is stable �NS� and that the perturbations �	s�

are stable� Then the M��system in Figure ��� is stable for all perturbations

� satisfying k�k� � � �i�e� we have RS� if and only if

��	M	j��� 	 � �w � kMk� 	 � 	
����
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Remark � Condition ������ may be rewritten as

RS	 ���M�j	�� ����j	�� � �� �	� �� ������

The su ciency of ������ ��� also follows directly from the small gain theorem by

choosing L �M� The small gain theorem applies to any operator norm satisfying

kABk � kAk 
 kBk�

Remark � An important reason for using the H� norm to describe model

uncertainty� is that the stability condition in ������ is both necessary and su cient�

In contrast� use of the H� norm yields neither necessary nor su cient conditions for

stability� We do not get su ciency since the H� norm does not in general satisfy

kABk � kAk 
 kBk�

����� Smallest destabilizing perturbation

Given kMk� � � where ��	M	j���� � �� we want to �nd the smallest

destabilizing perturbation ��� which satis�es k��k� � ���� To generate

such a perturbation follow the proof of Lemma 
��� At frequency �� perform

an SVD of M	j��� � U�V H � One destabilizing perturbation is then �� �

�
�
V UH � which yields M	j����
� � �
�
U�UH which� since the eigenvalues are

independent of similarity transformations� has the same eigenvalues as the

matrix �
�

�� which has one eigenvalue equal to �� i�e�� 
�	M	j����
�� � ��

Note that the destabilizing perturbation is not unique� For example� one may

instead select �� � �
�
v�	u��
H where v� and u� are the �st columns of V and

U � respectively�

Example ��� Consider M� �
h
� �

� �
i

for which ���M�� � � � �� An SVD of M�

yields U � I and V �
h
� ��

� �
i

and we 	nd the smallest destabilizing perturbation

� � �
�
v��u��
H � �
�

h
� �

� �
i

which has ����� � ���� Note that ��M�� � �� but

M�
� �
h
� �

� �
i

so we have as expected ��M�
�� � ��

����� Application of the unstructured RS	condition

We will now present necessary and su�cient conditions for robust stability

	RS� for each of the six single unstructured perturbations in Figure 
��� with

E � W��W�� k�k� � � 	
����

To derive the matrix M we simply isolate� the perturbation� and determine

the transfer function matrix

M � W�M�W� 	
����
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from the output to the input of the perturbation� where M� for each of the

six cases becomes 	disregarding some negative signs which do not a�ect the

subsequent robustness condition� is given by

Gp � G �EA � M� � K	I �GK��� � KS 	
����

Gp � G	I �EI � � M� � K	I �GK���G � TI 	
����

Gp � 	I �EO�G � M� � GK	I �GK��� � T 	
����

Gp � G	I �EiAG��� � M� � 	I �GK���G � SG 	
����

Gp � G	I �EiI �
�� � M� � 	I �KG��� � SI 	
����

Gp � 	I �EiO���G � M� � 	I �GK��� � S 	
��
�

For example� 	
���� and 	
���� follow from the diagonal elements in the M �

matrix in 	
����� and the others are derived in a similar fashion� Note that

the sign of M� does not matter as it may be absorbed into �� Theorem 
��

then yields

RS � kW�M�W�	j��k� 	 ��� w 	
����

For instance� from 	
���� and 	
���� we get for multiplicative input uncertainty

with a scalar weight�

RS �Gp � G	I � wI�I�� k�Ik� � � � kwITIk� 	 � 	
����

Note that the SISO�condition 	����� follows as a special case of 	
����

Similarly� 	����� follows as a special case of the inverse multiplicative output

uncertainty in 	
��
��

RS �Gp � 	I � wiO�iO���G� k�iOk� � � � kwiOSk� 	 � 	
����

In general� the unstructured uncertainty descriptions in terms of a single

perturbation are not tight� 	in the sense that at each frequency all complex

perturbations satisfying ��	�	j��� � � may not be possible in practice��

Thus� the above RS�conditions are often conservative� In order to get tighter

conditions we must use a tighter uncertainty description in terms of a block�

diagonal ��

����� RS for coprime factor uncertainty

Robust stability bounds in terms of the H� norm 	RS � kMk� 	 ��

are in general only tight when there is a single full perturbation block� An

exception� to this is when the uncertainty blocks enter or exit from the same

location in the block diagram� because they can then be stacked on top of

each other or side�by�side� in an overall � which is then a full matrix� If we
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���N �M

M��
lNl

�K

Figure ���	 Coprime uncertainty�

norm�bound the combined 	stacked� uncertainty� we then get a tight condition

for RS in terms of kMk��

One important uncertainty description that falls into this category is the

coprime uncertainty description shown in Figure 
��� for which the set of

plants is
Gp � 	Ml � �M ���	Nl � �N �� k � �N �M  k� � � 	
����

where G � M��
l Nl is a left coprime factorization of the nominal plant� see

	������ This uncertainty description is surprisingly general� it allows both zeros

and poles to cross into the right�half plane� and has proved to be very useful

in applications 	McFarlane and Glover� ������ Since we have no weights on

the perturbations� it is reasonable to use a normalized coprime factorization

of the nominal plant� see 	������ Also note that we choose not to normalize the

perturbations to be less than � in this case� This is because this uncertainty

description is most often used in a controller design procedure where the

objective is to maximize the magnitude of the uncertainty 	�� such that RS is

maintained�

In any case� to test for RS we can rearrange the block diagram to match

the M��structure in Figure 
�� with

� � � �N �M  � M � �
�
K

I
�

	I �GK���M��
l 	
����

We then get from Theorem 
��

RS �k�N �M k� � � � kMk� 	 ��� 	
����

The above robust stability result is central to the H� loop�shaping design

procedure discussed in Chapter ��
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Remark� In ������ we bound the combined �stacked� uncertainty� k � N M � k� �

�� which is not quite the same as bounding the individual blocks� kNk� � � and

kMk� � �� However� from �A���� we see that these two approaches di"er at most

by a factor of
p
�� so it is not an important issue from a practical point of view�

Exercise ���� Consider combined multiplicative and inverse multiplicative

uncertainty at the output� Gp � �I�iOWiO�
���I�OWO�G� where we choose to

norm�bound the combined uncertainty� k � iO O � k� � �� Make a block diagram

of the uncertain plant� and derive a necessary and su�cient condition for robust

stability of the closed�loop system�

��� RS with structured uncertainty

Motivation

� �

���

�

D D��

DD�� M

��
��

�
�

�

SAME UNCERTAINTY

NEW M � DMD��

Figure ���	 Use of block�diagonal scalings� D � D�

Consider now the presence of structured uncertainty� where � � diagf�ig is

block�diagonal� To test for robust stability we rearrange the system into the

M��structure and we have from 	
����

RS if ��	M	j��� 	 ���� 	
����

We have here written if� rather than if and only if� since this condition is

only su�cient for RS when � has no structure� 	full�block uncertainty�� The

question is whether we can take advantage of the fact that � � diagf�ig is

structured to obtain an RS�condition which is tighter than 	
����� One idea is

to make use of the fact that stability must be independent of scaling� To this
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e�ect� introduce the block�diagonal scaling matrix

D � diagfdiIig 	
����

where di is a scalar and Ii is an identity matrix of the same dimension as the

i�th perturbation block� �i� Now rescale the inputs and outputs to M and �

by inserting the matrices D and D�� on both sides as shown in Figure 
����

This clearly has no e�ect on stability� Next� note that with the chosen form

for the scalings we have for each perturbation block �i � di�id
��
i � that is�

we have � � D�D��� This means that 	
���� must also apply if we replace

M by DMD�� 	see Figure 
����� and we have

RS if ��	DMD��� 	 ���� 	
����

This applies for any D in 	
����� and most improved� 	least conservative�

RS�condition is obtained by minimizing at each frequency the scaled singular

value� and we have

RS if min

D����D
��	D	��M	j��D	����� 	 ���� 	
��
�

where D is the set of block�diagonal matrices whose structure is compatible

to that of �� i�e� �D � D�� We will return with more examples of this

compatibility later� Note that when � is a full matrix� we must select D � dI

and we have ��	DMD��� � ��	M�� and so as expected 	
��
� is identical to

	
����� However� when � has structure� we get more degrees of freedom in D�

and ��	DMD��� may be signi�cantly smaller than ��	M��

Remark � Historically� the RS�condition in ������ directly motivated the

introduction of the structured singular value� ��M�� discussed in detail in the next

section� As one might guess� we have that ��M� � minD ���DMD���� In fact� for

block�diagonal complex perturbations we generally have that ��M� is very close to

minD ���DMD����

Remark � Other norms� Condition ������ is essentially a scaled version of the

small gain theorem� Thus� a similar condition applies when we use other matrix

norms� The M�structure in Figure ��� is stable for all block�diagonal !s which

satisfy k�j	�k � �� �w if
min

D����D
kD�	�M�j	�D�	���k � �� �	 ������

whereD as before is compatible with the block�structure of � Anymatrix normmay

be used# for example� the Frobenius norm� kMkF � or any induced matrix norm such

as kMki� �maximum column sum�� kMki� �maximum row sum�� or kMki� � ���M��

which is the one we will use� Although in some cases it may be convenient to use

other norms� we usually prefer �� because for this norm we get a necessary and

su cient RS�condition�
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��� The structured singular value and RS

The structured singular value 	denoted Mu� mu� SSV or � is a function which

provides a generalization of the singular value� ��� and the spectral radius� ��

We will use  to get necessary and su�cient conditions for robust stability

and also for robust performance� The name structured singular value� is

used because  generalizes the singular value RS�condition� ��	M� � ���� in

	
����� to the case when � has structure 	and also to cases where parts of �

are real��

How is  de�ned! Consider stability of the M��structure in Figure 
�� for

the case where � is a set of norm�bounded block�diagonal perturbations� From

the determinant stability condition in 	
���� which applies to both complex

and real perturbations we get

RS � det	I �M�	j��� �� �� ������ ��	�	j��� � � �� 	
����

A problem with 	
���� is that it is only a yes"no� condition� To �nd the

factor km which the system is robustly stable� we scale the uncertainty � by

km and look for the smallest km which makes the matrix I�kmM� singular�

i�e�

det	I � kmM�� � � 	
����

and the structured singular value� � is simply de�ned as ��km�

De�nition ��� Structured Singular Value� Let M be a given complex

matrix and let � � diagf�ig denote a set of complex matrices with ��	�� � �

and with a given block�diagonal structure �in which some of the blocks may be

repeated and some may be restricted to be real�� The real non�negative function

	M�� called the structured singular value� is de�ned by

	M�
�

�

�

minfkmj det	I � kmM�� � � for structured �� ��	�� � �g 	
����

If no such structured � exists then 	M� � ��

It is important to note that the value of 	M� depends also on the structure

of �� This is sometimes shown explicitly by using the notation �	M�� A

value of  � � means that there exists a perturbation with ��	�� � � which

is just large enough to make I �M� singular� A larger value of  is bad�

as it means that a smaller perturbation makes I �M� singular� whereas a

smaller value of  is good��

Combining 	
���� with the de�nition of  yields a necessary and su�cient

condition for robust stability�

Theorem ��� RS for block�diagonal perturbations �real or com�

plex� Assume that the nominal system M and the perturbations � are
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stable� Then the M��system in Figure ��� is stable for all allowed perturba�

tions with ��	�� � ����� if and only if

	M	j��� 	 �� �� 	
����

Proof ��M� � � 	 km � �� so if ��M� � � at all frequencies the required

perturbation  to make det�I � M� � � is larger than �� and the system is

stable� On the other hand� ��M� � �	 km � �� so if ��M� � � at some frequency

there does exist a perturbation with ���� � � such that det�I �M� � � at this

frequency� and the system is unstable� �

Condition 	
���� for robust stability may be rewritten as

RS � 	M	j��� ��	�	j��� 	 �� �� 	
����

which may be interpreted as a generalized small gain theorem� that also

takes into account the structure of ��

One may argue whether Theorem 
�� is really a theorem� or a restatement

of the de�nition of � In either case� we see from 	
���� that it is trivial to

check for robust stability provided we can compute � The focus of the next

section is therefore to understand what  is and how it can be computed�

However� let us �rst consider two examples that illustrate how we use  to

check for robust stability with structured uncertainty� In the �rst example� the

structure of the uncertainty is important� and an analysis based on the H�

norm would leads to the incorrect conclusion that the system is not robustly

stable� In the second example the structure makes no di�erence�

Example ��� RS with diagonal input uncertainty
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Figure ����	 Robust stability for diagonal input uncertainty is guaranteed

since ��I �TI� � �jwI j� �	� The use of unstructured uncertainty and ���TI� is

conservative�
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Consider robust stability of the feedback system in Figure ��� for the case when the

multiplicative input uncertainty is diagonal� A nominal ��� plant and the controller

�which represents PI�control of a distillation process using the DV�con	guration� is

given by

G�s� �

�
�s� �

�
����� ���

������ ����
�
# K�s� �
� � �s

s

�
������� �

� ������
�
������

�time in minutes�� The controller results in a nominally stable system with acceptable

performance� Assume there is multiplicative uncertainty in each manipulated input

of magnitude

wI�s� �

s� ���

���s� �

������

This implies a relative uncertainty of up to ��� in the low frequency range� which

increases at high frequencies� reaching a value of � ����� uncertainty� at about

� rad�min� The increase with frequency allows for various neglected dynamics

associated with the actuator and valve� The uncertainty may be represented as

multiplicative input uncertainty as shown in Figure ��� where I is a diagonal

complex matrix and the weight is WI � wII where wI�s� is a scalar� On rearranging

the block diagram to match the M�structure in Figure ��� we get M � wIKG�I �

KG��� � wITI �recall �������� and the RS�condition ��M� � � in Theorem ���

yields

RS	 ��I �TI� �

�

jwI �j	�j �	� I �
�
��

��
�

������

This condition is shown graphically in Figure ��

 and is seen to be satis	ed at

all frequencies� so the system is robustly stable� Also in Figure ��

 ���TI� can be

seen to be larger than �jwI �j	�j over a wide frequency range� This shows that the

system would be unstable for full�block input uncertainty �I full�� However� full�

block uncertainty is not reasonable for this plant� and therefore we conclude that the

use of the singular value is conservative in this case whichdemonstrates the need for

the structured singular value�

Exercise ���� Consider the same example and check for robust stability with

full�block multiplicative output uncertainty of the same magnitude� �Solution RS

satis	ed��

Example ��	 RS of spinning satellite� Recall Motivating Example No� 
 from

Section ����
 with the plant G�s� given in ������ and the controller K � I� We want

to study how sensitive this design is to multiplicative input uncertainty�

In this case TI � T � so for RS there is no di�erence between multiplicative input

and multiplicative output uncertainty� In Figure ��
�� we plot ��T � as a function

of frequency� We 	nd for this case that ��T � � ���T � irrespective of the structure

of the complex multiplicative perturbation �full�block� diagonal or repeated complex

scalar�� Since ��T � crosses � at about �� rad�s� we can tolerate more than ����

uncertainty at frequencies above �� rad�s� At low frequencies ��T � is about ��� so to

guarantee RS we can at most tolerate ��� �complex� uncertainty at low frequencies�

This con	rms the results from Section ����
� where we found that real perturbations
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Figure ����	 ��plot for robust stability of spinning satellite

�� � ��� and �� � ���� yield instability� Thus� the use of complex rather than real

perturbations is not conservative in this case� at least for I diagonal�

However� with repeated scalar perturbations �i�e� the uncertainty in each channel

is identical� there is a di�erence between real and complex perturbations� With

repeated real perturbations available software �using the command mu with blk

� ��� �	 in the ��toolbox in MATLAB� yields a peak ��value of �� so we can

tolerate a perturbation �� � �� of magnitude � before getting instability �This is

con	rmed by considering the characteristic polynomial in ������� from which we see

that �� � �� � �� yields instability�� On the other hand� with complex repeated

perturbations� we have that ��T � � ��T � is �� at low frequencies� so instability may

occur with a �non�physical� complex �� � �� of magnitude ���� �Indeed� from ������

we see that the non�physical constant perturbation �� � �� � j��� yields instability��

��� Properties and computation of �

Recall from 	
���� the de�nition of the structured singular value

	M���
�

� min
km

fkmj det	I � kmM�� � � for some allowed �� ��	�� � �g
	
��
�

��
�� Remarks on the de�nition of �

�� The structured singular value was introduced by Doyle ������� At the same

time �in fact� in the same issue of the same journal� Safonov ������ introduced

the Multivariable Stability Margin km for a diagonally perturbed system as the

inverse of �� that is� km�M� � ��M���� In many respects� as was illustrated
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above� this is a more natural de
nition of a robustness margin� However� as

already mentioned� ��M� has a number of other advantages� such as providing a

generalization of the spectral radius� ��M�� and the spectral norm� ���M��

�� The  corresponding to the smallest km in ������ will always have ���� � ��

since if det�I � k�mM
�� � � for some � with ����� � c � �� then �k�m

cannot be the structured singular value of M � since there exists a smaller scalar

km � k�mc such that det�I � kmM� � � where  �
�
c
� and ���� � ��

�� Note that with km � � we obtain I � kmM � I which is clearly nonsingular�

Thus� one possible way to obtain � numerically� is to start with km � � � and

gradually increase km until we 
rst 
nd an allowed  with ���� � � such that

�I � kmM� is singular �this value of km is then ���� By �allowed� we mean

that  must have the speci
ed block�diagonal structure and that some of the

blocks may have to be real�

�� The sequence of M and  in the de
nition of � does not matter� This follows

from the identity �A���� which yields

det�I � kmM� � det�I � kmM� ������

�� In most cases M and  are square� but this need not be the case� If they

are nonsquare� then we make use of ������ and work with either M or M

�whichever has the lowest dimension��

�� Equivalent de	nition of � No�
� When de
ning � we may choose to work directly

with � instead of its inverse� and we may replace ������ by the following de
nition

��M�
�
� max
�

f�j det�I � �
�

M� � � for structured � ���� � �g ������

�� Equivalent de	nition of � No��� Alternatively� We may also vary the size of the

perturbations �as was originally done by Doyle ������� to give the de
nition

��M���
�
� min
�

f����j det�I �M� � � for structured g ������

Example ��� � of a scalar� IfM is a scalar then in most cases ��M� � jM j� This

follows from ����
� by selecting jj � �jM j such that ���M� � �� However� this

requires that we can select the phase of  such that M is real� which is impossible

when  is real and M has an imaginary component� so in this case ��M� � �� In

summary� we have
 complex 	 ��M� � jM j ������

 real 	 ��M� �

jM j for real M

� otherwise

������

The above example shows that  may depend on whether the perturbation

is real or complex� The following example demonstrates that  also depends

on the structure of ��

Example ��
 Let  be complex and consider again the matrix M� in Example

���� We get

M� �
�
� �

� �
�
# ��M�� �


��  full matrix

��  diagonal
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Proof For the case when  is a full complex matrix we have already �in Example

���� constructed a �worst�case� � with ����� � ��� which makes I�M� singular�

and it follows from ����
� that ��M�� � �� Next� consider the case when we restrict

 to be diagonal� We have

 �
�
�� �

� ��
�

� I � kmM �
�
� ����km

� �

�

The determinant of this matrix is equal to 
 irrespective of the values of ��� �� and

km� So in this case no perturbation yields singularity and ��M�� � �� �

��
�� What do � �� � and skewed	� mean�

A value of  � ��� for robust stability means that all the uncertainty blocks

must be decreased in magnitude by a factor ��� in order to guarantee stability�

But if we want to keep some of the uncertainty blocks �xed� how large can

one particular source of uncertainty be before we get instability! We de�ne

this value as ��s� where s is called skewed�� We may view s	M� as a

generalization of 	M��

For example� let � � diagf�����g and assume we have �xed k��k � � and

we want to �nd how large �� can be before we get instability� The solution

is to select

Km �
�
I �

� kmI
�

	
�
��

and look at each frequency for the smallest value of km which makes

det	I �KmM�� � �� and we have that skewed� is

s	M�
�

� ��km

Note that to compute skewed� we must �rst de�ne which part of the

perturbations is to be constant� s	M� is always further from � than 	M�

is� i�e� s �  for  � �� s �  for  � �� and s �  for  	 �� In practice�

with available software to compute � we obtain s by iterating on km until

	KmM� � � where Km may be as in 	
�
��� This iteration is straightforward

since  increases uniformly with km�

��
�� Properties of � for real and complex

perturbations

Two properties of  which hold for both real and complex perturbations are�

�� 	�M� � j�j	M� for any real scalar ��

�� Let � � diagf�����g be a block�diagonal perturbation 	in which �� and

�� may have additional structure� and let M be partitioned accordingly�
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Then

�	M� � maxf��
	M���� ��
	M���g 	
�
��

Proof Consider det�I � �
�
M� where � � ���M� and use Schur!s formula in

�A���� with A�� � I � �
�
M��� and A�� � I � �
�
M���� �

In words� 	
�
�� simply says that robustness with respect to two

perturbations taken together is at least as bad as for the worst perturbation

considered alone� This agrees with our intuition that we cannot improve

robust stability by including another uncertain perturbation�

In addition� the upper bounds given below for complex perturbations�

e�g� �	M� � minD�D ��	DMD��� in 	
����� also hold for real or mixed

real"complex perturbations �� This follows because complex perturbations

include real perturbations as a special case� However� the lower bounds� e�g�

	M� � �	M� in 	
����� only holds generally for complex perturbations�

��
�� � for complex perturbations

When all the blocks in � are complex�  may be computed relatively easily�

This is discussed below and in more detail in the survey paper by Packard

and Doyle 	������ Most of this follows from the following result� which may

be viewed as another de�nition of  that applies for complex � only�

Lemma ��	 For complex perturbations � with ��	�� � �	

	M� � max��	������ �	M�� 	
�
��

Proof The lemma follows directly from the de
nition of � and the equivalence

between ������ and ������� Alternatively� from Appendix A���� we have

det�I � �
�

M� �
Y

i

�
�� 
i�
�

�
M�

�

������

where 
i denotes the i!th eigenvalue� Consider a given 
� with ����� � � and

��M�� � r� If we assume that the set of allowed !s includes complex matrices

then there always exists in the set another  � c� �where c is a complex number

with jcj � �� such that 
i�M� � r� That is� we can adjust the phase of the

largest eigenvalue of M� such that it is real and positive� It then follows for the

perturbation � that selecting � � r makes the determinant in ������ equal to zero�

Since the structured singular value is found as the largest possible value of r �recall

�������� we have proved ������� �

Properties of  for complex perturbations

Most of the following properties follow easily from 	
�
���
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�� 	�M� � j�j	M� for any 	complex� scalar ��

�� For a repeated scalar complex perturbation we have

� � �I 	� is a complex scalar� � 	M� � �	M� 	
�

�

Proof Follows directly from ������ since there are no degrees�of�freedom for the

maximization� �

�� For a full block complex perturbation we have from 	
�
�� and 	
�����

� full matrix � 	M� � ��	M� 	
�
��

��  for complex perturbations is bounded by the spectral radius and the

singular value 	spectral norm��

�	M� � 	M� � ��	M� 	
����

This follows from 	
�

� and 	
�
��� since selecting � � �I gives the fewest

degrees�of�freedom for the optimization in 	
�
��� whereas selecting � full

gives the most degrees�of�freedom�

�� Consider any unitary matrix U with the same structure as �� Then

	MU� � 	M� � 	UM� 	
����

Proof Follows from ������ by writing MU � M� where ����� � ���U� �

����� and so U may always be absorbed into � �

�� Consider any matrix D which commutes with �� that is� �D � D�� Then

	DM� � 	MD� and 	DMD��� � 	M� 	
����

Proof ��DM� � ��MD� follows from

���DM� � max
�

��DM� � max
�

��MD� � max
�

��MD� � ���MD�
������

The 
rst equality is ������� The second equality applies since ��AB� � ��BA� �by

the eigenvalue properties in the Appendix�� The key step is the third equality

which applies only when D � D� The fourth equality again follows from

������� �

�� Improved lower bound� De�ne U as the set of all unitary matrices U

with the same block�diagonal structure as �� Then

	M� � maxU�U �	MU� 	
����

Proof The proof of this important result is given by Doyle ������ and Packard

and Doyle ������� It follows from a generalization of the maximum modulus

theorem for rational functions� �
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The result 	
���� is motivated by combining 	
���� and 	
���� to yield

	M� � max

U�U
�	MU�

The surprise is that this is always an equality� Unfortunately� the

optimization in 	
���� is not convex and so it may be di�cult to use in

calculating  numerically�


� Improved upper bound� De�ne D to be the set of matrices D which

commute with � 	i�e� satisfy D� � �D�� Then it follows from 	
���� and

	
���� that

	M� � minD�D ��	DMD��� 	
����

This optimization is convex in D 	i�e�� has only one minimum� the global

minimum� and it may be shown 	Doyle� ��
�� that the inequality is in

fact an equality if there are � or fewer blocks in �� Furthermore� numerical

evidence suggests that the bound is tight 	within a few percent� for � blocks

or more� the worst known example has an upper bound which is about ���

larger than  	Balas et al�� ������

Some examples of D�s which commute with � are

� � �I � D � full matrix 	
����

� � full matrix � D � dI 	
����

� �

�
��	full� �

� ��	full�
�

� D �
�
d�I �

� d�I
�

	
��
�

� � diagf��	full�� ��I� ��� �
g � D � diagfd�I�D�	full�� d�� d
g 	
����

In short� we see that the structures of � and D are opposites��

�� Without a�ecting the optimization in 	
����� we may assume the blocks

in D to be Hermitian positive de�nite� i�e�� Di � DH
i � �� and for scalars

di � � 	Packard and Doyle� ������

��� One can always simplify the optimization in 	
���� by �xing one of the

scalar blocks in D equal to �� For example� let D � diagfd�� d�� � � � � dng�

then one may without loss of generality set dn � ��

Proof Let D� � �
dn
D and note that ���DMD��� � ���D�MD����� �

Similarly� for cases where � has one or more scalar blocks� one may simplify

the optimization in 	
���� by �xing one of the corresponding unitary scalars

in U equal to �� This follows from Property � with jcj � ��

��� The following property is useful for �nding 	AB� when � has a structure

similar to that of A or B�
�	AB� � ��	A��A	B� 	
�����

�	AB� � ��	B�B�	A� 	
�����
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Here the subscript �A� denotes the structure of the matrix �A� and

B�� denotes the structure of B��

Proof The proof is from �Skogestad and Morari� ����a�� Use the fact that

��AB� � max� ��AB� � max� ��V B����A� where V � A���A�� When we

maximize over  then V generates a certain set of matrices with ���V � � �� Let

us extend this set by maximizing over all matrices V with ���V � � � and with the

same structure as A� We then get ��AB� � maxV ��V B����A� � �V �B����A��

�
Some special cases of 	
������

	a� If A is a full matrix then the structure of �A is a full matrix� and we

simply get 	AB� � ��	A���	B� 	which is not a very exciting result since

we always have 	AB� � ��	AB� � ��	A���	B��

	b� If � has the same structure as A 	e�g� they are both diagonal� then

�	AB� � ��	A��	B� 	
�����

Note ������� is stated incorrectly in Doyle ������ since it is not speci
ed that

 must have the same structure as A�

	c� If � � �I 	i�e�� � consists of repeated scalars�� we get the spectral radius

inequality �	AB� � ��	A�A	B�� A useful special case of this is

�	M�� � ��	���	M� 	
�����

��� A generalization of 	
����� and 	
����� is�

�	ARB� � ��	R��e�
�

� A

B �
�

	
�����

where e� � diagf�� Rg� The result is proved by 	Skogestad and Morari�

��

a��

��� The following is a further generalization of these bounds� Assume M is an

LFT of R� M � N�� � N��R	I �N��R���N��� The problem is to �nd an

upper bound on R� ��	R� � c� which guarantees that �	M� 	 � when

�	N��� 	 �� Skogestad and Morari 	��

a� show that the best upper

bound is the c which solves
e� � N�� N��

cN�� cN��
�

� � 	
�����

where e� � diagf�� Rg� and c is easily computed using skewed�� Given

the �condition �	M� 	 � 	for RS or RP�� 	
����� may be used to derive

a su�cient loop�shaping bound on a transfer function of interest� e�g� R

may be S� T � L� L�� or K�
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Remark� Above we have used minD� To be mathematically correct� we should have

used infD because the set of allowed D!s is not bounded and therefore the exact

minimum may not be achieved �although we may be get arbitrarily close�� The use

of max� �rather than sup�� is mathematically correct since the set  is closed �with

���� � ���

Example ���� Let M and  be complex �� � matrices� Then

M �
�
a a

b b
�

� ��M� �
��� ��M� � ja� bj for  � �I

jaj� jbj for  � diagf��� ��g

���M� �
p
�jaj� � �jbj� for  a full matrix
�������

Proof For  � �I� ��M� � ��M� and ��M� � ja � bj since M is singular and

its nonzero eigenvalue is 
��M� � tr�M� � a � b� For  full� ��M� � ���M�

and ���M� �
p
�jaj� � �jbj� since M is singular and its nonzero singular value is

���M� � kMkF � see �A�
���� For a diagonal � it is interesting to consider these

di�erent proofs of the result ��M� � jaj� jbj


� A direct calculation based on the de	nition of ��

�� Use of the lower �bound� in ������ �which is always exact��

�� Use of the upper bound in ������ �which is exact here since we have only two

blocks��

We will use approach �a� here and leave �b� and �c� for Exercises ��
� and ��
��

We have

M �
�
a a

b b
��
��

��
�
�

�
a

b
�
� �� �� � � eM e

From ������ we then get

det�I �M� � det�I � e eM� � �� � �� �� �
�
a

b
�
� �� a�� � b��

The smallest �� and �� which make this matrix singular� i�e� �� a�� � b�� � �� are

obtained when j��j � j��j � j�j and the phases of �� and �� are adjusted such that

� � jaj 
 j�j � jbj 
 j�j � �� We get j�j � ��jaj � jbj�� and from ����
� we have that

� � �j�j � jaj� jbj� �

Example ���� Let M be a partitioned matrix with both diagonal blocks equal to

zero� Then

�
�
� A

B �
�

� �z �
M

�
��� ��M� �
p
��AB� for  � �Ip
���A����B� for  � diagf���g�i full

���M� � maxf���A�� ���B�g for  a full matrix

�������

Proof From the de	nition of eigenvalues and Schur�s formula �A�
�� we get


i�M� �

p

i�AB� and ��M� �

p
��AB� follows� For block�diagonal �
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��M� �

p
���A����B� follows in a similar way using ��M� � max� ��M� �

max�����

��A�B��� and then realizing that we can always select � and � such

that ��A�B�� � ���A����B� �recall �������� ���M� � maxf���A�� ���B�g follows

since ���M� �
p
��MHM� where MHM � diagfBHB�AHAg� �

Exercise ���� For M in ���
��� and a diagonal  show that ��M� � jaj � jbj

using the lower �bound� ��M� � maxU ��MU� �which is always exact�� Hint Use

U � diagfej�� �g �the blocks in U are unitary scalars� and we may 	x one of them

equal to ���

Exercise ���� For M in ���
��� and a diagonal  show that ��M� � jaj � jbj

using the upper bound ��M� � minD ���DMD��� �which is exact in this case since

D has two �blocks���

Solution	 Use D � diagfd� �g� Since DMD�� is a singular matrix we have from

�A���� that
���DMD��� � ��

�
a da

�
d
b b

�
�

p
jaj� � jdaj� � jbdj� � jbj� �������

which we want to minimize with respect to d� The solution is d �
p
jajjbj which

gives ��M� �
p
jaj� � �jabj� jbj� � jaj� jbj�

Exercise ���	 Let c be a complex scalar� Show that for

 � diagf���g 	 �
�
M�� M��

M�� M��
�
� �

�
M�� cM��

�
c
M�� M��

�
�������

Exercise ���� Let a� b� c and d be complex scalars� Show that for

 � diagf��� ��g 	 �
�
ab ad

bc cd
�
� �

�
ab ab

cd cd
�
� jabj� jcdj �������

Does this hold when  is scalar times identity� or when  is full� �Answers Yes

and No��

Exercise ���
 Assume A and B are square matrices� Show by a counterexample

that ���AB� is not in general equal to ���BA�� Under what conditions is ��AB� �

��BA�� �Hint Recall �������

Exercise ���� If ���
��� were true for any structure of  then it would imply

��AB� � ���A���B�� Show by a counterexample that this is not true�

���� Robust Performance

Robust Performance 	RP� means that the performance objective is satis�ed

for all possible plants in the uncertainty set� even the the worst�case plant� We
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showed using Figure ���� that for a SISO system with an H� performance

objective� the RP�condition was identical to the RS�condition for the same

system with an additional perturbation block�

This also holds for MIMO systems� and the steps in a derivation to show

that RP may be viewed as a special case of structured RS are summarized

in Figure 
���� Step B is the key step and the reader is advised to study

this carefully in the treatment below� Note that the block �P 	where capital

P denotes Performance� is always a full matrix� It is a �ctitious uncertainty

block representing the H� performance speci�cation�

����� Testing RP using �

To test for RP� we must �rst pull out� the uncertain perturbations and

rearrange the uncertain system into the N��form of Figure 
��� Our RP�

requirement as given in 	
���� is that the H� norm of the transfer function

F � Fu	N��� remains less than � for all allowed perturbations� This may be

tested exactly by simply computing 	M� as stated in the following theorem�

Theorem ��� Robust Performance� Rearrange the uncertain system into

the N��structure of Figure ��
�� Assume nominal stability such that N is

�internally� stable� Then

RP

def� kFk� � kFu	N���k� 	 �� �k�jk� � � 	
�����

� b�	N	j��� 	 �� �w 	
�����

where  is computed with respect to the structure

b� �
�

� �

� �P

�

	
�����

and �P is a full complex perturbation with the same dimensions as F T �

Below we prove the theorem in two alternative ways� but �rst a few

remarks�

�� Condition ������� allows us to test if kFk� � � for all possible !s without

having to test each  individually� Essentially� � is de
ned such that it directly

addresses the worst case�

�� The ��condition for RP involves the enlarged perturbation b � diagf�P g�

Here � which itself may be a block�diagonal matrix� represents the true

uncertainty� whereas P is a full complex matrix stemming from the H� norm

performance speci
cation� For example� for the nominal system �with  � �� we

get from ������ that ���N��� � ��P �N���� and we see that P must be a full

matrix�
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�� Since b always has structure� the use of the H� norm� kNk� � �� is generally

conservative for robust performance�

�� From ������ we have that
�b��N�� �z �

RP

� maxf���N���� �z �
RS

� ��P �N���� �z �
NP

g �������

where as just noted ��P �N��� � ���N���� ������� implies that RS ����N��� � ��

and NP ����N��� � �� are automatically satis
ed when RP ���N� � �� is satis
ed�

However� note that NS �stability of N� is not guaranteed by ������� and must

be tested separately �Beware$ It is a common mistake to get a design with

apparently great RP� but which is not nominally stable and thus is actually

robustly unstable��

�� For a generalization of Theorem ��� see the main loop theorem of Packard and

Doyle ������� see also Zhou et al� �������

Block diagram proof of Theorem ���

In the following� let F � Fu	N��� denote the perturbed closed�loop system

for which we want to test RP� The theorem is proved by the equivalence

between the various block diagrams in Figure 
����

Step A� This is simply the de�nition of RP� kFk� 	 ��

Step B 	the key step�� Recall �rst from Theorem 
�� that stability of

the M��structure in Figure 
�� where � is a full matrix is equivalent to

kMk� 	 �� From this theorem we get that the RP�condition kFk� 	 � is

equivalent to RS of the F�P �structure where �P is a full matrix�

Step C� Introduce F � Fu	N��� from Figure 
���

Step D� Collect � and �P into the block�diagonal matrix b�� We then have

that the original RP�problem is equivalent to RS of the N b��structure which

from Theorem 
�� is equivalent to b�	N� 	 �� �

Algebraic proof of Theorem ���

The de
nition of � gives at each frequency

�b��N�j	�� � �	 det�I �N�j	�b�j	�� �� �� �b� ���bP �j	�� � �

By Schur!s formula in �A���� we have

det�I �N b� � det� I �N�� �N��P

�N�� I �N��p
�
�

det�I �N��� 
 det �I �N��P �N���I �N���
��N��P � �

det�I �N��� 
 det�I � �N�� �N���I �N���
��N���P � �

det�I �N��� 
 det�I � Fu�N��P �
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�

�
�

�

�
�

�

�

RP
mSTEP A

mSTEP B

�P
F

is RS�
� k �P k�� �

� k � k�� �

k F k�	 �� � k � k�� �

is RS�
� k � k�� �

� k �P k�� �

is RS� � k b� k�� �

�P
�

N
�

�P
b�

b�	N� 	 �� �w

	RS theorem�m

STEP C m

STEP D m
N

Figure ����	 RP as a special case of structured RS� F � Fu�N���
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Since this expression should not be zero� both terms must be nonzero at each

frequency� i�e��
det�I �N��� �� � � 	 ���N��� � �� �	 �RS�

and for all 

det�I � FP � �� � �P 	 ��P �F � � �	 ���F � � �� �	 �RP de
nition�

Theorem ��� is proved by reading the above lines in the opposite direction� Note

that it is not necessary to test for RS separately as it follows as a special case of the

RP requirement� �

����� Summary of �	conditions for NP� RS and RP

Rearrange the uncertain system into the N��structure of Figure 
��� where

the block�diagonal perturbations satisfy k�k� � �� Introduce

F � Fu	N��� � N�� �N���	I �N������N��

and let the performance requirement 	RP� be kFk� � � for all allowable

perturbations� Then we have�

NS � N 	internally� stable 	
�����

NP � ��	N��� � �P

	 �� ��� and NS 	
�����

RS � �	N��� 	 �� ��� and NS 	
�����

RP � e�	N� 	 �� ��� e� �
�

� �

� �P

�
� and NS 	
���
�

Here � is a block�diagonal matrix 	its detailed structure depends on the

uncertainty we are representing�� whereas �P always is a full complex matrix�

Note that nominal stability 	NS� must be tested separately in all cases�

Although the structured singular value is not a norm� it is sometimes

convenient to refer to the peak �value as the ��norm�� For a stable rational

transfer matrixH	s�� with an associated block structure �� we therefore de�ne

kH	s�k� �
� max
�

�	H	j���

For a nominally stable system we then have

NP � kN��k� 	 �� RS � kN��k� 	 �� RP � kNke� 	 �
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����� Worst	case performance and skewed	�

Assume we have a system for which the peak �value for RP is ���� What

does this mean! The de�nition of  tells us that our RP�requirement would

be satis�ed exactly if we reduced both the performance requirement and the

uncertainty by a factor of ���� So�  does not directly give us the worst�case

performance� i�e� max� ��	F 	���� as one might have been expected�

To �nd the worst�case weighted performance for a given uncertainty� one

needs to keep the magnitude of the perturbations �xed 	��	�� � ��� that is�

we must compute skewed� of N as discussed in Section 
����� We have� in

this case�

max

	������
��	Fl	N���	j��� � s	N	j��� 	
�����

To �nd s numerically� we scale the performance part of N by a factor

km � ��s and iterate on km until  � �� That is� at each frequency skewed�

is the value s	N� which solves

	KmN� � �� Km �
�
I �

� ��s
�

	
�����

Note that  underestimates how bad or good the actual worst�case

performance is� This follows because s	N� is always further from � than

	N��

The corresponding worst�case perturbation may be obtained as follows�

First compute the worst�case performance at each frequency using skewed��

At the frequency where s	N� has its peak� we may extract the corresponding

worst�case perturbation generated by the software� and then �nd a stable�

all�pass transfer function that matches this� In the MATLAB �toolbox� the

single command wcperf combines these three steps� �delwc�mulow�muup� �

wcperf�N�blk��	
�

���� Application RP with input uncertainty

We will now consider in some detail the case of multiplicative input

uncertainty with performance de�ned in terms of weighted sensitivity� as

illustrated in Figure 
���� The performance requirement is then

RP

def� kwP 	I �GpK���k� 	 �� �Gp 	
�����

where the set of plants is given by

Gp � G	I � wI�I�� k�Ik� � � 	
�����

��� MULTIVARIABLE FEEDBACK CONTROL

Here wP 	s� and wI	s� are scalar weights� so the performance objective is

the same for all the outputs� and the uncertainty is the same for all inputs�

We will mostly assume that �I is diagonal� but we will also consider the case

when �I is a full matrix�

d d dq q�

� �

� � ����

�

�

�

�
� �

�

�

�

�

�

WI �I

K G WP

w

z

�
�I

zw N

Figure ����	 Robust performance of system with input uncertainty�

This problem is excellent for illustrating the robustness analysis of uncertain

multivariable systems� It should be noted� however� that although the problem

setup in 	
����� and 	
����� is �ne for analyzing a given controller� it is less

suitable for controller synthesis� For example� the problem formulation does

not penalize directly the outputs from the controller�

In this section� we will�

�� Find the interconnection matrix N for this problem�

�� Consider the SISO case� so that useful connections can be made with results

from the previous chapter�

�� Consider a multivariable distillation process for which we have already seen

from simulations in Chapter � that a decoupling controller is sensitive to

small errors in the input gains� We will �nd that  for RP is indeed much

larger than � for this decoupling controller�

�� Find some simple bounds on  for this problem and discuss the role of the

condition number�

�� Make comparisons with the case where the uncertainty is located at the

output�
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������ Interconnection matrix

On rearranging the system into the N��structure� as shown in Figure 
����

we get� as in 	
�����

N �
�
wITI wIKS

wPSG wPS
�

	
�����

where TI � KG	I � KG���� S � 	I � GK��� and for simplicity we have

omitted the negative signs in the ��� and ��� blocks of N � since 	N� � 	UN�

with unitary U �
h
�I �

� I
i

� see 	
�����

For a given controller K we can now test for NS� NP� RS and RP using

	
������	
���
�� Here � � �I may be a full or diagonal matrix 	depending on

the physical situation��

������ RP with input uncertainty for SISO system

For a SISO system� conditions 	
������	
���
� with N as in 	
����� become

NS � S� SG� KS and TI are stable 	
�����

NP � jwPSj 	 �� �� 	
�����

RS � jwITI j 	 �� �� 	
�����

RP � jwPSj� jwITI j 	 �� �� 	
�����

The RP�condition 	
����� follows using 	
������ that is

	N� � 
�
wIT wIKS

wPSG wPS
�

� 
�
wITI wITI

wPS wPS
�

� jwITI j� jwPSj 	
���
�

where we have used TI � KSG� For SISO systems TI � T � and we see that

	
����� is identical to 	������ which was derived in Chapter � using a simple

graphical argument based on the Nyquist plot of L � GK�

Robust performance optimization� in terms of weighted sensitivity with

multiplicative uncertainty for a SISO system� thus involves minimizing the

peak value of 	N� � jwIT j� jwPSj� This may be solved using DK�iteration

as outlined later in Section 
���� A closely related problem� which is easier

to solve both mathematically and numerically� is to minimize the peak value

	H� norm� of the mixed sensitivity matrix

Nmix �
�
wPS

wIT
�

	
�����

From 	A���� we get that at each frequency 	N� � jwIT j� jwPSj di�ers from

��	Nmix� �
pjwIT j� � jwPSj� by at most a factor
p

�� recall 	������ Thus�

minimizing kNmixk� is close to optimizing robust performance in terms of

	N��
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������ Robust Performance for �� � distillation process

Consider again the distillation process example from Chapter � 	Motivating

Example No� �� and the corresponding inverse�based controller�

G	s� �

�

��s� �
�


��
 �
���

��
�� ������
�

� K	s� �
���

s
G	s��� 	
�����

The controller provides a nominally decoupled system with

L � l I� S � �I and T � tI 	
�����

Where
l �

���
s

� � �

�
� � l

�

s

s� ���
� t � �� � �

���

s � ���
�

�

����s� �

We have used � for the nominal sensitivity in each loop to distinguish it from

the Laplace variable s� Recall from Figure ���� that this controller gave an

excellent nominal response� but that the response with ��� gain uncertainty

in each input channel was extremely poor� We will now con�rm these �ndings

by a �analysis� To this e�ect we use the following weights for uncertainty and

performance�

wI 	s� �

s � ���

���s� �
� wP 	s� �

s�� � ����

s

	
�����

With reference to 	����� we see the weight wI	s� may approximately represent

a ��� gain error and a neglected time delay of ��� min� jwI	j��j levels o� at

� 	���� uncertainty� at high frequencies� With reference to 	����� we see

that the performance weight wP 	s� speci�es integral action� a closed�loop

bandwidth of about ���� �rad"min 	which is relatively slow in the presence of

an allowed time delay of ��� min� and a maximum peak for ��	S� of Ms � ��

We now test for NS� NP� NS and RP� Note that �I is a diagonal matrix in

this example�

NS With G and K as given in 	
����� we �nd that S� SG� KS and TI are

stable� so the system is nominally stable�

NP With the decoupling controller we have

��	N��� � ��	wPS� �
����s�� � ����

s� ���

����

and we see from the dashed�dot line in Figure 
��� that the NP�condition

is easily satis�ed� ��	wPS� is small at low frequencies 	�������� � ����

at � � �� and approaches ��� � ��� at high frequencies�
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Figure ����	 ��plots for distillation process with decoupling controller

RS Since in this case wITI � wIT is a scalar times the identity matrix� we

have� independent of the structure of �I � that

�I
	wITI� � jwI tj �

������� �s� �

	���s� ��	����s� ��
����

and we see from the dashed line in Figure 
��� that RS is easily satis�ed�

The peak value of �I
	M� over frequency is kMk�I

� ����� This means

that we may increase the uncertainty by a factor of ������ � ��
� before

the worst�case uncertainty yields instability� that is� we can tolerate

about �
� gain uncertainty and a time delay of about ��� min before

we get instability�

RP Although our system has good robustness margins 	RS easily satis�ed�

and excellent nominal performance we know from the simulations in

Figure ���� that the robust performance is poor� This is con�rmed by

the �curve for RP in Figure 
��� which was computed numerically using

b�	N� with N as in 	
������ b� � diagf�I ��P g and �I � diagf��� ��g�

The peak value is close to �� meaning that even with � times less

uncertainty� the weighted sensitivity will be about � times larger than

what we require� The peak of the actual worst�case weighted sensitivity

with uncertainty blocks of magnitude �� which may be computed using

skewed�� is for comparison ������

The MATLAB �toolbox commands to generate Figure 
��� are given in

table 
���

In general�  with unstructured uncertainty 	�I full� is larger than  with

structured uncertainty 	�I diagonal�� However� for our particular plant and

controller in 	
����� it appears from numerical calculations and by use of

��� MULTIVARIABLE FEEDBACK CONTROL

Table ���	 MATLAB program for Mu
analysis �generates Figure ������

� Uses the Mu toolbox

G� � ����� ��	�
� ���� �����	��

dyn � ndsys������ ����

Dyn�daug�dyn�dyn�� G�mmult�Dyn�G���

�
� Inverse�based control�

�
dynk�ndsys���� ����� ��e���������

Dynk�daug�dynk�dynk�� Kinv�mmult�Dynk�minv�G����

�
� Weights�

�
wp�ndsys���� ������ ��e��������� Wp�daug�wp�wp��

wi�ndsys��� �������� ���� Wi�daug�wi�wi��

�
� Generalized plant P�

�
systemnames � �G Wp Wi��

inputvar � ��ydel��� w�� � u�����

outputvar � ��Wi� Wp� �G�w���

input to G � ��u�ydel���

input to Wp � ��G�w��� input to Wi � ��u���

sysoutname � �P��

cleanupsysic � �yes�� sysic�

�
N � starp�P�Kinv�� omega � logspace������	���

Nf � frsp�N�omega��

�
� mu for RP�

�
blk � �� �� � ��  ��

�mubnds�rowd�sens�rowp�rowg� � mu�Nf�blk��c���

muRP � sel�mubnds�������� pkvnorm�muRP� � �ans � ����	��

�
� Worst�case weighted sensitivity

�
�delworst�muslow�musup� � wcperf�Nf�blk���� musup � �musup � 

��� for

� � delta����

� mu for RS�

�
Nrs�sel�Nf��������

�mubnds�rowd�sens�rowp�rowg��mu�Nrs��� �� � ����c���

muRS � sel�mubnds�������� pkvnorm�muRS� � �ans � ���
��

�
� mu for NP �� max� singular value of Nnp��

�
Nnp�sel�Nf���
���
��

�mubnds�rowd�sens�rowp�rowg��mu�Nnp�� ���c���

muNP � sel�mubnds�������� pkvnorm�muNP� � �ans � ��������

vplot��liv�m��muRP�muRS�muNP��
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����� below� that they are the same� Of course� this is not generally true as

is con�rmed in the following exercise�

Exercise ���� Consider the plant G�s� in ������ which is ill�conditioned with

��G� � ���� at all frequencies �but note that the RGA�elements of G are all about

����� With an inverse�based controller K�s� � ���
s

G�s���� compute � for RP with

both diagonal and full�block input uncertainty using the weights in ���
���� The value

of � is much smaller in the former case�

������ � and the condition number

In this subsection we consider the relationship between  for RP and the

condition number of the plant and controller� We consider unstructured

multiplicative input uncertainty 	i�e� �I is a full matrix� and performance

measured in terms of weighted sensitivity�

Any controller� Let N be given as in 	
������ Then

RPz �� �
e�	N� � �

RSz �� �
��	wITI� �

NPz �� �
��	wPS� 	� �

p
k� 	
�����

where k is either the condition number of the plant or the controller 	the

smallest one should be used��

k � �	G� or k � �	K� 	
�����

Proof of ���
��� Since I is a full matrix ������ yields

��N� � min
d

��
�
N�� dN��

d��N�� N��

�

where from �A����

��
�
wITI dwIKS

d��wPSG wPS

�
� ���wITI

�
I dG��

�
� � ���wPS

�
d��G I

�
�

� ���wITI� ���I dG���� �z �
���jdj	��G���

����wPS� ���d
��G I�� �z �

���jd��j	��G�

and selecting d �
q
	��G�

	��G���
�

p
��G� gives

��N� � ����wITI� � ���wpS�� �� �
p
��G��

A similar derivation may be performed using SG � K��TI to derive the same

expression but with ��K� instead of ��G�� �
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From 	
����� we see that with a round� controller� i�e� one with �	K� � ��

there is less sensitivity to uncertainty 	but it may be di�cult to achieve NP

in this case�� On the other hand� we would expect  for RP to be large if we

used an inverse�based controller for a plant with a large condition number�

since then �	K� � �	G� is large�

Example ���� For the distillation process studied above� we have ��G� � ��K� �

����� at all frequencies� and at frequency w � 
 rad�min the upper bound given by

���
��� becomes ����� � ������� �
p
������ � ����� This is higher than the actual

value of ��N� which is ����� which illustrates that the bound in ���
��� is generally

not tight�

Inverse�based controller� With an inverse�based controller 	resulting in

the nominal decoupled system 	
������ and unstructured input uncertainty� it

is possible to derive an analytic expression for  for RP with N as in 	
������

e�	N� �
s

jwP �j� � jwItj� � jwP �j � jwI tj
�

�	G� �

�
�	G�

�
	
�����

where � is the nominal sensitivity and �	G� is the condition number of the

plant� We see that for plants with a large condition number�  for RP increases

approximately in proportion to
p
�	G��

Proof of ���
��� The proof originates from Stein and Doyle ������� The upper

��bound in ������ with D � diagfdI� Ig yields

��N� � min
d

��
�
wItI wIt�dG�
��

wP ��dG� wP �I

�
� min
d

��
�
wItI wIt�d��
��

wP ��d�� wP �I

�

� min
d

max
i

��
�
wIt wI t�d�i�
��

wP ��d�i� wP �

�

� min
d

max
i

p
jwP �j� � jwI tj� � jwp�d�ij� � jwIt�d�i���j�

We have here used the SVD of G � U�V H at each frequency� and have used the fact

that �� is unitary invariant� �i denotes the i!th singular value of G� The expression

is minimized by selecting at each frequency d � jwI tj�jwP �j���G���G��� see ��������

and hence the desired result� �

Example ���� For the distillation column example studied above� we have at

frequency 	 � � rad�min� jwP �j � ���� and jwI tj � ����� and since ��G� � �����

at all frequencies� ���
��� yields ��N� �
p
���� � ���� � ����� � ���� which agrees

with the plot in Figure ��
��

Worst�case performance �any controller

We next derive relationships between worst�case performance and the

condition number� Suppose that at each frequency the worst�case sensitivity
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is ��	S��� We then have that the worst�case weighted sensitivity is equal to

skewed��

max
Sp

��	wPSp� � ��	wPS
�� � s	N�

Now� recall that in Section ������ we derived a number of upper bounds on

��	S��� and referring back to 	����� we �nd

��	S�� � �	G�

��	S�

�� ��	wITI�

	
�����

A similar bound involving �	K� applies� We then have

s	N� � ��	wPS
�� � k

��	wPS�

�� ��	wITI�

	
�����

where k as before denotes either the condition number of the plant or the

controller 	preferably the smallest�� Equation 	
����� holds for any controller

and for any structure of the uncertainty 	including �I unstructured��

Remark � In Section ������ we derived tighter upper bounds for cases when I

is restricted to be diagonal and when we have a decoupling controller� In ������ we

also derived a lower bound in terms of the RGA�

Remark � Since �s � � when � � �� we may� from �������� ������� and expressions

similar to ������ and ������� derive the following su�cient �conservative� tests for

RP ���N� � �� with unstructured input uncertainty �any controller�	

RP � ����wPS� � ���wITI���� �
p
k� � �� �	

RP � k���wpS� � ���wITI� � �� �	

RP � ���wpS� � k���wIT � � �� �	

where k denotes the condition number of the plant or the controller �the smallest

closely being the most useful��

Example ���� For the distillation process the upper bound given by ���
��� at

	 � � rad�min is ����� 
 ������ � ����� � ���� This is higher than the actual

peak value of �s � maxSP ���wPSp� which as found earlier is ���� �at frequency ���

rad�min�� and demonstrates that these bounds are not generally tight�

������ Comparison with output uncertainty

Consider output multiplicative uncertainty of magnitude wO	j��� In this case

we get the interconnection matrix

N �
�
wOT wOT

wPS wPS
�

	
���
�
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and for any structure of the uncertainty 	N� is bounded as follows�

��
�
wOT

wPS
�

�
RPz �� �

	N� �
p

� ��

RSz �� ��
wOT

wPS
�

� �z �
NP

	
�����

This follows since the uncertainty and performance blocks both enter at the

output 	see Section 
����� and from 	A���� the di�erence between bounding

the combined perturbations� �� � �O �P  and individual perturbations�

��	�O� and ��	�P �� is at most a factor of
p

�� Thus� in this case we

automatically� achieve RP 	at least within
p

�� if we have satis�ed separately

the subobjectives of NP and RS� This con�rms our �ndings from Section

������ that multiplicative output uncertainty poses no particular problem

for performance� It also implies that for practical purposes we may optimize

robust performance with output uncertainty by minimizing the H� norm of

the stacked matrix
h
wOT

wPS

i
�

Exercise ���� Consider the RP�problem with weighted sensitivity and multiplica�

tive output uncertainty� Derive the interconnection matrix N for� 
� the conventional

case with b � diagf�P g� and �� the stacked case when b � � P �� Use this

to prove ���
����

���� �
synthesis and DK
iteration

The structured singular value  is a very powerful tool for the analysis of

robust performance with a given controller� However� one may also seek �

synthesis to �nd the controller that minimizes a certain �condition�

������ DK	iteration

At present there is no direct method to synthesize a �optimal controller�

However� for complex perturbations a method known as DK�iteration is

available� It combines H��synthesis and �analysis� and often yields good

results� The starting point is the upper bound 	
���� on  in terms of the

scaled singular value

	N� � min
D�D

��	DND���

The idea is to �nd the controller that minimizes the peak value over frequency

of this upper bound� namely
min
K

	min
D�D
kDN	K�D��k�� 	
�����
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by alternating between minimizing kDN	K�D��k� with respect to either K

or D 	while holding the other �xed�� To start the iterations� one selects an

initial stable rational transfer matrix D	s� with appropriate structure� The

identity matrix is often a good initial choice for D provided the system has

been reasonably scaled for performance� The DK�iteration then proceeds as

follows�

�� K�step� Synthesize an H� controller for the scaled problem�

minK kDN	K�D��k� with �xed D	s��

�� D�step� Find D	j�� to minimize at each frequency ��	DND��	j��� with

�xed N �

�� Fit the magnitude of each element of D	j�� to a stable and minimum phase

transfer function D	s� and go to Step ��

The iteration may continue until satisfactory performance is achieved�

kDND��k� 	 �� or until the H� norm no longer decreases� One fundamental

problem with this approach is that although each of the minimization steps

	K�step and D�step� are convex� joint convexity is not guaranteed� Therefore�

the iterations may converge to a local optimum� However� practical experience

suggests that the method works well in most cases�

The order of the controller resulting from each iteration is equal to the

number of states in the plant G	s� plus the number of states in the weights

plus twice the number of states in D	s�� For most cases� the true �optimal

controller is not rational� and will thus be of in�nite order� but because we

use a �nite�order D	s� to approximate the D�scales� we get a controller of

�nite 	but often high� order� The true �optimal controller would have a #at

�curve 	as a function of frequency�� except at in�nite frequency where 

generally has to approach a �xed value independent of the controller 	because

L	j�� � � for real systems�� However� with a �nite�order controller we will

generally not be able 	and it may not be desirable� to extend the #atness to

in�nite frequencies�

The DK�iteration depends heavily on optimal solutions for Steps � and

�� and also on good �ts in Step �� preferably by a transfer function of low

order� One reason for preferring a low�order �t is that this reduces the order

of the H� problem� which usually improves the numerical properties of the

H� optimization 	Step �� and also yields a controller of lower order� In some

cases the iterations converge slowly� and it may be di�cult to judge whether

the iterations are converging or not� One may even experience the �value

increasing� This maybe caused by numerical problems or inaccuracy 	e�g� the

upper bound �value in Step � being higher than the H� norm obtained in

Step ��� or by a poor �t of the D�scale� In any case� if the iterations converge

slowly� then one may consider going back to the initial problem and rescaling

the inputs and outputs�
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In the K�step 	Step �� where the H� controller is synthesized� it is often

desirable to use a slightly sub�optimal controller 	e�g� � is �� higher than

�min�� This yields a blend of H� and H� optimality with a controller which

usually has a steeper high�frequency roll�o� than the H� optimal controller�

������ Adjusting the performance weight

Recall that if  at a given frequency is di�erent from �� then the interpretation

is that at this frequency we can tolerate ���times more uncertainty and still

satisfy our performance objective with a margin of ��� In �synthesis� the

designer will adjust some parameter in the performance or uncertainty weights

until the peak �value is close to �� Sometimes the uncertainty is �xed� and

we e�ectively optimize worst�case performance by adjusting a parameter in

the performance weight� For example� consider the performance weight

wP 	s� �
s�M � ��B

s� ��BA

	
�����

where we want to keep M constant and �nd the highest achievable bandwidth

frequency ��B � The optimization problem becomes

max j��Bj such that 	N� 	 ���� 	
�����

where N � the interconnection matrix for the RP�problem� depends on ��B�

This may be implemented as an outer loop around the DK�iteration�

������ Fixed structure controller

Sometimes it is desirable to �nd a low�order controller with a given structure�

This may be achieved by numerical optimization where  is minimized with

respect to the controller parameters 	sometimes denoted K�iteration���

The problem here is that the optimization is not generally convex in the

parameters� Sometimes it helps to switch the optimization between minimizing

the peak of  	i�e�� kk�� and minimizing the integral square deviation of 

away from k 	i�e�� k	j�� � kk�� where k usually is close to �� The latter is

an attempt to #atten out� �

������ Example� �	synthesis with DK	iteration

We will consider again the case of multiplicative input uncertainty and

performance de�ned in terms of weighted sensitivity� as discussed in detail

in Section 
���� We noted there that this set�up is �ne for analysis� but less

suitable for controller synthesis� as it does not explicitly penalize the outputs
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from the controller� Nevertheless we will use it here as an example of �

synthesis because of its simplicity� The resulting controller will have very large

gains at high frequencies and should not be used directly for implementation�

In practice� one can add extra roll�o� to the controller 	which should work

well because the system should be robust with respect to uncertain high�

frequency dynamics�� or one may consider a more complicated problem set�up

	see Section ������

With this caution in mind� we proceed with the problem description� Again�

we use the model of the simpli�ed distillation process

G	s� �

�

��s� �
�


��
 �
���

��
�� ������
�

	
�����

The uncertainty weight wII and performance weight wP I are given in 	
������

and are shown graphically in Figure 
���� The objective is to minimize the

peak value of e�	N�� where N is given in 	
����� and e� � diagf�I ��P g�

We will consider diagonal input uncertainty 	which is always present in

any real problem�� so �I is a � 	 � diagonal matrix� �P is a full � 	 �

matrix representing the performance speci�cation� Note that we have only

three complex uncertainty blocks� so 	N� is equal to the upper bound

minD ��	DND��� in this case�

We will now use DK�iteration in attempt to obtain the �optimal controller

for this example� The appropriate commands for the MATLAB �toolbox are

listed in table 
���
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Figure ����	 Uncertainty and performance weights� Notice that there is a frequency

range where both weights are less than one in magnitude�

integrator

First the generalized plant P as given in 	
���� is constructed� It includes

the plant model� the uncertainty weight and the performance weight� but not

the controller which is to be designed 	note that N � Fl	P�K��� Then the
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Table ���	 MATLAB program to perform DK
iteration�

� Uses the Mu toolbox

G� � ����� ��	�
� ���� �����	�� � Distillation

dyn � ndsys������ ���� Dyn � daug�dyn�dyn�� � process�

G � mmult�Dyn�G���

�
� Weights�

�
wp � ndsys���� ������ ��e��������� � Approximated

wi � ndsys��� �������� ���� � integrator�

Wp � daug�wp�wp�� Wi � daug�wi�wi��

�
� Generalized plant P� �

systemnames � �G Wp Wi��

inputvar � ��ydel��� w�� � u�����

outputvar � ��Wi� Wp� �G�w���

input to G � ��u�ydel���

input to Wp � ��G�w��� input to Wi � ��u���

sysoutname � �P�� cleanupsysic � �yes��

sysic�

�
� Initialize�

�
omega � logspace������	���

blk � �� �� � ��  ��

nmeas�� nu�� gmin����� gamma�� tol������ d� � ��

dsysl � daug�d��d��eye���eye���� dsysr�dsysl�

�
� START ITERATION�

�
� STEP �� Find H�infinity optimal controller

� with given scalings�

�
DPD � mmult�dsysl�P�minv�dsysr��� gmax������gamma�

�K�Nsc�gamma� � hinfsyn�DPD�nmeas�nu�gmin�gmax�tol��

Nf�frsp�Nsc�omega�� � �Remark�

� � Without scaling�

� � N�starp�P�K����

� STEP � Compute mu using upper bound�

�
�mubnds�rowd�sens�rowp�rowg� � mu�Nf�blk��c���

vplot��liv�m��mubnds�� murp�pkvnorm�mubnds�inf�

�
� STEP �� Fit resulting D�scales�

�
�dsysl�dsysr��musynflp�dsysl�rowd�sens�blk�nmeas�nu�� � choose 
th order�

�
� New Version�

� �dsysL�dsysR��msf�Nf�mubnds�rowd�sens�blk�� � order� 
� 
� ��

� dsysl�daug�dsysL�eye���� dsysr�daug�dsysR�eye����

�
� GOTO STEP � �unless satisfied with murp��

�
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block�structure is de�ned� it consists of two �	 � blocks to represent �I and

a � 	 � block to represent �P � The scaling matrix D for DND�� then has

the structure D � diagfd�� d�� d�I�g where I� is a �	 � identity matrix� and

we may set d� � �� As initial scalings we select d�� � d�� � �� P is then

scaled with the matrix diagfD� I�g where I� is associated with the inputs and

outputs from the controller 	we do not want to scale the controller��

Iteration No� 
� Step �� With the initial scalings� D� � I � the H� software

produced a � state controller 	� states from the plant model and � from each

of the weights� with an H� norm of � � ���
��� Step �� The upper �bound

gave the �curve shown as curve Iter� �� in Figure 
���� corresponding to a

peak value of ����
�
� Step �� The frequency�dependent d�	�� and d�	��

from Step � were each �tted using a �th order transfer function� d�	w� and

the �tted �th�order transfer function 	dotted line� are shown in Figure 
��


and labelled Iter� ��� The �t is very good so it is hard to distinguish the two

curves� d� is not shown because it was found that d� 
 d� 	indicating that

the worst�case full�block �I is in fact diagonal��

Iteration No� �� Step �� With the 
 state scaling D�	s� theH� software gave

a �� state controller and kD�N	D����k� � �����
� Step �� This controller

gave a peak value of  of �����
� Step �� The resulting scalings D� were only

slightly changed from the previous iteration as can be seen from d��	�� labelled

Iter� �� in Figure 
��
�

Iteration No� �� Step �� With the scalings D�	s� the H� norm was only

slightly reduced from ����� to ������ Since the improvement was very small

and since the value was very close to the desired value of �� it was decided to

stop the iterations� The resulting controller was reduced from �� states to ��

states using balanced realization 	sysbal�� and this controller 	denoted K� in

the following� gave a peak �value of ������
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Analysis of �optimal controller K�

The �nal �curves for NP� RS and RP with controller K� are shown in

Figure 
���� The objectives of RS and NP are easily satis�ed� Furthermore�

the peak �value of ����� with controller K� is only slightly above �� so the

performance speci�cation ��	wPSp� 	 � is almost satis�ed for all possible

plants� To con�rm this we considered the nominal plant and six perturbed

plants

G�i	s� � G	s�EIi	s�

where EIi � I � wI�I is a diagonal transfer function matrix representing

input uncertainty 	with nominal EI� � I�� Recall that the uncertainty weight

is

wI	s� �

s � ���

���s� �
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Figure ����	 Setpoint response for ��optimal controller K
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which is ��� in magnitude at low frequencies� Thus� the following input gain

perturbations are allowable

EI� �
�

��� �

� ���
�

� EI� �
�

��
 �

� ���
�

� EI� �
�

��� �

� ��

�

� EI
 �
�

��
 �

� ��

�

These perturbations do not make use of the fact that wI	s� increases with

frequency� Two allowed dynamic perturbations for the diagonal elements in

wI�I are

��	s� �
�s� ���

���s� �
� ��	s� � � s � ���

���s� �

corresponding to elements in EIi of

f�	s� � � � ��	s� � ���
������s� �

���s� �

� f�	s� � � � ��	s� � ��

������s� �

���s� �
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so let us also consider

EI� �
�
f�	s� �

� f�	s�
�

� EI� �
�
f�	s� �

� f�	s�
�

The maximum singular value of the sensitivity� ��	S�i�� is shown in Figure 
���

for the nominal and six perturbed plants� and is seen to be almost below

the bound ��jwI	j�� for all seven cases 	i � �� �� illustrating that RP is

almost satis�ed� The sensitivity for the nominal plant is shown by the lower

solid line� and the others with dotted lines� At low frequencies the worst�case

corresponds closely to a plant with gains ��� and ��
� such as G��� G
�
� or G���

Overall� the worst�case of these six plants seems to be G�� � GEI�� which has

��	S�� close to the bound at low frequencies� and has a peak of about ����

	above the allowed bound of �� at ��� rad"min�

To �nd the true� worst�case performance and plant we used the MATLAB

�tools command wcperf as explained in Section 
����� on page ����

This gives a worst�case performance of maxSp kwPSpk� � ������ and the

sensitivity function for the corresponding worst�case plant G�wc	s� � G	s�	I�

wI 	s��wc	s�� found with the software is shown by the upper solid line in

Figure 
���� It has a peak value of ��	S�� of about ���� at ���� rad"min�

Remark� The �worst�case� plant is not unique� and there are many plants which

yield a worst�case performance of maxSp kwPSpk� � ������ In particular� we may

most likely 
nd plants which are more consistently �worse� at all frequencies� that

the one shown by the upper solid line in Figure �����

The time response of y� and y� to a �ltered setpoint change in y��

r� � ��	�s� ��� is shown in Figure 
��� both for the nominal case 	solid line�

and for ��� input gain uncertainty 	dashed line� using the plant G�� � GF�

	which we know is one of the worst plants�� The response is interactive� but

shows no strong sensitivity to the uncertainty� The response with uncertainty

is seen to be much better than that with the inverse�based controller studied

earlier and shown in Figure �����

Remarks on the �synthesis example�

�� By trial and error and many long nights Petter Lundstr%om was able to reduce the

peak ��value for robust performance for this problem down to about �opt � �����

�Lundstr%om� ������ The resulting design produced the curves labelled �optimal�

in Figures ���� and ����� The corresponding controller� Kopt� may be synthesized

using H��synthesis with the following third�order D�scales

d��s� � d��s� � �
������s � ���s� ������s� ������

��s� ������ � �������s� ������
d
 � � �������

�� Note that the optimal controller Kopt for this problem has an SVD�form� That

is� let G � U�V H � then Kopt � V HKdV where Kd is a diagonal matrix� This

arises because in this example case U and V are constant matrices� For more

details see Hovd ������ and Hovd et al� �������



ROBUST STABILITY AND PERFORMANCE ���

�� For this particular plant it appears that the worst�case full�block input

uncertainty is a diagonal perturbation� so we might as well have used a full

matrix for I � But this does not hold in general�

�� The H� software may encounter numerical problems if P �s� has poles on the j	�

axis� This is the reason why in the MATLAB code we have moved the integrators

�in the performance weights� slightly into the left�half plane�

�� The initial choice of scaling D � I gave a good design for this plant with an H�

norm of about ����� This scaling worked well because the inputs and outputs

had been scaled to be of unit magnitude� For a comparison� consider the original

model in Skogestad et al� ������ which was in terms of unscaled physical variables�

Gunscaled�s� �

�

��s� �
�
����� ������

����� ������
�

�������

������� has all its elements ��� times smaller than in the scaled model ��������

Therefore� using this model should give the same optimal ��value but with

controller gains ��� times larger� However� starting the DK�iteration with D � I

works very poorly in this case� The 
rst iteration yields anH� norm of ���� �Step

�� resulting in a peak ��value of ��� �Step ��� Subsequent iterations yield with

�rd and �th order 
ts of the D�scales the following peak ��values	 ����� �����

����� ����� ����� ����� ����� ����� ����� ����� At this point �after �� iterations�

the ��plot is fairly �at up to �� �rad�min� and one may be tempted to stop the

iterations� However� we are still far away from the optimal value which we know

is less than �� This demonstrates the importance of good initial D�scales� which

is related to scaling the plant model properly�

Exercise ���� Explain why the optimal ��value would be the same if we in the

model ���
��� changed the time constant of �� �min� to another value� �But the

��iteration itself would be a�ected��

���� Further remarks on �

������ Further justi�cation for the upper bound on �

For complex perturbations� the scaled singular value ��	DND��� is a tight

upper bound on 	N� in most cases� and minimizing the upper bound

kDND��k� forms the basis for the DK�iteration� However� kDND��k�

is also of interest in its own right� The reason for this� is that when all

uncertainty blocks are full and complex the upper bound provides a necessary

and su�cient condition for robustness to arbitrary�slow time�varying linear

uncertainty 	Poolla and Tikku� ������ On the other hand� the use of  assumes

the uncertain perturbations to be time�invariant� In some cases� it can be

argued that slowly time�varying uncertainty is more useful than constant

perturbations� and therefore that it is better to minimize kDND��k� instead
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of 	N�� In addition� by considering how D	�� varies with frequency� one can

�nd bounds on the allowed time variations in the perturbations�

Another interesting fact is that the use of constant D�scales 	D is not

allowed to vary with frequency�� provides a necessary and su�cient condition

for robustness to arbitrary�fast time�varying linear uncertainty 	Shamma�

������ It may be argued that such perturbations are unlikely in a practical

situation� Nevertheless� we see that if we can get an acceptable controller

design using constant D�scales� then we know that this controller will work

very well even for rapid changes in the plant model� Another advantage of

constant D�scales is that the computation of  is then straightforward and

may be solved using LMIs� see 	
����� below�

������ Real perturbations and the mixed � problem

We have not discussed in any detail the analysis and design problems which

arise with real or� more importantly� mixed real and complex perturbations�

The current algorithms� implemented in the MATLAB �toolbox� employ

a generalization of the upper bound ��	DMD���� where in addition to D

matrices� which exploit the block�diagonal structure of the perturbations�

there areG matrices� which exploit the structure of the real perturbations� The

G�matrices have real diagonal elements where � is real and zeros elsewhere�

The algorithm in the �toolbox makes use of the following result from Young�

Newlin and Doyle 	������ If there exists a � � �� a D and a G with the allowed

block�diagonal structure such that

��
�

	I �G���
�
� 	

�
�

DMD�� � jG�	I �G���
�
�

�
� � 	
�����

then 	M� � �� For more details� the reader is referred to Young 	������

There is also a corresponding DGK�iteration procedure for synthesis

	Young� ������ The practical implementation of this algorithm is however

di�cult� and a very high order �t may be required for the G�scales� An

alternative approach which involves solving a series of scaled DK�iterations

is given by 	T$�ner�Clausen� Andersen� Stoustrup and Niemann� ������

������ Computational complexity

It has been established that the computational complexity of computing 

has a combinatoric 	non�polynomial� NP�hard�� growth with the number

of parameters involved even for purely complex perturbations 	Toker and

Ozbay� ������

This does not mean� however� that practical algorithms are not possible�

and we have described practical algorithms for computing upper bounds of 

for cases with complex� real or mixed real"complex perturbations�
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As mentioned� the upper bound ��	DMD��� for complex perturbations is

generally tight� whereas the present upper bounds for mixed perturbations

	see 	
������ may be arbitrarily conservative�

There also exists a number of lower bounds for computing � Most of these

involve generating a perturbation which makes I �M� singular�

������ Discrete case

It is also possible to use  for analyzing robust performance of discrete�time

systems 	Packard and Doyle� ������ Consider a discrete time system

xk�� � Axk �Buk� yk � Cxk �Duk

The corresponding discrete transfer function matrix from u to y is N	z� �

C	zI�A���B�D� First� note that theH� norm of a discrete transfer function

is

kNk� �
� max

jzj��
��	C	zI �A���B �D�

This follows since evaluation on the j��axis in the continuous case is equivalent

to the unit circle 	jzj � �� in the discrete case� Second� note that N	z� may

be written as an LFT in terms of ��z�

N	z� � C	zI �A���B �D � Fu	H�
�

z
I�� H �

�
A B

C D
�

	
�����

Thus� by introducing �z � ��z and �z � �zI we have from the main loop

theorem 	which generalizes Theorem 
�
� that kNk� 	 � 	NP� if and only if

b�	H� 	 �� b� � diagf�z��P g 	
���
�

where �z is a matrix of repeated complex scalars� representing the discrete

frequencies�� and �P is a full complex matrix� representing the singular

value performance speci�cation� Thus� we see that the search over frequencies

in the frequency domain is avoided� but at the expense of a complicated �

calculation� The condition in 	
���
� is also referred to as the state�space 

test�
Condition 	
���
� only considers nominal performance 	NP�� However� note

that in this case nominal stability 	NS� follows as a special case 	and thus does

not need to be tested separately�� since when b�	H� � � 	NP� we have from

	
�
�� that �z
	A� � �	A� 	 �� which is the well�known stability condition

for discrete systems�

We can also generalize the treatment to consider RS and RP� In particular�

since the state�space matrices are contained explicitly in H in 	
������ it

follows that the discrete time formulation is convenient if we want to consider
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parametric uncertainty in the state�space matrices� This is discussed by

Packard and Doyle 	������ However� this results in real perturbations� and

the resulting �problem which involves repeated complex perturbations 	from

the evaluation of z on the unit circle�� a full�block complex perturbation 	from

the performance speci�cation�� and real perturbations 	from the uncertainty��

is di�cult to solve numerically both for analysis and in particular for synthesis�

For this reason the discrete�time formulation is little used in practical

applications�

������ Relationship to linear matrix inequalities �LMIs�

An example of an LMI problem is the following� Does there exist an X � XH

	where X may have additional block�diagonal structure� such that

PHXP �QHXQ�XR �RHX � S 	 � 	
�����

where P�Q�R and S are matrices� Depending on the particular problem� the 	

may be replaced by �� These inequality conditions produce a set of solutions

which are convex� which make LMIs attractive computationally� Sometimes�

the matrices P�Q�R and S are functions of a real parameter �� and we want

to know� for example� what is the largest � for which there is no solution�

The upper bound for  can be rewritten as an LMI�

��	DMD��� 	 � � �	D��MHDDMD��� 	 �� 	
�����

� D��MHDDMD�� � ��I 	 � �MHD�M � ��D
� 	 � 	
�����

which is an LMI in X � D� � �� To compute the upper bound for  based on

this LMI we need to iterate on �� It has been shown that a number of other

problems� including H� and H� optimal control problems� can be reduced to

solving LMIs� The reader is referred to Boyd� Ghaoui� Feron and Balakrishnan

	����� for more details�

���� Conclusion

In the two preceding chapters we have discussed how to represent uncertainty

and how to analyze its e�ect on stability 	RS� and performance 	RP� using

the structured singular value  as our main tool�

To analyze robust stability 	RS� of the uncertain system we made use of

the M��structure 	Figure 
��� where M represents the transfer function for

the new� feedback part generated by the uncertainty� From the small gain

theorem

RS � ��	M� 	 � �� 	
�����
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This condition is tight 	necessary and su�cient� for the special case where at

each frequency any complex � satisfying ��	�� � � is allowed� More generally�

the tight condition is

RS � 	M� 	 � �� 	
�����

where 	M� is the structured singular value 	M�� The calculation of  makes

use of the fact that � has a given block�diagonal structure� where also certain

blocks may be real 	e�g� to handle parametric uncertainty��

We de�ned robust performance 	RP� as kFl	N���k� 	 � for all allowed

��s� Since we used the H� norm in both the representation of uncertainty

and de�nition of performance� we found that RP could be viewed as a special

case of RS� and we derived
RP � 	N� 	 � �� 	
�����

where  is computed with respect to the block�diagonal structure

diagf���P g� Here � represent the uncertainty and �P is a �cticious full

uncertainty block representing the H� performance bound�

It should be noted that there are two main approaches to get a robust

design�

�� Make the system robust to some general� class of uncertainty which we do

not explicitly model� For SISO systems the classical gain and phase margins

and the peaks of S and T provide useful general robustness measures�

For MIMO systems the normalized coprime factor uncertainty provides a

good general class of uncertainty� and the associated Glover�McFarlaneH�

loop shaping design procedure� see Chapter ��� has proved itself useful in

applications�

�� The second approach has been the focus of the preceding two chapters� It

involves explicitly modelling and quantifying the uncertainty for a given

plant� Potentially� it yields better designs� but it may require a much

larger e�ort in terms of uncertainty modelling� especially if parametric

uncertainty is considered� Analysis and� in particular� synthesis using  is

also more involved�

In applications� it is therefore recommended to start with the �rst approach�

and switch to the second approach if the performance is not satisfactory� and

the uncertainty has structure such that the use of  is less conservative�

Practical �analysis

We end the chapter by providing a few recommendations on how to use the

structured singular value  in practice�

�� Because of the e�ort involved in deriving detailed uncertainty descriptions�

and the subsequent complexity in synthesizing controllers� the rule is
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to start simple� with a crude uncertainty description� and then to

see whether the performance speci�cations can be met� Only if they

don�t� should one consider more detailed uncertainty descriptions such as

parametric uncertainty 	with real perturbations��

�� The use of  implies a worst�case analysis� so one should be careful

about including too many sources of uncertainty� noise and disturbances

% otherwise it becomes very unlikely for the worst case to occur� and the

resulting analysis and design may be unnecessary conservative�

�� There is always uncertainty with respect to the inputs and outputs� so it

is generally safe� to include diagonal input and output uncertainty� The

relative 	multiplicative� form is usually very convenient in this case� where

the weight starts from say ��� and crosses � at a frequency where you have

neglected dynamics in the input or output in question�

��  is most commonly used for analysis� If  is used for synthesis� then

it is usually recommended to keep the uncertainty �xed and adjust the

parameters in the performance weight until  is close to ��
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In this chapter� we present practical procedures for multivariable controller design

which are relatively straightforward to apply and which� in our opinion� have an

important role to play in industrial control�

For industrial systems which are either SISO or loosely coupled� the classical

loop�shaping approach to control system design as described in Section ��� has been

successfully applied� But for truly multivariable systems it has only been in the last

decade� or so� that reliable generalizations of this classical approach have emerged�

��� Trade�o�s in MIMO feedback design

The shaping of multivariable transfer functions is based on the idea that a

satisfactory de�nition of gain �range of gain� for a matrix transfer function

is given by the singular values of the transfer function� By multivariable

transfer function shaping� therefore� we mean the shaping of singular values

of appropriately speci�ed transfer functions such as the loop transfer function

or possibly one or more closed�loop transfer functions� This methodology

for controller design is central to the practical procedures described in this

chapter�

In February ��	�� the IEEE Transactions on Automatic Control published

a Special Issue on Linear Multivariable Control Systems� the �rst six papers

of which were on the use of singular values in the analysis and design of

multivariable feedback systems� The paper by Doyle and Stein ���	�� was

particularly in
uential� it was primarily concerned with the fundamental

question of how to achieve the bene�ts of feedback in the presence of

unstructured uncertainty� and through the use of singular values it showed

how the classical loop�shaping ideas of feedback design could be generalized

to multivariable systems� To see how this was done� consider the one degree�

of�freedom con�guration shown in Figure ���� The plant G and controller K

interconnection is driven by reference commands r� output disturbances d�

and measurement noise n� y are the outputs to be controlled� and u are the
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control signals� In terms of the sensitivity function S � �I  GK��� and

the closed�loop transfer function T � GK�I GK��� � I � S� we have the

following important relationships�

e e

e

q� � � �� �

�
�

�

r �

�

K G

�

�
d

y

�

�

n

u

Figure ���� One degree�of�freedom feedback con	guration

y�s� � T �s�r�s�  S�s�d�s�� T �s�n�s� �����

u�s� � K�s�S�s� �r�s� � n�s�� d�s�� �����

These relationships determine several closed�loop objectives� in addition to

the requirement that K stabilizes G� namely�

�� For disturbance rejection make ���S� small�

�� For noise attenuation make ���T � small�

�� For reference tracking make ���T � �� ��T � �� ��

�� For control energy reduction make ���KS� small�

If the unstructured uncertainty in the plant model G is represented by an

additive perturbation� i�e� Gp � G  �� then a further closed�loop objective

is
�� For robust stability in the presence of an additive perturbation make ���KS�

small�

Alternatively� if the uncertainty is modelled by a multiplicative output

perturbation such that Gp � �I ��G� then we have�

�� For robust stability in the presence of a multiplicative output perturbation

make ���T � small�

The closed�loop requirements � to � cannot all be satis�ed simultaneously�

Feedback design is therefore a trade�o� over frequency of con
icting
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objectives� This is not always as di�cult as it sounds because the frequency

ranges over which the objectives are important can be quite di�erent� For

example� disturbance rejection is typically a low frequency requirement� while

noise mitigation is often only relevant at higher frequencies�

In classical loop shaping� it is the magnitude of the open�loop transfer

function L � GK which is shaped� whereas the above design requirements

are all in terms of closed�loop transfer functions� However� recall from ����	�

that

��L�� � � �
���S�
� ��L�  � �����

from which we see that ���S� � ����L� at frequencies where ��L� is much

larger than �� It also follows that at the bandwidth frequency �where

�����S�j�B�� �

p
� � ����� we have ��L�j�B�� between ���� and �����

Furthermore� from T � L�IL��� it follows that ���T � � ���L� at frequencies

where ���L� is small� Thus� over speci�ed frequency ranges� it is relatively

easy to approximate the closed�loop requirements by the following open�loop

objectives�

�� For disturbance rejection make ��GK� large� valid for frequencies at which

��GK�� ��

�� For noise attenuation make ���GK� small� valid for frequencies at which

���GK�� ��

�� For reference tracking make ��GK� large� valid for frequencies at which

��GK�� ��

�� For control energy reduction make ���K� small� valid for frequencies at

which ���GK�� ��

�� For robust stability to an additive perturbation make ���K� small� valid for

frequencies at which ���GK�� ��

�� For robust stability to a multiplicative output perturbation make ���GK�

small� valid for frequencies at which ���GK�� ��

Typically� the open�loop requirements � and � are valid and important at low

frequencies� � � � � �l � �B � while �� �� � and � are conditions which are

valid and important at high frequencies� �B � �h � � � �� as illustrated

in Figure ���� From this we see that at frequencies where we want high gains

�at low frequencies� the �worst�case� direction is related to ��GK�� whereas

as frequencies where we want low gains �at high frequencies� the �worst�case�

direction is related to ���GK��

Exercise ��� Show that the closed�loop objectives � to � can be approximated by

the open�loop objectives � to � at the speci�ed frequency ranges�

From Figure ���� it follows that the control engineer must design K so that

���GK� and ��GK� avoid the shaded regions� That is� for good performance�
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��GK�

���GK�
wh
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Performance
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log�w�

log magnitude

Robust stability� noise attenuation�

control energy reduction boundary

Figure ���� Design trade�o�s for the multivariable loop transfer function GK

��GK� must be made to lie above a performance boundary for all � up to �l�

and for robust stability ���GK� must be forced below a robustness boundary

for all � above �h� To shape the singular values of GK by selecting K is a

relatively easy task� but to do this in a way which also guarantees closed�loop

stability is in general di�cult� Closed�loop stability cannot be determined

from open�loop singular values�

For SISO systems� it is clear from Bode�s work ������ that closed�loop

stability is closely related to open�loop gain and phase near the crossover

frequency �c� where jGK�j�c�j � �� In particular� the roll�o� rate from high

to low gain at crossover is limited by phase requirements for stability� and in

practice this corresponds to a roll�o� rate less than ��dB�decade� see section

������ An immediate consequence of this is that there is a lower limit to the

di�erence between �h and �l in Figure ����

For MIMO systems a similar gain�phase relationship holds in the crossover

frequency region� but this is in terms of the eigenvalues of GK and results

in a limit on the roll�o� rate of the magnitude of the eigenvalues of GK�

not the singular values �Doyle and Stein� ��	��� The stability constraint is

therefore even more di�cult to handle in multivariable loop�shaping than

it is in classical loop�shaping� To overcome this di�culty Doyle and Stein

���	��proposed that the loop�shaping should be done with a controller that

was already known to guarantee stability� They suggested that an LQG

controller could be used in which the regulator part is designed using a

�sensitivity recovery� procedure of Kwakernaak ������ to give desirable

properties �gain and phase margins� in GK� They also gave a dual �robustness

recovery� procedure for designing the �lter in an LQG controller to give

desirable properties in KG� Recall that KG is not in general equal to GK�

which implies that stability margins vary from one break point to another in a

multivariable system� Both of these loop transfer recovery �LTR� procedures

are discussed below after �rst describing traditional LQG control�
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��� LQG control

Optimal control� building on the optimal �ltering work of Wiener in the �����s�

reached maturity in the �����s with what we now call Linear Quadratic

Gaussian or LQG Control� Its development coincided with large research

programs and considerable funding in the United States and the former

Soviet Union on space related problems� These were problems� such as rocket

manoeuvering with minimum fuel consumption� which could be well de�ned

and easily formulated as optimizations� Aerospace engineers were particularly

successful at applying LQG� but when other control engineers attempted

to use LQG on everyday industrial problems a di�erent story emerged�

Accurate plant models were frequently not available and the assumption of

white noise disturbances was not always relevant or meaningful to practising

control engineers� As a result LQG designs were sometimes not robust

enough to be used in practice� In this section� we will describe the LQG

problem and its solution� we will discuss its robustness properties� and we will

describe procedures for improving robustness� Many text books consider this

topic in far greater detail� we recommend Anderson and Moore ���	�� and

Kwakernaak and Sivan �������

����� Traditional LQG and LQR problems

In traditional LQG Control� it is assumed that the plant dynamics are linear

and known� and that the measurement noise and disturbance signals �process

noise� are stochastic with known statistical properties� That is� we have a

plant model

�x � AxBu wd �����

y � Cx wn �����

where wd and wn are the disturbance �process noise� and measurement noise

inputs respectively� which are usually assumed to be uncorrelated zero�mean

Gaussian stochastic processes with constant power spectral density matrices

W and V respectively� That is� wd and wn are white noise processes with

covariances

E
�
wd�t�wd���
T
�
� W��t� �� �����

E
�
wn�t�wn���
T
�
� V ��t� �� �����

and

E
�
wd�t�wn���
T
�
� �� E

�
wn�t�wd���
T
�
� � ���	�

where E is the expectation operator and ��t� �� is a delta function�
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The LQG control problem is to �nd the optimal control u�t� which

minimizes

J � E
�

lim
T��

�
T

Z T
�

�
xTQx uTRu

�
dt

�

�����

where Q and R are appropriately chosen constant weighting matrices �design

parameters� such that Q � QT � � and R � RT � �� The name LQG

arises from the use of a Linear model� an integral Quadratic cost function�

and Gaussian white noise processes to model disturbance signals and noise�

The solution to the LQG problem� known as the Separation Theorem or

Certainty Equivalence Principle� is surprisingly simple and elegant� It consists

of �rst determining the optimal control to a deterministic linear quadratic

regulator �LQR� problem� namely� the above LQG problem without wd and

wn� It happens that the solution to this problem can be written in terms of

the simple state feedback law

u�t� � �Krx�t� ������

where Kr is a constant matrix which is easy to compute and is clearly

independent ofW and V � the statistical properties of the plant noise� The next

step is to �nd an optimal estimate bx of the state x� so that E
n

�x� bx�T �x� bx�o

is minimized� The optimal state estimate is given by a Kalman �lter and is

independent of Q and R� The required solution to the LQG problem is then

found by replacing x by bx� to give u�t� � �Krbx�t�� We therefore see that the

LQG problem and its solution can be separated into two distinct parts� as

illustrated in Figure ����

We will now give the equations necessary to �nd the optimal state�feedback

matrix Kr and the Kalman Filter�

Optimal state feedback� The LQR problem� where all the states are

known� is the deterministic initial value problem� Given the system �x �

Ax  Bu with a given non�zero initial state x���� �nd the input signal u�t�

which the system back to the zero state �x � �� in an optimal manner� i�e��

by minimizing the deterministic cost

Jr �
Z �

�

�x�t�TQx�t�  u�t�TRu�t��dt ������

The optimal solution is for any initial state u�t� � �Krx�t� where

Kr � R��BTX ������

and X � XT � � is the unique positive�semide�nite solution of the algebraic

Riccati equation

ATX XA�XBR��BTX Q � � ������
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Figure ���� The Separation Theorem

Kalman �lter� The Kalman �lter has the structure of an ordinary state�

estimator or observer� as shown in Figure ���� with

�bx � AbxBuKf �y � Cbx� ������

The optimal choice of Kf � which minimizes E
n

�x� bx�T �x� bx�o� is given by

Kf � Y CTV �� ������

where Y � Y T � � is the unique positive�semide�nite solution of the algebraic

Riccati equation

Y AT AY � Y CTV ��CY W � � ������

LQG� Combined optimal state estimation and optimal state

feedback� The LQG control problem is to minimize J in ������ The structure

of the LQG controller is illustrated in Figure ���� its transfer function� from

y to u� is easily shown to be given by

KLQG�s�

s
�

�
A�BKr �KfC Kf

�Kr �

�

�

�
A�BR��BTX � Y CTV ��C Y CTV ��

�R��BTX �

�
������

It has the same degree �number of poles� as the plant�
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Figure ���� The LQG controller and noisy plant

Remark� The optimal gain matrices Kf and Kr exist� and the LQG�controlled

system is internally stable� provided the systems with state�space realizations

�A�B�Q
�
� � and �A�W

�
� � C� are stabilizable and detectable�

Exercise ��� For the plant and LQG controller arrangement of Figure ���� show

that the closed�loop dynamics are described by

d
dt

�
x
x� bx

�
�

�
A�BKr BKr

� A�KfC

��
x
x� bx

�
�

�
wd
wn

�

This shows that the closed�loop poles are simply the union of the poles of the

deterministic LQR system 	eigenvalues of A � BKr
 and the poles of the Kalman

�lter 	eigenvalues of A � KfC
� It is exactly as we would have expected from the

Separation Theorem�

Exercise ��� In Figure ���� a reference input r is introduced into the LQG

controller�plant con�guration and the controller is rearranged to illustrate its two

degrees�of�freedom structure� Show that the transfer function of the controller K�s�

linking
�
rT yT

�T
to u is

K�s� �

�
K��s� K��s�

�

� �Kr�sI �A�BKr �KfC�
��
�
B Kf

�
�

�
I �

�
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Figure ���� A rearranged LQG controller with reference input

If the LQG controller is stable� for which there is no guarantee� then K��s� can be

implemented as a pre��lter with K��s� the feedback controller� However� since the

degrees 	number of states
 of K��s�� K��s� and KLQG�s� are in general the same�

there is an increase in complexity on implementing K��s� and K��s� separately and

so this is not recommended�

Example ��� LQG design for inverse response process� We will here apply

LQG to the SISO inverse response process introduced in Chapter �� Recall from

	���
 that the plant model has a RHP�zero and is given by G�s� � ����s���

��s������s���
�

The standard LQG design procedure does not give a controller with integral action�

so we augment the plant G�s� with an integrator before starting the design� and

then use this integrator as part of the �nal controller� For the objective function

J �
R
�xTQx � uTRu�dt we use the weights Q � qCTC� with q � �� and R � ��

	Only the ratio between q and R matters and reducing R yields a faster response�


Our choice for Q with the term CTC implies that we are weighting the output y rather

than the states� Because we have augmented the plant with an integrator the weight R

penalizes the derivative of the input� du�dt� For the noise weights we select W � wI�

where w � �� 	process noise directly on the states
 and V � � 	measurement noise
�

	Only the ratio between w and V matter and reducing V yields a faster response�


The MATLAB �le in Table ��� was used to design the LQG controller�

The resulting closed�loop response is shown in Figure ���� The response is not

very good� nor is it easy to improve by adjusting the weights� One reason for this

is that in our formulation we have penalized du�dt which makes it di�cult for the

controller to respond quickly to changes� For a comparison� see the loop�shaping

design in Figure ����
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Figure ���� LQG design for inverse response process� Closed�loop response to unit

step in reference�

Table ���� MATLAB commands to generate LQG controller in

ExamplE ����

� Uses the Robust control toolbox

G�nd�sys������	��
� �
 �	��� � original plant�

int � nd�sys����� ������	� � integrator �moved slightly into LHP for

� � numerical reasons�

Gs � mmult�G�int� � augmented plant �with integrator�

�A�B�C�D	 � unpck�Gs� � Augmented Plant is �A�B�C�D	�

Q � ����C��C� � weight on outputs�

R � �� � weight on inputs� R small gives faster

� � response�

Kx � lqr�A�B�Q�R� � optimal regulator�

Bnoise � eye�size�A� � process noise directly on states�

W � eye�size�A� � process noise�

V � �� � measurement noise� V small gives faster

� � response�

Ke � lqe�A�Bnoise�C�W�V� � optimal estimator�

�Ac�Bc�Cc�Dc	 � reg�A�B�C�D�Kx�Ke� � combine regulator and estimator�

Ks � pck�Ac�Bc�Cc�Dc�

Klqg � mmult�Ks�int� � include integrator in final

� � controller�
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����� Robustness properties

For an LQG�controlled system with a combined Kalman �lter and LQR

control law there are no guaranteed stability margins� This was brought

starkly to the attention of the control community by Doyle ����	�� He showed�

by example� that there exist LQG combinations with arbitrarily small gain

margins�

However� for an LQR�controlled system �i�e� assuming all the states are

available and no stochastic inputs� it is well known �Kalman� ����� Safonov

and Athans� ����� that� if the weightR is chosen to be diagonal� the sensitivity

function S � �I Kr �sI �A�
��
B��� satis�es

�� �S�j��� � �� 	w ����	�

From this it can be shown that the system will have a gain margin equal

to in�nity� a gain reduction margin equal to ���� and a �minimum� phase

margin of ��� in each plant input control channel� This means that in the

LQR�controlled system u � �Krx� a complex perturbation diag
�
kie
j�i
�
can

be introduced at the plant inputs without causing instability providing

�i� 	i � � and ��� � ki ��� i � �� �� � � � �m

or
�ii� ki � � and j	ij � ���� i � �� �� � � � �m

where m is the number of plant inputs� For a single�input plant� the above

shows that the Nyquist diagram of the open�loop regulator transfer function

Kr�sI � A���B will always lie outside the unit circle with centre ��� This

was �rst shown by Kalman ������� and is illustrated in Example ��� below�

Example ��� LQR design of a 	rst order process� Consider a �rst order

process G�s� � ���s� a� with the state�space realization

�x�t� � ax�t� � u�t�� y�t� � x�t�

so that the state is directly measured� For a non�zero initial state the cost function

to be minimized is

Jr �
Z
�

�

�x� �Ru��dt

The algebraic Riccati equation 	����
 becomes 	A � a� B � �� Q � �


aX �Xa�XR��X � � � � � X� � �aRX �R � �

which since X � � gives X � aR �
p
�aR�� �R� The optimal control is given by

u � �Krx where from 	����

Kr � X�R � a�

p
a� � ��R
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and we get the closed�loop system

�x � ax� u � �
p
a� � ��R x

The closed�loop pole is located at s � �
p
a� � ��R � �� Thus� the root locus for the

optimal closed�loop pole with respect to R starts at s � �jaj for R � � 	in�nite

weight on the input
 and moves to �� along the real axis as R approaches zero�

Note that the root locus is identical for stable 	a � �
 and unstable 	a � �
 plants

G�s� with the same value of jaj� In particular� for a � � we see that the minimum

input energy needed to stabilize the plant 	corresponding to R ��
 is obtained with

the input u � ��jajx� which moves the pole from s � a to its mirror image at

s � �a�

For R small 	�cheap control�
 the gain crossover frequency of the loop transfer

function L � GKr � Kr��s � a� is given approximately by �c �
p
��R� Note also

that L�j�� has a roll�o� of �� at high frequencies� which is a general property of

LQR designs� Furthermore� the Nyquist plot of L�j�� avoids the unit disc centred

on the critical point ��� that is jS�j��j � ��j� �L�j��j � � at all frequencies� This

is obvious for the stable plant with a � � since Kr � � and then the phase of L�j��

varies from �� 	at zero frequency
 to ���� 	at in�nite frequency
� The surprise is

that it is also true for the unstable plant even though the phase of L�j�� varies from

���� to �����

Consider now the Kalman �lter shown earlier in Figure ���� Notice that it

is itself a feedback system� Arguments dual to those employed for the LQR�

controlled system can then be used to show that� if the power spectral density

matrix V is chosen to be diagonal� then at the input to the Kalman gain matrix

Kf there will be an in�nite gain margin� a gain reduction margin of ��� and

a minimum phase margin of ���� Consequently� for a single�output plant� the

Nyquist diagram of the open�loop �lter transfer function C�sI �A���Kf will

lie outside the unit circle with centre at ���

An LQR�controlled system has good stability margins at the plant inputs�

and a Kalman �lter has good stability margins at the inputs to Kf � so

why are there no guarantees for LQG control To answer this� consider the

LQG controller arrangement shown in Figure ���� The loop transfer functions

associated with the labeled points � to � are respectively

L��s� � �Kr
�
!�s��� BKr KfC

���
KfC!�s�B

� KLQG�s�G�s� ������

L��s� � G�s�KLQG�s� ������

L��s� � Kr!�s�B �regulator transfer function� ������

L	�s� � C!�s�Kf ��lter transfer function� ������

where

!�s�
�
� �sI �A��� ������



CONTROL SYSTEM DESIGN ��

e eq

q

� �

��� � �
�

�

�

�

�


 







wd wn

u y

Plant� G�s�

�
��

�

�
�

�

�

C
B

Kf!�s�

�Kr

Controller� KLQG�s�

Figure ��
� LQG�controlled plant

KLQG�s� is as in ������ and G�s� � C!�s�B is the plant model�

At points � and � we have the guaranteed robustness properties of the LQR

system and the Kalman �lter respectively� But at the actual input and output

of the plant �points � and �� where we are most interested in achieving good

stability margins� we have complex transfer functions which in general give

no guarantees of satisfactory robustness properties� Notice also that points �

and � are e�ectively inside the LQG controller which has to be implemented�

most likely as software� and so we have good stability margins where they are

not really needed and no guarantees where they are�

Fortunately� for a minimum�phase plant procedures developed by

Kwakernaak ������ and Doyle and Stein ������ ��	�� show how� by a suitable

choice of parameters� either L��s� can be made to tend asymptotically to L��s�

or L��s� can be made to approach L	�s�� These procedures are considered

next�

�
 MULTIVARIABLE FEEDBACK CONTROL

����� Loop transfer recovery �LTR� procedures

For full details of the recovery procedures� we refer the reader to the

original communications �Kwakernaak� ����� Doyle and Stein� ����� Doyle

and Stein� ��	�� or to the tutorial paper by Stein and Athans ���	��� We

will only give an outline of the major steps here� since we will argue later

that the procedures are somewhat limited for practical control system design�

For a more recent appraisal of LTR� we recommend a Special Issue of the

International Journal of Robust and Nonlinear Control� edited by Niemann

and Stoustrup �������

The LQG loop transfer function L��s� can be made to approach C!�s�Kf �

with its guaranteed stability margins� if Kr in the LQR problem is designed

to be large using the sensitivity recovery procedure of Kwakernaak ������� It

is necessary to assume that the plant model G�s� is minimum phase and that

it has at least as many inputs as outputs�

Alternatively� the LQG loop transfer function L��s� can be made to

approach Kr!�s�B by designing Kf in the Kalman �lter to be large using

the robustness recovery procedure of Doyle and Stein ������� Again� it is

necessary to assume that the plant model G�s� is minimum phase� but this

time it must have at least as many outputs as inputs�

The procedures are dual and therefore we will only consider recovering

robustness at the plant output� That is� we aim to make L��s� � G�s�KLQG�s�

approximately equal to the Kalman �lter transfer function C!�s�Kf �

First� we design a Kalman �lter whose transfer function C!�s�Kf is

desirable� This is done� in an iterative fashion� by choosing the power spectral

density matrices W and V so that the minimum singular value of C!�s�Kf

is large enough at low frequencies for good performance and its maximum

singular value is small enough at high frequencies for robust stability� as

discussed in section ���� Notice that W and V are being used here as design

parameters and their associated stochastic processes are considered to be

�ctitious� In tuningW and V we should be careful to choose V as diagonal and

W � �BS��BS�T � where S is a scaling matrix which can be used to balance�

raise� or lower the singular values� When the singular values of C!�s�Kf are

thought to be satisfactory� loop transfer recovery is achieved by designing Kr

in an LQR problem with Q � CTC and R � 
I � where 
 is a scalar� As 


tends to zero G�s�KLQG tends to the desired loop transfer function C!�s�Kf �

Much has been written on the use of LTR procedures in multivariable

control system design� But as methods for multivariable loop�shaping they

are limited in their applicability and sometimes di�cult to use� Their main

limitation is to minimum phase plants� This is because the recovery procedures

work by cancelling the plant zeros� and a cancelled non�minimum phase zero

would lead to instability� The cancellation of lightly damped zeros is also of

concern because of undesirable oscillations at these modes during transients�
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A further disadvantage is that the limiting process �
 � �� which brings

about full recovery also introduces high gains which may cause problems

with unmodelled dynamics� Because of the above disadvantages� the recovery

procedures are not usually taken to their limits �
 � �� to achieve full

recovery� but rather a class of designs obtained �for small 
� and an acceptable

one selected� The result is a somewhat ad�hoc design procedure in which the

singular values of a loop transfer function� G�s�KLQG�s� or KLQG�s�G�s��

are indirectly shaped� A more direct and intuitively appealing method for

multivariable loop�shaping will be given in section ����

��� H� and H� control

Motivated by the shortcomings of LQG control there was in the ��	��s

a signi�cant shift towards H� optimization for robust control� This

development originated from the in
uential work of Zames ���	��� although

an earlier use of H� optimization in an engineering context can be found

in Helton ������� Zames argued that the poor robustness properties of LQG

could be attributed to the integral criterion in terms of the H� norm� and

he also criticized the representation of uncertain disturbances by white noise

processes as often unrealistic� As the H� theory developed� however� the two

approaches of H� and H� control were seen to be more closely related than

originally thought� particularly in the solution process� see for example Glover

and Doyle ���		� and Doyle� Glover� Khargonekar and Francis ���	��� In this

section� we will begin with a general control problem formulation into which

we can cast all H� and H� optimizations of practical interest� The general

H� and H� problems will be described along with some speci�c and typical

control problems� It is not our intention to describe in detail the mathematical

solutions� since e�cient� commercial software for solving such problems is now

so easily available� Rather we seek to provide an understanding of some useful

problem formulations which might then be used by the reader� or modi�ed to

suit his or her application�

����� General control problem formulation

There are many ways in which feedback design problems can be cast as H�

and H� optimization problems� It is very useful therefore to have a standard

problem formulation into which any particular problem may be manipulated�

Such a general formulation is a�orded by the general con�guration shown in

Figure ��	 and discussed earlier in Chapter �� The system of Figure ��	 is
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Figure ���� General control con	guration

described by�
z
v

�
� P �s�

�
w
u

�
�

�
P���s� P���s�

P���s� P���s�
��
w
u

�
������

u � K�s�v ������

with a state�space realization of the generalized plant P given by

P

s
�

	
 A B� B�

C� D�� D��

C� D�� D��

�� ������

The signals are� u the control variables� v the measured variables� w the

exogenous signals such as disturbances wd and commands r� and z the so�

called �error� signals which are to be minimized in some sense to meet the

control objectives� As shown in ����	� the closed�loop transfer function from

w to z is given by the linear fractional transformation

z � Fl�P�K�w ������

where

Fl�P�K� � P��  P��K�I � P��K���P�� ����	�

H� and H� control involve the minimization of the H� and H� norms of

Fl�P�K� respectively� We will consider each of them in turn�

First some remarks about the algorithms used to solve such problems�

The most general� widely available and widely used algorithms for H� and

H� control problems are based on the state�space solutions in �Glover

and Doyle� ��		� and �Doyle et al�� ��	��� It is worth mentioning again

that the similarities between H� and H� theory are most clearly evident

in the aforementioned algorithms� For example� both H� and H� require

the solutions to two Riccati equations� they both give controllers of state�

dimension equal to that of the generalized plant P � and they both exhibit

a separation structure in the controller already seen in LQG control� An

algorithm for H� control problems is summarized in Section ������

The following assumptions are typically made in H� and H� problems�
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�A�� �A�B�� C�� is stabilizable and detectable�

�A�� D�� and D�� have full rank�

�A��
�
A� j�I B�

C� D��

�
has full column rank for all ��

�A��
�
A� j�I B�

C� D��

�
has full row rank for all ��

�A�� D�� � � and D�� � ��

Assumption �A�� is required for the existence of stabilizing controllersK� and

assumption �A�� is su�cient to ensure the controllers are proper and hence

realizable� Assumptions �A�� and �A�� ensure that the optimal controller does

not try to cancel poles or zeros on the imaginary axis which would result

in closed�loop instability� Assumption �A�� is conventional in H� control�

D�� � � makes P�� strictly proper� Recall that H� is the set of strictly proper

stable transfer functions� D�� � � makes P�� strictly proper and simpli�es

the formulae in the H� algorithms� In H�� neither D�� � �� nor D�� � �� is

required but they do signi�cantly simplify the algorithm formulae� If they are

not zero� an equivalent H� problem can be constructed in which they are�

see �Safonov� Limebeer and Chiang� ��	�� and �Green and Limebeer� ������

For simplicity� it is also sometimes assumed that D�� and D�� are given by

�A�� D�� �
�
�
I

�
and D�� �

�
� I

�
�

This can be achieved� without loss of generality� by a scaling of u and v and

a unitary transformation of w and z� see for example Maciejowski ���	���In

addition� for simplicity of exposition� the following additional assumptions are

sometimes made

�A�� DT
��C� � � and B�D

T
�� � ��

�A	� �A�B�� is stabilizable and �A�C�� is detectable�

Assumption �A�� is common in H� control e�g� in LQG where there are no

cross terms in the cost function �DT
��C� � ��� and the process noise and

measurement noise are uncorrelated �B�D
T
�� � ��� Notice that if �A�� holds

then �A�� and �A�� may be replaced by �A	��

Whilst the above assumptions may appear daunting� most sensibly posed

control problems will meet them� Therefore� if the software �e�g� ��tools or

the robust control toolbox of MATLAB� complains� then it probably means

that your control problem is not well formulated and you should think again�

Lastly� it should be said that H� algorithms� in general� �nd a sub�optimal

controller� That is� for a speci�ed � a stabilizing controller is found for which
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kFl�P�K�k�  �� If an optimal controller is required then the algorithm

can be used iteratively� reducing � until the minimum is reached within a

given tolerance� In general� to �nd an optimal H� controller is numerically

and theoretically complicated� This contrasts signi�cantly with H� theory� in

which the optimal controller is unique and can be found from the solution of

just two Riccati equations�

����� H� optimal control

The standard H� optimal control problem is to �nd a stabilizing controller K

which minimizes

k F �s�k� �
s

�
��

Z �
��

F �j��F �j��T d�� F � Fl�P�K� ������

For a particular problem the generalized plant P will include the plant model�

the interconnection structure� and the designer speci�ed weighting functions�

This is illustrated for the LQG problem in the next subsection�

As discussed in Section ������ and noted in Tables A�� and A�� on page ����

the H� norm can be given di�erent deterministic interpretations� It also

has the following stochastic interpretation� Suppose in the general control

con�guration that the exogenous input w is white noise of unit intensity�

That is�

E
�
w�t�w���T

�
� I��t� �� ������

The expected power in the error signal z is then given by

E
�

lim
T��

�
�T

Z T
�T

z�t�T z�t�dt
�

������

� tr E
�
z�t�z�t�T

�

�

�
��

Z �
��

F �j��F �j��T d�
�by Parseval�s Theorem�

� kFk�� � kFl�P�K�k�� ������

Thus by minimizing the H� norm� the output �or error� power of the

generalized system� due to a unit intensity white noise input� is minimized�

we are minimizing the root�mean�square �rms� value of z�
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����� LQG� a special H� optimal controller

An important special case ofH� optimal control is the LQG problem described

in subsection ������ For the stochastic system

�x � AxBu wd ������

y � Cx wn ������

where
E

�
wd�t�

wn�t�
� �
wd���
T wn���
T

� �
�

�
W �

� V

�
��t� �� ������

The LQG problem is to �nd u � K�s�y such that

J � E
�

lim
T��

�
T

Z T
�

�
xTQx uTRu

�
dt

�

������

is minimized with Q � QT � � and R � RT � ��

This problem can be cast as an H� optimization in the general framework

in the following manner� De�ne an error signal z as

z �
�
Q

�
� �

� R
�
�

� �
x
u

�

������

and represent the stochastic inputs wd� wn as�
wd
wn

�
�

�
W

�
� �

� V
�
�

�
w ����	�

where w is a white noise process of unit intensity� Then the LQG cost function

is

J � E
�

lim
T��

�
T

Z T
�

z�t�T z�t�dt
�

� kFl�P�K�k�� ������

where

z�s� � Fl�P�K�w�s� ������

and the generalized plant P is given by

P �
�
P�� P��

P�� P��
�
s
�

	���

A W

�
� � B

Q
�
� � � �

� � � R
�
�

C �

� � � � � � � � � � � � � � � �

V
�
� �

����� ������

The above formulation of the LQG problem is illustrated in the general

setting in Figure ���� With the standard assumptions for the LQG problem�

application of the general H� formulae Doyle et al� ���	�� to this formulation

gives the familiar LQG optimal controller as in �������
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Figure ���� The LQG problem formulated in the general control con	guration

����	 H� optimal control

With reference to the general control con�guration of Figure ��	� The standard

H� optimal control problem is to �nd all stabilizing controllers K which

minimize

kFl�P�K�k� � max
�

���Fl�P�K��j��� ������

As discussed in Section ������ the H�norm has several interpretations in

terms of performance� One is that it minimizes the peak of the singular value

of Fl�P �j���K�j��� It also has a time domain interpretation as the induced

�worst�case� two�norm� Let z � Fl�P�K�w� Then

kFl�P�K�k� � max

w�t��
�
kz�t�k�

kw�t�k� ������

where kz�t�k� �
qR�

�

P
i jzi�t�j�dt is the ��norm of the vector signal�

In practice� it is usually not necessary to obtain an optimal controller for

the H�problem� and it is often computationally �and theoretically� simpler

to design a sub�optimal one �i�e� one close to the optimal ones in the sense

of the H�norm�� Let �min be the minimum value of kFl�P�K�k� over all

stabilizing controllers K� Then the H� sub�optimal control problem is� given

a � � �min� �nd all stabilizing controllers K such that

kFl�P�K�k�  �

This can be solved e�ciently using the algorithm of Doyle et al� ���	��� and



CONTROL SYSTEM DESIGN ���

by reducing � iteratively� an optimal solution is approached� The algorithm is

summarized below with all the simplifying assumptions�

General H� algorithm� For the general control con�guration of

Figure ��	 described by equations �������������� with assumptions �A�� to

�A	� in Section ������ there exists a stabilizing controller K�s� such that

kFl�P�K�k�  � if and only if

�i	 X� � � is a solution to the algebraic Riccati equation

ATX� X�A CT
� C� X�����B�B

T
� �B�B

T
� �X� � � ������

such that Re �i
�
A ����B�B
T
� �B�B

T
� �X�

�
 �� 	i� and

�ii	 Y� � � is a solution to the algebraic Riccati equation

AY�  Y�A
T B�B
T
�  Y�����CT
� C� � CT
� C��Y� � � ������

such that Re �i
�
A Y�����CT
� C� � CT
� C��

�
 �� 	i� and

�iii	 
�X�Y��  ��

All such controllers are then given by K � Fl�Kc� Q� where

Kc�s�
s
�

	
 A� �Z�L� Z�B�

F� � I

�C� I �

�� ������

F� � �BT
� X�� L� � �Y�CT
� � Z� � �I � ���Y�X���� ������

A� � A ���B�B
T
� X� B�F�  Z�L�C� ����	�

and Q�s� is any stable proper transfer function such that kQk�  �� For

Q�s� � �� we get
K�s� � Kc���s� � �Z�L��sI �A����F� ������

This is called the �central� controller and has the same number of states as

the generalized plant P �s�� The central controller can be separated into a state

estimator �observer� of the form

�bx � AbxB� �
��BT
� X�bx� �z �bwworst

B�u Z�L��C�bx� y� ������

and a state feedback

u � F�bx ������

Comparing the observer in ������ with the Kalman �lter in ������ we see that

it contains an additional term B� bwworst� where bwworst can be interpreted as
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an estimate of the worst�case disturbance �exogenous input�� Note that for

the special case of H�loop shaping this extra term is not present� This is

discussed in Section ������

�
iteration� If we desire a controller that achieves �min� to within a

speci�ed tolerance� then we can perform a bisection on � until its value is

su�ciently accurate� The above result provides a test for each value of � to

determine whether it is less than �min or greater than �min�

Given all the assumptions �A�� to �A	� the above is the most simple form of

the general H� algorithm� For the more general situation� where some of the

assumptions are relaxed� the reader is referred to the original sources �Glover

and Doyle� ��		� and �Doyle et al�� ��	��� In practice� we would expect a user

to have access to commercial software such as MATLAB and its toolboxes�

In Section ���� we distinguished between two methodologies for H�

controller design� the transfer function shaping approach and the signal�based

approach� In the former� H� optimization is used to shape the singular

values of speci�ed transfer functions over frequency� The maximum singular

values are relatively easy to shape by forcing them to lie below user de�ned

bounds� thereby ensuring desirable bandwidths and roll�o� rates� In the signal�

based approach� we seek to minimize the energy in certain error signals given

a set of exogenous input signals� The latter might include the outputs of

perturbations representing uncertainty� as well as the usual disturbances�

noise� and command signals� Both of these two approaches will be considered

again in the remainder of this section� In each case we will examine a particular

problem and formulate it in the general control con�guration�

A di�culty that sometimes arises with H� control is the selection of

weights such that theH� optimal controller provides a good trade�o� between

con
icting objectives in various frequency ranges� Thus� for practical designs

it is sometimes recommended to perform only a few iterations of the H�

algorithm� The justi�cation for this is that the initial design� after one

iteration� is similar to anH� design which does trade�o� over various frequency

ranges� Therefore stopping the iterations before the optimal value is achieved

gives the design an H� 
avour which may be desirable�

����
 Mixed�sensitivity H� control

Mixed�sensitivity is the name given to transfer function shaping problems in

which the sensitivity function S � �I  GK��� is shaped along with one or

more other closed�loop transfer functions such as KS or the complementary

sensitivity function T � I �S� Earlier in this chapter� by examining a typical

one degree�of�freedom con�guration� Figure ���� we saw quite clearly the

importance of S� KS� and T �

Suppose� therefore� that we have a regulation problem in which we want

to reject a disturbance d entering at the plant output and it is assumed
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that the measurement noise is relatively insigni�cant� Tracking is not an

issue and therefore for this problem it makes sense to shape the closed�loop

transfer functions S and KS in a one degree�of�freedom setting� Recall that

S is the transfer function between d and the output� and KS the transfer

function between d and the control signals� It is important to include KS as

a mechanism for limiting the size and bandwidth of the controller� and hence

the control energy used� The size of KS is also important for robust stability

with respect to uncertainty modelled as additive plant perturbations�

The disturbance d is typically a low frequency signal� and therefore it will

be successfully rejected if the maximum singular value of S is made small

over the same low frequencies� To do this we could select a scalar low pass

�lter w��s� with a bandwidth equal to that of the disturbance� and then �nd

a stabilizing controller that minimizes kw�Sk�� This cost function alone is

not very practical� It focuses on just one closed�loop transfer function and for

plants without right�half plane zeros the optimal controller has in�nite gains�

In the presence of a nonminimum phase zero� the stability requirement will

limit the controller gains indirectly� but it is far more useful in practice to

minimize ���� w�S

w�KS
����

�

������

where w��s� is a scalar high pass �lter with a crossover frequency

approximately equal to that of the desired closed�loop bandwidth�

In general� the scalar weighting functions w��s� and w��s� can be replaced

by matrices W��s� and W��s�� This can be useful for systems with channels

of quite di�erent bandwidths when diagonal weights are recommended� but

anything more complicated is usually not worth the e�ort�

Remark� Note we have here outline a slightly di�erent way of selecting the weights

from that in Example ���� and Section ��
��� There W� � WP was selected with a

crossover frequency equal to that of the desired closed�loop bandwidth andW� �Wu

was selected as a constant� usually Wu � I�

To see how this mixed�sensitivity problem can be formulated in the general

setting� we can imagine the disturbance d as a single exogenous input and

de�ne an error signal z �
�
zT� zT�

�T
� where z� � W�y and z� � �W�u�

as illustrated in Figure ����� It is not di�cult from Figure ���� to show that

z� � W�Sw and z� � W�KSw as required� and to determine the elements of

the generalized plant P as

P�� �
�
W�

�

�
P�� �

�
W�G

�W�

�

P�� � �I P�� � �G

������

��
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Figure ����� S�KS mixed�sensitivity optimization in standard form �regulation�

where the partitioning is such that	
 z�
z�
� � �
v

�� �
�
P�� P��

P�� P��
� �
w
u

�

������

and

Fl�P�K� �
�
W�S

W�KS
�

������

Another interpretation can be put on the S�KS mixed�sensitivity

optimization as shown in the standard control con�guration of Figure �����

Here we consider a tracking problem� The exogenous input is a reference

command r� and the error signals are z� � W�e and z� � W�u� As in

the regulation problem of Figure ����� we have in this tracking problem

z� � W�Sw and z� � W�KSw� An example of the use of S�KS mixed

sensitivity minimization is given in Chapter ��� where it is used to design

a rotorcraft control law� In this helicopter problem� you will see that the

exogenous input w is passed through a weight W� before it impinges on the

system� W� is chosen to weight the input signal and not directly to shape S

or KS� This signal�based approach to weight selection is the topic of the next

sub�section�

Another useful mixed sensitivity optimization problem� again in a one

degree�of�freedom setting� is to �nd a stabilizing controller which minimizes����� W�S

W�T
�����

�

������
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Figure ����� S�KS mixed�sensitivity minimization in standard form �tracking�

The ability to be able to shape T is desirable for tracking problems and

noise attenuation� It is also important for robust stability with respect to

multiplicative perturbations at the plant output� The S�T mixed�sensitivity

minimization problem can be put into the standard control con�guration as

shown in Figure ����� The elements of the corresponding generalized plant P

are

P�� �
�
W�

�

�
P�� �

� �W�G

W�G

�

P�� � I P�� � �G

������

Exercise ��� For the cost function�����
�
W�S

W�T

W�KS
������

�

�����

formulate a standard problem� draw the corresponding control con�guration and give

expressions for the generalized plant P �

The shaping of closed�loop transfer functions as described above with the

�stacked� cost functions becomes di�cult with more than two functions� With

two� the process is relatively easy� The bandwidth requirements on each are

usually complementary and simple� stable� low�pass and high�pass �lters are

su�cient to carry out the required shaping and trade�o�s� We stress that the

weightsWi in mixed�sensitivityH� optimal control must all be stable� If they

are not� assumption �A�� in Section ����� is not satis�ed� and the general H�

algorithm is not applicable� Therefore if we wish� for example� to emphasize
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Figure ����� S�T mixed�sensitivity optimization in standard form

the minimization of S at low frequencies by weighting with a term including

integral action� we would have to approximate �
s by �
s�� � where �  �� This is

exactly what was done in Example ����� Similarly one might be interested in

weighting KS with a non�proper weight to ensure that K is small outside the

system bandwidth� But the standard assumptions preclude such a weight� The

trick here is to replace a non�proper term such as ����s� by ����s������s�

where ��  ��� A useful discussion of the tricks involved in using �unstable�

and �non�proper� weights in H� control can be found in Meinsma �������

For more complex problems� information might be given about several

exogenous signals in addition to a variety of signals to be minimized and

classes of plant perturbations to be robust against� In which case� the mixed�

sensitivity approach is not general enough and we are forced to look at more

advanced techniques such as the signal�based approach considered next�

����� Signal�based H� control

The signal�based approach to controller design is very general and is

appropriate for multivariable problems in which several objectives must be

taken into account simultaneously� In this approach� we de�ne the plant and

possibly the model uncertainty� we de�ne the class of external signals a�ecting

the system and we de�ne the norm of the error signals we want to keep small�

The focus of attention has moved to the size of signals and away from the size

and bandwidth of selected closed�loop transfer functions�

Weights are used to describe the expected or known frequency content of
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exogenous signals and the desired frequency content of error signals� Weights

are also used if a perturbation is used to model uncertainty� as in Figure �����

where G is the nominal model� W is a weighting function that captures the

relative model �delity over frequency� and � represents unmodelled dynamics

usually normalized via W so that k�k�  �� see Chapter 	 for more details�

� As in mixed�sensitivity H� control� the weights in signal�based H� control

need to be stable and proper for the general H� algorithm to be applicable�

eq �

� �

� � �

W �

�

�

G

Figure ����� Multiplicative dynamic uncertainty model

LQG control is a simple example of the signal�based approach� in which

the exogenous signals are assumed to be stochastic �or alternatively impulses

in a deterministic setting� and the error signals are measured in terms of

the ��norm� As we have already seen� the weights Q and R are constant� but

LQG can be generalized to include frequency dependent weights on the signals

leading to what is sometimes called Wiener�Hopf design� or simplyH� control�

When we consider a system�s response to persistent sinusoidal signals of

varying frequency� or when we consider the induced ��norm between the

exogenous input signals and the error signals� we are required to minimize the

H� norm� In the absence of model uncertainty� there does not appear to be

an overwhelming case for using the H� norm rather than the more traditional

H� norm� However� when uncertainty is addressed� as it always should be� H�

is clearly the more natural approach using component uncertainty models as

in Figure �����

A typical problem using the signal�based approach to H� control is

illustrated in the interconnection diagram of Figure ����� G and Gd are

nominal models of the plant and disturbance dynamics� andK is the controller

to be designed� The weightsWd� Wi and Wn may be constant or dynamic and

describe the relative importance and"or frequency content of the disturbances�

set points� and noise signals� The weight Wref is a desired closed�loop transfer

function between the weighted set point rs and the actual output y� The

weights We and Wu re
ect the desired frequency content of the error �y� yd�

and the control signals u� respectively� The problem can be cast as a standard
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Figure ����� A signal�based H� control problem

H� optimization in the general control con�guration by de�ning

w �
	
 d

r
n

�� z �
�
z�
z�

�

v �
�
rs
ym

�
u � u

������

in the general setting of Figure ��	�

Suppose we now introduce a multiplicative dynamic uncertainty model at

the input to the plant as shown in Figure ����� The problem we now want to

solve is� �nd a stabilizing controller K such that the H� norm of the transfer

function between w and z is less than � for all �� where k�k�  �� We have

assumed in this statement that the signal weights have normalized the ��norm

of the exogenous input signals to unity� This problem is a non�standard H�

optimization� It is a Robust Performance problem for which the ��synthesis

procedure� outlined in Chapter 	� can be applied� Mathematically� we require

the structured singular value
��M�j���  ��	� ������

where M is the transfer function matrix between	��

d
r
n
�

���� and

	
 z�
z�
�

�� ������

and the associated block diagonal perturbation has � blocks� a �ctitious

performance block between
�
dT rT nT

�T
and

�
zT� zT�

�T
� and an
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Figure ����� An H� robust performance problem

uncertainty block � between � and �� Whilst the structured singular value is

a useful analysis tool for assessing designs� ��synthesis is sometimes di�cult

to use and often too complex for the practical problem at hand� In its full

generality� the ��synthesis problem is not yet solved mathematically� where

solutions exist the controllers tend to be of very high order� the algorithms may

not always converge and design problems are sometimes di�cult to formulate

directly�

For many industrial control problems� a design procedure is required

which o�ers more 
exibility than mixed�sensitivity H� control� but is not

as complicated as ��synthesis� For simplicity� it should be based on classical

loop�shaping ideas and it should not be limited in its applications like LTR

procedures� In the next section� we present such a controller design procedure�

��� H� loop�shaping design

The loop�shaping design procedure described in this section is based on H�

robust stabilization combined with classical loop�shaping� as proposed by

McFarlane and Glover ������� It is essentially a two stage design process�

First� the open�loop plant is augmented by pre and post�compensators to give

a desired shape to the singular values of the open�loop frequency response�

Then the resulting shaped plant is robustly stabilized using H� optimization�

An important advantage is that no problem�dependent uncertainty modelling�

or weight selection� is required in this second step�

We will begin the section with a description of the H� robust stabilization

problem �Glover and McFarlane� ��	��� This is a particularly nice problem
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because it does not require ��iteration for its solution� and explicit formulae

for the corresponding controllers are available� The formulae are relatively

simple and so will be presented in full�

Following this� a step by step procedure for H� loop�shaping design is

presented� This systematic procedure has its origin in the Ph�D� thesis of

Hyde ������ and has since been successfully applied to several industrial

problems� The procedure synthesizes what is in e�ect a single degree�of�

freedom controller� This can be a limitation if there are stringent requirements

on command following� However� as shown by Limebeer� Kasenally and

Perkins ������� the procedure can be extended by introducing a second degree�

of�freedom in the controller and formulating a standard H� optimization

problem which allows one to trade o� robust stabilization against closed�loop

model�matching� We will describe this two degrees�of�freedom extension and

further show that such controllers have a special observer�based structure

which can be taken advantage of in controller implementation�

��	�� Robust stabilization

For multivariable systems� classical gain and phase margins are unreliable

indicators of robust stability when de�ned for each channel �or loop�� taken

one at a time� because simultaneous perturbations in more than one loop are

not then catered for� More general perturbations like diagfkig and diag
�
ej�i

�
�

as discussed in section ������ are required to capture the uncertainty� but even

these are limited� It is now common practice� as seen in Chapter 	� to model

uncertainty by norm�bounded dynamic matrix perturbations� Robustness

levels can then be quanti�ed in terms of the maximum singular values of

various closed�loop transfer functions�

The associated robustness tests� for a single perturbation� as described in

Chapter 	� require the perturbation to be stable� This restricts the plant

and perturbed plant models to have the same number of unstable poles� To

overcome this� two stable perturbations can be used� one on each of the factors

in a coprime factorization of the plant� as shown in section 	����� Although this

uncertainty description seems unrealistic and less intuitive than the others�

it is in fact quite general� and for our purposes it leads to a very useful H�

robust stabilization problem� Before presenting the problem� we will �rst recall

the uncertainty model given in �	�����

We will consider the stabilization of a plant G which has a normalized left

coprime factorization �as discussed in Section ������

G � M��N ������

where we have dropped the subscript from M and N for simplicity� A
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Figure ����� H� robust stabilization problem

perturbed plant model Gp can then be written as

Gp � �M �M ����N �N � ������

where �M � �N are stable unknown transfer functions which represent

the uncertainty in the nominal plant model G� The objective of robust

stabilization it to stabilize not only the nominal model G� but a family of

perturbed plants de�ned by

Gp �
�
�M �M ����N �N � � k � �N �M

� k�  �
�
������

where � � � is then the stability margin� To maximize this stability margin

is the problem of robust stabilization of normalized coprime factor plant

descriptions as introduced and solved by Glover and McFarlane ���	���

For the perturbed feedback system of Figure ����� as already derived in

�	����� the stability property is robust if and only if the nominal feedback

system is stable and
�
�
�

����� K
I

�
�I �GK���M��

����
�

� �
�

������

Notice that � is theH� norm from � to
�
u
y

�
and �I�GK��� is the sensitivity

function for this positive feedback arrangement�

The lowest achievable value of � and the corresponding maximum stability

margin � are given by Glover and McFarlane ���	�� as

�min � ���max �
n

�� k�N M �k�H
o� �
�

� ��  
�XZ��
�
� ������

where k � kH denotes Hankel norm� 
 denotes the spectral radius �maximum

eigenvalue�� and for a minimal state�space realization �A�B�C�D� of G� Z is
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the unique positive de�nite solution to the algebraic Riccati equation

�A�BS��DTC�Z  Z�A�BS��DTC�T � ZCTR��CZ BS��BT � �

������

where

R � I DDT � S � I DTD

and X is the unique positive de�nite solution of the following algebraic Riccati

equation

�A�BS��DTC�TX X�A�BS��DTC��XBS��BTX  CTR��C � �

����	�

Notice that the formulae simplify considerable for a strictly proper plant� i�e�

when D � ��

A controller �the #central� controller in McFarlane and Glover ������� which

guarantees that ����� K
I

�
�I �GK���M��

����
�

� � ������

for a speci�ed � � �min� is given by

K

s
�

�
ABF  ���LT ���ZCT �C DF � ���LT ���ZCT

BTX �DT

�
������

F � �S���DTC  BTX� ������

L � ��� ���I XZ� ������

The MATLAB function coprimeunc� listed in Table ���� can be used to

generate the controller in ������� It is important to emphasize that since we

can compute �min from ������ we get an explicit solution by solving just two

Riccati equations �aresolv� and avoid the ��iteration needed to solve the

general H� problem�

Remark � An example of the use of coprimeunc is given in Example ��� below�

Remark � Notice that� if � � �min in ������� then L � ���XZ�I � XZ�

which is singular� and thus ������ cannot be implemented� If for some unusual

reason the truly optimal controller is required� then this problem can be resolved

using a descriptor system approach� the details of which can be found in �Chiang

and Safonov� ����� Safonov� Jonckheere� Verma and Limebeer� ���� Safonov

et al�� �����

Remark � Alternatively� from Glover and McFarlane ������ all controllers

achieving � � �min are given by K � UV ��� where U and V are stable� �U� V �

is a right coprime factorization of K� and U� V satisfy����� �N�

M�

�
�

�
U
V

�����
�

� k�N M �kH ������
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Table ���� MATLAB function to generate the H� controller in ��
���

� Uses the Robust control or Mu toolbox

function �Ac�Bc�Cc�Dc�gammin	�coprimeunc�a�b�c�d�gamrel

�
� Finds the controller which optimally robustifies a given shaped plant

� in terms of tolerating maximum coprime uncertainty�

�
� INPUTS�

� a�b�c�d� State�space description of �shaped plant�

� gamrel� gamma used is gamrel�gammin �typical gamrel����

�
� OUTPUTS�

� Ac�Bc�Cc�Dc� �Robustifying� controller �positive feedback�

�
S�eye�size�d��d�d��d�

R�eye�size�d�d��d�d��

A��a�b�inv�S�d��c�

Q��c��inv�R�c�

R��b�inv�S�b��

�x��x��eig�xerr�wellposed�X	 � aresolv�A��Q��R��

� Alt� Mu toolbox� �x��x�� fail� reig min	 � ric schr��A� �R�� �Q� �A��	� X � x��x��

�x��x��eig�xerr�wellposed�Z	 � aresolv�A���R��Q��

� Alt� Mu toolbox� �x�� x�� fail� reig min	 � ric schr��A�� �Q�� �R� �A�	� Z � x��x��

� Optimal gamma�

gammin�sqrt���max�eig�X�Z

� Use higher gamma�����

gam � gamrel�gammin�

L����gam�gam�eye�size�X�Z � X�Z�

F��inv�S��d��c�b��X�

Ac�a�b�F�gam�gam�inv�L��Z�c���c�d�F�

Bc�gam�gam�inv�L��Z�c��

Cc�b��X�

Dc��d��
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The determination of U and V is a Nehari extension problem� that is� a problem

in which an unstable transfer function R�s� is approximated by a stable transfer

function Q�s�� such that kR � Qk� is minimized� the minimum beingkR�kH � A

solution to this problem is given in Glover ���
��

Exercise ��� Formulate the H� robust stabilization problem in the general control

con�guration of Figure ���� and determine a transfer function expression and a state�

space realization for the generalized plant P �

��	�� A systematic H� loop�shaping design procedure

Robust stabilization alone is not much use in practice because the designer is

not able to specify any performance requirements� To do this McFarlane and

Glover ������ proposed pre� and post�compensating the plant to shape the

open�loop singular values prior to robust stabilization of the �shaped� plant�

If W� and W� are the pre� and post�compensators respectively� then the

shaped plant Gs is given by

Gs �W�GW� ������

as shown in Figure ����� The controller Ks is synthesized by solving the

�

� � �

Gs

W� G W�

Ks

Figure ���
� The shaped plant and controller

robust stabilization problem of section ����� for the shaped plant Gs with a

normalized left coprime factorization Gs � M��
s Ns� The feedback controller

for the plant G is then K � W�KsW�� The above procedure contains all the

essential ingredients of classical loop�shaping� and can easily be implemented

using the formulae already presented and reliable algorithms in� for example�

MATLAB�

We �rst present a simple SISO example� where W� � � and we select W� to

get acceptable disturbance rejection� We will afterwards present a systematic

procedure for selecting the weights W� and W��

Example ��� Glover�McFarlane H� loop shaping for the disturbance

process� Consider the disturbance process in 	����
 which was studied in detail
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Figure ����� Glover�McFarlane loop�shaping design for the disturbance process�

Dashed line� Initial �shaped� design� Gs� Solid line� �Robusti	ed� design� GsKs�

in Chapter ��

G�s� �

���

��s� �

�

�����s� ���
� Gd�s� �

���

��s� �

������

We want as good disturbance rejection as possible� and the gain crossover frequency

wc for the �nal design should be about �� �rad�s��

In Example ��� we argued that for acceptable disturbance rejection with minimum

input usage� the loop shape 	�shaped plant�
 should be similar to jGdj� Neglecting the

high�frequency dynamics in G�s� this yields an initial weight W� � ���� To improve

the performance at low frequencies we add integral action� and we also add a phase�

advance term s� � to reduce the slope for L from �� at lower frequencies to about

�� at crossover� Finally� to make the response a little faster we multiply the gain by

a factor � to get the weight

W� �
s� �

s

������

This yields a shaped plant Gs � GW� with a gain crossover frequency of ��� �rad�s��

and the magnitude of Gs�j�� is shown by the dashed line in Figure ���� 	a
� The

response to a unit step in the disturbance response is shown by the dashed line in

Figure ���� 	b
� and� as may expected� the response with the �controller� K � W�

is too oscillatory�

We now �robustify� this design so that the shaped plant tolerates as much H�

coprime factor uncertainty as possible� This may be done with the MATLAB 	�

toolbox using the command ncfsyn or with the MATLAB Robust Control toolbox

using the function coprimeunc given in Table ����

�Ac�Bc�Cc�Dc�gammin	�coprimeunc�A�B�C�D�gamrel

Here the shaped plant Gs � GW� has state�space matrices A�B�C and D� and the

function returns the �robustifying� positive feedback controller Ks with state�space

matrices Ac�Bc� Cc and Dc� In general� Ks has the same number of poles 	states


as Gs� gamrel is the value of � relative to �min� and was in our case selected as
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���� The returned variable gammin 	�min
 is the inverse of the magnitude of coprime

uncertainty we can tolerate before we get instability� We want �min � � as small

as possible� and we usually require that �min is less than 
� corresponding to ���

allowed coprime uncertainty�

Applying this to our example gives �min � ���
 and an overall controller K �

W�Ks with � states 	Gs� and thus Ks� has 
 states� and W� has � state
� The

corresponding loop shape jGsKsj is shown by the solid line in Figure ���� 	a
� We

see that the change in the loop shape is small� and we note with interest that the

slope around crossover is somewhat gentler� This translates into better margins� The

gain margin 	GM
 is improved from ���� 	for Gs
 to ��
 	for GsKs
� and the phase

margin 	PM
 is improved from ����� to ������ The gain crossover frequency wc is

reduced slightly from ��� to ���� �rad�s�� The corresponding disturbance response is

shown in Figure ���� 	b
 and is seen to be much improved�

Remark� The response with the controller K � W�Ks is quite similar to that

the loop�shaping controller K��s� designed in Chapter � 	see curves L� and y� in

Figure ����
� The response for reference tracking with controller K � W�Ks is not

shown� it is also very similar to that with K� 	see Figure ����
� but it has a slightly

smaller overshoot of ��� rather than �
�� To reduce this overshoot we would need

to use a two degrees�of�freedom controller�

Exercise �� Design an H� loop�shaping controller for the disturbance process in

	���
 using the weight W� in 	���
� i�e�generate the plots corresponding to those in

Figure ����� Next� repeat the design with W� � ��s����s 	which results in an initial

Gs which would yield closed�loop instability with Kc � �
� Compute the gain and

phase margins and compare the disturbance and reference responses� In both cases

�nd �c and use 	����
 to compute the maximum delay that can be tolerated in the

plant before instability arises�

Skill is required in the selection of the weights �pre� and post�compensators

W� and W��� but experience on real applications has shown that robust

controllers can be designed with relatively little e�ort by following a few simple

rules� An excellent illustration of this is given in the thesis of Hyde ������

who worked with Glover on the robust control of VSTOL �vertical and"or

short take�o� and landing� aircraft� Their work culminated in a successful


ight test of H� loop�shaping control laws implemented on a Harrier jump�

jet research vehicle at the UK Defence Research Agency� Bedford in ����� The

H� loop�shaping procedure has also been extensively studied and worked on

by Postlethwaite and Walker ������ in their work on advanced control of high

performance helicopters� also for the UK DRA at Bedford� This application

is discussed in detail in the helicopter case study in Section �����

Based on these� and other studies� it is recommended that the following

systematic procedure is followed when using H� loop�shaping design�

�� Scale the plant outputs and inputs� This is very important for most design

procedures and is sometimes forgotten� In general� scaling improves the
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conditioning of the design problem� it enables meaningful analysis to be

made of the robustness properties of the feedback system in the frequency

domain� and for loop�shaping it can simplify the selection of weights� There

are a variety of methods available including normalization with respect to

the magnitude of the maximum or average value of the signal in question�

Scaling with respect to maximum values is important if the controllability

analysis of earlier chapters is to be used� However� if one is to go straight

to a design the following variation has proved useful in practice�

�a� The outputs are scaled such that equal magnitudes of cross�coupling

into each of the outputs is equally undesirable�

�b� Each input is scaled by a given percentage �say ��$� of its expected

range of operation� That is� the inputs are scaled to re
ect the relative

actuator capabilities� An example of this type of scaling is given in the

aero�engine case study of Chapter ���

�� Order the inputs and outputs so that the plant is as diagonal as possible�

The relative gain array can be useful here� The purpose of this pseudo�

diagonalization is to ease the design of the pre� and post�compensators

which� for simplicity� will be chosen to be diagonal�

Next� we discuss the selection of weights to obtain the shaped plant Gs �

W�GW� where

W� � WpWaWg ������

�� Select the elements of diagonal pre� and post�compensators Wp and W� so

that the singular values of W�GWp are desirable� This would normally

mean high gain at low frequencies� roll�o� rates of approximately ��

dB"decade �a slope of about ��� at the desired bandwidth�s�� with higher

rates at high frequencies� Some trial and error is involved here�W� is usually

chosen as a constant� re
ecting the relative importance of the outputs to be

controlled and the other measurements being fed back to the controller� For

example� if there are feedback measurements of two outputs to be controlled

and a velocity signal� then W� might be chosen to be diag��� �� ����� where

��� is in the velocity signal channel� Wp contains the dynamic shaping�

Integral action� for low frequency performance� phase�advance for reducing

the roll�o� rates at crossover� and phase�lag to increase the roll�o� rates at

high frequencies should all be placed in Wp if desired� The weights should

be chosen so that no unstable hidden modes are created in Gs�

�� Optional� Align the singular values at a desired bandwidth using a further

constant weight Wa cascaded with Wp� This is e�ectively a constant

decoupler and should not be used if the plant is ill�conditioned in

terms of large RGA elements �see Section �������� The align algorithm
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of Kouvaritakis ������ which has been implemented in the MATLAB

Multivariable Frequency�Domain Toolbox is recommended�

�� Optional� Introduce an additional gain matrix Wg cascaded with Wa to

provide control over actuator usage� Wg is diagonal and is adjusted so that

actuator rate limits are not exceeded for reference demands and typical

disturbances on the scaled plant outputs� This requires some trial and

error�

�� Robustly stabilize the shaped plant Gs �W�GW�� where W� � WpWaWg �

using the formulae of the previous section� First� calculate the maximum

stability margin �max � ���min� If the margin is too small� �max  ����� then

go back to step � and modify the weights� Otherwise� select � � �min� by

about ��$� and synthesize a suboptimal controller using equation �������

There is usually no advantage to be gained by using the optimal controller�

When �max � ���� �respectively �min  �� the design is usually successful�

In this case� at least ��$ coprime uncertainty is allowed� and we also

�nd that the shape of the open�loop singular values will not have changed

much after robust stabilization� A small value of �max indicates that the

chosen singular value loop�shapes are incompatible with robust stability

requirements� That the loop�shapes do not change much following robust

stabilization if � is small �� large�� is justi�ed theoretically in McFarlane

and Glover �������

�� Analyze the design and if all the speci�cations are not met make further

modi�cations to the weights�

	� Implement the controller� The con�guration shown in Figure ���� has been

found useful when compared with the conventional set up in Figure ����

This is because the references do not directly excite the dynamics of Ks�

f r� � � � �

��

�

r Ks���W����

�

�
us

W�

u

G

y

W�

ys

Ks

Figure ����� A practical implementation of the loop�shaping controller

which can result in large amounts of overshoot �classical derivative kick��

The constant pre�lter ensures a steady state gain of � between r and y�

assuming integral action in W� or G�

We will conclude this subsection with a summary of the advantages o�ered

by the above H� loop�shaping design procedure�
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 It is relatively easy to use� being based on classical loop�shaping ideas�

 There exists a closed formula for the H� optimal cost �min� which in turn

corresponds to a maximum stability margin �max � ���min�

 No ��iteration is required in the solution�

 Except for special systems� ones with all�pass factors� there are no pole�

zero cancellations between the plant and controller �Sefton and Glover�

����� Tsai� Geddes and Postlethwaite� ������ Pole�zeros cancellations are

common in many H� control problems and are a problem when the plant

has lightly damped modes�

Exercise ��� First a de�nition and some useful properties�

De�nition� A stable transfer function matrix H�s� is inner if H�H � I� and

co�inner if HH� � I�

Properties� The H� norm is invariant under right multiplication by a co�inner

function and under left multiplication by an inner function�

Equipped with the above de�nition and properties� show for the shaped Gs �

M��
s Ns� that the matrix

�
Ms Ns

�
is co�inner and hence that the H� loop�

shaping cost function ����� Ks
I

�
�I �GsKs�
��M��
s

����
�

�����

is equivalent to ����� KsSs KsSsGs

Ss SsGs

�����
�

������

where Ss � �I � GsKs�
��� This shows that the problem of �nding a stabilizing

controller to minimise the ��block cost function 	���
 has an exact solution�

Whilst it is highly desirable� from a computational point of view� to have

exact solutions for H� optimization problems� such problems are rare� We

are fortunate that the above robust stabilization problem is also one of great

practical signi�cance�

��	�� Two degrees�of�freedom controllers

Many control design problems possess two degrees�of�freedom� on the one

hand� measurement or feedback signals and on the other� commands or

references� Sometimes� one degree�of�freedom is left out of the design� and

the controller is driven �for example� by an error signal i�e� the di�erence

between a command and the output� But in cases where stringent time�

domain speci�cations are set on the output response� a one degree�of�freedom

structure may not be su�cient� A general two degrees�of�freedom feedback

control scheme is depicted in Figure ����� The commands and feedbacks enter

the controller separately and are independently processed�
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q �

�
�r

�Controller G

y

Figure ����� General two degrees�of�freedom feedback control scheme

The H� loop�shaping design procedure of McFarlane and Glover is a one

degree�of�freedom design� although as we showed in Figure ���� a simple

constant pre�lter can easily be implemented for steady�state accuracy� For

many tracking problems� however� this will not be su�cient and a dynamic two

degrees�of�freedom design is required� In �Hoyle� Hyde and Limebeer� �����

and �Limebeer et al�� ����� a two degrees�of�freedom extension of the Glover�

McFarlane procedure was proposed to enhance the model�matching properties

of the closed�loop� With this the feedback part of the controller is designed

to meet robust stability and disturbance rejection requirements in a manner

similar to the one degree�of�freedom loop�shaping design procedure except

that only a precompensator weight W is used� It is assumed that the

measured outputs and the outputs to be controlled are the same although

this assumption can be removed as shown later� An additional pre�lter part

of the controller is then introduced to force the response of the closed�loop

system to follow that of a speci�ed model� Tref � often called the reference

model� Both parts of the controller are synthesized by solving the design

problem illustrated in Figure �����

c c
c

cq q q� � � �
� � �

�� � �

�

� �

�

�

�

�

r �


I K�

�
�

us
Ns M��
s

�Ns

�Ms

� �
�

�
K�

Tref

y �
�


I e

�

Figure ����� Two degrees�of�freedom H� loop�shaping design problem

The design problem is to �nd the stabilizing controller K �
�
K� K�

�

for the shaped plant Gs � GW�� with a normalized coprime factorization

Gs �M��
s Ns� which minimizes theH� norm of the transfer function between

the signals
�
rT �T

�T
and

�
uTs yT eT

�T
as de�ned in Figure �����
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The problem is easily cast into the general control con�guration and solved

suboptimally using standard methods and ��iteration� We will show this later�

The control signal to the shaped plant us is given by

us �

�
K� K�

� �
�
y

�

���	��

where K� is the pre�lter� K� is the feedback controller� � is the scaled

reference� and y is the measured output� The purpose of the pre�lter is to

ensure that

k�I �GsK��
��GsK� � Trefk� � �
�� ���	��

Tref is the desired closed�loop transfer function selected by the designer to

introduce time�domain speci�cations �desired response characteristics� into

the design process� and 
 is a scalar parameter that the designer can increase

to place more emphasis on model matching in the optimization at the expense

of robustness�

From Figure ���� and a little bit of algebra� we have that	
 us
y
e

�� �
	
 
�I �K�Gs�
��K� K��I �GsK��
��M��
s


�I �GsK��
��GsK� �I �GsK��
��M��
s


�
�
�I �GsK��
��GsK� � Tref
�

�I �GsK��
��M��
s

��� r
�

�
���	��

In the optimization� the H� norm of this block matrix transfer function is

minimized�

Notice that the ����� and ����� blocks taken together are associated with

robust stabilization and the ����� block corresponds to model�matching� In

addition� the ����� and ����� blocks help to limit actuator usage and the

����� block is linked to the robustness of the loop� For 
 � �� the problem

reverts to minimizing the H� norm of the transfer function between � and�
uTs yT

�T
� namely� the robust stabilization problem� and the two degrees�

of�freedom controller reduces to an ordinary H� loop�shaping controller�

To put the two degrees�of�freedom design problem into the standard control

con�guration� we can de�ne a generalized plant P by	�����

us
y
e
� � �
�
y

������� �

�
P�� P��

P�� P��
�	�
 r
�
� � �
us

��� ���	��

�

	����

� � I

� M��
s Gs

�
�Tref 
M��
s 
Gs

� � � � � � � � � � � � � � � �


I � �

� M��
s Gs

������
	�
 r

�
� � �
us

��� ���	��
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Further� if the shaped plant Gs and the desired stable closed�loop transfer

function Tref have the following state�space realizations

Gs

s
�

�
As Bs

Cs Ds

�

���	��

Tref

s
�

�
Ar Br

Cr Dr

�

���	��

then P may be realized by	����������

As � � �BsD
T
s  ZsC

T
s �R

����

s Bs

� Ar Br � �

� � � � I

Cs � � R
���
s Ds


Cs �
�Cr �
�Dr 
R
���
s 
Ds

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � 
I � �

Cs � � R
���
s Ds

������������
���	��

and used in standard H� algorithms �Doyle et al�� ��	�� to synthesize the

controller K� Note that Rs � I  DsD
T
s � and Zs is the unique positive

de�nite solution to the generalized Riccati equation ������ for Gs� MATLAB

commands to synthesize the controller are given in Table ����

Remark � We stress that we here aim at minimizing the H� norm of the entire

transfer function in ������ An alternative problem would be to minimize the H�

norm form r to e subject to an upper bound on k � �Ns

�Ms

� k�� This problem

would involve the structured singular value� and the optimal controller could be

obtained from solving a series of H�optimization problems using DK�iteration� see

Section ����

Remark � Extra measurements� In some cases� a designer has more plant

outputs available as measurements than have to be controlled� These extra

measurements can often make the design problem easier �e�g� velocity feedback� and

therefore when bene	cial should be used by the feedback controller K�� This can be

accommodated in the two degrees�of�freedom design procedure by introducing an

output selection matrix Wo� This matrix selects from the output measurements y

only those which are to be controlled and hence included in the model�matching part

of the optimization� In Figure ����� Wo is introduced between y and the summing

junction� In the optimization problem� only the equation for the error e is a�ected�

and in the realization ����� for P one simply replaces �Cs by �WoCs and �R
���

s by

�WoR
���

s in the 	fth row� For example� if there are four feedback measurements and

only the 	rst three are to be controlled then

Wo �
�
� � � �

� � � �

� � � �
�

����
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Table ���� MATLAB commands to synthesize the H� ��DOF controller

in �����

� Uses MATLAB mu toolbox

�
� INPUTS� Shaped plant Gs

� Reference model Tref

�
� OUTPUT� Two degrees�of�freedom controller K

�
� Coprime factorization of Gs

�
�As�Bs�Cs�Ds	 � unpck�Gs�

�Ar�Br�Cr�Dr	 � unpck�Tref�

�nr�nr	 � size�Ar� �lr�mr	 � size�Dr�

�ns�ns	 � size�As� �ls�ms	 � size�Ds�

Rs � eye�ls�Ds�Ds��� Ss � eye�ms�Ds��Ds�

A� � �As � Bs�inv�Ss�Ds��Cs�

R� � Cs��inv�Rs�Cs� Q� � Bs�inv�Ss�Bs��

�Z�� Z�� fail� reig min	 � ric schr��A�� �R�� �Q� �A�	� Zs � Z��Z��

� Alt� Robust toolbox� �Z��Z��eig�zerr�wellposed�Zs	 � aresolv�A���Q��R��

�
� Set rho to � and build the generalized plant P in �����

�
rho���

A � daug�As�Ar�

B� � �zeros�ns�mr ��Bs�Ds���Zs�Cs��inv�sqrt�Rs�

Br zeros�nr�ls	�

B� � �Bs�zeros�nr�ms	�

C� � �zeros�ms�ns�nr�Cs zeros�ls�nr�rho�Cs �rho�rho�Cr	�

C� � �zeros�mr�ns�nr�Cs zeros�ls�nr	�

D�� � �zeros�ms�mr�ls�zeros�ls�mr sqrt�Rs��rho�rho�Dr rho�sqrt�Rs	�

D�� � �eye�ms�Ds�rho�Ds	�

D�� � �rho�eye�mr zeros�mr�ls�zeros�ls�mr sqrt�Rs	�

D�� � �zeros�mr�ms�Ds	�

B � �B� B�	� C � �C��C�	� D � �D�� D���D�� D��	�

P � pck�A�B�C�D�

� Alternative� Use sysic to generate P from Figure ����

� but may get extra states� since states from Gs enter twice�

�
� Gamma iterations to obtain H�infinity controller

�
�l��m�	 � size�D��� �l��m�	 � size�D���

nmeas � l�� ncon � m�� gmin � �� gmax � 
� gtol � �����

�K� Gnclp� gam	 � hinfsyn�P� nmeas� ncon� gmin� gmax� gtol�

� Alt� Robust toolbox� hinfopt

�
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Remark � Steady�state gain matching� The command signals r can be scaled

by a constant matrix Wi to make the closed�loop transfer function from r to the

controlled outputs Woy match the desired model Tref exactly at steady�state� This

is not guaranteed by the optimization which aims to minimize the ��norm of the

error� The required scaling is given by

Wi
�
�

�
Wo�I �Gs���K�����
��Gs���K����
���
Tref��� �����

Recall that Wo � I if there are no extra feedback measurements above those that

are to be controlled� The resulting controller is K �
�
K�Wi K�

�
�

We will conclude this subsection with a summary of the main steps required

to synthesize a two degrees�of�freedom H� loop�shaping controller�

�� Design a one degree�of�freedom H� loop�shaping controller using the

procedure of subsection ������ but without a post�compensator weight W��

Hence W��

�� Select a desired closed�loop transfer function Tref between the commands

and controlled outputs�

�� Set the scalar parameter 
 to a small value greater than �� something in

the range � to � will usually su�ce�

�� For the shaped plant Gs � GW�� the desired response Tref � and the scalar

parameter 
� solve the standard H� optimization problem de�ned by P

in ���	�� to a speci�ed tolerance to get K �
�
K� K�

�
� Remember to

include Wo in the problem formulation if extra feedback measurements are

to be used�

�� Replace the pre�lter K�� by K�Wi to give exact model�matching in the

steady�state�

�� Analyse and� if required� redesign making adjustments to 
 and possibly

W� and Tref �

The �nal two degrees�of�freedom H�loop�shaping controller is illustrated

in Figure ����

Controller

e� � � � W�

� �

K�

�

�

Wi K� G

y�

�

r

Figure ����� Two degrees�of�freedom H�loop�shaping controller
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��	�	 Observer�based structure for H� loop�shaping

controllers

H� designs exhibit a separation structure in the controller� As seen from

������ and ������ the controller has an observer"state feedback structure�

but the observer is non�standard� having a disturbance term �a #worst�

disturbance� entering the observer state equations� For H� loop�shaping

controllers� whether of the one or two degrees�of�freedom variety� this extra

term is not present� The clear structure of these controllers has several

advantages�

 It is helpful in describing a controller�s function� especially to one�s

managers or clients who may not be familiar with advanced control�

 It lends itself to implementation in a gain�scheduled scheme� as shown by

Hyde and Glover �������

 It o�ers computational savings in digital implementations and some multi�

mode switching schemes� as shown in �Samar� Postlethwaite� Gu� Murad

and Choi� ������

We will present the controller equations� for both one and two degrees�

of�freedom H� loop�shaping designs� For simplicity we will assume the

shaped plant is strictly proper� with a stabilizable and detectable state�space

realization

Gs

s
�

�
As Bs

Cs �

�

������

In which case� as shown in �Sefton and Glover� ������ the single degree�of�

freedom H� loop�shaping controller can be realized as an observer for the

shaped plant plus a state�feedback control law� The equations are

�bxs � Asbxs Hs�Csbxs � ys� Bsus ������

us � Ksbxs ������

where bxs is the observer state� us and ys are respectively the input and output

of the shaped plant� and

Hs � �ZT
s C

T
s ������

Ks � �BT
s

�
I � ���I � ���Xs

���
Xs ������

where Zs and Xs are the appropriate solutions to the generalized algebraic

Riccati equations for Gs given in ������ and ����	��

In Figure ����� an implementation of an observer�based H� loop�shaping

controller is shown in block diagram form� The same structure was used by

Hyde and Glover ������ in their VSTOL design which was scheduled as a

function of aircraft forward speed�
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Figure ����� An implementation of an H� loop�shaping controller for use when

gain scheduling against a variable v

Walker ������ has shown that the two degrees�of�freedomH� loop�shaping

controller also has an observer�based structure� He considers a stabilizable and

detectable plant

Gs

s
�

�
As Bs

Cs �

�

������

and a desired closed�loop transfer function

Tref
s
�

�
Ar Br

Cr �

�

������

in which case the generalized plant P �s� in ���	�� simpli�es to

P

s
�

	��������

As � � ZsC
T Bs

� Ar Br � �

� � � � I

Cs � � I �


Cs �
�Cr � 
I �

� � � � � � � � � � � � � � � � � � � � � �

� � 
I � �

Cs � � I �

����������

������

�
�

	
 A B� B�

C� D�� D��

C� D�� D��

�� �� �
A B

C D

�

����	�
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Walker then shows that a stabilizing controller K �
�
K� K�

�
satisfying

kFl�P�K�k�  � exists if� and only if�

�i	 � �
p
�  
�� and

�ii	 X� � � is a solution to the algebraic Riccati equation

X�AATX�  CT
� C� � �F T � �DT �J �D� �F � � ������

such that Re �i
�
AB �F

�
 � where

�F � � �DT �J �D���� �DT �JC BTX�� �������

�D �

�
D�� D��

Iw �

�

�������

�J �

�
Iz �

� ���Iw
�

�������

where Iz and Iw are unit matrices of dimensions equal to those of the

error signal z� and exogenous input w� respectively� in the standard

con�guration�

Notice that this H� controller depends on the solution to just one algebraic

Riccati equation� not two� This is a characteristic of the two degrees�of�

freedom H� loop�shaping controller �Hoyle et al�� ������

Walker further shows that if �i� and �ii� are satis�ed� then a stabilizing

controller K�s� satisfying kFl�P�K�k�  � has the following equations�

�bxs � Asbxs Hs�Csbxs � ys�  Bsus �������

�xr � Arxr Brr �������

us � �BT
s X���bxs �BT
s X���xr �������

where X��� and X��� are elements of

X� �
�
X��� X���

X��� X���

�

�������

which has been partitioned conformally with

A �
�
As �

� Ar

�

�������

and Hs is as in �������

The structure of this controller is shown in Figure ����� where the state�

feedback gain matrices Fs and Fr are de�ned by

Fs
�
� BTX��� Fr
�
� BTX��� �����	�
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The controller consists of a state observer for the shaped plant Gs� a model

of the desired closed�loop transfer function Tref �without Cr� and a state�

feedback control law that uses both the observer and reference�model states�

c

c

c

c
q q

q

q� � �
�

�

�

� � �
�

�

�

�

�

�

�

�
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�

�
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��
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R
Ar

�
�

Br

input to

shaped plant

commands

output from

shaped plant

bys

Figure ����� Structure of the two degrees�of�freedom H� loop�shaping controller

As in the one degree�of�freedom case� this observer�based structure is useful

in gain�scheduling� The reference�model part of the controller is also nice

because it is often the same at di�erent design operating points and so may

not need to be changed at all during a scheduled operation of the controller�

Likewise� parts of the observer may not change� for example� if the weight

W��s� is the same at all the design operating points� Therefore whilst the

structure of the controller is comforting in the familiarity of its parts� it also

has some signi�cant advantages when it comes to implementation�

��	�
 Implementation issues

Discrete
time controllers� For implementation purposes� discrete�time

controllers are usually required� These can be obtained from a continuous�

time design using a bilinear transformation from the s�domain to the z�

domain� but there can be advantages in being able to design directly in

discrete�time� In Samar et al� ������ ����� and Postlethwaite� Samar� Choi

and Gu ������� observer�based state�space equations are derived directly in

discrete�time for the two degrees�of�freedom H� loop�shaping controller and
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successfully applied to an aero engine� This application was on a real engine�

a Sey engine� which is a Rolls Royce ��spool reheated turbofan housed at

the UK Defence Research Agency� Pyestock� As this was a real application� a

number of important implementation issues needed to be addressed� Although

these are outside the general scope of this book� they will be brie
y mentioned

now�
Anti
windup� InH� loop�shaping the pre�compensator weightW� would

normally include integral action in order to reject low frequency disturbances

acting on the system� However� in the case of actuator saturation the

integrators continue to integrate their input and hence cause windup problems�

An anti�windup scheme is therefore required on the weighting function W��

The approach we recommend is to implement the weight W� in its self�

conditioned or Hanus form� Let the weight W� have a realization

W�

s
�

�
Aw Bw

Cw Dw

�

�������

and let u be the input to the plant actuators and us the input to the shaped

plant� Then u � W�us� When implemented in Hanus form� the expression for

u becomes �Hanus� Kinnaert and Henrotte� ��	��

u �
�
Aw �BwD
��
w Cw � BwD
��
w

Cw Dw �

� �
us
ua

�

�������

where ua is the actual plant input� that is the measurement at the output

of the actuators which therefore contains information about possible actuator

saturation� The situation is illustrated in Figure ����� where the actuators

are each modelled by a unit gain and a saturation� The Hanus form prevents

windup by keeping the states of W� consistent with the actual plant input at

all times� When there is no saturation ua � u� the dynamics of W� remain

una�ected and ������� simpli�es to �������� But when ua �� u the dynamics

are inverted and driven by ua so that the states remain consistent with the

actual plant input ua� Notice that such an implementation requires W� to be

invertible and minimum phase�

Exercise ��� Show that the Hanus form of the weight W� in 	�����
 simpli�es to

	�����
 when there is no saturation i�e� when ua � u�

Bumpless transfer� In the aero�engine application� a multi�mode

switched controller was designed� This consisted of three controllers� each

designed for a di�erent set of engine output variables� which were switched

between depending on the most signi�cant outputs at any given time� To

ensure smooth transition from one controller to another � bumpless transfer �

it was found useful to condition the reference models and the observers in each
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Figure ����� Self�conditioned weight W�

of the controllers� Thus when on�line� the observer state evolves according to

an equation of the form ������� but when o��line the state equation becomes

�bxs � Asbxs Hs�Csbxs � ys� Bsuas �������

where uas is the actual input to the shaped plant governed by the on�line

controller� The reference model with state feedback given by ������� and

������� is not invertible and therefore cannot be self�conditioned� However� in

discrete�time the optimal control also has a feed�through term from r which

gives a reference model that can be inverted� Consequently� in the aero�engine

example the reference models for the three controllers were each conditioned

so that the inputs to the shaped plant from the o��line controller followed the

actual shaped plant input uas given by the on�line controller�

Satisfactory solutions to implementation issues such as those discussed

above are crucial if advanced control methods are to gain wider acceptance in

industry� We have tried to demonstrate here that the observer�based structure

of the H� loop�shaping controller is helpful in this regard�

��	 Conclusions

We have described several methods and techniques for controller design� but

our emphasis has been on H� loop shaping which is easy to apply and in our

experience works very well in practice� It combines classical loop�shaping ideas

�familiar to most practising engineers� with an e�ective method for robustly

stabilizing the feedback loop� For complex problems� such as unstable plants

with multiple gain crossover frequencies� it may not be easy to decide on

a desired loop shape� In which case� we would suggest doing an initial LQG

design �with simple weights� and using the resulting loop shape as a reasonable

one to aim for in H� loop shaping�

An alternative to H� loop shaping is a standard H� design with a

�stacked� cost function such as in S"KS mixed�sensitivity optimization� In this
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approach� H� optimization is used to shape two or sometimes three closed�

loop transfer functions� However� with more functions the shaping becomes

increasingly di�cult for the designer�

In other design situations where there are several performance objectives

�e�g� on signals� model following and model uncertainty�� it may be more

appropriate to follow a signal�based H� or H�approach� But again the

problem formulations become so complex that the designer has little direct

in
uence on the design�

After a design� the resulting controller should be analyzed with respect to

robustness and tested by nonlinear simulation� For the former� we recommend

��analysis as discussed in Chapter 	� and if the design is not robust� then

the weights will need modifying in a redesign� Sometimes one might consider

synthesizing a ��optimal controller� but this complexity is rarely necessary in

practice� Moreover� one should be careful about combining controller synthesis

and analysis into a single step� The following quote from Rosenbrock ������

illustrates the dilemma�

In synthesis the designer speci�es in detail the properties which

his system must have� to the point where there is only one possible

solution� ��� The act of specifying the requirements in detail

implies the �nal solution� yet has to be done in ignorance of this

solution� which can out to be unsuitable in ways that were not

foreseen�

Therefore� control system design usually proceeds iteratively through the steps

of modelling� control structure design� controllability analysis� performance

weight selection� controller synthesis� control system analysis and nonlinear

simulation� Rosenbrock ������ makes the following observation�

Solutions are constrained by so many requirements that it is

virtually impossible to list them all� The designer �nds himself

threading a maze of such requirements� attempting to reconcile

con
icting demands of cost� performance� easy maintenance� and

so on� A good design usually has strong aesthetic appeal to those

who are competent in the subject�
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CONTROL STRUCTURE

DESIGN

Most �if not all� available control theories assume that a control structure is given

at the outset� They therefore fail to answer some basic questions which a control

engineer regularly meets in practice� Which variables should be controlled� Which

variables should be measured� which inputs should be manipulated� and which links

should be made between them� The objective of this chapter is to describe the

main issues involved in control structure design and to present some of the available

quantitative methods� for example� for decentralized control�

���� Introduction

Control structure design was considered by Foss ������ in his paper entitled

�Critique of process control theory� where he concluded by challenging

the control theoreticians of the day to close the gap between theory and

applications in this important area	 Later Morari
 Arkun and Stephanopoulos

������ presented an overview of control structure design
 hierarchical control

and multilevel optimization in their paper �Studies in the synthesis of control

structure for chemical processes�
 but the gap still remained
 and still does to

some extent today	

Control structure design is clearly important in the chemical process

industry because of the complexity of these plants
 but the same issues are

relevant in most other areas of control where we have largescale systems	

For example
 in the late ����s Carl Nett �Nett
 ����� Nett and Minto
 �����

gave a number of lectures based on his experience on aeroengine control at

General Electric
 under the title �A quantitative approach to the selection and

partitioning of measurements and manipulations for the control of complex

systems�	 He noted that increases in controller complexity unnecessarily

outpaces increases in plant complexity
 and that the objective should be to

			 minimize control system complexity subject to the achievement
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of accuracy speci�cations in the face of uncertainty	

In Chapter � �page ��
 we described the typical steps taken in the process

of designing a control system	 Steps �
 �
 � and � are associated with the

following tasks of control structure design�

�	 The selection of controlled outputs �a set of variables which are to be

controlled to achieve a set of speci�c objectives� see section ��	��	

�	 The selection of manipulations and measurements �sets of variables which

can be manipulated and measured for control purposes� see section ��	��	

�	 The selection of a control con�guration �a structure interconnecting

measurements�commands and manipulated variables� see sections ��	�


��	� and ��	��	

�	 The selection of a controller type �control law speci�cation
 e	g	 PID

controller
 decoupler
 LQG
 etc�	

The distinction between the words control structure and control

con�guration may seem minor
 but note that it is signi�cant within the context

of this book	 The control structure �or control strategy� refers to all structural

decisions included in the design of a control system	 On the other hand
 the

control con�guration refers only to the structuring �decomposition� of the

controller K itself �also called the measurement�manipulation partitioning

or input�output pairing�	 Control con�guration issues are discussed in more

detail in Section ��	�	

The selection of controlled outputs
 manipulations and measurements �tasks

� and � combined� is sometimes called input�output selection	

Ideally
 the tasks involved in designing a complete control system are

performed sequentially� �rst a �topdown� selection of controlled outputs


measurements and inputs �with little regard to the con�guration of the

controller K� and then a �bottomup� design of the control system �in which

the selection of the control con�guration is the most important decision�	

However
 in practice the tasks are closely related in that one decision directly

in�uences the others
 so the procedure may involve iteration	

One important reason for decomposing the control system into a speci�c

control con�guration is that it may allow for simple tuning of the

subcontrollers without the need for a detailed plant model describing the

dynamics and interactions in the process	 Multivariable centralized controllers

may always outperform decomposed �decentralized� controllers
 but this

performance gain must be traded o� against the cost of obtaining and

maintaining a su�ciently detailed plant model	

The number of possible control structures shows a combinatorial growth


so for most systems a careful evaluation of all alternative control structures

is impractical	 Fortunately
 we can often from physical insight obtain a

reasonable choice of controlled outputs
 measurements and manipulated
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inputs	 In other cases
 simple controllability measures as presented in Chapters

� and � may be used for quickly evaluating or screening alternative control

structures	

Some discussion on control structure design in the process industry is given

by Morari ������
 Shinskey ������
 Stephanopoulos ������ and Balchen and

Mumme ������	 A survey on control structure design is given by van de Wal

and de Jager ������	 The reader is referred to Chapter � �page ���� for an

overview of the literature on inputoutput controllability analysis	

���� Optimization and control

The selection of controlled outputs �task �� involves selecting the variables

y to be controlled at given reference values
 y � r	 Here the reference value

r is set at some higher layer in the control hierarchy	 Thus
 the selection of

controlled outputs �for the control layer� is usually intimately related to the

hierarchical structuring of the control system which is often divided into two

layers�

� optimization layer � computes the desired reference commands r

� control layer � implements these commands to achieve y � r	

Additional layers are possible
 as is illustrated in Figure ��	� which shows

a typical control hierarchy for a complete chemical plant	 Here the control

layer is subdivided into two layers� supervisory control ��advanced control��

and regulatory control ��base control��	 We have also included a scheduling

layer above the optimization	 In general
 the information �ow in such a control

hierarchy is based on the higher layer sending reference values �setpoints� to

the layer below
 and the lower layer reporting back any problems in achieving

this
 see Figure ��	��b�	

The optimization tends to be performed open�loop with limited use of

feedback	 On the other hand
 the control layer is mainly based on feedback

information	 The optimization is often based on nonlinear steadystate models


whereas we often use linear dynamic models in the control layer �as used

throughout the book�	

There is usually a time scale separation with faster lower layers as indicated

in Figure ��	�	 This means that the setpoints
 as viewed from a given layer

in the hierarchy
 are updated only periodically	 Between these updates
 when

the setpoints are constant
 it is important that the system remains reasonably

close to its optimum	 This observation is the basis for Section ��	� which deals

with selecting outputs for the control layer	

From a theoretical point of view
 the optimal coordination of the inputs

and thus the optimal performance is obtained with a centralized optimizing

controller
 which combines the two layers of optimization and control� see
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Figure ����� Typical control system hierarchy in a chemical plant
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Figure ��	��c�	 All control actions in such an ideal control system would

be perfectly coordinated and the control system would use online dynamic

optimization based on a nonlinear dynamic model of the complete plant

instead of
 for example
 infrequent steadystate optimization	 However
 this

solution is normally not used for a number of reasons� including the cost of

modelling
 the di�culty of controller design
 maintenance and modi�cation


robustness problems
 operator acceptance
 and the lack of computing power	

As noted above we may also decompose the control layer
 and from now

on when we talk about control con�gurations
 hierarchical decomposition and

decentralization
 we generally refer to the control layer	 We will return to this

topic in Section ��	�	

Mesarovic ������ reviews some ideas related to online multilayer

structures applied to largescale industrial complexes	 However
 according

to Lunze ������
 multilayer structures
 although often used empirically in

practice
 are so far lacking a formal analytical treatment	 Nevertheless
 in the

next section we provide some ideas on how to select objectives �controlled

outputs� for the control layer
 such that the overall goal is satis�ed	

Remark� In accordance with Lunze ������ we have purposely used the word layer

rather than level for the hierarchical decomposition of the control system� The

di�erence is that in a multilevel system all units contribute to satisfying the same

goal� whereas in a multilayer system the di�erent units have di�erent objectives

�which preferably contribute to the overall goal�� Multilevel systems have been

studied in connection with the solution of optimization problems�

���� Selection of controlled outputs

A controlled output is an output variable �usually measured� with an

associated control objective �usually a reference value�	 In many cases
 it

is clear from a physical understanding of the process what the controlled

outputs should be	 For example
 if we consider heating or cooling a room


then we shall select room temperature as the controlled output y	 In other

cases it is less obvious because each control objective may not be associated

with a measured output variable	 Then the controlled outputs y are selected to

achieve the overall system goal �purpose�
 and may not appear to be important

variables in themselves	 Also the selection of controlled outputs is usually

related to a hierarchical decomposition of the control system� typically into

an optimization and control layer	

Example ���� Cake baking� To get an idea of the issues involved in output

selection let us consider the process of baking a cake� The overall goal is to make a

cake which is well baked inside and with a nice exterior� The manipulated input for

achieving this is the heat input� u � Q� �and we will assume that the duration of the
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baking is �xed� e�g� at �	 minutes�� Now� if we had never baked a cake before� and if

we were to construct the stove ourselves� we might consider directly manipulating the

heat input to the stove� possibly with a watt�meter measurement� However� this open�

loop implementation would not work well� as the optimal heat input depends strongly

on the particular oven we use� and the operation is also sensitive to disturbances� for

example� from opening the oven door or what else might be in the oven Therefore� in

practice we look up the optimal oven temperature in a cook book� and use a closed�

loop implementation where a thermostat is used to keep the temperature y at its

predetermined value T �

The �a� open�loop and �b� closed�loop implementations of the cake baking process

are illustrated in Figure ���	� In �b� the 
optimizer� is the cook book which has

a pre�computed table of the optimal temperature pro�le� The reference value r for

temperature is then sent down to the control layer which consists of a simple feedback

controller �the thermostat��

Recall that the title of this section is selection of controlled outputs	 In the

cake baking process we select oven temperature as the controlled output y in

the control layer	 It is interesting to note that controlling the oven temperature

in itself has no direct relation to the overall goal of making a wellbaked

cake	 So why do we select the oven temperature as a controlled output� We

now want to outline an approach for answering questions of this kind	 The

mathematical development is kept mostly at a conceptual level	

In the following
 we let y denote the selected controlled outputs in the

control layer	 Note that this may also include directly using the inputs �open

loop implementation� by selecting y � u	 Two distinct questions arise�

�	 What variables y should be selected as the controlled variables�

�	 What is the optimal reference value �yopt� for these variables�

The second problem is one of dynamic optimization and is extensively studied	

Here we want to gain some insight into the �rst problem	 We make the

following assumptions�

�a� The overall goal can be quanti�ed in terms of a scalar cost function J

which can be minimized	

�b� For a given disturbance d there exists an optimal value uopt�d�
 and

corresponding value yopt�d�
 which minimizes the cost function J 	

�c� The reference values r for the controlled outputs y should be constant


i	e	 r should be independent of the disturbances d	 Typically
 some

average value is selected
 e	g	 r � yopt� �d�

For example
 in the cake baking process we may assign to each cake a

number P on a scale from � to ��
 based on cake quality	 A perfectly baked

cake achieves P � ��
 and an acceptably baked cake achieves P � � �a

completely burned cake may correspond to P � ��	 In another case P could

be the operating pro�t	 In both cases we can select J � �P 
 and the overall

goal of the control system is then to minimize J 	
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The system behaviour is a function of the independent variables u and d


so we may write J � J�u� d�	 For a given disturbance d the optimal value of

the cost function is

Jopt�d�
�

� J�uopt� d� � min
u

J�u� d� ���	��

Ideally
 we want u � uopt	 However
 this will not be achieved in practice
 and

we select controlled outputs y such that�

� The input u �generated by feedback to achieve y � r� should be close to the

optimal input uopt�d��

Note that we have assumed that r is independent of d	 The above statement

is obvious
 but it is nevertheless very useful	 The following development aims

at quantifying the statement	

What happens if u �� uopt� Obviously
 we then have a loss which can be

quanti�ed by J � Jopt
 and a reasonable objective for selecting controlled

outputs y is to minimize the worstcase loss

Worst� case loss � �
�

� max
d�D

jJ�u� d�� J�uopt� d�j ���	��

Here D is the set of possible disturbances	 As �disturbances� we should also

include changes in operating point and model uncertainty	 To obtain some

insight into the problem of minimizing the loss �
 let us consider the term

J�u� d�� Jopt�d� in ���	��
 where d is a �xed �generally nonzero� disturbance	

We make the following additional assumptions�

�d� The cost function J is smooth
 or more precisely twice di�erentiable	

�e� The optimization problem is unconstrained	 If it is optimal to keep some

variable at a constraint
 then we assume that this is implemented and

consider the remaining unconstrained problem	

�f� The dynamics of the problem can be neglected
 that is
 we consider the

steadystate control and optimization	

For a �xed d we may then express J�u� d� in terms of a Taylor series expansion

of u around the optimal point	 We get

J�u� d� � Jopt�
�
�J

�u
�T

opt� �z �
��

�u�uopt��
�
�
�u�uopt�

T

�
��J

�u�
�

opt
�u�uopt�� � � � ������

where we have neglected terms of third order and higher �which assumes

that we are reasonably close to the optimum�	 Also
 note here that uopt is

a function of d so we should formally write uopt�d�	 The second term on the

right hand side in ���	�� is zero at the optimal point for an unconstrained

problem	
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Equation ���	�� quanti�es how u� uopt a�ects the cost function	 To study

how this relates to output selection we use a linearized model of the plant


which for a �xed d becomes y�yopt � G�u�uopt� where G is the steadystate

gain matrix	 If G is invertible we then get

u� uopt � G���y � yopt� ���	��

�if G is not invertible we may use the pseudoinverse Gy which results in the

smallest possible ku� uoptk� for a given y � yopt�
 and

J � Jopt �
�
�

�
G�� �y � yopt�

	T ���J
�u�

�
opt

G�� �y � yopt� ����	�

where the term ���J��u��opt is independent of y	 Obviously
 we want to

select the controlled outputs such that y � yopt is small	 However
 this is not

possible in practice	 To see this
 write

y � yopt � y � r � r � yopt � e � eopt ���	��

First
 we have an optimization error eopt
�

� r � yopt
 because the algorithm

�e	g	 a cook book� precomputes a desired r which is di�erent from the optimal

yopt	 In addition
 we have a control error e � y � r because the control layer

is not perfect
 for example due to poor control performance or an incorrect

measurement or estimate �steadystate bias� of y	 If the control itself is perfect

then e � n �the measurement noise�	 In most cases the errors e and eopt can

be assumed independent	

From ���	�� and ���	��
 we conclude that we should select the controlled

outputs y such that�

�� G�� is small �i�e� G is large�� the choice of y should be such that the inputs

have a large e	ect on y�


� eopt � r � yopt�d� is small� the choice of y should be such that its optimal

value yopt�d� depends only weakly on the disturbances and other changes�

�� e � y� r is small� the choice of y should be such that it is easy to keep the

control error e small�

Note that ���G��� � ����G�
 and so we want the smallest singular value

of the steadystate gain matrix to be large �but recall that singular values

depend on scaling as is discussed below�	 The desire to have ��G� large is

consistent with our intuition that we should ensure that the controlled outputs

are independent of each other	 Also note that the desire to have ��G� large

�and preferably as large as possible� is here not related to the issue of input

constraints
 which was discussed in Section �	�	

Example ���� Cake baking� continued� Let us return to our initial question�

Why select the oven temperature as a controlled output We have two alternatives�
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a closed�loop implementation with y � T �the oven temperature� and an open�loop

implementation with y � u � Q �the heat input�� From experience� we know that

the optimal oven temperature Topt is largely independent of disturbances and is

almost the same for any oven� This means that we may always specify the same

oven temperature� say Tr � ����C� as obtained from the cook book� On the other

hand� the optimal heat input Qopt depends strongly on the heat loss� the size of the

oven� etc� and may vary between� say ���W and 	���W� A cook book would then

need to list a di�erent value of Qr for each kind of oven and would in addition need

some correction factor depending on the room temperature� how often the oven door

is opened� etc� Therefore� we �nd that it is much easier to keep eopt � T �Topt �
�C�

small than to keep Qr �Qopt �W� small�

There may also be some di�erence in the control error e � y � r� but this is

mainly because most ovens are designed to be operated with temperature feedback�

Speci�cally� with a thermostat we can easily keep T close to its desired value� On the

other hand� with most ovens it is di�cult to accurately implement the desired heat

input Q� because the knob on the stove is only a crude indicator of the actual heat

input �this di�erence in control error could have been eliminated by implementing a

watt�meter��

To use ��G� to select controlled outputs
 we see from ���	�� that we should

�rst scale the outputs such that the expected magnitude of yi�yiopt is similar

in magnitude for each output
 and scale the inputs such that the e�ect of

a given deviation uj � ujopt on the cost function J is similar for each input

�such that
�
��J��u�

	
opt

is close to a constant times a unitary matrix�	 We

must also assume that the variations in yi � yiopt are uncorrelated
 or more

precicely
 we must assume�

�g� The �worstcase� combination of outputs deviations yi � yiopt 


correpsonding to the direction of ��G�
 can occur in practice	

Procedure for selecting controlled outputs� The use of the minimum

singular value to select controlled outputs may be summarized in the following

procedure�

�	 From a �nonlinear� model compute the optimal parameters �inputs and

outputs� for various conditions �disturbances
 operating points�	 �This

yields a �lookup� table of optimal parameter values as a function of the

operating conditions	�

�	 From this data obtain for each candidate output the variation in its optimal

value
 vi � �yiopt�max � yiopt�min���	

�	 Scale the candidate outputs such that for each output the sum of the

magnitudes of vi and the control error �e	g	 measurement noise� is similar

�e	g	 about ��	

�	 Scale the inputs such that a unit deviation in each input from its optimal

value has the same e�ect on the cost function J 	
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�	 Select as candidates those sets of controlled outputs which correspond to

a large value of ��G�	 G is the transfer function for the e�ect of the scaled

inputs on the scaled outputs	

The aeroengine application in Chapter �� provides a nice illustration of

output selection	 There the overall goal is to operate the engine optimally in

terms of fuel consumption
 while at the same time staying safely away from

instability	 The optimization layer is a lookup table
 which gives the optimal

parameters for the engine at various operating points	 Since the engine at

steadystate has three degreesoffreedom we need to specify three variables

to keep the engine approximately at the optimal point
 and �ve alternative

sets of three outputs are given	 The outputs are scaled as outlined above
 and

a good output set is then one with a large value of ��G�
 provided we can also

achieve good dynamic control performance	

Remark � In the above procedure for selecting controlled outputs� based on

maximizing ��G�� the variation in yopt�d� with d �which should be small� enters

into the scaling of the outputs�

Remark � A more exact procedure� which may be used if the optimal outputs are

correlated such that assumption� ����� does not hold� is the following� By solving the

nonlinear equations� evaluate directly the cost function J for various disturbances d

and control errors e� assuming y � r�e where r is kept constant at the optimal value

for the nominal disturbance� The set of controlled outputs with smallest average or

worst�case value of J is then preferred� This approach is usually more time consuming

because the solution of the nonlinear equations must be repeated for each candidate

set of controlled outputs�

Measurement selection for indirect control

The above ideas also apply for the case where the overall goal is to keep some

variable z at a given value �setpoint� zr
 e	g	 J � kz � zrk	 We assume we

cannot measure z
 and instead we attempt to achieve our goal by controlling

y at some �xed value r
 e	g	 r � yopt� �d� where �d � � if we use deviation

variables	 For small changes we may assume linearity and write

z � Gzu � Gzdd ���	��

for which z � zr is obtained with u � uopt�d� where uopt�d� � G��z �zr�Gzdd�	

Furthermore
 y � Gu � Gdd
 so the optimal output is

yopt�d� � GG��z zr� �z �
r

��Gd �GG��z Gzd�d ���	��

where one criterion for selecting outputs y is that yopt�d� depends weakly on

d	
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Although the above procedure for selecting controlled outputs applies also

in this simple case
 it is easier to consider J � kz � zrk directly	 Using

u � G���y�Gdd� in ���	�� and introducing y � r � e
 where r � GG��z zr �a

constant� and e is the control error �e	g	 due to measurement error�
 we �nd

z � zr � �Gzd �GzG
��Gd�� �z �

Pd

d � GzG
��� �z �

Pr

e ���	��

To minimize kz�z�k we should then select controlled outputs such that kPddk

and kPrek are small	 Note that Pd depends on the scaling of disturbances d

and �primary� outputs z �and are independent of the scaling of inputs u and

selected outputs y
 at least for square plants�	 The magnitude of the control

error e depends on the choice of outputs	 Based on ���	�� a procedure for

selecting controlled outputs may be suggested	

Procedure for selecting controlled outputs for indirect control	

Scale the disturbances d to be of magnitude � �as usual�
 and scale the outputs

y so the expected control error e �measurement noise� is of magnitude � for

each output �this is di�erent from the output scaling used in step � in our

minimum singular value procedure�	 Then to minimize J we prefer sets of

controlled outputs which�
Minimize k �Pd Pr  k ���	���

Remark � The choice of norm in ������� depends on the basis for the scaling� but

the choice is usually of secondary importance� The maximum singular value arises

if kdk� � � and kek� � �� and we want to minimize kz � zrk��

Remark � The above procedure does not require assumption ���� of uncorrelated

variations in the optimal values of yi � yiopt �

Remark � Of course� for the choice y � z we have that yopt � zr is independent

of d and the matrix Pd in ������ and ������� is zero� However� Pr is still nonzero�

Remark � In some cases this measurement selection problem involves a trade�o�

between wanting kPdk small �want strong correlation between measured outputs y

and �primary� outputs z� and wanting kPrk small �want the e�ect of control errors

�measurement noise� to be small��

For example� this is the case in a distillation column when we use temperatures

inside the column �y� for indirect control of the product compositions �z�� Here� for

a high�purity separation� we cannot place the measurement too close to the column

end due to sensitivity to measurement error �kPrk becomes large�� and not too far

from the column end due to sensitivity to disturbances �kPdk� becomes large��

Remark � Indirect control is related to the idea of inferential control which is

commonly used in the process industry� However� usually in inferential control the

idea is to use the measurement of y to estimate �infer� z and then to control this
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estimate rather than controlling y directly� e�g� see Stephanopoulos ������ However�

there is no universal agreement on these terms� and Marlin ����	� uses the term

inferential control to mean indirect control as discussed here�

Remark 	 The problem of indirect control is closely related to that of cascade

control discussed in Section ������ �where u is u�� z is y�� y is y�� G is G��� etc���

see �������� where we introduce Pd as the partial disturbance gain matrix� The

main di�erence is that in cascade control we also measure and control z �y�� in an

outer loop� In this case we want k �Pd Pr � k small at high frequencies beyond the

bandwidth of the outer loop involving z �y���

Remark 
 One might say that ����	� and the resulting procedure for output

selection� generalizes the use of Pd and Pr from the case of indirect control to the

more general case of minimizing some cost unction J �

Summary� In this section we have considered the following problem�

During operation
 the optimal values of all variables will change with time

�due to disturbances and other changes�	 For practical reasons
 we consider

a hierarchical strategy where the optimization is performed only periodically	

The question is then� Which variables �controlled outputs� should be kept

constant �between each optimization�� Essentially
 we found that we should

select variables y for which the variation in optimal value and control error is

small compared to their controllable range �the range y may reach by varying

the input u�	 This is hardly a big surprise
 but it is nevertheless useful and

provides the basis for our procedure for selecting controlled outputs	

The objective of the control layer is then to keep the controlled outputs at

their reference values �which are computed by the optimization layer�	 The

controlled outputs are often measured
 but we may also estimate their values

based on other measured variables	 We may also use other measurements

to improve the control of the controlled outputs
 for example
 by use of

cascade control	 Thus
 the selection of controlled and measured outputs are

two separate issues
 although the two decisions are obviously related	 The

measurement selection problem is brie�y discussed in the next section	 In

subsection ��	� we discuss the relative gain array of the �big� transfer matrix

�with all candidate outputs included�
 which is a useful screening tool also for

selecting controlled outputs	

���� Selection of manipulations and

measurements

In some cases there are a large number of candidate measurements and�or

manipulations	 The need for control has three origins

� to stabilize an unstable plant
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� to reject disturbances


� to track reference changes


and the selection of manipulations and measurements is intimately related to

these	
For measurements
 the rule is to select those which have a strong

relationship with the controlled outputs
 or which may quickly detect a major

disturbance and which together with manipulations can be used for local

disturbance rejection	

The selected manipulations should have a large e�ect on the controlled

outputs
 and should be located �close� �in terms of dynamic response� to the

outputs and measurements	 If the plant is unstable
 then the manipulations

must be selected such that the unstable modes are state controllable
 and

the measurements must be selected such that the unstable modes are state

observable	

For a more formal analysis we may consider the model yall � Galluall �

Gdalld	 Here

� yall � all candidate outputs �measurements�

� uall � all candidate inputs �manipulations�

The model for a particular combination of inputs and outputs is then y �

Gu � Gdd where

G � SOGallSI � Gd � SOGdall ���	���

Here SO is a nonsquare input �selection� matrix with a � and otherwise

�!s in each row
 and SI is a nonsquare output �selection� matrix with a �

and otherwise �!s in each column	 For example
 with SO � I all outputs are

selected
 and with SO � � � I  output � has not been selected	

To evaluate the alternative combinations
 one may
 based on G and Gd


perform an inputoutput controllability analysis as outlined in Chapter �

for each combination �e	g
 consider the minimum singular value
 RHPzeros


interactions
 etc�	 At least this may be useful for eliminating some alternatives	

A more involved approach
 based on analyzing achievable robust performance

by neglecting causality
 is outlined by Lee
 Braatz
 Morari and Packard ������	

This approach is more involved both in terms of computation time and in

the e�ort required to de�ne the robust performance objective	 An even more

involved �and exact� approach would be to synthesize controllers for optimal

robust performance for each candidate combination	

However
 the number of combinations has a combinatorial growth
 so even

a simple inputoutput controllability analysis becomes very timeconsuming

if there are many alternatives	 For a plant where we want to select m from M

candidate manipulations
 and l from L candidate measurements
 the number



CONTROL STRUCTURE DESIGN ���

of possibilities is �
L

l
��
M

m
�

�

L"

l"�L� l�"

M "

m"�M �m�"

���	���

A few examples� For m � l � � and M � L � � the number of possibilities is

�
 for m � l � � and M � L � � it is ��
 for m � l � � and M � L � �� it is

�����
 and for m � M 
 l � � and L � ��� �selecting � measurements out of

��� possible� there are �������� possible combinations	

Remark� The number of possibilities is much larger if we consider all possible

combinations with � to M inputs and � to L outputs� The number is �Nett� �����PM
m��

PL
l��

�
L
l

	�
M
m

	
�For example� with M � L � � there are ���������

candidates �� structures with one input and one output� � structures with two inputs

and one output� � structures with one input and two outputs� and � structure with

two inputs and two outputs��

One way of avoiding this combinatorial problem is to base the selection

directly on the �big� models Gall and Gdall	 For example
 one may consider the

singular value decomposition and relative gain array of Gall as discussed in the

next section	 This rather crude analysis may be used
 together with physical

insight
 rules of thumb and simple controllability measures
 to perform a

prescreening and reduce the possibilities to a manageable number	 These

candidate combinations can then be analyzed more carefully	

���� RGA for non�square plant

A simple but e�ective screening tool for selecting inputs and outputs
 which

avoids the combinatorial problem just mentioned
 is the relative gain array

�RGA� of the �big� transfer matrix Gall with all candidate inputs and outputs

included
 # � Gall �Gy
T

all 	

Essentially
 for the case of many candidate manipulations �inputs� one may

consider not using those manipulations corresponding to columns in the RGA

where the sum of the elements is much smaller than � �Cao
 �����	 Similarly


for the case of many candidate measured outputs �or controlled outputs� one

may consider not using those outputs corresponding to rows in the RGA where

the sum of the elements is much smaller than �	

To see this
 write the singular value decomposition of Gall as

Gall � U$V H � Ur$rV
H
r ���	���

where $r consists only of the r � rank�G� nonzero singular values
 Ur consists

of the r �rst columns of U 
 and Vr consists of the r �rst columns of V 	 Thus
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Vr consists of the input directions with a nonzero e�ect on the outputs
 and

Ur consists of the output directions we can a�ect �reach� by use of the inputs	

Let ej � � � � � � � � � � � � �  
T

be a unit vector with a � in position

j and �!s elsewhere	 Then the j!th input is uj � eTj u	 De�ne ei in a similar

way such that the i!th output is yi � eTi y	 We then have that eTj Vr yields

the projection of a unit input uj onto the e�ective input space of G
 and we

follow Cao ������ and de�ne

Projection for input j � keTj Vrk� ���	���

which is a number between � and �	 Similarly
 eTi Ur yields the projection of a

unit output yi onto the e�ective �reachable� output space of G
 and we de�ne

Projection for output i � keTi Urk� ���	���

which is a number between � and �	 The following theorem links the input and

output �measurement� projection to the column and row sums of the RGA	

Theorem ���� �RGA and input and output projections�� The i�th row

sum of the RGA is equal to the square of the i�th output projection and the

j�th column sum of the RGA is equal to the square of the j�th input projection

i�e�

mX
j��

�ij � keTi Urk
�
��

lX
i��

�ij � keTj Vrk
�
� ���	���

Proof� See Appendix A����� �

The RGA is a useful screening tool because it need only be computed

once	 It includes all the alternative inputs and�or outputs and thus avoids the

combinatorial problem	 From ���	��� we see that the row and column sums

of the RGA provide a useful way of interpreting the information available in

the singular vectors	 For the case of extra inputs the RGAvalues depend on

the input scaling
 and for extra outputs on the output scaling	 The variables

must therefore be scaled prior to the analysis	 Note that for a nonsingular

G the RGA is scaling independent and row and column sums to �
 i	e	 the

projection of any input or output is �	

Example ���� Cao ������ considers the selection of manipulations in a chemical

process for the hydrodealkylation of toluene �HDA process�� The plant has 	 controlled
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outputs and �� candidate manipulations� At steady�state

GT
all��� �


������������������
���� ����� ��

�� ������ �������

��
�		 ���� ������� �����
� ����	��

������ �	����	 ������� �
�� �����

���	��� ������ ������ ���	�� ����		�

��	
	� 
����� ������ ���	��� �����

����	� ��
�	� ������� ������ ����	
	

������ ������ ������ ������ ������

������ ������� ������� ���	�� ������

����	 ������� ������ 	���� ���	�

���	�� ����
�� ����
� ���	�� ��	�
	

������ ������ ���	��� ������� ������

������� �����	� ����
� ����	� ������

������� ����	� ������ ����	� ����	�
������������������

and the corresponding RGA�matrix and column�sums �T� are

�T �

������������������
�����	 �����		 �����
 �����	 ������

���
	
 ����	�� ������ ������ ������

����� ������ ����
� ������ �����
�

���	�� ������ ������ ����� ������

����	�� �����
 ������ �����	� ������

���
� ������ ����	� �����
 �����

������ ������ ������ ������ ������

������ ������� ������ ������ ������

������ �����	� ������ ����� ������	

������ ������� �����	� ����
� �����	

������ ������ ����
 ������ ������

������ ������ ������ ������ ������

������ ������ ������ ������ ������
������������������

� �T� �

������������������
����

���	

����

����

���	

��	

����

����

���

����

����

����

����
������������������

There exist
�
��
�

	
� ��� combinations with 	 inputs and 	 outputs� and

�
��
�

	
� ���


combinations with 
 inputs and 	 outputs� The RGA may be useful in providing an

initial screening�

We �nd from the column sums of the steady�state RGA�matrix given in �T� that

the �ve inputs with the largest projections onto the input space of Gall are 	� ���


� �� and � �in that order�� For this selection ��G� � ���� whereas ��Gall� � ���	

with all inputs included� This shows that we have not lost much gain in the low�

gain direction by using only 	 of the �� inputs� Of course� for control purposes one

must also consider higher frequencies up to crossover� The main di�erence at higher

frequency is that input � �which has no steady�state e�ect� is e�ective� whereas input

� is less e�ective� This may lead one to a control structure with six inputs where input

u	 is used at high frequencies and input u� at low frequencies�

However� there are a large number of other factors that determine controllability�

such as RHP�zeros� sensitivity to uncertainty� and these must be taken into account

when making the �nal selection�
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The following example shows that although the RGA is an e�cient screening

tool
 it must be used with some caution	

Example ���� Consider a plant with � inputs and � candidate outputs of which

we want to select �� We have�

Gall �

�� �� ��

�� �

� �

� �
�� � � �

�����	� ����

���
 �����

��� �����

��� �����
��

The four row sums of RGA�matrix are ����� ��	�� ��� and ���� To maximize the

output projection we should select outputs � and �� However� this yields a plant G� �h
�� ��

�� �
i

which is ill�conditioned with large RGA�elements� ��G�� �
h
�� ��

�� ��
i

�

and is likely to be di�cult to control� On the other hand� selecting outputs � and

� yields G� �

h
�� ��

� �
i

which is well�conditioned with ��G�� �

h
�� �

� ��
i

� For

comparison� the minimum singular values are� ��Gall� � ���	� ��G�� � ��	�� and

��G�� � �����

We discuss in Section ��	�	� below the selection of extra measurements for

use in a cascade control system	

���	 Control con
guration elements

We now assume that the measurements
 manipulations and controlled

outputs are �xed	 The available synthesis theories presented in this

book result in a multivariable controller K which connects all available

measurements�commands �v� with all available manipulations �u�


u � Kv ���	���

However
 such a controller may not be desirable	 By control con�guration

selection we mean the partitioning of measurements�commands and

manipulations within the control layer	 More speci�cally
 we de�ne

Control con�guration� The restrictions imposed on the overall controller

K by decomposing it into a set of local controllers �subcontrollers

units elements blocks� with predetermined links and with a possibly

predetermined design sequence where subcontrollers are designed locally�

In a conventional feedback system a typical restriction on K is to use a one

degreeoffreedom controller �so that we have the same controller for r and

�y�	 Obviously
 this limits the achievable performance compared to that of a

two degreesoffreedom controller	 In other cases we may use a two degreesof

freedom controller
 but we may impose the restriction that the feedback part
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of the controller �Ky� is �rst designed locally for disturbance rejection
 and

then the pre�lter �Kr� is designed for command tracking	 In general this will

limit the achievable performance compared to a simultaneous design
 see also

the Remark on page ���	 Similar arguments apply to other cascade schemes	

Some elements used to build up a speci�c control con�guration are�

� Cascade controllers

� Decentralized controllers

� Feedforward elements

� Decoupling elements

� Selectors

These are discussed in more detail below
 and in the context of the process

industry in Shinskey ������ and Balchen and Mumme ������	 First
 some

de�nitions�

Decentralized control is when the control system consists of independent

feedback controllers which interconnect a subset of the output

measurements�commands with a subset of the manipulated inputs� These

subsets should not be used by any other controller�

This de�nition of decentralized control is consistent with its use by the

control community	 In decentralized control we may rearrange the ordering

of measurements�commands and manipulated inputs such that the feedback

part of the overall controller K in ���	��� has a �xed blockdiagonal structure	

Cascade control is when the output from one controller is the input to

another� This is broader then the conventional de�nition of cascade

control which is that the output from one controller is the reference

command �setpoint� to another	

Feedforward elements link measured disturbances and manipulated inputs�

Decoupling elements link one set of manipulated inputs ��measurements��

with another set of manipulated inputs� They are used to improve the

performance of decentralized control systems and are often viewed as

feedforward elements �although this is not correct when we view the

control system as a whole� where the �measured disturbance� is the

manipulated input computed by another decentralized controller	

Selectors are used to select for control depending on the conditions of the

system a subset of the manipulated inputs or a subset of the outputs	

In addition to restrictions on the structure of K
 we may impose restrictions

on the way
 or rather in which sequence
 the subcontrollers are designed	
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For most decomposed control systems we design the controllers sequentially


starting with the �fast� or �inner� or �lowerlayer� control loops in the control

hierarchy	 In particular
 this is relevant for cascade control systems
 and it is

sometimes also used in the design of decentralized control systems	

The choice of control con�guration leads to two di�erent ways of

partitioning the control system�

� Vertical decomposition� This usually results from a sequential design of

the control system
 e	g	 based on cascading �series interconnecting� the

controllers in a hierarchical manner	

� Horizontal decomposition� This usually involves a set of independent

decentralized controllers	

Remark � Sequential design of a decentralized controller results in a control system

which is decomposed both horizontally �since K is diagonal� as well as vertically

�since controllers at higher layers are tuned with lower�layer controllers in place��

Remark � Of course� a performance loss is inevitable if we decompose the control

system� For example� for a hierarchical decentralized control system� if we select a

poor con�guration at the lower �base� control layer� then this may pose fundamental

limitations on the achievable performance which cannot be overcome by advanced

controller designs at higher layers� These limitations imposed by the lower�layer

controllers may include RHP�zeros �see the aero�engine case study in Chapter ���

or strong interactions �see the distillation case study in Chapter �� where the LV �

con�guration yields large RGA�elements at low frequencies��

In this section
 we discuss cascade controllers and selectors
 and give some

justi�cation for using such �suboptimal� con�gurations rather than directly

designing the overall controller K	 Later
 in section ��	� we discuss in more

detail the hierarchical decomposition
 including cascade control
 partially

controlled systems and sequential controller design	 Finally
 in section ��	�

we consider decentralized diagonal control	

������ Cascade control systems

We want to illustrate how a control system which is decomposed into

subcontrollers can be used to solve multivariable control problems	 For

simplicity
 we here use singleinput singleoutput �SISO� controllers of the

form

ui � Ki�s��ri � yi� ���	���

where Ki�s� is a scalar	 Note that whenever we close a SISO control loop we

lose the corresponding input
 ui
 as a degreeoffreedom
 but at the same time

the reference
 ri
 becomes a new degree of freedom	

It may look like it is not possible to handle nonsquare systems with

SISO controllers	 However
 since the input to the controller in ���	��� is a
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reference minus a measurement
 we can cascade controllers to make use of

extra measurements or extra inputs	 A cascade control structure results when

either of the following two situations arise	

� The reference ri is an output from another controller �typically used for the

case of an extra measurement yi�
 see Figure ��	� �a�	 This is conventional

cascade control	

� The �measurement� yi is an output from another controller �typically used

for the case of an extra manipulated input uj 
 i	g	 in Figure ��	� �b�
 u� is

the measurement for controller K�	 This cascade scheme is here referred to

as input resetting	

r� ��
�

c � K�

� c

r� �
�

� K�

�u� Plant

�

y��

y�

q

�
�a� Extra measurements y� �conventional cascade control�

ru� ��
�

c � K�

�u�

r ��
�

c � K�

�u�q

�

Plant �yq

�
�b� Extra inputs u� �input resetting�

Figure ����� Cascade implementations

������ Cascade control� Extra measurements

In many cases we make use of extra measurements y� �secondary outputs� to

provide local disturbance rejection and linearization
 or to reduce the e�ect

of measurement noise	 For example
 velocity feedback is frequently used in

mechanical systems
 and local �ow cascades are used in process systems	 Let

u be the manipulated input
 y� the controlled output �with an associated

control objective r�� and y� the extra measurement	

Centralized �parallel� implementation� A centralized implementation

u � K�r � y�
 where K is a �input�output controller
 may be written

u � K���s��r� � y�� � K���s��r� � y�� ���	���

where in most cases r� � � �since we do not have a degreeoffreedom to

control y��	
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Cascade implementation �conventional cascade control�� To obtain

an implementation with two SISO controllers we may cascade the controllers

as illustrated in Figure ��	� �a��

r� � K��s��r� � y��� ���	���

u� � K��s��r� � y��� r� � bu� ���	���

Note that the output r� from the slower primary controller K� is not a

manipulated plant input
 but rather the reference input to the faster secondary

�or slave� controller K�	 For example
 cascades based on measuring the actual

manipulated variable �in which case y� � um� are commonly used to reduce

uncertainty and nonlinearity at the plant input	

With r� � � in ���	��� the relationship between the centralized and cascade

implementation is K�� � K�K� and K�� � K�	

An advantage with the cascade implementation is that it more clearly

decouples the design of the two controllers	 It also shows more clearly that

r� is not a degreeoffreedom at higher layers in the control system	 Finally


it allows for integral action in both loops �whereas usually only K�� should

have integral action in ���	����	

On the other hand
 a centralized implementation is better suited for direct

multivariable synthesis� see the velocity feedback for the helicopter case study

in Section ��	�	

r� ��
�

c � K�

� c�
�

� K�

�u� G�

� c�
d�

� � �q
y��

G�

� c�
d�

� � �y�q

�

Figure ����� Common case of cascade control where the primary output y� depends

directly on the extra measurement y�� y�

Remark� Consider conventional cascade control in Figure ���� �a�� In the general

case y� and y� are not directly related to each other� and this is sometimes referred

to as parallel cascade control� However� it is common to encounter the situation in

Figure ���� where y� depends directly on y�� This is a special case of Figure ���� �a�

with �Plant��
h
G�G�

G�

i
� and it is considered further in Example �����

Exercise ���� Conventional cascade control� With reference to the special

�but common� case of conventional cascade control shown in Figure ����� Morari

and Za�riou ������ conclude that the use of extra measurements is useful under the

following circumstances�

�a� The disturbance d� is signi�cant and G� is non�minimum phase�
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�b� The plant G� has considerable uncertainty associated with it � e�g� a poorly

known nonlinear behaviour � and the inner loop serves to remove the

uncertainty�

In terms of design they recommended that K� is �rst designed to minimize the e�ect

of d� on y� �with K� � �� and then K� is designed to minimize the e�ect of d� on

y�� We want to derive conclusions �a� and �b� from an input�output controllability

analysis� and also� �c� explain why we may choose to use cascade control if we want

to use simple controllers �even with d� � ���

Outline of solution� �a� Note that if G� is minimum phase� then the input�output

controllability of G� and G�G� are in theory the same� and for rejecting d� there

is no fundamental advantage in measuring y� rather than y�� �b� The inner loop

L� � G�K� removes the uncertainty if it is su�ciently fast �high gain feedback� and

yields a transfer function �I�L��
��L� close to I at frequencies where K� is active�

�c� In most cases� such as when PID controllers are used� the practical bandwidth is

limited by the frequency wu where the phase of the plant is ���� �see section ���	��

so an inner cascade loop may yield faster control �for rejecting d� and tracking r��

if the phase of G� is less than that of G�G��

Exercise ���� To illustrate the bene�t of using inner cascades for high�order

plants� case �c� in the above example� consider Figure ���� and let

G� �

�

�s� ���
� G� �

�
s� �

We use a fast proportional controller K� � �	 in the inner loop� whereas a somewhat

slower PID�controller is used in the outer loop�

K��s� � Kc

�s� ���

s����s� ��
� Kc � 	

Sketch the closed�loop response� What is the bandwidth for each of the two loops

Compare this with the case where we only measure y�� so G � G�G�� and use a

PID�controller K�s� with the same dynamics as K��s� but with a smaller value of

Kc� What is the achievable bandwidth Find a reasonable value for Kc �starting with

Kc � �� and sketch the closed�loop response �you will see that it is about a factor �

slower without the inner cascade��

������ Cascade control� Extra inputs

In some cases we have more manipulated inputs than controlled outputs	

These may be used to improve control performance	 Consider a plant with a

single controlled output y and two manipulated inputs u� and u�	 Sometimes

u� is an extra input which can be used to improve the fast �transient� control

of y
 but if it does not have su�cient power or is too costly to use for long

term control
 then after a while it is reset to some desired value ��ideal resting

value��	
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Centralized �parallel� implementation� A centralized implementation

u � K�r � y� where K is a �input �output controller
 may be written

u� � K���s��r � y�� u� � K���s��r � y� ���	���

Here two inputs are used to control one output
 so to get a unique steadystate

for the inputs u� and u�
 K�� has integral control but K�� does not	 Then

u��t� will only be used for transient �fast� control and will return to zero �or

more precisely to its desired value ru� � as t��	

Cascade implementation �input resetting�� To obtain an implemen

tation with two SISO controllers we may cascade the controllers as shown in

Figure ��	� �b�	 We again let input u� take care of the fast control and u� of

the longterm control	 The fast control loop is then

u� � K��s��r � y� ���	���

The objective of the other slower controller is then to use input u� to reset

input u� to its desired value ru� �

u� � K��s��ru� � y��� y� � u� ���	���

and we see that the output from the fast controller K� is the �measurement�

for the slow controller K�	

With ru� � � the relationship between the centralized and cascade

implementation is K�� � �K�K� and K�� � K�	

The cascade implementation again has the advantage of decoupling the

design of the two controllers	 It also shows more clearly that ru� 
 the reference

for u�
 may be used as a degreeoffreedom at higher layers in the control

system	 Finally
 we can have integral action in both K� and K�
 but note

that the gain of K� should be negative �if e�ects of u� and u� on y are both

positive�	

Remark � Typically� the controllers in a cascade system are tuned one at a time

starting with the fast loop� For example� for the control system in Figure ���	 we

would probably tune the three controllers in the order K� �inner cascade using fast

input�� K� �input resetting using slower input�� and K� ��nal adjustment of y���

Remark � In process control� the cascade implementation of input resetting is

sometimes referred to as valve position control� because the extra input u�� usually

a valve� is reset to a desired position by the outer cascade�

Exercise ���� Draw the block diagrams for the two centralized �parallel�

implementations corresponding to Figure �����

Exercise ���	 Derive the closed�loop transfer functions for the e�ect of r on y� u�

and u� for the cascade input resetting scheme in Figure ���� �b�� As an example use

G � �G�� G�� � � � � � � and use integral action in both controllers� K� � ���s

and K� � ���s� Show that input u� is reset at steady�state�
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Example ���	 Two layers of cascade control� Consider the system in

Figure ���� with two manipulated inputs �u� and u��� one controlled output �y�

which should be close to r�� and two measured variables �y� and y��� Input u� has a

more direct e�ect on y� than does input u� �there is a large delay in G��s��� Input

u� should only be used for transient control as it is desirable that it remains close to

r� � ru� � The extra measurement y� is closer than y� to the input u� and may be

useful for detecting disturbances �not shown� a�ecting G��

e
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e

q �
�

� �

�� �

� ��
�r�

r�

r�

K�

K�

K�

u�
u�

G� G�

G�

�

�

�

�
�

�

q y���

��
e� �y�
q

Figure ����� Control con�guration with two layers of cascade control�

In Figure ���� controllers K� and K� are cascaded in a conventional manner�

whereas controllers K� and K� are cascaded to achieve input resetting� The

corresponding equations are

bu� � K��s��r� � y�� �����	�

u� � K��s��r� � y��� r� � bu� �����
�

u� � K��s��r� � y��� y� � u� �������

Controller K� controls the primary output y� at its reference r� by adjusting the


input� bu�� which is the reference value for y�� Controller K� controls the secondary

output y� using input u�� Finally� controller K� manipulates u� slowly in order to

reset input u� to its desired value r��

Exercise ���
 Process control application� A practical case of a control

system like the one in Figure ���� is in the use of a pre�heater to keep the reactor

temperature y� at a given value r�� In this case y� may be the outlet temperature

from the pre�heater� u� the bypass �ow �which should be reset to r�� say ��� of the

total �ow�� and u� the �ow of heating medium �steam�� Make a process �owsheet

with instrumentation lines �not a block diagram� for this heater�reactor process�

Example ���
 Decentralized control� Consider the a plant consisting of G��

G� and G� as in Figure ����� If we had a di�erent control objective� namely to keep

both y� and y� at desired values r� and r� �independent of each other�� then this could
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be implemented using two independent decentralized controllers� u� � K��r� � y���

and u� � K��r� � y�� �not shown in Figure��

������ Extra inputs and outputs 	local feedback


In many cases performance may be improved with local feedback loops

involving extra manipulated inputs and extra measurements	 However
 the

improvement must be traded o� against the cost for the extra actuator


measurement and control system	 An example where local feedback is required

to counteract the e�ect of highorder lags is given for a neutralization process

in Figure �	�� on page ���	 The use of local feedback is also discussed by

Horowitz ������	

������ Selectors

Split�range control for extra inputs� We assumed above that the extra

input is used to improve dynamic performance	 Another situation is when

input constraints make it necessary to add a manipulated input	 In this case

the control range is often split such that
 for example
 u� is used for control

when y 	 �ymin� y� 
 and u� is used when y 	 �y�� ymax 	

Selectors for too few inputs	 A completely di�erent situation occurs

if there are too few inputs	 Consider the case with one input �u� and

several outputs �y�� y�� � � ��	 In this case
 we cannot control all the outputs

independently
 so we either need to control all the outputs in some average

manner
 or we need to make a choice about which outputs are the most

important to control	 Selectors or logic switches are often used for the latter	

Auctioneering selectors are used to decide to control one of several similar

outputs	 For example
 this may be used to adjust the heat input �u� to keep the

maximum temperature �maxi yi� in a �red heater below some value	 Override

selectors are used when several controllers compute the input value
 and we

select the smallest �or largest� as the input	 For example
 this is used in a

heater where the heat input �u� normally controls temperature �y��
 except

when the pressure �y�� is too large and pressure control takes over	

������ Why use cascade and decentralized control�

As is evident from Figure ��	��a�
 decomposed control con�gurations can

easily become quite complex and di�cult to maintain and understand	 It

may therefore be both simpler and better in terms of control performance to

set up the controller design problem as an optimization problem and let the

computer do the job
 resulting in a centralized multivariable controller as used

in other chapters of this book	
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If this is the case
 why is cascade and decentralized control used in practice�

There are a number of reasons
 but the most important one is probably the

cost associated with obtaining good plant models
 which are a prerequisite

for applying multivariable control	 On the other hand
 with cascade and

decentralized control each controller is usually tuned one at a time with a

minimum of modelling e�ort
 sometimes even on�line by selecting only a few

parameters �e	g
 the gain and integral time constant of a PIcontroller�	 The

main reason for applying cascade and decentralized control is thus to save on

modelling e	ort	 Since cascade and decentralized control systems depend more

strongly on feedback rather than models as their source of information
 it is

usually more important �relative to centralized multivariable control� that the

fast control loops be tuned to respond quickly	

Other advantages of cascade and decentralized control include the following�

they are often easier to understand by operators
 they reduce the need

for control links and allow for decentralized implementation
 their tuning

parameters have a direct and �localized� e�ect
 and they tend to be insensitive

to uncertainty
 for example
 in the input channels �see Section �	�	��	 The issue

of simpli�ed implementation and reduced computation load is also important

in many applications
 but is becoming less relevant as the cost of computing

power is reduced	

Based on the above discussion
 the main challenge is to �nd a control

con�guration which allows the �sub�controllers to be tuned independently

based on a minimum of model information �the pairing problem�	 For

industrial problems
 the number of possible pairings is usually very high
 but

in most cases physical insight and simple tools
 such as the RGA
 can be

helpful in reducing the number of alternatives to a manageable number	 To

be able to tune the controllers independently
 we must require that the loops

interact only to a limited extent	 For example
 one desirable property is that

the steadystate gain from ui to yi in an �inner� loop �which has already been

tuned�
 does not change too much as outer loops are closed	 For decentralized

diagonal control the RGA is a useful tool for addressing this pairing problem	

Why do we need a theory for cascade and decentralized control� We just

argued that the main advantage of decentralized control was its saving on

the modelling e�ort
 but any theoretical treatment of decentralized control

requires a plant model	 This seems to be a contradiction	 However
 even

though we may not want to use a model to tune the controllers
 we may

still want to use a model to decide on a control structure and to decide

on whether acceptable control with a decentralized con�guration is possible	

The modelling e�ort in this case is less
 because the model may be of a

more �generic� nature and does not need to be modi�ed for each particular

application	

We present below some theoretical results for the design of decomposed

control systems	 In Section ��	� we consider the hierarchical �vertical�
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decomposition
 and in Section ��	� we consider the horizontal decomposition

into independent decentralized controllers	

���� Hierarchical and partial control

A hierarchical control system results when we design the subcontrollers in

a sequential manner
 usually starting with the fast loops � �bottomup�

�	 This means that the controller at some higher layer in the hierarchy is

designed based on a partially controlled plant	 In this section we derive

transfer functions for partial control
 and provide some guidelines for designing

hierarchical control systems	

����� Partial control

Partial control involves controlling only a subset of the outputs for which there

is a control objective	 We divide the outputs into two classes�

� y� % �temporarily� uncontrolled output �for which there is an associated

control objective�

� y� % �locally� measured and controlled output

We also subdivide the available manipulated inputs in a similar manner�

� u� % inputs used for controlling y�

� u� % remaining inputs �which may be used for controlling y��

We have inserted the word temporarily above
 since y� is normally a

controlled output at some higher layer in the hierarchy	 However
 we here

consider the partially controlled system as it appears after having implemented

only a local control system where u� is used to control y�	 In most of the

development that follows we assume that the outputs y� are tightly controlled	

Four applications of partial control are�

�	 Sequential design of decentralized controllers� The outputs y �which include

y� and y�� all have an associated control objective
 and we use a hierarchical

control system	 We �rst design a controller K� to control the subset y�	

With this controller K� in place �a partially controlled system�
 we may

then design a controller K� for the remaining outputs	

�	 Sequential design of conventional cascade control� The outputs y� are

additional measured ��secondary�� variables which are not important

variables in themselves	 The reason for controlling y� is to improve

the control of y�	 The references r� are used as degreesoffreedom for

controlling y� so the set u� is often empty	
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�	 �True� partial control	 The outputs y �which include y� and y�� all have an

associated control objective
 and we consider whether by controlling only

the subset y�� we can indirectly achieve acceptable control of y�
 that is


the outputs y� remain uncontrolled and the set u� remains unused	

�	 Indirect control	 The outputs y� have an associated control objective


but they are not measured	 Instead
 we aim at indirectly controlling y�

by controlling the �secondary� measured variables y� �which have no

associated control objective�	 The references r� are used as degrees of

freedom and the set u� is empty	 This is similar to cascade control
 but

there is no �outer� loop involving y�	 Indirect control was discussed in

Section ��	�	

The following table shows more clearly the di�erence between the four

applications of partial control �In all cases there is a control objective

associated with y� and a measurement of y���

Measurement Control objective

of y�� for y��

Sequential decentralized control Yes Yes

Sequential cascade control Yes No

�True�� partial control No Yes

Indirect control No No

The four problems are closely related
 and in all cases we want the e�ect

of the disturbances on y� to be small
 when y� is controlled	 Let us derive

the transfer functions for y� when y� is controlled	 One di�culty is that this

requires a separate analysis for each choice of y� and u�
 and the number of

alternatives has a combinatorial growth as illustrated by ���	���	

By partitioning the inputs and outputs
 the overall model y � Gu may be

written

y� � G��u� � G��u� � Gd�d ���	���

y� � G��u� � G��u� � Gd�d ���	���

Assume now that feedback control u� � K��r��y�� is used for the �secondary�

subsystem involving u� and y�	 By eliminating u� and y�
 we then get the

following model for the resulting partially controlled system�

y� �

�
G�� �G��K��I � G��K��
��G��
	
u� ��

Gd� �G��K��I � G��K��
��Gd�
	
d �

G��K��I � G��K��
��r� ���	���

Remark� This may be rewritten in terms of linear fractional transformations� For

example� the transfer function from u� to y� is

Fl�G��K�� � G�� �G��K��I �G��K��
��G�� �������
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Perfect control of y�� In some cases we can assume that the control of y� is

very fast compared to the control of y�
 so that we e�ectively have that y� is

perfectly controlled when considering the control of y�	 To obtain the model

we may formally let K� � � in ���	���
 but it is better to set y� � r� and

solve for u� in ���	��� to get

u� � �G���� Gd�d�G���� G��u� � G���� r�

We have here assumed that G�� is square and invertible
 otherwise we can

get the leastsquare solution by replacing G���� by the pseudoinverse
 Gy��	 On

substituting this into ���	��� we get

y� � �G�� �G��G
��
�� G���� �z �

�
� Pu

u� � �Gd� �G��G
��
�� Gd��� �z �

�
� Pd

d � G��G
��
��� �z �

�
�Pr

r� ���	���

where Pd is called the partial disturbance gain
 which is the disturbance gain

for a system under perfect partial control
 and Pu is the e�ect of u� on y�

with y� perfectly controlled	 In many cases the set u� is empty �there are no

extra inputs�	 The advantage of the model ���	��� over ���	��� is that the it

is independent of K�
 but we stress that it only applies at frequencies where

y� is tightly controlled	

Remark� Relationships similar to those given in ������� have been derived by many

authors� e�g� see the work of Manousiouthakis� Savage and Arkun ���
� on block

relative gains and the work of Haggblom and Waller ���� on distillation control

con�gurations�

����� Hierarchical control and sequential design

A hierarchical control systems arises when we apply a sequential design

procedure to a cascade or decentralized control system	

The idea is to �rst implement a local lower�layer �or inner� control system

for controlling the outputs y�	 Next
 with this lowerlayer control system in

place
 we design a controller K� to control y�	 The appropriate model for

designing K� is given by ���	��� �for the general case� or ���	��� �for the case

when we can assume y� perfectly controlled�	

The objectives for this hierarchical decomposition may vary�

�	 To allow for simple or even online tuning of the lowerlayer control system

�K��	

�	 To allow the use of longer sampling intervals for the higher layers �K��	

�	 To allow simple models when designing the higherlayer control system

�K��	 The highfrequency dynamics of the models of the partially controlled

plant �e	g	 Pu and Pr� may be simpli�ed if K� is mainly e�ective at lower

frequencies	
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�	 To �stabilize�� the plant using a lowerlayer control system �K�� such that

it is amenable to manual control	

The latter is the case in many process control applications where we �rst

close a number of faster �regulatory� loops in order to �stabilize� the plant	

The higher layer control system �K�� is then used mainly for optimization

purposes
 and is not required to operate the plant	

Based on these objectives
 Hovd and Skogestad ������ proposed some

criteria for selecting u� and y� to be included in the lowerlayer control

system�

�	 The lower layer must quickly implement the setpoints computed by the

higher layers
 that is
 the inputoutput controllability of the subsystem

involving use of u� to control y� should be good �consider G�� and Gd��	

�	 The control of y� using u� should provide local disturbance rejection
 that

is
 it should minimize the e�ect of disturbances on y� �consider Pd for y�

tightly controlled�	

�	 The control of y� using u� should not impose unnecessary control

limitations on the remaining control problem which involves using u�

and�or r� to control y�	 By �unnecessary� we mean limitations �RHP

zeros
 illconditioning
 etc	� that did not exist in the original overall

problem involving u and y	 Consider the controllability of Pu for y� tightly

controlled
 which should not be much worse than that of G	

These three criteria are important for selecting control con�gurations for

distillation columns as is discussed in the next example	

Example ���� Control congurations for distillation columns� The overall

control problem for the distillation column in Figure ���� has � inputs

u � �L V D BVT �
T

�these are all �ows� re�ux L� boilup V � distillate D� bottom �ow B� overhead vapour

VT � and � outputs

y � � yD xB MD MB p �T

�these are compositions and inventories� top composition yD� bottom composition

xB� condenser holdup MD� reboiler holdup MB� pressure p� see Figure ����� This

problem usually has no inherent control limitations caused by RHP�zeros� but the

plant has poles in or close to the origin and needs to be stabilized� In addition�

for high�purity separations the 	� 	 RGA�matrix may have some large elements at

low frequencies� Another complication is that composition measurements are often

expensive and unreliable�

� The terms �stabilize� and �unstable� as used by process operators may not refer to a

plant that is unstable in a mathematical sense	 but rather to a plant that is sensitive to

disturbances and which is di
cult to control manually�
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In most cases� the distillation column is �rst stabilized by closing three

decentralized SISO loops for level and pressure so

y� � �MD MB p �T

and the remaining outputs are

y� � � yD xB �
T

The three SISO loops for controlling y� usually interact weakly and may be tuned

independently of each other� However� since each level �tank� has an inlet and

two outlet �ows� there exists many possible choices for u� �and thus for u���

By convention� each choice �
con�guration�� is named by the inputs u� left for

composition control�

B

F

D

VT PC

LC

L

zF

V

xB

LC

yD

P
MB

MD

Figure ���	� Typical distillation column with LV �control con�guration

For example� the 
LV �con�guration� used in many examples in this book refers

to a partially controlled system where we use

u� � �L V �T

to control y� �and we assume that there is a control system in place which uses

u� � �D B VT �
T to control y��� The LV �con�guration is good from the point of

view that control of y� using u� is nearly independent of the tuning of the controller
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K� involving y� and u�� However� the problem of controlling y� by u� �
plant� Pu�

is often strongly interactive with large steady�state RGA�elements in Pu�

Another con�guration is the DV �con�guration where

u� � �D V �T

and thus u� � �L B VT �
T � In this case� the steady�state interactions from u�

to y� are generally much less� and Pu has small RGA�elements� But the model in

������� depends strongly on K� �i�e� on the tuning of the level loops�� and a slow

level loop for MD may introduce unfavourable dynamics for the response from u� to

y��
There are also many other possible con�gurations �choices for the two inputs in

u��� with �ve inputs there are �� alternative con�gurations� Furthermore� one often

allows for the possibility of using ratios between �ows� e�g� L�D� as possible degrees�

of�freedom in u� and this sharply increases the number of alternatives�

Expressions which directly relate the models for various con�gurations� e�g�

relationships between PLV
u � PLV
d and PDV

u � PDV

d etc�� are given in Haggblom and

Waller ������ and Skogestad and Morari �����a�� However� it may be simpler to

start from the overall 	 � 	 model G� and derive the models for the con�gurations

using ������� or �����	�� see also the MATLAB �le on page �	��

To select a good distillation control con�guration� one should �rst consider the

problem of controlling levels and pressure �y��� This eliminates a few alternatives�

so the �nal choice is based on the � � � composition control problem �y��� If y� is

tightly controlled then none of the con�gurations seem to yield RHP�zeros in Pu�

Important issues to consider then are disturbance sensitivity �the partial disturbance

gain Pd should be small� and the interactions �the RGA�elements of Pu�� These

issues are discussed by� for example� Waller� Haggblom� Sandelin and Finnerman

������ and Skogestad� Lundstr�om and Jacobsen ������� Another important issue is

that it is often not desirable to have tight level loops and some con�gurations� like

the DV �con�guration mentioned above� are sensitive to the tuning of K�� Then the

expressions for Pu and Pd� which are used in the references mentioned above� may

not apply� This is further discussed in Skogestad ����	��

Because of the problems of interactions and the high cost of composition

measurements� we often �nd in practice that only one of the two product

compositions is controlled �
true� partial control�� This is discussed in detail

in Example ���� below� Another common solution is to make use of additional

temperature measurements from the column� where their reference values are set

by a composition controller in a cascade manner�

In summary
 the overall �� � distillation control problem is usually solved

by �rst designing a � � � controller K� for levels and pressure
 and then

designing a �� � controller K� for the the composition control	 This is then

a case of �block� decentralized control where the controller blocks K� and K�

are designed sequentially �in addition
 the blocks K� and K� may themselves

be decentralized�	

Sequential design is also used for design of cascade control systems	 This is

discussed next	
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Sequential design of cascade control systems

	 Consider the conventional cascade control system in Figure ��	� �a�
 where

we have additional �secondary� measurements y� with no associated control

objective
 and the objective is to improve the control of the primary outputs

y� by locally controlling y�	 The idea is that this should reduce the e�ect of

disturbances and uncertainty on y�	

From ���	���
 it follows that we should select secondary measurements y�

�and inputs u�� such that kPdk is small and at least smaller than kGd�k	

In particular
 these arguments apply at higher frequencies	 Furthermore
 it

should be easy to control y� by using as degreesoffreedom the references r�

�for the secondary outputs� or the unused inputs u�	 More precisely
 we want

the inputoutput controllability of the �plant� �Pu Pr  �or Pr if the set u�

is empty� with disturbance model Pd
 to be better than that of the plant

�G�� G��  �or G��� with disturbance model Gd�	

Remark� Most of the arguments given in Section ����� for the separation into an

optimization and a control layer� and in Section ����� for the selection of controlled

outputs� apply to cascade control if the term �optimization layer� is replaced by

�primary controller�� and �control layer� is replaced by �secondary controller��

Exercise ���� The block diagram in Figure ���� shows a cascade control system

where the primary output y� depends directly on the extra measurement y�� so

G�� � G�G�� G�� � G�� Gd� � � I G� � and Gd� � � � I �� Show that Pd � � I � �

and Pr � G� and discuss the result� Note that Pr is the 
new� plant as it appears

with the inner loop closed�

����� �True� partial control

We here consider the case where we attempt to leave a set of primary outputs

y� uncontrolled	 This �true� partial control may be possible in cases where

the outputs are correlated such that controlling the outputs y� indirectly

gives acceptable control of y�	 One justi�cation for partial control is that

measurements
 actuators and control links cost money
 and we therefore prefer

control schemes with as few control loops as possible	

To analyze the feasibility of partial control
 consider the e�ect of

disturbances on the uncontrolled output�s� y� as given by ���	���	 Suppose

all variables have been scaled as discussed in Section �	�	 Then we have that�

� A set of outputs y� may be left uncontrolled only if the e	ects of all

disturbances on y� as expressed by the elements in the corresponding partial

disturbance gain matrix Pd are less than � in magnitude at all frequencies�

Therefore
 to evaluate the feasibility of partial control one must for each choice

of controlled outputs �y�� and corresponding inputs �u��
 rearrange the system

as in ���	��� and ���	��� and compute Pd using ���	���	
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There may also be changes in r� �of magnitude R�� which may be regarded

as disturbances on the uncontrolled outputs y�	 From ���	��� then
 we also

have that�

� A set of outputs y� may be left uncontrolled only if the e	ects of all reference

changes in the controlled outputs �y�� on y� as expressed by the elements

in the matrix G��G
��
�� R� are less than � in magnitude at all frequencies�

One uncontrolled output and one unused input� �True� partial

control is often considered if we have an m�m plant G�s� where acceptable

control of all m outputs is di�cult
 and we consider leaving input uj unused

and output yi uncontrolled	 In this case
 instead of rearranging y into
h
y�
y�

i
and

u into
h
u�
u�

i
for each candidate control con�guration
 we may directly evaluate

the partial disturbance gain based on the overall model y � Gu � Gdd	 The

e�ect of a disturbance dk on the uncontrolled output yi is

Pdk �
�
�yi

�dk
�

uj���yl��i��
�

�G��Gd jk

�G�� ji

���	���

where �uj � �� yl��i � �� means that input uj is constant and the remaining

outputs yl ��i are constant	

Proof of �������� The proof is from �Skogestad and Wol�� ������ Rewrite y �

Gu � �Gd�kdk as u � G��y � �G���kGdd� Set yl � � for all �� i� Then uj �

�G���jiyi � �G
��Gd�jkdk and by setting uj � � we �nd yi�dk � �G
��Gd�jk��G
���ji�

�

From ���	��� we derive direct insight into how to select the uncontrolled

output and unused input�

�	 Select the unused input uj such that the j!th row in G��Gd has small

elements	 That is
 keep the input constant �unused� if its desired change is

small	

�	 Select the uncontrolled output yi and unused input uj such that the

ji!th element in G�� is large	 That is
 keep an output uncontrolled if

it is insensitive to changes in the unused input with the other outputs

controlled	

Example ��� Consider the FCC process in Exercise ���� with

G��� �
�
��� ���� ����

����� ���� �����

���� ���� ����
�

� G����� �
�
���� ���� �����

���� ���� �����

����� ����� ���
�

where we want leave one input unused and one output uncontrolled� From the second

rule� since all elements in the third row of G�� are large� it seems reasonable to let

input u� be unused� as is done in Exercise ����� �The outputs are mainly selected to

avoid the presence of RHP�zeros� see Exercise ������
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We next consider a �� � distillation process where it is di�cult to control

both outputs independently due to strong interactions
 and we leave one

output �y�� uncontrolled	 To improve the performance of y� we also consider

the use of feedforward control where u� is adjusted based on measuring the

disturbance �but we need no measurement of y��	

Example ���� Partial and feedforward control of � � � distillation

process� Consider a distillation process with � inputs �re�ux L and boilup V ��

� outputs �product compositions yD and xB� and � disturbances �feed �owrate F

and feed composition zF �� We assume that changes in the reference �r� and r�� are

infrequent and they will not be considered� At steady�state �s � �� we have

G �
�
�� �
��

���� �����

�

� Gd �
�
�� ��

����� �����
�

� G��Gd �
�
���	� �����	

���
� ������
�

�������

Since the rows elements in G��Gd are similar in magnitude as are also the elements

of G�� �between ��� and ����� the rules following ������� do not clearly favour any

particular partial control scheme� This is con�rmed by the values of Pd� which are

seen to be quite similar for the four candidate partial control schemes�

P ���

d� �
�
����


������
�T

� P ���

d� �
�
���
�

�����
�T

� P ���

d� �
�
����

�����
�T

� P ���

d� �
�
����

����
�T

The superscripts here denote the controlled output and corresponding input�

Importantly� in all four cases� the magnitudes of the elements in Pd are much smaller

than in Gd� so control of one output signi�cantly reduces the e�ect of the disturbances

on the uncontrolled output� In particular� this is the case for disturbance �� for which

the gain is reduced from about �� to ���� and less�

Let us consider in more detail scheme � which has the smallest disturbance

sensitivity for the uncontrolled output �P ���

d� �� This scheme corresponds to controlling

output y� �the bottom composition� using u� �the boilup V � and with y� �the top

composition� uncontrolled� We use a dynamic model which includes liquid �ow

dynamics� the model is given in Section �	��� Frequency�dependent plots of Gd and

Pd show that the conclusion at steady state also applies at higher frequencies� This

is illustrated in Figure ����� where we show for the uncontrolled output y� and the

worst disturbance d� both the open�loop disturbance gain �Gd��� Curve �� and the

partial disturbance gain �P ���

d��� Curve ��� For disturbance d� the partial disturbance

gain �not shown� remains below � at all frequencies�

The partial disturbance gain for disturbance d� �the feed �owrate F � is somewhat

above � at low frequencies �Pd��� � ����
�� so let us next consider how we may

reduce its e�ect on y�� One approach is to reduce the disturbance itself� for example�

by installing a bu�er tank �as in pH�example in Chapter �������� However� a bu�er

tank has no e�ect at steady�state� so it does not help in this case�

Another approach is to install a feedforward controller based on measuring d�

and adjusting u� �the re�ux L� which is so far unused� In practice� this is easily

implemented as a ratio controller which keeps L�F constant� This eliminates the

steady�state e�ect of d� on y� �provided the other control loop is closed�� In terms
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Figure ���
� E�ect of disturbance � on output � for distillation column example�

of our linear model� the mathematical equivalence of this ratio controller is to

use u� � ���	�d�� where ���	� is the �� ��element in �G��Gd� The e�ect of

the disturbance after including this static feedforward controller is shown as curve

� in Figure ����� However� due to measurement error we cannot achieve perfect

feedforward control� so let us assume the error is ���� and use u� � ���� � ��	�d��

The steady�state e�ect of the disturbance is then Pd������ ���� � ���
 � ��� � �����

which is still acceptable� But� as seen from the frequency�dependent plot �curve ���

the e�ect is above ��	 at higher frequencies� which may not be desirable� The reason

for this undesirable peak is that the feedforward controller� which is purely static�

reacts too fast� and in fact makes the response worse at higher frequencies �as seen

when comparing curves � and � with curve ��� To avoid this we �lter the feedforward

action with a time constant of � min resulting in the following feedforward controller�

u� � �

��	�

�s� �
d� �����	�

To be realistic we again assume an error of ���� The resulting e�ect of the

disturbance on the uncontrolled output is shown by curve 	� and we see that the

e�ect is now less than ���� at all frequencies� so the performance is acceptable�

Remark� In the example there are four alternative partial control schemes with

quite similar disturbance sensitivity for the uncontrolled output� To decide on the best

scheme� we should also perform a controllability analysis of the feedback properties

of the four ��� problems� Performing such an analysis� we �nd that schemes � �the

one chosen� and � are preferable� because the input in these two cases has a more

direct e�ect on the output� and with less phase lag�

In conclusion
 for this example it is di�cult to control both outputs

simultaneously using feedback control due to strong interactions	 However


we can almost achieve acceptable control of both outputs by leaving y�

uncontrolled	 The e�ect of the most di�cult disturbance on y� can be further

�
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reduced using a simple feedforward controller ���	��� from disturbance d� to

u�	
���� Decentralized feedback control

e
e

q
q

�
�

�
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�
�
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�

�
�
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r� �

�

�
�

k�
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u�
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G�s�

K�s�

y�
y�

Figure ����� Decentralized diagonal control of a � � � plant

In this section
 G�s� is a square plant which is to be controlled using a diagonal

controller �see Figure ��	��

K�s� � diagfki�s�g �

���
k��s�

k��s�

	 	 	

km�s�
��� ���	���

This is the problem of decentralized diagonal feedback control	 The design of

decentralized control systems involves two steps�

�	 The choice of pairings �control con�guration selection�

�	 The design �tuning� of each controller
 ki�s�	

The optimal solution to this problem is very di�cult mathematically
 because

the optimal controller is in general of in�nite order and may be nonunique�

we do not address it in this book	 The reader is referred to the literature

�e	g	 Sourlas and Manousiouthakis
 ����� for more details	 Rather we aim

at providing simple tools for pairing selections �step �� and for analyzing the

achievable performance �controllability� of diagonally controlled plants �which

may assist in step ��	

Remark� The treatment in this section may be generalized to block�diagonal

controllers by� for example� introducing tools such as the block relative gain array

of Manousiouthakis et al� ���
��
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Notation for decentralized diagonal control� G�s� denotes a square

m�m plant with elements gij 	 G
ij�s� denotes the remaining �m�����m���

plant obtained by removing row i and column j in G�s�	 With a particular

choice of pairing we can rearrange the columns or rows of G�s� such that

the paired elements are along the diagonal of G�s�	 We then have that the

controller K�s� is diagonal �diagfkig�
 and we also introduce

eG �
� diagfgiig �


���
g��

g��

	 	 	

gmm

��� ���	���

as the matrix consisting of the diagonal elements of G	 The loop transfer

function in loop i is denoted Li � giiki
 which is also equal to the i!th diagonal

element of L � GK	

The magnitude of the o�diagonal elements in G �the interactions� relative

to its diagonal elements are given by the matrix

E
�

� �G� eG� eG�� ���	���

A very important relationship for decentralized control is given by the

following factorization of the return di�erence operator�

�I � GK�� �z �
overall

� �I � E eT �� �z �
interactions

�I � eGK�� �z �
individual loops

���	���

or equivalently in terms of the sensitivity function S � �I � GK���


S � eS�I � E eT ��� ���	���

Here

eS �
� �I � eGK��� � diagf

�

� � giiki
g and eT � I � eS ���	���

contain the sensitivity and complementary sensitivity functions for the

individual loops	 Note that eS is not equal to the matrix of diagonal elements

of S	 ���	��� follows from �A	���� with G � eG and G� � G	 The reader is

encouraged to con�rm that ���	��� is correct
 because most of the important

results for stability and performance using decentralized control may be

derived from this expression	 An alternative factorization which follows from

�A	���� is

S � �I � eS�&� I���� eS& ���	���

where & is the Performance Relative Gain Array �PRGA�


&�s�
�

� eG�s�G���s� ���	���

�
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which is a scaled inverse of the plant	 Note that E � &�� � I 	 At frequencies

where feedback is e�ective �eS � ��
 ���	��� yields S � eS& which shows that

& is important when evaluating performance with decentralized control	 The

diagonal elements of the PRGAmatrix are equal to the diagonal elements

of the RGA
 �ii � �ii
 and this is the reason for its name	 Note that the

o�diagonal elements of the PRGA depend on the relative scaling on the

outputs
 whereas the RGA is scaling independent	 On the other hand
 the

PRGA measures also oneway interaction
 whereas the RGA only measures

twoway interaction	

We also will make use of the related ClosedLoop Disturbance Gain �CLDG�

matrix
 de�ned as
eGd�s�
�

� &�s�Gd�s� � eG�s�G���s�Gd�s� ���	���

The CLDG depends on both output and disturbance scaling	

������ RGA as interaction measure for decentralized

control

We here follow Bristol ������
 and show that the RGA provides a measure

of the interactions caused by decentralized diagonal control	 Let uj and yi

denote a particular input and output for the multivariable plant G�s�
 and

assume that our task is to use uj to control yi	 Bristol argued that there will

be two extreme cases�

� Other loops open� All other inputs are constant
 i	e	 uk � ��
k �� j	

� Other loops closed� All other outputs are constant
 i	e	 yk � ��
k �� i	

In the latter case
 it is assumed that the other loops are closed with perfect

control	 Perfect control is only possible at steadystate
 but it is a good

approximation at frequencies within the bandwidth of each loop	 We now

evaluate the e�ect �yi��uj of �our� given input uj on �our� given output yi

for the two extreme cases	 We get

Other loops open�

�
�yi

�uj
�

uk���k ��j
� gij ���	���

Other loops closed�

�
�yi

�uj
�

yk���k ��i
�

� bgij ���	���

Here gij � �G ij is the ij!th element of G
 whereas bgij is the inverse of the

ji!th element of G�� bgij � ���G�� ji ���	���
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To derive ���	��� note that

y � Gu �

�
�yi

�uj
�

uk���k ��j
� �G ij ���	���

and interchange the roles of G and G��
 of u and y
 and of i and j to get

u � G��y �

�
�uj

�yi
�

yk���k ��i
� �G�� ji ���	���

and ���	��� follows	 Bristol argued that the ratio between the gains in ���	���

and ���	���
 to corresponding the two extreme cases
 is a useful measure of

interactions
 and he introduced the term
 ij!th relative gain de�ned as

�ij
�

�
gijbgij � �G ij �G
�� ji ���	���

The Relative Gain Array �RGA� is the corresponding matrix of relative gains	

From ���	��� we get #�G� � G��G���T where � denotes elementbyelement

multiplication �the Schur product�	 This is identical to our de�nition of the

RGAmatrix in ��	���	

Clearly
 we would like to pair variables uj and yi so that �ij is close to

�
 because this means that the gain from uj to yi is una�ected by closing

the other loops	 On the other hand
 a pairing corresponding to �ij��� 	 � is

clearly undesirable
 because it means that the steadystate gain in �our� given

loop changes sign when the other loops are closed	 A more exact statement is

given later in Theorem ��	�	

������ Stability of decentralized control systems

Consider a square plant with singleloop controllers	 For a ��� plant there are

two alternative pairings
 a ��� plant o�ers �
 a ��� plant ��
 and an m�m

plant has m" alternatives	 Thus
 tools are needed which are capable of quickly

eliminating inappropriate control structures	 In this section we provide two

useful rules for pairing inputs and outputs�

�	 To avoid instability caused by interactions in the crossover region one

should prefer pairings for which the RGAmatrix in this frequency range

is close to identity	

�	 To avoid instability caused by interactions at low frequencies one should

avoid pairings with negative steadystate RGA elements	

Su�cient conditions for stability

For decentralized diagonal control
 it is desirable that the system can be

tuned and operated one loop at a time	 Assume therefore that G is stable

�
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and each individual loop is stable by itself �eS and eT are stable�	 Then from

the factorization S � eS�I � E eT ��� in ���	��� and Lemma A	��
 which is

a special case of the generalized Nyquist theorem
 it follows that the overall

system is stable �S is stable� if and only if det�I�E eT �s�� does not encircle the

origin as s traverses the Nyquist Dcontour	 From the spectral radius stability

condition in ��	���� we then have that the overall system is stable if


�E eT �j��� 	 ��
� ���	���

This su�cient condition for overall stability can
 as discussed by Grosdidier

and Morari ������
 be used to obtain a number of even weaker stability

conditions	 We will consider three approaches	

�	 We use the fact that 
�E eT � � kE eTk � kEk keTk for any matrix norm
 see

�A	����	 For example
 we may use any induced norm
 k � kip
 such as the

maximum singular value �p � ��
 maximum column �p � �� or maximum

row sum �p � ��	 A su�cient condition for overall stability is then

keTkip � max
i

jetij 	 ��kEkip ���	���

�	 A better �less conservative� approach is to split up 
�E eT � using the

structured singular value	 From ��	���� we have 
�E eT � � ��E����T � and

from ���	��� we get the following theorem �as �rst derived by Grosdidier

and Morari
 ������

Theorem ���� Assume G is stable and that the individual loops are stable

� eT is stable�� Then the entire system is closed�loop stable �T is stable� if

��� eT � � max
i

jetij 	 ����E� 
� ���	���

Here ��E� is the structured singular value interaction measure	 It is

desirable to have ��E� small	 Note that ��E� is computed with respect

to the diagonal structure of eT �a diagonal matrix�
 where we may view eT

as the �design uncertainty�	

De�nition ���� A plant is �generalized� diagonally dominant at frequen�

cies where ��E�j��� 	 ��

From ���	��� we can then allow ��� eT �  � �tight control� at such frequencies

and still be guaranteed closedloop stability	

�	 A third approach is to use Gershgorin!s theorem
 see page ���	 From ���	���

we then derive the following su�cient condition for overall stability�

jetij 	 jgiij�
X

j ��i
jgij j 
i�
� ���	���
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or alternatively
 in terms of the columns


jetij 	 jgiij�
X

j ��i
jgjij 
i�
� ���	���

Remark � We stress again that condition ����	�� is always less conservative than

����	��� This follows since ����E� is de�ned to be the tightest upper bound on ���eT �

which guarantees ��E eT � � �� see also ��
� with � � eT � and since eT is diagonal

so ���eT � � keTkip � maxi jetji� An implication of this is that ��E� � kEkip� Since

��E� � ��DED���� see ������ where D in this case is diagonal� it then also follows

from �A���	� that ��E� � ��jEj�� where ��jEj� is the Perron root� �Note that these

upper bounds on ��E� are not general properties of the structured singular value��

Remark � On the other hand� we cannot say that ����	�� is always less

conservative than ����	�� and ����		�� It is true that the smallest of the i � �� � � �m

upper bounds in ����	�� or ����		� is always smaller �more restrictive� than ����E�

in ����	��� However� ����	�� imposes the same bound on jetij for each loop� whereas

����	�� and ����		� give individual bounds� some of which may be less restrictive

than ����E��

Remark � Another de�nition of generalized diagonal dominance is that ��jEj� � ��

where ��jEj� is the Perron root� see �A���	�� However� since as noted above

��E� � ��jEj�� it is better �less restrictive� to use ��E� to de�ne diagonal dominance�

Remark � Conditions ����	�������		� are only su�cient for stability� so we may in

some cases get closed�loop stability even if they are violated� see also Remark 	 on

page �
��

Remark � Condition ����	�� and the use of ��E� for �nominal� stability of the

decentralized control system can be generalized to include robust stability and robust

performance� see equations ���a�b� in Skogestad and Morari ������

We now want to show that for closedloop stability it is desirable to select

pairings such that the RGA is close to the identity matrix in the crossover

region	 The next simple theorem
 which applies to a triangular plant
 will

enable us to do this�

Theorem ���	 Suppose the plant G�s� is stable� If the RGA�matrix #�G� �

I 
� then stability of each of the individual loops implies stability of the entire

system�

Proof� From the de�nition of the RGA it follows that ��G� � I can only arise from a

triangular G�s� or from G�s��matrices that can be made triangular by interchanging

rows and columns in such a way that the diagonal elements remain the same but

in a di�erent order �the pairings remain the same�� A plant with a �triangularized�

transfer matrix �as described above� controlled by a diagonal controller has only one�

way coupling and will always yield a stable system provided the individual loops are

�
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stable� Mathematically� E � �G � eG� eG�� can be made triangular� and since the

diagonal elements of E are zero� it follows that all eigenvalues of E eT are zero� so

��E eT � � � and ����	�� is satis�ed� �

RGA at crossover frequencies� In most cases
 it is su�cient for overall

stability to require that G�j�� is close to triangular �or #�G� � I� at

crossover frequencies	 To see this
 assume that eS is stable
 and that eS&�s� �eS eG�s�G�s��� is stable and has no RHPzeros �which is always satis�ed if both

G and eG are stable and have no RHPzeros�	 Then from ���	��� the overall

system is stable �S is stable� if and only if �I � eS�& � I���� is stable	 HereeS�& � I� is stable
 so from the spectral radius stability condition in ��	����

the overall system is stable if


�eS�&� I��j��� 	 �� 
� ���	���

At low frequencies
 this condition is usually satis�ed because eS is small	 At

higher frequencies
 where the elements in eS � diagfesig approach and possibly

exceed � in magnitude
 ���	��� may be satis�ed if G�j�� is close to triangular	

This is because & � I and thus eS�& � I� are then close to triangular
 with

diagonal elements close to zero
 so the eigenvalues of eS�&� I��j�� are close to

zero
 ���	��� is satis�ed and we have stability of S	 This conclusion also holds

for plants with RHPzeros provided they are located beyond the crossover

frequency range	 In summary
 we have established the following rule	

Pairing Rule �� For stability of diagonal decentralized control select

pairings for which G�j�� is close to triangular i�e� #�G�j��� � I at

frequencies around crossover�

This rule establishes the RGA in the crossover region as a useful tool for

selecting inputoutput pairs and below we also establish the usefulness of the

RGA at steadystate	

Necessary steady�state conditions for stability

A desirable property of a decentralized control system is that it has integrity


i	e	 the closedloop system should remain stable as subsystem controllers are

brought in and out of service	 Mathematically
 the system posesses integrity if

it remains stable when the controller K is replaced by EK where E � diagfig

and the i take on the values of � or �
 i	e	 i 	 f�� �g	

An even stronger requirement is that the system remains stable as the gain

in various loops are reduced �detuned� by an arbitrary factor
 i	e	 i 	 ��� � 	

We introduce the idea of decentralized integral controllability �DIC� which

is concerned with whether it is possible to detune a decentralized controller

when there is integral action in each loop	



CONTROL STRUCTURE DESIGN �
�

De�nition ���
 Decentralized Integral Controllability �DIC�� The

plant G�s� �corresponding to a given pairing� is DIC if there exists a

decentralized controller with integral action in each loop such that the

feedback system is stable and such that each individual loop may be detuned

independently by a factor i �� � i � �� without introducing instability�

Remark � DIC was introduced by Skogestad and Morari ���b�� A detailed

survey of conditions for DIC and other related properties is given by Campo and

Morari �������

Remark � Unstable plants are not DIC� The reason is that with all 	i � � we are

left with the uncontrolled plant G� and the system will be �internally� unstable if

G�s� is unstable�

Remark � For 	i � � we assume that the integrator of the corresponding SISO

controller has been removed� otherwise the integrator would yield internal instability�

Note that DIC considers the existence of a controller
 so it depends only on

the plant G and the chosen pairings	 The steadystate RGA provides a very

useful tool to test for DIC
 as is clear from the following result which was �rst

proved by Grosdidier
 Morari and Holt �������

Theorem ���� Steady�state RGA Consider a stable square plant G and

a diagonal controller K with integral action in all elements and assume that

the loop transfer function GK is strictly proper� If a pairing of outputs and

manipulated inputs corresponds to a negative steady�state relative gain then

the closed�loop system has at least one of the following properties�

�a� The overall closed�loop system is unstable�

�b� The loop with the negative relative gain is unstable by itself�

�c� The closed�loop system is unstable if the loop with the negative relative

gain is opened �broken��

Proof� The theorem may be proved by setting eT � I in ������� and applying the

generalized Nyquist stability condition� Alternatively� we can use Theorem 
�� on

page �
� and select G� � diagfgii� G
iig� Since detG� � gii detG
ii and from �A��
�


ii �
gii detG
ii

detG

we have detG��detG � 
ii and Theorem ���
 follows� �

Each of the three possible instabilities in Theorem ��	� resulting from pairing

on a negative value of �ij��� is undesirable	 The worst case is �a� when the

overall system is unstable
 but situation �c� is also highly undesirable as it will

imply instability if the loop with the negative relative gain somehow becomes

inactive
 for example
 due to input saturation	 Situation �b� is unacceptable if

the loop in question is intended to be operated by itself e	g	 it may be at the

�bottom� of the control hierarchy
 or all the other loops may become inactive


due to input saturation	

Theorem ��	� can then be summarized in the following rule�

�
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Pairing Rule �� Avoid pairings which correspond to negative values of

�ij����

Consider a given pairing and assume we have reordered the inputs and outputs

such that G has the paired elements along its diagonal	 Then Theorem ��	�

implies that

A �reordered� plant G�s� is DIC only if �ii���  � for all i� ���	���

The RGA is a very e�cient tool because it does not have to be recomputed

for each possible choice of pairing	 This follows since any permutation of the

rows and columns of G results in the same permutation in the RGA of G	

To achieve DIC one has to pair on a positive RGA���element in each row

and column
 and therefore one can often eliminate many alternative pairings

by a simple glance at the RGAmatrix	 This is illustrated by the following

example	

Example ���� Consider a �� � plant with

G��� �
�
���� 	�
 ���

�	�	 ��� ����

��� ��� ��
�

� ���� �
�
���
 ���� �����

���� ����� ����

����� ����� ����
�

����	�

For a � � � plant there are � alternative pairings� but from the steady�state RGA

we see that there is only one positive element in column � �
�� � ���	�� and only

one positive element in row � �
�� � ����� and therefore there is only one possible

pairing with all RGA�elements positive �u� � y�� u� � y�� u� � y��� Thus� if we

require DIC we can from a quick glance at the steady�state RGA eliminate �ve of

the six alternative pairings�

Exercise ��� Assume that the ��� matrix in �A���� represents the steady�state

model of a plant� Show that �� of the �� possible pairings can be eliminated by

requiring DIC�

Remarks on DIC and RGA�

�� For �� � and �� � plants we have even tighter conditions for DIC than ����	���

For �� � plants �Skogestad and Morari� ��b�

DIC � 
����� � � ����	��

For �� � plants with positive diagonal RGA�elements of G��� and of Gii���� i �

�� � �its three principal submatrices� we have �Yu and Fan� �����

DIC �

p

����� �

p

����� �

p

����� 	 � ����
��

�Strictly speaking� as pointed out by Campo and Morari ������� we do not have

equivalence for the case when
p

����� �

p

����� �

p

����� is identical to ��

but this has little practical signi�cance��
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�� One cannot expect tight conditions for DIC in terms of the RGA for ��� systems

or higher� The reason is that the RGA essentially only considers �corner values��

	i � � or 	i � � �integrity�� for the detuning factor in each loop in the de�nition

of DIC� This is clear from the fact that 
ii �

gii detG
ii

detG

� where G corresponds

to 	i � � for all i� gii corresponds to 	i � � with the other 	k � �� and Gii

corresponds to 	i � � with the other 	k � ��

�� Determinant conditions for integrity �DIC�� The following condition is

concerned with whether it is possible to design a decentralized controller for the

plant such that the system posesses integrity� which is a prerequisite for having

DIC�

Assume without loss of generality that the signs of the rows or columns of G have

been adjusted such that all diagonal elements of G are positive� i�e� gii��� 	 ��

Then one may compute the determinant of G��� and all its principal submatrices

�obtained by deleting rows and corresponding columns in G����� which should all

have the same sign for DIC�

This determinant condition follows by applying Theorem 
�� to all possible

combinations of 	i � � or � as illustrated in the proof of Theorem ���
� and

is equivalent to requiring that the so�called Niederlinski indices�

NI � detG���� igii��� ����
��

of G��� and its principal submatrices are all positive� Actually� this yields more

information than the RGA� because in the RGA the terms are combined into


ii �

gii detG
ii

detG

so we may have cases where two negative determinants result

in a positive RGA�element� Nevertheless� the RGA is usually the preferred tool

because it does not have to be recomputed for each pairing�

�� DIC is also closely related to D�stability� see papers by Yu and Fan ������ and

Campo and Morari ������� The theory of D�stability provides necessary and

su�cient conditions except in a few special cases� such as when the determinant

of one or more of the submatrices is zero�

	� If we assume that the controllers have integral action� then T ��� � I� and we can

derive from ����	�� that a su�cient condition for DIC is that G is generalized

diagonally dominant at steady�state� that is�

��E���� � �

This is proved by Braatz ������ p��	��� However� the requirement is only su�cient

for DIC and therefore cannot be used to eliminate designs� Speci�cally� for a

�� � system it is easy to show �Grosdidier and Morari� ��
� that ��E���� � �

is equivalent to 
����� � ��	� which is conservative when compared with the

necessary and su�cient condition 
����� � � in ����	���


� If the plant has j��axis poles� e�g� integrators� it is recommended that� prior

to the RGA�analysis� these are moved slightly into the LHP �e�g� by using very

low�gain feedback�� This will have no practical signi�cance for the subsequent

analysis�

�� Since Theorem 
�� applies to unstable plants� we may also easily extend Theorem

���
 to unstable plants �and in this case one may actually desire to pair

on a negative RGA�element�� This is shown in Hovd and Skogestad �����a��
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Alternatively� one may �rst implement a stabilizing controller and then analyze

the partially controlled system as if it were the plant G�s��

� The above results only address stability� Performance is analyzed in Section

������

������ The RGA and right�half plane zeros

Bristol ������ claimed that negative values of �ii��� implied the presence of

RHPzeros	 This is not quite true
 and the correct statement is �Hovd and

Skogestad
 ������

Theorem ��� Consider a transfer function matrix with stable elements and

no zeros or poles at s � �� Assume lims�� �ij�s� is �nite and di	erent

from zero� If �ij�j�� and �ij��� have di	erent signs then at least one of

the following must be true�

a� The element gij�s� has a RHP�zero�

b� The overall plant G�s� has a RHP�zero�

c� The subsystem with input j and output i removed Gij�s� has a RHP�zero�

Any such zero may be detrimental for decentralized control	 In most cases

the pairings are chosen such that �ii��� is positive �usually close to �
 see

Pairing rule �� which then con�rm
 Bristol!s claim that a negative �ii���

implies there is a RHPzero in some subsystem	

Example ����� Consider a plant

G�s� �

�
	s� �

�
s� � s� �

� �

�

����
��

We �nd that 
���
� � � and 
����� � �� have di�erent signs� Since none of the

diagonal elements have RHP�zeros we conclude from Theorem ���� that G�s� must

have a RHP�zero� This is indeed true and G�s� has a zero at s � ��

������ Performance of decentralized control systems

In the following
 we consider performance in terms of the control error

e � y � r � Gu � Gdd� r ���	���

Suppose the system has been scaled as outlined in Chapter �	�
 such that at

each frequency�

�	 Each disturbance is less than � in magnitude
 jdkj 	 �	

�	 Each reference change is less than the corresponding diagonal element in

R
 jrj j 	 Rj 	
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�	 For each output the acceptable control error is less than �
 jeij 	 �	

For SISO systems
 we found in Section �	�� that in terms of scaled variables

we must at all frequencies require

j� � Lj � jGdj and j� � Lj � jRj ���	���

for acceptable disturbance rejection and command tracking
 respectively	 Note

that L�Gd and R are all scalars in this case	 For decentralized control these

requirements may be directly generalized by introducing the PRGAmatrix


& � eGG��
 in ���	��� and the CLDGmatrix
 eGd � &Gd
 in ���	���	 These

generalizations will be presented and discussed next
 and then subsequently

proved	

Single disturbance� Consider a single disturbance
 in which case Gd is

a vector
 and let gdi denote the i!th element of Gd	 Let Li � giiki denote

the loop transfer function in loop i	 Consider frequencies where feedback is

e�ective so eS& is small �and ���	��� is valid�	 Then for acceptable disturbance

rejection �jeij 	 �� we must with decentralized control require for each loop i


j� � Lij � jegdij 
i ���	���

which is the same as the SISOcondition ��	��� except that Gd is replaced by

the CLDG
 egdi	 In words
 egdi gives the �apparent� disturbance gain as seen

from loop i when the system is controlled using decentralized control	

Single reference change� Similarly
 consider a change in reference for

output j of magnitude Rj 	 Consider frequencies where feedback is e�ective

�and ���	��� is valid�	 Then for acceptable reference tracking �jeij 	 �� we

must require for each loop i
j� � Lij � j�ij j � jRj j 
i ���	���

which is the same as the SISOcondition except for the PRGAfactor
 j�ij j	 In

other words
 when the other loops are closed the response in loop i gets slower

by a factor j�iij	 Consequently
 for performance it is desirable to have small

elements in &
 at least at frequencies where feedback is e�ective	 However


at frequencies close to crossover
 stability is the main issue
 and since the

diagonal elements of the PRGA and RGA are equal	 we usually prefer to have

�ii close to � �recall pairing rule � on page ����	

Proof of ������� and �������� At frequencies where feedback is e�ective� eS is small�

so

I � eS�!� I� � I ����
��

and from ������� we have

S � eS! ����
�
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The closed�loop response then becomes

e � SGdd� Sr � eS eGdd� eS!r ����
��

and the response in output i to a single disturbance dk and a single reference change

rj is

ei � esiegdikdk � esiikrk �������

where esi � ���� � giiki� is the sensitivity function for loop i by itself� Thus� to

achieve jeij � � for jdkj � � we must require jesiegdikj � � and ����
	� follows�

Similarly� to achieve jeij � � for jrj j � jRj j we must require jsiikRj j � � and

����

� follows� Also note that jsiikj � � will imply that assumption ����
�� is

valid� Since R usually has all of its elements larger than �� in most cases ����
��

will be automatically satis�ed if ����

� is satis�ed� so we normally need not check

assumption ����
��� �

Remark � ����
� may also be derived from ������� by assuming eT � I which

yields �I �E eT ��� � �I �E��� � !�

Remark � Consider a particular disturbance with model gd� Its e�ect on output i

with no control is gdi� and the ratio between egdi �the CLDG� and gdi is the relative

disturbance gain �RDG� ��i� of Stanley� Marino�Galarraga and McAvoy ���	� �see

also Skogestad and Morari ����b���

�i


� egdi�gdi � �eGG��gd�i��gd�i �������

Thus �i� which is scaling independent� gives the change in the e�ect of the

disturbance caused by decentralized control� It is desirable to have �i small� as

this means that the interactions are such that they reduce the apparent e�ect of the

disturbance� such that one does not need high gains jLij in the individual loops�

������ Summary� Controllability analysis for

decentralized control

When considering decentralized diagonal control of a plant
 one should �rst

check that the plant is controllable with any controller	 If the plant is unstable


then as usual the unstable modes must be controllable and observable	 In

addition
 the unstable modes must not be decentralized �xed modes
 otherwise

the plant cannot be stabilized with a diagonal controller �Lunze
 �����	 For

example
 this is the case for a triangular plant if the unstable mode appears

only in the o�diagonal elements	

The next step is to compute the RGAmatrix as a function of frequency


and to determine if one can �nd a good set of inputoutput pairs bearing in

mind the following

�	 Prefer pairings which have the RGAmatrix close to identity at frequencies

around crossover
 i	e	 the RGAnumber k#�j��� Ik should be small	 This
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rule is to ensure that interactions from other loops do not cause instability

as discussed following ���	���	

�	 Avoid a pairing ij with negative steadystate RGA elements
 �ij�G����	

�	 Prefer a pairing ij where gij puts minimal restrictions on the achievable

bandwidth	 Speci�cally
 the frequency �uij where � gij�j�uij� � �����

should be as large as possible	

This rule favours pairing on variables �close to each other�
 which makes

it easier to satisfy ���	��� and ���	��� physically while at the same time

achieving stability	 It is also consistent with the desire that #�j�� is close

to I 	

When a reasonable choice of pairings has been made
 one should rearrange G

to have the paired elements along the diagonal and perform a controllability

analysis	

�	 Compute the CLDG and PRGA
 and plot these as a function of frequency	

�	 For systems with many loops
 it is best to perform the analysis one loop at

the time
 that is
 for each loop i
 plot jegdikj for each disturbance k and plot

j�ij j for each reference j �assuming here for simplicity that each reference

is of unit magnitude�	 For performance
 we need j� �Lij to be larger than

each of these

Performance � j� � Lij � max
k�j
fjegdikj� j�ij jg ���	���

To achieve stability of the individual loops one must analyze gii�s� to ensure

that the bandwidth required by ���	��� is achievable	 Note that RHP

zeros in the diagonal elements may limit achievable decentralized control


whereas they may not pose any problems for a multivariable controller	

Since with decentralized control we usually want to use simple controllers


the achievable bandwidth in each loop will be limited by the frequency

where � gii is ����� �recall Chapter �	���	

�	 As already mentioned one may check for constraints by considering

the elements of G��Gd and making sure that they do not exceed

one in magnitude within the frequency range where control is needed	

Equivalently
 one may for each loop i plot jgiij
 and the requirement is

then that
To avoid input constraints � jgiij � jegdikj� 
k ���	���

at frequencies where jegdikj is larger than � �this follows since eGd �eGG��Gd�	 This provides a direct generalization of the requirement jGj �

jGdj for SISO systems	 The advantage of ���	��� compared to using G��Gd

is that we can limit ourselves to frequencies where control is needed to reject

the disturbance �where jegdikj � ��	
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If the plant is not controllable
 then one may consider another choice of

pairings and go back to Step �	 If one still cannot �nd any pairings which are

controllable
 then one should consider multivariable control	

�	 If the chosen pairing is controllable then the analysis based on ���	��� tells

us directly how large jLij � jgiikij must be
 and can be used as a basis for

designing the controller ki�s� for loop i	

Remark� In some cases� pairings which violate the above rules may be chosen�

For example� one may even choose to pair on elements with gii � � which yield


ii � �� One then relies on the interactions to achieve the desired performance as

loop i by itself has no e�ect� An example of this is in distillation control when the

LV �con�guration is not used� see Example ���
�

Example ����� Application to distillation process� In order to

demonstrate the use of the frequency dependent RGA and CLDG for evaluation

of expected diagonal control performance� we consider again the distillation process

used in Example ����� The LV con�guration is used� that is� the manipulated inputs

are re�ux L �u�� and boilup V �u��� Outputs are the product compositions yD �y��

and xB �y��� Disturbances in feed �owrate F �d�� and feed composition zF �d��� are

included in the model� The disturbances and outputs have been scaled such that a

magnitude of � corresponds to a change in F of ���� a change in zF of ���� and

a change in xB and yD of ���� mole fraction units� The 	�state dynamic model is

given in Section �	���

Initial controllability analysis� G�s� is stable and has no RHP�zeros� The

plant and RGA�matrix at steady�state are

G��� �
�
�� �
��

���� �����

�

� ���� �
�
�	�� �����

����� �	��
�
�������

The RGA�elements are much larger than � and indicate a plant that is fundamentally

di�cult to control� Fortunately� the �ow dynamics partially decouple the response

at higher frequencies� and we �nd that ��j�� � I at frequencies above about ��	

rad�min� Therefore if we can achieve su�ciently fast control� the large steady�state

RGA�elements may be less of a problem�

The steady�state e�ect of the two disturbances is given by

Gd��� �
�
�� ��

����� �����
�

�����	�

and the magnitudes of the elements in Gd�j�� are plotted as a function of frequency

in Figure ����� From this plot the two disturbances seem to be equally di�cult to

reject with magnitudes larger than � up to a frequency of about ��� rad�min� We

conclude that control is needed up to ��� rad�min� The magnitude of the elements

in G��Gd�j�� �not shown� are all less than � at all frequencies �at least up to ��

rad�min�� and so it will be assumed that input constraints pose no problem�

Choice of pairings� The selection of u� to control y� and u� to control

y�� corresponds to pairing on positive elements of ���� and ��j�� � I at high

frequencies� This seems sensible� and is used in the following�
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Figure ������ Decentralized PI�control� Responses to a unit step in d� at t � � and

a unit step in d� at t � 	� min�

Analysis of decentralized control� The elements in the CLDG and PRGA

matrices are shown as functions of frequency in Figures ����� and ������ At steady�

state we have

!��� �
�
�	�� ����


����� �	��
�

� eGd��� � !���Gd��� �
�
����� �����

���	 ����
�
�����
�

In this particular case the o��diagonal elements of RGA ��� and PRGA �!� are quite

similar� We note that eGd��� is very di�erent from Gd���� and this also holds at higher

frequencies� For disturbance � ��rst column in eGd� we �nd that the interactions

increase the apparent e�ect of the disturbance� whereas they reduce the e�ect of

disturbance �� at least on output ��

We now consider one loop at a time to �nd the required bandwidth� For loop �

�output �� we consider �� and �� for references� and egd�� and egd�� for disturbances�

Disturbance � is the most di�cult� and we need j� � L�j � jbgd��j at frequencies

where jbgd��j is larger than �� which is up to about ��� rad�min� The magnitude of

the PRGA�elements are somewhat smaller than jegd��j �at least at low frequencies��

so reference tracking will be achieved if we can reject disturbance �� From egd�� we

see that disturbance � has almost no e�ect on output � under feedback control�

Also� for loop � we �nd that disturbance � is the most di�cult� and from egd�� we

require a loop gain larger than � up to about ��� rad�min� A bandwidth of about ���

to ��� rad�min in each loop� is required for rejecting disturbance �� and should be

achievable in practice�

Observed control performance� To check the validity of the above results we

designed two single�loop PI controllers�

k��s� � ���
�
� � ���
s

���
s

� k��s� � �����	
� � ����s

����s

�������

The loop gains� Li � giiki� with these controllers are larger than the closed�loop

disturbance gains� j�ikj� at frequencies up to crossover� Closed�loop simulations with

these controllers are shown in Figure ����	� The simulations con�rm that disturbance

� is more easily rejected than disturbance ��
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In summary
 there is an excellent agreement between the controllability

analysis and the simulations
 as has also been con�rmed by a number of other

examples	

������ Sequential design of decentralized controllers

The results presented in this section on decentralized control are most useful

for the case when the local controllers ki�s� are designed independently
 that

is
 each controller is designed locally and then all the loops are closed	 As

discussed above
 one problem with this is that the interactions may cause the

overall system �T � to be unstable
 even though the local loops � eT � are stable	

This will not happen if the plant is diagonally dominant
 such that we satisfy


for example
 ��� eT � 	 ����E� in ���	���	

The stability problem is avoided if the controllers are designed sequentially

as is commonly done in practice when
 for example
 the bandwidths of the

loops are quite di�erent	 In this case the outer loops are tuned with the inner

�fast� loops in place
 and each step may be considered as a SISO control

problem	 In particular
 overall stability is determined by m SISO stability

conditions	 However
 the issue of performance is more complicated because

the closing of a loop may cause �disturbances� �interactions� into a previously

designed loop	 The engineer must then go back and redesign a loop that has

been designed earlier	 Thus sequential design may involve many iterations


also see Hovd and Skogestad �����b�	 The performance bounds in ���	��� are

useful for determining the required bandwidth in each loop and may thus

suggest a suitable sequence in which to design the controllers	

Although the analysis and derivations given in this section apply when we

design the controllers sequentially
 it is often useful
 after having designed a

lowerlayer controller �the inner fast loops�
 to redo the analysis based on the

model of the partially controlled system using ���	��� or ���	���	 For example


this is usually done for distillation columns
 where we base the analysis of the

composition control problem on a ��� model of the partially controlled ���

plant
 see Examples ��	� and ��	��	

����� Conclusion on decentralized control

In this section
 we have derived a number of conditions for the stability
 e	g	

���	��� and ���	���
 and performance
 e	g	 ���	��� and ���	���
 of decentralized

control systems	 The conditions may be useful in determining appropriate

pairing of inputs and outputs and the sequence in which the decentralized

controllers should be designed	 Recall
 however
 that in many practical cases

decentralized controllers are tuned based on local models or even online	 The

conditions�bounds are also useful in an inputoutput controllability analysis
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for determining the viability of decentralized control	

Some exercises which include a controllability analysis of decentralized

control are given at the end of Chapter �	

��� Conclusion

The issue of control strcture design is very important in applications
 but it

has received relatively little attention in the control community during the

last �� years	 In this chapter we have discussed the issues involved
 and we

have provided some ideas and tools	 There is clearly a need for better tools

and theory in this area	
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MODEL REDUCTION

This chapter describes methods for reducing the order of a plant or controller model�

We place considerable emphasis on reduced order models obtained by residualizing

the less controllable and observable states of a balanced realization� We also

present the more familiar methods of balanced truncation and optimal Hankel norm

approximation�

���� Introduction

Modern controller design methods such as H� and LQG� produce controllers

of order at least equal to that of the plant� and usually higher because of

the inclusion of weights� These control laws may be too complex with regards

to practical implementation and simpler designs are then sought� For this

purpose� one can either reduce the order of the plant model prior to controller

design� or reduce the controller in the �nal stage� or both�

The central problem we address is� given a high�order linear time�invariant

stable model G� �nd a low�order approximationGa such that the in�nity �H�

or L�� norm of the di�erence� kG�Gak�� is small� By model order� we mean

the dimension of the state vector in a minimal realization which is sometimes

called the McMillan degree�

So far in this book we have only been interested in the in�nity �H�� norm

of stable systems� But the error G � Ga may be unstable and the in�nity

norm needs to be extended to unstable systems� L� de�nes the set of rational

functions which have no poles on the imaginary axis� it includes H�� and its

norm �like H�� is given by kGk� 	 supw 
� �G�jw���

We will describe three main methods for tackling this problem� balanced

truncation� balanced residualization and optimal Hankel norm approximation�

Each method gives a stable approximation and a guaranteed bound on the

error in the approximation� We will further show how the methods can be

employed to reduce the order of an unstable model G� All these methods

start from a special state�space realization of G referred to as balanced� We
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will describe this realization� but �rst we will show how the techniques of

truncation and residualization can be used to remove the high frequency or

fast modes of a state�space realization�

���� Truncation and residualization

Let �A�B�C�D� be a minimal realization of a stable system G�s�� and

partition the state vector x� of dimension n� into
h
x�
x�

i
where x� is the vector

of n� k states which we wish to remove� With appropriate partitioning of A�

B and C� the state�space equations become

�x� 	 A��x� �A��x� �B�u ���

�x� 	 A��x� �A��x� �B�u

y 	 C�x� � C�x� �Du

������ Truncation

A k�th order truncation of the realization G

s
	 �A�B�C�D� is given by

Ga

s
	 �A��� B�� C�� D�� The truncated model Ga is equal to G at in�nite

frequency� G��� 	 Ga��� 	 D� but apart from this there is little that can

be said in the general case about the relationship between G and Ga� If�

however� A is in Jordan form then it is easy to order the states so that x�

corresponds to high frequency or fast modes� This is discussed next�

Modal Truncation� For simplicity� assume that A has been diagonalized

so that
A 	

����
�� � � � � �

� �� � � � �

���

���

� � �

���

� � � � � �n
���� B 	
����
bT�

bT�
���

bTn
���� C 	 � c� c� � � � cn � ����

Then� if the �i are ordered so that j��j � j��j � � � �� the fastest modes are

removed from the model after truncation� The di�erence between G and Ga

following a k�th order model truncation is given by

G�Ga 	

nX
i�k��

cib
T
i

s� �i

����

and therefore

kG�Gak� �

nX
i�k��


��cib
T
i �

jRe��i�j

����
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It is interesting to note that the error depends on the residues cib
T
i as well

as the �i� The distance of �i from the imaginary axis above is therefore not

a reliable indicator of whether the associated mode should be included in the

reduced order model or not�

An advantage of modal truncation is that the poles of the truncated model

are a subset of the poles of the original model and therefore retain any physical

interpretation they might have e�g� the phugoid mode in aircraft dynamics�

������ Residualization

In truncation� we discard all the states and dynamics associated with x��

Suppose that instead of this we simply set �x� 	 �� i�e� we residualize x�� in

the state�space equations� One can then solve for x� in terms of x� and u and

back substitution of x�� then gives

�x� 	 �A�� �A��A
��
�� A���x� � �B� �A��A
��
�� B��u ����

y 	 �C� � C�A
��
�� A���x� � �D � C�A
��
�� B��u ����

Let us assume A�� is invertible and de�ne

Ar

�
	 A�� �A��A
��
�� A�� ����

Br

�
	 B� �A��A
��
�� B� ����

Cr

�
	 C� � C�A
��
�� A�� ����

Dr

�
	 D � C�A
��
�� B� ����

The reduced order model Ga�s�
s
	 �Ar� Br� Cr� Dr� is called a residualization

of G�s�

s
	 �A�B�C�D�� Usually �A�B�C�D� will have been put into

Jordan form� with the eigenvalues ordered so that x� contains the fast

modes� Model reduction by residualization is then equivalent to singular

perturbational approximation� where the derivatives of the fastest states are

allowed to approach zero with some parameter �� An important property

of residualization is that it preserves the steady�state gain of the system�

Ga��� 	 G���� This should be no surprise since the residualization process

sets derivatives to zero� which are zero anyway at steady�state� But it is in

stark contrast to truncation which retains the system behaviour at in�nite

frequency� This contrast between truncation and residualization follows from

the simple bilinear relationship s � �
s

which relates the two �e�g� Liu and

Anderson� �����

It is clear from the discussion above that truncation is to be preferred when

accuracy is required at high frequencies� whereas residualization is better for

low frequency modelling�
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Both methods depend to a large extent on the original realization and we

have suggested the use of the Jordan form� A better realization� with many

useful properties is the balanced realization which will be considered next�

���� Balanced realizations

In words only� A balanced realization is an asymptotically stable minimal

realization in which the controllability and observability Gramians are equal

and diagonal�

More formally� Let �A�B�C�D� be a minimal realization of a stable� rational

transfer function G�s�� then �A�B�C�D� is called balanced if the solutions to

the following Lyapunov equations

AP � PAT �BBT 	 � ���

ATQ�QA� CTC 	 � ����

are P 	 Q 	 diag���� ��� � � � � �n�
�
	 �� where �� � �� � � � � � �n � �� P and

Q are the controllability and observability Gramians� also de�ned by

P

�
	

Z �
�

eAtBBT eA
T tdt ����

Q

�
	

Z �
�

eA
T tCTCeAtdt ����

� is therefore simply referred to as the Gramian ofG�s�� The �i are the ordered

Hankel singular values of G�s�� more generally de�ned as �i
�
	 �

�
�
i �PQ�� i 	

� � � � � n� Notice that �� 	 kGkH � the Hankel norm of G�s��

Any minimal realization of a stable transfer function can be balanced by a

simple state similarity transformation� and routines for doing this are available

in MATLAB� For further details on computing balanced realizations� see Laub�

Heath� Page and Ward ������ Note that balancing does not depend on D�

So what is so special about a balanced realization� In a balanced realization

the value of each �i is associated with a state xi of the balanced system� And

the size of �i is a relative measure of the contribution xi that makes to the

input�output behaviour of the system� also see the discussion on page ���

Therefore if �� � ��� then the state x� a�ects the input�output behaviour

much more than x�� or indeed any other state because of the ordering of the �i�

After balancing a system� each state is just as controllable as it is observable�

and a measure of a state�s joint observability and controllability is given by its

associated Hankel singular value� This property is fundamental to the model

reduction methods in the remainder of this chapter which work by removing

states having little e�ect on the system�s input�output behaviour�
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���� Balanced truncation and balanced

residualization

Let the balanced realization �A�B�C�D� of G�s� and the corresponding � be

partitioned compatibly as

A 	
�
A�� A��

A�� A��

�
� B 	

�
B�

B�

�
� C 	

	
C� C�



����

� 	
�
�� �

� ��

�

����

where �� 	 diag���� ��� � � � � �k�� �� 	 diag��k��� �k��� � � � � �n� and �k �

�k���
Balanced truncation� The reduced order model given by �A��� B�� C�� D�

is called a balanced truncation of the full order system G�s�� This idea of

balancing the system and then discarding the states corresponding to small

Hankel singular values was �rst introduced by Moore ����� A balanced

truncation is also a balanced realization �Pernebo and Silverman� �����

and the in�nity norm of the error between G�s� and the reduced order

system is bounded by twice the sum of the last n � k Hankel singular

values� i�e�� twice the trace of �� or simply �twice the sum of the tail�

�Glover� ���� Enns� ����� For the case of repeated Hankel singular values�

Glover ����� shows that each repeated Hankel singular value is to be counted

only once in calculating the sum�

A precise statement of the bound on the approximation error is given in

Theorem � below�

Useful algorithms that compute balanced truncations without �rst

computing a balanced realization have been developed by Tombs and

Postlethwaite ����� and Safonov and Chiang ������ These still require the

computation of the observability and controllability Gramians which can be

a problem if the system to be reduced is of very high order� In such cases the

technique of Jaimoukha� Kasenally and Limebeer ������ based on computing

approximate solutions to Lyapunov equations� is recommended�

Balanced residualization� In balanced truncation above� we discarded

the least controllable and observable states corresponding to ��� In balanced

residualization� we simply set to zero the derivatives of all these states� The

method was introduced by Fernando and Nicholson ����� who called it a

singular perturbational approximation of a balanced system� The resulting

balanced residualization of G�s� is �Ar� Br� Cr� Dr� as given by the formulae

����������

Liu and Anderson ����� have shown that balanced residualization enjoys

the same error bound as balanced truncation� An alternative derivation of

the error bound� more in the style of Glover ������ is given by Samar�
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Postlethwaite and Gu ������ A precise statement of the error bound is given

in the following theorem�

Theorem ���� Let G�s� be a stable rational transfer function with Hankel

singular values �� � �� � � � � � �N where each �i has multiplicity ri and

let Gk
a�s� be obtained by truncating or residualizing the balanced realization of

G�s� to the �rst �r� � r� � � � �� rk� states� Then

kG�s��Gk
a�s�k� � ���k�� � �k�� � � � �� �N �� ����

The following two exercises are to emphasize that �i� balanced truncation

preserves the steady state�gain of the system and �ii� balanced residualization

is related to balanced truncation by the bilinear transformation s� s���

Exercise ���� The steady�state gain of a full order balanced system �A�B�C�D	

is D � CA��B� Show� by algebraic manipulation� that this is also equal to Dr �

CrA
��
r Br� the steady�state gain of the balanced residualization given by �������

�����	��

Exercise ���� Let G�s	 have a balanced realization
h
A B

C D

i
� then�

A�� A��B

�CA�� D � CA��B

�

is a balanced realization of H�s	
�

 G�s��	� and the Gramians of the two realizations

are the same�

�� Write down an expression for a balanced truncation Ht�s	 of H�s	�


� Apply the reverse transformation s�� � s to Ht�s	� and hence show that

Gr�s	
�

 Ht�s
��	 is a balanced residualization of G�s	 as de�ned by �������

�����	��

���� Optimal Hankel norm approximation

In this approach to model reduction� the problem that is directly addressed

is the following� given a stable model G�s� of order �McMillan degree� n� �nd

a reduced order model Gk
h�s� of degree k such that the Hankel norm of the

approximation error� kG�s��Gk
h�s�kH � is minimized�

The Hankel norm of any stable transfer function E�s� is de�ned as

kE�s�kH
�
	 �

�
� �PQ� ����

where P and Q are the controllability and observability Gramians of E�s�� It

is also the maximum Hankel singular value of E�s�� So in the optimization
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we seek an error which is in some sense closest to being completely

unobservable and completely uncontrollable� which seems sensible� A more

detailed discussion of the Hankel norm was given in Section ������

The Hankel norm approximation problem has been considered by many

but especially Glover ������ In Glover ����� a complete treatment of the

problem is given� including a closed�form optimal solution and a bound on

the in�nity norm of the approximation error� The in�nity norm bound is of

particular interest because it is better than that for balanced truncation and

residualization�

The theorem below gives a particular construction for optimal Hankel norm

approximations of square stable transfer functions�

Theorem ���� Let G�s� be a stable� square� transfer function G�s� with

Hankel singular values �� � �� � � � � � �k � �k�� 	 �k�� 	 � � � 	 �k�l �

�k�l�� � � � � � �n � �� then an optimal Hankel norm approximation of order

k� Gk
h�s�� can be constructed as follows�

Let �A�B�C�D� be a balanced realization of G�s� with the Hankel singular

values reordered so that the Gramian

� 	 diag ���� ��� � � � � �k� �k�l��� � � � � �n� �k��� � � � � �k�l� ����

�
	 diag ���� �k��I�

Partition �A�B�C�D� to conform with ��

A 	
�
A�� A��

A�� A��
�

B 	
�
B�

B�
�

C 	 �C� C� � �����

De�ne � bA� bB� bC� bD� by
bA �
	  ��

�
��AT
�� ���A���� � �CT
� UB

T
�

�
����bB �

	  ��
�
��B� � �CT
� U

�

�����bC �
	 C��� � �UBT
� �����bD �

	 D � �U �����

�

�
	 �k�� �����

where U is a unitary matrix satisfying

B� 	 �CT
� U �����

and

 
�
	 ��
� � ��I �����
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Then

Gk
h�s� � F �s�

s
	

 bA bBbC bD
�

�����

where Gk
h�s� is a stable optimal Hankel norm approximation of order k� and

F �s� is an anti�stable �all poles in the open right�half plane� transfer function

of order n� k � l� The Hankel norm of the error between G and the optimal

approximation Gk
h is equal to the �k � ��th Hankel singular value of G�

kG�Gk
hkH 	 �k���G� �����

Remark � The McMillan degrees of Gk
h and F depend on the � chosen� If � 
 �n

the smallest Hankel singular value then F 
 � otherwise � bA� bB� bC� bD	 has a non�

zero anti�stable part and Gk
h has to be separated from F �

Remark � For non�square systems an optimal Hankel norm approximation can be

obtained by �rst augmenting G�s	 with zero to form a square system� For example

if G�s	 is �at de�ne �G�s	
�



h
G�s�

�

i
which is square and let �Gh�s	 


h
G��s�

G��s�
i

be a

k�th order optimal Hankel norm approximation of �G�s	 such that k �G�s	� �Gh�s	kH 


�k��
�
�G�s	
�
� Then

�k�� �G�s		 � kG �G�kH � k �G� �GhkH 
 �k��� �G	 
 �k���G	

Consequently this implies that kG � G�kH 
 �k���G	 and G��s	 is an optimal

Hankel norm approximation of G�s	�

Remark � The Hankel norm of a system does not depend on the D�matrix in

the system�s state�space realization� The choice of the D�matrix in Gk
h is therefore

arbitrary except when F 
 � in which case it is equal to bD�

Remark � The in�nity norm does depend on the D�matrix and therefore the D�

matrix of Gk
h can be chosen to reduce the in�nity norm of the approximation error

�without changing the Hankel norm	� Glover �����	 showed that through a particular

choice of D called Do the following bound could be obtained�

kG�G
k
h �Dok� � �k�� � � ������	

where
�

�

 kF �Dok� �

n�k�lX
i��

�i �F ��s		 �

n�k�lX
i��

�i�k�l �G�s		 ������	

This results in an in�nity norm bound on the approximation error equal to the

�sum of the tail� namely �k����k�l��� � � ���n� Notice that the repeated Hankel

singular value �k�� is only included once� Recall that the bound for the error in

balanced truncation and balanced residualization is twice the �sum of the tail��
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���� Two practical examples

In this section� we make comparisons between the three main model reduction

techniques presented by applying them to two practical examples� The �rst

example is on the reduction of a plant model and the second considers the

reduction of a two degrees�of�freedom controller�

������ Reduction of a gas turbine aero�engine model

For the �rst example� we consider the reduction of a model of a Rolls Royce

Spey gas turbine engine� This engine will be considered again in Chapter

�� The model has � inputs� � outputs� and � states� Inputs to the engine

are fuel !ow� variable nozzle area and an inlet guide vane with a variable

angle setting� The outputs to be controlled are the high pressure compressor�s

spool speed� the ratio of the high pressure compressor�s outlet pressure to

engine inlet pressure� and the low pressure compressor�s exit mach number

measurement� The model describes the engine at ��" of maximum thrust with

sea�level static conditions� The Hankel singular values for the � state model

are listed in Table � below� Recall that the L� error bounds after reduction

are �twice the sum of the tail� for balanced residualization and balanced

truncation and the �sum of the tail� for optimal Hankel norm approximation�

Based on this we decided to reduce the model to � states�

� ������e�� �� ������e�� � ����e���

�� ������e��� �� �����e�� �� ������e���

�� ������e��� �� ������e��� �� ����e���

�� �����e��� �� �����e��� �� �����e���

�� �����e��� �� �����e��� �� ������e���

Table ����� Hankel singular values of the gas turbine aero�engine model�

Figure � shows the singular values �not Hankel singular values� of the

reduced and full order models plotted against frequency for the residualized�

truncated and optimal Hankel norm approximated cases respectively� The D

matrix used for optimal Hankel norm approximation is such that the error

bound given in ����� is met� It can be seen that the residualized system

matches perfectly at steady�state� The singular values of the error system

�G�Ga�� for each of the three approximations are shown in Figure �� �a��

The in�nity norm of the error system is computed to be ����� for balanced

residualization and occurs at ��� rad#s� the corresponding error norms for

balanced truncation and optimal Hankel norm approximation are ����� and

���� occurring at �� rad#sec and ��� rad#sec respectively� The theoretical
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Figure ����� Singular values �i�G	 and �i�Ga	 for model reductions of Aero�engine

from �� to � states�
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Figure ����� Singular values �i�G�Ga	 for scaled and unscaled error systems�

upper bounds for these error norms are ����� �twice the sum of the tail� for

residualization and truncation� and ���� �using ������ for optimal Hankel

norm approximation respectively� It should be noted that the plant under

consideration is desired to have a closed�loop bandwidth of around � rad#sec�

The error around this frequency� therefore� should be as small as possible

for good controller design� Figure �� �a� shows that the error for balanced

residualization is the smallest in this frequency range�

Steady�state gain preservation� It is sometimes desirable to have the

steady�state gain of the reduced plant model the same as the full order model�

For example� this is the case if we want to use the model for feedforward

control� The truncated and optimal Hankel norm approximated systems do

not preserve the steady�state gain and have to be scaled� i�e�� the model

approximation Ga is replaced by GaWs� where Ws 	 Ga���
��G���� G
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being the full order model� The scaled system no longer enjoys the bounds

guaranteed by these methods and kG � GaWsk� can be quite large as is

shown in Figure �� �b�� Note that the residualized system does not need

scaling� and the error system for this case has been shown again only for

ease of comparison� The in�nity norms of these errors are computed and are

found to degrade to ��� �at � rad#sec� for the scaled truncated system

and ��� �at ���� rad#sec� for the scaled optimal Hankel norm approximated

system� The truncated and Hankel norm approximated systems are clearly

worse after scaling since the errors in the critical frequency range around

become large despite the improvement at steady�state� Hence residualization

is to be preferred over these other techniques whenever good low frequency

matching is desired�
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Figure ����� Aero�engine� Impulse responses ��nd input	�
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Figure ����� Aero�engine� Step responses ��nd input	�

Impulse and step responses from the second input to all the outputs for

the three reduced systems �with the truncated and optimal Hankel norm

approximated systems scaled� are shown in Figures �� and �� respectively�

The responses for the other inputs were found to be similar� The simulations
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con�rm that residualized model�s response is closer to the full order model�s

response�

������ Reduction of an aero�engine controller

We now consider reduction of a two degrees�of�freedom H� loop�shaping

controller� The plant for which the controller is designed is the full order

gas turbine engine model described in example ��� above�

A robust controller was designed using the procedure outlined in subsection

������ see Figure ��� which describes the design problem� Tref�s� is the desired

closed�loop transfer function� � is a design parameter� Gs 	 M��
s Ns is the

shaped plant and �$Ns
�$Ms
� are perturbations on the normalized coprime

factors representing uncertainty� We denote the actual closed�loop transfer

function �from 	 to y� by Ty��

The controller K 	 �K� K��� which excludes the loop�shaping weight W�

�which includes � integral action states�� has � inputs �because of the two

degrees�of�freedom structure�� � outputs� and �� states� It has not been scaled

�i�e� the steady�state value of Ty� has not been matched to that of Tref by

scaling the pre�lter�� It is reduced to � states in each of the cases that follow�

Let us �rst compare the magnitude of Ty� with that of the speci�ed model

Tref � By magnitude� we mean singular values� These are shown in Figure

�� �a�� The in�nity norm of the di�erence is computed to be ����� and
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Figure ����� Singular values of Tref and Ty��

occurs at ��� rad#sec� Note that we have � 	  and the 
 achieved in the

H� optimization is ����� so that kTy� �Trefk� � 
�� as required� see ������

The pre�lter is now scaled so that Ty� matches Tref exactly at steady�state�

i�e� we replace K� by K�Wi where Wi 	 Ty����
��Tref���� It is argued by
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Hoyle et al� ���� that this scaling produces better model matching at all

frequencies� because the H� optimization process has already given Ty� the

same magnitude frequency response shape as the model Tref � The scaled

transfer function is shown in Figure �� �b�� and the in�nity norm of the

di�erence �Ty� � Tref� computed to be ��� �at �� rad#sec�� It can be seen

that this scaling has not degraded the in�nity norm of the error signi�cantly

as was claimed by Hoyle et al� ����� To ensure perfect steady�state tracking

the controller is always scaled in this way� We are now in a position to discuss

ways of reducing the controller� We will look at the following two approaches�

� The scaled controller �K�Wi K� � is reduced� A balanced residualization

of this controller preserves the controller�s steady�state gain and would not

need to be scaled again� Reductions via truncation and optimal Hankel

norm approximation techniques� however� lose the steady�state gain� The

pre�lters of these reduced controllers would therefore need to be rescaled

to match Tref����

�� The full order controller �K� K� � is directly reduced without �rst scaling

the pre�lter� In which case� scaling is done after reduction�

We now consider the �rst approach� A balanced residualization of

�K�Wi K� � is obtained� The theoretical upper bound on the in�nity norm

of the error �twice the sum of the tail� is ������ i�e�

kK�Wi � �K�Wi�a K� �K�a k� � ����� �����

where the subscript a refers to the low order approximation� The actual error

norm is computed to be ������ Ty� for this residualization is computed and

its magnitude plotted in Figure �� �a�� The in�nity norm of the di�erence
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Figure ����� Singular values of Tref and Ty� for reduced �K�Wi K� ��

�Ty� � Tref� is computed to be ��� �at �� rad#sec�� This value is very close

to that obtained with the full order controller �K�Wi K� �� and so the

closed�loop response of the system with this reduced controller is expected
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to be very close to that with the full order controller� Next �K�Wi K� � is

reduced via balanced truncation� The bound given by ����� still holds� The

steady�state gain� however� falls below the adjusted level� and the pre�lter

of the truncated controller is thus scaled� The bound given by ����� can

no longer be guaranteed for the pre�lter �it is in fact found to degrade to

������ but it holds for K��K�a� Singular values of Tref and Ty� for the scaled

truncated controller are shown in Figure �� �b�� The in�nity norm of the

di�erence is computed to be ��� and this maximum occurs at �� rad#sec�

Finally �K�Wi K� � is reduced by optimal Hankel norm approximation� The

following error bound is theoretically guaranteed�

kK�Wi � �K�Wi�a K� �K�a k� � ���� �����

Again the reduced pre�lter needs to be scaled and the above bound can no

longer be guaranteed� it actually degrades to ���� Magnitude plots of Ty�

and Tref are shown in Figure �� �c�� and the in�nity norm of the di�erence

is computed to be ��� and occurs at �� rad#sec�

It has been observed that both balanced truncation and optimal Hankel

norm approximation cause a lowering of the system steady�state gain� In the

process of adjustment of these steady�state gains� the in�nity norm error

bounds are destroyed� In the case of our two degrees�of�freedom controller�

where the pre�lter has been optimized to give closed�loop responses within a

tolerance of a chosen ideal model� large deviations may be incurred� Closed�

loop responses for the three reduced controllers discussed above are shown in

Figures ��� �� and ���

It is seen that the residualized controller performs much closer to the full

order controller and exhibits better performance in terms of interactions and

overshoots� It may not be possible to use the other two reduced controllers

if the deviation from the speci�ed model becomes larger than the allowable

tolerance� in which case the number of states by which the controller is reduced

would probably have to be reduced� It should also be noted from ����� and

����� that the guaranteed bound for K��K�a is lowest for optimal Hankel

norm approximation�

Let us now consider the second approach� The controller �K� K� �

obtained from the H� optimization algorithm is reduced directly� The

theoretical upper bound on the error for balanced residualization and

truncation is

kK� �K�a K� �K�a k� � ���� �����

The residualized controller retains the steady�state gain of �K� K� �� It is

therefore scaled with the same Wi as was required for scaling the pre�lter

of the full order controller� Singular values of Tref and Ty� for this reduced

controller are shown in Figure �� �a�� and the in�nity norm of the di�erence

was computed to be ��� at �� rad#sec� �K� K� � is next truncated� The
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Figure ����� Closed�loop step responses� �K�Wi K� � balanced residualized�
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Figure ���	� Closed�loop step responses� �K�Wi K� � balanced truncated�
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Figure ���
� Closed�loop step responses� �K�Wi K� � optimal Hankel norm

approximated and rescaled�
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Figure ������ Singular values of Tref and Ty� for reduced �K� K� ��

steady�state gain of the truncated controller is lower than that of �K� K� ��

and it turns out that this has the e�ect of reducing the steady�state gain of

Ty�� Note that the steady�state gain of Ty� is already less than that of Tref

�Figure ���� Thus in scaling the pre�lter of the truncated controller� the

steady�state gain has to be pulled up from a lower level as compared with

the previous �residualized� case� This causes greater degradation at other

frequencies� The in�nity norm of �Ty� � Tref� in this case is computed to

be ���� and occurs at ��� rad#sec �see Figure �� �b��� Finally �K� K� � is

reduced by optimal Hankel norm approximation� The theoretical bound given

in ����� is computed and found to be ������ i�e� we have

kK� �K�a K� �K�a k� � ����� �����

The steady�state gain falls once more in the reduction process� and again a

larger scaling is required� Singular value plots for Ty� and Tref are shown in

Figure �� �c�� kTy� � Trefk� is computed to be ���� and occurs at ��

rad#sec�

Some closed�loop step response simulations are shown in Figures ��

�� and ��� It can be seen that the truncated and Hankel norm

approximated systems have deteriorated to an unacceptable level� Only the

residualized system maintains an acceptable level of performance�

We have seen that the �rst approach yields better model matching� though

at the expense of a larger in�nity norm bound on K��K�a �compare �����

and ������ or ����� and ������� We have also seen how the scaling of the

pre�lter in the �rst approach gives poorer performance for the truncated and

optimal Hankel norm approximated controllers� relative to the residualized

one�
In the second case� all the reduced controllers need to be scaled� but

a �larger� scaling is required for the truncated and optimal Hankel norm

approximated controllers� There appears to be no formal proof of this
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Figure ������ Closed�loop step responses� �K� K� � balanced residualized and

scaled�
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Figure ������ Closed�loop step responses� �K� K� � optimal Hankel norm

approximated and scaled�
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observation� It is� however� intuitive in the sense that controllers reduced

by these two methods yield poorer model matching at steady�state as

compared with that achieved by the full order controller� A larger scaling

is therefore required for them than is required by the full order or residualized

controllers� In any case� this larger scaling gives poorer model matching at

other frequencies� and only the residualized controller�s performance is deemed

acceptable�

���� Reduction of unstable models

Balanced truncation� balanced residualization and optimal Hankel norm

approximation only apply to stable models� In this section we will brie!y

present two approaches for reducing the order of an unstable model�

������ Stable part model reduction

Enns ����� and Glover ����� proposed that the unstable model could �rst

be decomposed into its stable and anti�stable parts� Namely

G�s� 	 Gu�s� �Gs�s� �����

where Gu�s� has all its poles in the closed right�half plane and Gs�s� has all its

poles in the open left�half plane� Balanced truncation� balanced residualization

or optimal Hankel norm approximation can then be applied to the stable part

Gs�s� to �nd a reduced order approximation Gsa�s�� This is then added to

the anti�stable part to give
Ga�s� 	 Gu�s� �Gsa�s� �����

as an approximation to the full order model G�s��

������ Coprime factor model reduction

The coprime factors of a transfer function G�s� are stable� and therefore we

could reduce the order of these factors using balanced truncation� balanced

residualization or optimal Hankel norm approximation� as proposed in the

following scheme �McFarlane and Glover� �����

� Let G�s� 	 M���s�N�s�� where M�s� and N�s� are stable left�coprime

factors of G�s��

� Approximate �N M � of degree n by �Na Ma� of degree k � n� using

balanced truncation� balanced residualization or optimal Hankel norm

approximation�
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� Realize the reduced order transfer function Ga�s�� of degree k� by Ga�s� 	

M��
a Na�

A dual procedure could be written down based on a right coprime

factorization of G�s��

For related work in this area� we refer the reader to �Anderson and

Liu� ���� Meyer� ����� In particular� Meyer ����� has derived the following

result�

Theorem ���� Let �N�M� be a normalized left�coprime factorization of G�s�

of degree n� Let �Na Ma� be a degree k balanced truncation of �N M � which

has Hankel singular values �� � �� � � � � � �k � �k�� � � � � � �n � ��

Then �Na�Ma� is a normalized left�coprime factorization of Ga 	 M��
a Na�

and �Na Ma� has Hankel singular values ��� ��� � � � � �k�

Exercise ���� Is Theorem ���� true� if we replace balanced truncation by balanced

residualization

���	 Model reduction using MATLAB

The commands in Table �� from the MATLAB ��toolbox may be used

to perform model reduction for stable systems� For an unstable system the

commands in Table �� may be used�

Table ����� MATLAB commands for model reduction of stable system

� Uses the Mu�toolbox

sysd�strans�sys�� � order states in Jordan form according to speed

syst�strunc�sys�k�� � then� truncate leaving k states in syst	

sysr�sresid�sys�k�� � or� residualize leaving k states in sysr	

�

sysb�hsig��sysbal�sys�� � obtain balanced realization	

sysbt�strunc�sysb�k�� � then� balanced truncation leaving k states	

sysbr�sresid�sysb�k�� � or� balanced residualization	

sysh�hankmr�sysb�hsig�k��d��� � or� optimal Hankel norm approximation

Alternatively� the command �ar�br�cr�dr��ohklmr�a�b�c�d���k� in the

MATLAB Robust Control Toolbox �nds directly the optimal Hankel norm

approximation of an unstable plant based on �rst decomposing the system

into the stable and unstable parts� It avoids the sometimes numerically ill�

conditioned step of �rst �nding a balanced realization�
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Table ����� MATLAB commands for model reduction of unstable system

� Uses the Mu�toolbox


syss�sysu��sdecomp�sys�� � decompose into stable and unstable part	

sys�sresid�sysbal�syss��ks�� � balanced residualization of stable part	

sys�hankmr�sysbal�syss��ks��d��� � or� Hankel norm approx	 of stable part	

syssbr�madd�sys�sysu�� � realize reduced�order system	

�

nlcf�hsig�nrcf��sncfbal�sys�� � balanced realization of coprime factors	

nrcfr�sresid�nrcf�k�� � residualization of coprime factors	

syscbr�cf�sys�nrcfr�� � realize reduced�order system	

���
 Conclusions

We have presented and compared three main methods for model reduction

based on balanced realizations� balanced truncation� balanced residualization

and optimal Hankel norm approximation�

Residualization� unlike truncation and optimal Hankel norm approximation�

preserves the steady�state gain of the system� and� like truncation� it is simple

and computationally inexpensive� It is observed that truncation and optimal

Hankel norm approximation perform better at high frequencies� whereas

residualization performs better at low and medium frequencies� i�e�� up to

the critical frequencies� Thus for plant model reduction� where models are not

accurate at high frequencies to start with� residualization would seem to be

a better option� Further� if the steady�state gains are to be kept unchanged�

truncated and optimal Hankel norm approximated systems require scaling�

which may result in large errors� In such a case� too� residualization would be

a preferred choice�

Frequency weighted model reduction has been the subject of numerous

papers over the past few years� The idea is to emphasize frequency ranges

where better matching is required� This� however� has been observed to have

the e�ect of producing larger errors �greater mismatching� at other frequencies

�Anderson� ���� Enns� ����� In order to get good steady�state matching� a

relatively large weight would have to be used at steady�state� which would

cause poorer matching elsewhere� The choice of weights is not straightforward�

and an error bound is available only for weighted Hankel norm approximation�

The computation of the bound is also not as easy as in the unweighted case

�Anderson and Liu� ����� Balanced residualization can in this context� be

seen as a reduction scheme with implicit low and medium frequency weighting�

For controller reduction� we have shown in a two degrees�of�freedom

example� the importance of scaling and steady�state gain matching� Two

approaches were considered� In the �rst approach� the pre�lter of the full order

controller was scaled beforehand� In this case� the pre�lter of the residualized
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system does not need to be scaled� and enjoys the guaranteed in�nity norm

error bounds� The pre�lters of the other reduced systems had to be scaled� and

this introduced large errors �with respect to the scaled full order pre�lter��

They were thus seen to give poorer performance� In the second approach� the

unscaled full order controller �K� K� � was �rst reduced� and then scaled�

The residualized system needed the same scaling matrix as the full order

controller� With the other reduced controllers� the model matching at steady�

state deteriorated compared to the full order controller� and hence a larger

scaling was needed� This caused very poor matching at other frequencies� The

residualized controller thus performed better than the other two� As for the

feedback part of the controller �K��� the error bound given by optimal Hankel

norm approximation was the best�

It is remarked that� in general� steady�state gain matching may not be

crucial� The matching should� however be good near the desired closed�

loop bandwidth and for feedback controller design we need a good match

around the gain crossover frequency� Balanced residualization has been seen

to perform very close to the full order system in this frequency range�

Good approximation at high frequencies may also sometimes be desired� In

such a case� using truncation or optimal Hankel norm approximation with

appropriate frequency weightings may yield better results�
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CASE STUDIES

In this chapter� we present three case studies which illustrate a number of

important practical issues� namely� weights selection inH� mixed�sensitivity design�

disturbance rejection� output selection� two degrees�of�freedom H� loop�shaping

design� ill�conditioned plants� � analysis and � synthesis�

���� Introduction

The complete design process for an industrial control system will normally

include the following steps�

�� Plant modelling� to determine a mathematical model of the plant either

from experimental data using identi�cation techniques� or from physical

equations describing the plant dynamics� or a combination of these�

�� Plant input�output controllability analysis� to discover what closed�loop

performance can be expected and what inherent limitations there are to

�good	 control� and to assist in deciding upon an initial control structure

and may be an initial selection of performance weights�


� Control structure design� to decide on which variables to be manipulated

and measured and which links should be mode between them�

�� Controller design� to formulate a mathematical design problem which

captures the engineering design problem and to synthesize a corresponding

controller�

�� Control system analysis� to assess the control system by analysis

and simulation against the performance speci�cations or the designer	s

expectations�

� Controller implementation� to implement the controller� almost certainly

in software for computer control� taking care to address important issues

such as anti�windup and bumpless transfer�

�� Control system commissioning� to bring the controller on�line� to carry

out on�site testing and to implement any required modi�cations before

certifying that the controlled plant is fully operational�
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In this book we have focused on steps �� 
� � and �� and in this chapter we will

present three case studies which demonstrate many of the ideas and practical

techniques which can be used in these steps� The case studies are not meant

to produce the �best	 controller for the application considered but rather are

used here to illustrate a particular technique from the book�

In case study �� a helicopter control law is designed for the rejection of

atmospheric turbulence� The gust disturbance is modelled as an extra input

to an S�KS H� mixed�sensitivity design problem� Results from nonlinear

simulations indicate signi�cant improvement over a standard S�KS design�

Case study � illustrates the application and usefulness of the two degrees�

of�degree H� loop�shaping approach by applying it to the design of a robust

controller for a high performance areo�engine� Nonlinear simulation results are

shown� E�cient and e�ective tools for control structure design �input�output

selection� are also described and applied to this problem�

The �nal case study is concerned with the control of an idealized distillation

column� A very simple plant model is used� but it is su�cient to illustrate the

di�culties of controlling ill�conditioned plants and the adverse e�ects of model

uncertainty� The structured singular value � is seen to be a powerful tool for

robustness analysis�

Case studies �� � and 
 are based on papers by Postlethwaite� Foster and

Walker ������� Samar and Postlethwaite ������� and Skogestad et al� �������

respectively�

���� Helicopter control

This case study is used to illustrate how weights can be selected in H� mixed�

sensitivity design� and how this design problem can be modi�ed to improve

disturbance rejection properties�

������ Problem description

In this case study� we consider the design of a controller to reduce the

e�ects of atmospheric turbulence on helicopters� The reduction of the e�ects

of gusts is very important in reducing a pilot	s workload� and enables

aggressive manoeuvers to be carried out in poor weather conditions� Also�

as a consequence of decreased bu�eting� the airframe and component lives are

lengthened and passenger comfort is increased�

The design of rotorcraft �ight control systems� for robust stability and

performance� has been studied over a number of years using a variety

of methods including� H� optimization �Yue and Postlethwaite� �����

Postlethwaite and Walker� ������ eigenstructure assignment �Manness and
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Murray�Smith� ����� Samblancatt� Apkarian and Patton� ������ sliding mode

control �Foster� Spurgeon and Postlethwaite� ���
�� andH� design �Takahashi�

���
�� The H� controller designs have been particularly successful �Walker�

Postlethwaite� Howitt and Foster� ���
�� and have proved themselves in

piloted simulations� These designs have used frequency information about the

disturbances to limit the system sensitivity but in general there has been no

explicit consideration of the e�ects of atmospheric turbulence� Therefore by

incorporating practical knowledge about the disturbance characteristics� and

how they a�ect the real helicopter� improvements to the overall performance

should be possible� We will demonstrate this below�

The nonlinear helicopter model we will use for simulation purposes was

developed at the Defence Research Agency �DRA�� Bedford �Pad�eld� �����

and is known as the Rationalized Helicopter Model �RHM�� A turbulence

generator module has recently been included in the RHM and this enables

controller designs to be tested on�line for their disturbance rejection

properties� It should be noted that the model of the gusts a�ects the helicopter

equations in a complicated fashion and is self contained in the code of the

RHM� For design purposes we will imagine that the gusts a�ect the model in

a much simpler manner�

We will begin by repeating the design of Yue and Postlethwaite ������ which

used an S�KS H� mixed sensitivity problem formulation without explicitly

considering atmospheric turbulence� We will then� for the purposes of design�

represent gusts as a perturbation in the velocity states of the helicopter

model and include this disturbance as an extra input to the S�KS design

problem� The resulting controller is seen to be substantially better at rejecting

atmospheric turbulence than the earlier standard S�KS design�

������ The helicopter model

The aircraft model used in our work is representative of the Westland Lynx� a

twin�engined multi�purpose military helicopter� approximately ���� lbs gross

weight� with a four�blade semi�rigid main rotor� The unaugmented aircraft is

unstable� and exhibits many of the cross�couplings characteristic of a single

main�rotor helicopter� In addition to the basic rigid body� engine and actuator

components� the model also includes second order rotor �apping and coning

modes for o��line use� The model has the advantage that essentially the same

code can be used for a real�time piloted simulation as for a workstation�based

o��line handling qualities assessment�

The equations governing the motion of the helicopter are complex and

di�cult to formulate with high levels of precision� For example� the rotor

dynamics are particularly di�cult to model� A robust design methodology is

therefore essential for high performance helicopter control� The starting point

for this study was to obtain an eighth�order di�erential equation modelling the

��	 MULTIVARIABLE FEEDBACK CONTROL

State Description

� Pitch Attitude

� Roll Attitude

p Roll Rate

q Pitch Rate

r Yaw Rate

vx Forward Velocity

vy Lateral Velocity

vz Vertical Velocity

Table ����� Helicopter state vector

small�perturbation rigid motion of the aircraft about hover� The corresponding

state�space model is

�x � Ax�Bu ������

y � Cx ������

where the matrices A�B and C for the appropriately scaled system are avail�

able over the Internet as described in the preface� The eight state rigid body

vector x is given in the Table ����� The outputs consist of four controlled

outputs

� Heave velocity �H

� Pitch attitude �

� Roll attitude �

� Heading rate ��

����
��� y�

together with two additional measurements

� Body axis pitch p

� Roll reate q

�
y�

One degree�of�freedom controllers as shown in Figure ���� are to be

designed� Notice that in the standard one degree�of�freedom con�guration

the pilot reference commands r� are augmented by a zero vector because of

the rate feedback signals � These zeros indicate that there are no a priori

performance speci�cations on y� � � p q ��

We are interested in the design of full�authority controllers� which means

that the controller has total control over the blade angles of the main and

tail rotors� and is interposed between the pilot and the actuation system� It

is normal in conventional helicopters for the controller to have only limited

authority leaving the pilot to close the loop for much of the time�
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Figure ����� Helicopter control structure 
a� as implemented� 
b� in the standard

one degree�of�freedom con�guration

The controller generates four blade angle demands which are e�ectively the

helicopter inputs� since the actuators �which are typically modelled as �rst

order lags� are modelled as unity gains in this study� The blade angles are

� main rotor collective

� longitudinal cyclic

� lateral cyclic

� tail rotor collective

����
���u

The action of each of these blade angles can be brie�y described as follows�

The main rotor collective changes all the blades of the main rotor by an equal

amount and so roughly speaking controls lift� The longitudinal and lateral

cyclic inputs change the main rotor blade angles di�erently thereby tilting

the lift vector to give longitudinal and lateral motion� respectively� The tail

rotor is used to balance the torque generated by the main rotor� and so stops

the helicopter spinning around� it is also used to give lateral motion� This

description which assumes the helicopter inputs and outputs are decoupled

is useful to get a feeling of how a helicopter works but the dynamics are

actually highly coupled� They are also unstable� and about some operating

points exhibit non�minimum phase characteristics�
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������ H� mixed�sensitivity design

We will consider the H� mixed�sensitivity design problem illustrated in

Figure ����� It can be viewed as a tracking problem as previously discussed in

d q q q� � � � �

�
� �

�

�

r yK G
W�

W�

W�

��
� z

u

�
�

Figure ����� S�KS mixed�sensitivity minimization

Chapter � �see Figure ������ but with an additional weightW��W� andW� are

selected as loop�shaping weights whereasW� is signal�based� The optimization

problem is to �nd a stabilizing controller K to minimize the cost function����
�
W�SW�

W�KSW�

�����
�

����
�

This cost was also considered by Yue and Postlethwaite ������ in the context

of helicopter control� Their controller was successfully tested on a piloted �ight

simulator at DRA Bedford and so we propose to use the same weights here�

The design weights W��W� and W� were selected as

W� � diag
	

���

s� ��

s� �����
� ����

s� ����

s� �����
� ����

s� ����

s� �����
�

���
s� ��

s� ����
�

�s

�s� ���s� ����
�

�s

�s� ���s� ����
�

������

W� � ���
s� ������

s� ��

I� ������

W� � diag f�� �� �� �� ���� ���g �����

The reasoning behind these selections of Yue and Postlethwaite ������ is

summarized below�

Selection of W��s�� For good tracking accuracy in each of the controlled

outputs the sensitivity function is required to be small� This suggests forcing

integral action into the controller by selecting an s�� shape in the weights

associated with the controlled outputs� It was not thought necessary to have



CASE STUDIES ���

exactly zero steady�state errors and therefore these weights were given a �nite

gain of ��� at low frequencies� �Notice that a pure integrator cannot be

included inW� anyway� since the standardH� optimal control problem would

not then be well posed in the sense that the corresponding generalized plant

P could not then be stabilized by the feedback controller K�� In tuning W� it

was found that a �nite attenuation at high frequencies was useful in reducing

overshoot� Therefore� high�gain low�pass �lters were used in the primary

channels to give accurate tracking up to about  rad�s� The presence of

unmodelled rotor dynamics around �� rad�s limits the bandwidth ofW�� With

four inputs to the helicopter� we can only expect to independently control four

outputs� Because of the rate feedback measurements the sensitivity function

S is a six by six matrix and therefore two of its singular values �corresponding

to p and q� are always close to one across all frequencies� All that can be done

in these channels is to improve the disturbance rejection properties around

crossover� � to � rad�s� and this was achieved using second�order band�pass

�lters in the rate channels of W��

Selection of W��s�� The same �rst�order high�pass �lter is used in each

channel with a corner frequency of �� rad�s to limit input magnitudes at high

frequencies and thereby limit the closed�loop bandwidth� The high frequency

gain of W� can be increased to limit fast actuator movement� The low

frequency gain of W� was set to approximately ���� dB to ensure that the

cost function is dominated by W� at low frequencies�

Selection of W��s�� W� is a weighting on the reference input r� It is chosen

to be a constant matrix with unity weighting on each of the output commands

and a weighting of ��� on the �ctitious rate demands� The reduced weighting

on the rates �which are not directly controlled� enables some disturbance

rejection on these outputs� without them signi�cantly a�ecting the cost

function� The main aim of W� is to force equally good tracking of each of

the primary signals�

For the controller designed using the above weights� the singular value

plots of S and KS are shown in Figures ���
 �a� and ���
 �b�� These have

the general shapes and bandwidths designed for and� as already mentioned�

the controlled system performed well in piloted simulation� The e�ects of

atmospheric turbulence will be illustrated later after designing a second

controller in which disturbance rejection is explicitly included in the design

problem�

������ Disturbance rejection design

In the design below we will assume that the atmospheric turbulence can be

modelled as gust velocity components that perturb the helicopter	s velocity

states vx� vy and vz by d � � d� d� d� �
T

as in the following equations� The
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Figure ����� Singular values of S and KS 
S�KS design�

disturbed system is therefore expressed as

�x � Ax�A
�
�

d
�

�Bu ������

y � Cx� ������

De�ne Bd
�
� columns �� and � of A� Then we have

�x � Ax�Bu�Bdd ������

y � Cx �������

which in transfer function terms can be expressed as

y � G�s�u�Gd�s�d �������

where G�s� � C�sI � A���B� and Gd�s� � C�sI � A���Bd� The design

problem we will solve is illustrated in Figure ����� The optimization problem

is to �nd a stabilizing controller K that minimizes the cost function����
�
W�SW� �W�SGdW�

W�KSW� �W�KSGdW�

�����
�

�������

which is the H� norm of the transfer function from
h
r
d

i
to z� This is easily

cast into the general control con�guration and solved using standard software�

Notice that if we set W� to zero the problem reverts to the S�KS mixed�

sensitivity design of the previous subsection� To synthesize the controller we

used the same weights W�� W� and W� as in the S�KS design� and selected

W� � �I � with � a scalar parameter used to emphasize disturbance rejection�
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Figure ����� Disturbance rejection design

After a few iterations we �nalized on � � 
�� For this value of �� the singular

value plots of S and KS� see Figures ���� �a� and ���� �b�� are quite similar

to those of the S�KS design� but as we will see in the next subsection there

is a signi�cant improvement in the rejection of gusts� Also� since Gd shares

the same dynamics as G� and W� is a constant matrix� the degree of the

disturbance rejection controller is the same as that for the S�KS design�
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disturbance rejection design�
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������ Comparison of disturbance rejection properties

of the two designs

To compare the disturbance rejection properties of the two designs we

simulated both controllers on the RHM nonlinear helicopter model equipped

with a statistical discrete gust model for atmospheric turbulence� �Dahl and

Faulkner� ������ With this simulation facility� gusts cannot be generated at

hover and so the nonlinear model was trimmed at a forward �ight speed

of �� knots �at an altitude of ��� ft�� and the e�ect of turbulence on the

four controlled outputs observed� Recall that both designs were based on

a linearized model about hover and therefore these tests at �� knots also

demonstrate the robustness of the controllers� Tests were carried out for

a variety of gusts� and in all cases the disturbance rejection design was

signi�cantly better than the S�KS design�

In Figure ���� we show a typical gust generated by the RHM� The e�ects

of this on the controlled outputs are shown in Figures ���� and ���� for the

S�KS design and the disturbance rejection design� respectively� Compared

with the S�KS design� the disturbance rejection controller practically halves

the turbulence e�ect on heavy velocity� pitch attitude and roll attitude� The

change in the e�ect on heading rate is small�
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������ Conclusions

The two controllers designed were of the same degree and had similar

frequency domain properties� But by incorporating knowledge about

turbulence activity into the second design� substantial improvements in

disturbance rejection were achieved� The reduction of the turbulence e�ects

by a half in heave velocity� pitch attitude and roll attitude indicates the

possibility of a signi�cant reduction in a pilot	s workload� allowing more

aggressive manoeuvers to be carried out with greater precision� Passenger

comfort and safety would also be increased�

The study was primarily meant to illustrate the ease with which information

about disturbances can be bene�cially included in controller design� The case

study also demonstrated the selection of weights in H� mixed�sensitivity

design�

���� Aero�engine control

In this case study� we apply a variety of tools to the problem of output

selection� and illustrate the application of the two degrees�of�freedom Glover�

McFarlane H� loop�shaping design procedure�

������ Problem description

This case study explores the application of advanced control techniques to the

problem of control structure design and robust multivariable controller design

for a high performance gas turbine engine� The engine under consideration

is the Spey engine which is a Rolls Royce ��spool reheated turbofan� used

to power modern military aircraft� The engine has two compressors� a low

pressure �LP� compressor or fan� and a high pressure �HP� or core compressor

as shown in Figure ����� The high pressure �ow at the exit of the core

compressor is combusted and allowed to partially expand through the HP

and LP turbines which drive the two compressors� The �ow �nally expands

to atmospheric pressure at the nozzle exit� thus producing thrust for aircraft

propulsion� The e�ciency of the engine and the thrust produced depends on

the pressure ratios generated by the two compressors� If the pressure ratio

across a compressor exceeds a certain maximum� it may no longer be able to

hold the pressure head generated and the �ow will tend to reverse its direction�

This happens in practice� with the �ow actually going negative� but it is only

a momentary e�ect� When the back pressure has cleared itself� positive �ow

is re�established but� if �ow conditions do not change� the pressure builds

up causing �ow reversal again� Thus the �ow surges back and forth at high

frequency� the phenomenon being referred to as surge� Surging causes excessive
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aerodynamic pulsations which are transmitted through the whole machine and

must be avoided at all costs� However� for higher performance and greater

e�ciency the compressors must also be operated close to their surge lines�

The primary aim of the control system is thus to control engine thrust whilst

regulating compressor surge margins� But these engine parameters� namely

thrust and the two compressor surge margins� are not directly measurable�

There are� however� a number of measurements available which represent these

quantities� and our �rst task is to choose from the available measurements� the

ones that are in some sense better for control purposes� This is the problem

of output selection as discussed in Chapter ���

The next step is the design of a robust multivariable controller which

provides satisfactory performance over the entire operating range of the

engine� Since the aero�engine is a highly nonlinear system� it is normal for

several controllers to be designed at di�erent operating points and then to

be scheduled across the �ight envelope� Also in an aero�engine there are

a number of parameters� apart from the ones being primarily controlled�

that are to be kept within speci�ed safety limits� e�g� the turbine blade

temperature� The number of parameters to be controlled and�or limited

exceeds the number of available inputs� and hence all these parameters cannot

be controlled independently at the same time� The problem can be tackled

by designing a number of scheduled controllers� each for a di�erent set of

output variables� which are then switched between� depending on the most

signi�cant limit at any given time� The switching is usually done by means of

lowest�wins or highest�wins gates� which serve to propagate the output of the

most suitable controller to the plant input� Thus� a switched gain�scheduled

controller can be designed to cover the full operating range and all possible

con�gurations� In Postlethwaite et al� ������ a digital multi�mode scheduled
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controller is designed for the Spey engine under consideration here� In their

study gain�scheduling was not required to meet the design speci�cations�

Below we will describe the design of a robust controller for the primary engine

outputs using the two degrees�of�freedom H� loop�shaping approach� The

same methodology was used in the design of Postlethwaite et al� ������ which

was successfully implemented and tested on the Spey engine�

������ Control structure design	 output selection

The Spey engine has three inputs� namely fuel �ow �WFE�� a nozzle with a

variable area �AJ�� and inlet guide vanes with a variable angle setting �IGV��

u � �WFE AJ IGV �T

In this study� there are six output measurements available�

yall � �NL OPR� OPR� LPPR LPEMN NH �
T

as described below� with three inputs we can independently control only three

For each one of the six output measurements� a look�up table provides its

desired optimal value �set point� as a function of the operating point� However�

with three inputs we can only control three outputs independently so the �rst

question we face is� which three 

Engine thrust �one of the parameters to be controlled� can be de�ned in

terms of the LP compressor	s spool speed �NL�� the ratio of HP compressor	s

outlet pressure to engine inlet pressure �OPR��� or the engine overall pressure

ratio �OPR��� We will choose from these three measurements the one that is

best for control�

� Engine thrust� Select one of NL� QPR� and QPR� �outputs �� � and 
��

Similarly surge margin of the LP compressor can be represented by the LP

compressor	s pressure ratio �LPPR�� or the LP compressor	s exit much number

measurement �LPEMN�� and a selection between the two has to be made�

� Surge margin� Select one of LPPR and LPEMN �outputs � and ���

In this study we will not consider control of the HP compressor	s surge margin�

or other con�gurations concerned with the limiting of engine temperatures�

Our third output will be the HP compressor	s spool speed �NH�� which it is

also important to maintain within safe limits� �NH is actually the HP spool

speed made dimensionless by dividing by the square root of the total inlet

temperature and scaled so that it is a percentage of the maximum spool

speed at a standard temperature of �������K��

� Spool speed� Select NH �output ��
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We have now subdivided the available outputs into three subsets� and decided

to select one output from each subset� This gives rise to the six candidate

output sets as listed in Table �����

We now apply some of the tools given in Chapter �� for tackling the

output selection problem� It is emphasized at this point that a good physical

understanding of the plant is very important in the context of this problem�

and some measurements may have to be screened beforehand on practical

grounds� A ���state linear model of the engine �derived from a non�linear

simulation at ��! of maximum thrust� will be used in the analysis that

follows� The model is available over the Internet �as described in the preface��

along with actuator dynamics which result in a plant model of �� states for

controller design� The nonlinear model used in this case study was provided

by the UK Defence Research Agency at Pyestock�

Scaling� Some of the tools we will use for control structure selection are

dependent on the scalings employed� Scaling the inputs and the candidate

measurements therefore� is vital before comparisons are made and can also

improve the conditioning of the problem for design purposes� We use the

method of scaling described in Section ������ The outputs are scaled such

that equal magnitudes of cross�coupling into each of the outputs are equally

undesirable� We have chosen to scale the thrust�related outputs such that one

unit of each scaled measurement represents ���! of maximum thrust� A step

demand on each of these scaled outputs would thus correspond to a demand

of ���! �of maximum� in thrust� The surge margin�related outputs are scaled

so that one unit corresponds to �! surge margin� If the controller designed

provides an interaction of less than ��! between the scaled outputs �for unit

reference steps�� then we would have ����! or less change in thrust for a step

demand of �! in surge margin� and a ���! or less change in surge margin

for a ���! step demand in thrust� The �nal output NH �which is already a

scaled variable� was further scaled �divided by ���� so that a unit change in

NH corresponds to a ���! change in NH� The inputs are scaled by ��! of

their expected ranges of operation�

Steady�state model� With these scalings the steady�state model yall �

Gallu �with all the candidate outputs included� and the corresponding RGA�

matrix is given by

Gall��� �
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Candidate RHP zeros

Set No� controlled 	 ��� rad�sec 
 �G����

outputs

� NL� LPPR� NH ��� �� � none ����

� OPR�� LPPR� NH ��� �� � none �����


 OPR�� LPPR� NH �
� �� � 
��� ����

� NL� LPEMN� NH ��� �� � none ��


� OPR�� LPEMN� NH ��� �� � none �����

 OPR�� LPEMN� NH �
� �� � ���� ��
��

Table ����� RHP zeros and minimum singular value for the six candidate output

sets

and the singular value decomposition of Gall��� � U�#�V
H
� is

U� �
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The RGA�matrix of the overall non�square gain matrix� " � Gall � Gy
T

all � is

sometimes a useful screening when there are many alternatives� The six row�

sums of the RGA�matrix are

"P � � ����� ����
 ���
� ����� ����� ����� �
T

and from ������ this indicates that we should select outputs �� � and

 �corresponding to the three largest elements� in order to maximize the

projection of the selected outputs onto the space corresponding to the three

nonzero singular values� However� this is not one of our six candidate output

sets because there is no output directly related to engine thrust �outputs �� �

and 
��

We now proceed with a more detailed input�output controllability analysis

of the six candidate output sets� In the following G�s� refers to the transfer

function matrix for the e�ect of the three inputs on the selected three outputs�

Minimum singular value� In Chapter ��� we showed that a reasonable

criterion for selecting controlled outputs y is to make kG���y � yopt�k small�
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in particular at steady�state� Here y � yopt is the deviation in y from its

optimal value� At steady�state this deviation arises mainly from errors in

the �look�up table� set point due to disturbances and unknown variations in

the operating point� If we assume that� with the scalings given above� the

magnitude j�y� yopt�ij is similar �close to �� for each of the six outputs� then

we should select a set of outputs such that the elements in G����� are small�

or alternatively� such that 
 �G���� is as large as possible� In Table ���� we

have listed 
 �G���� for the six candidate output sets� We conclude that we

can eliminate sets ��� and 
 consider only sets ��� and � For these three sets

we �nd that the value of $
�G���� is between ��
 and ����� which is only

slightly smaller than $
�Gall���� � ������

Remark� The three eliminated sets all include output 	� LPPR� Interestingly� this

output is associated with the largest element in the gain matrix Gall
�� of ����� and

is thus also associated with the largest singular value 
as seen from the �rst column

of U��

Right�half plane zeros� Right�half plane �RHP� zeros limit the achievable

performance of a feedback loop� by limiting the open�loop gain�bandwidth

product� They can be a cause of concern� particularly� if they lie within

the closed�loop bandwidth one is aiming for� Choosing di�erent outputs for

feedback control can give rise to di�erent numbers of RHP zeros at di�ering

locations� The choice of outputs should be such that a minimum number of

RHP zeros are encountered� and should be as far removed from the imaginary

axis as possible�

Table ���� shows the RHP zeros slower than ��� rad�sec for all combinations

of prospective output variables� The closed�loop bandwidth requirement for

the aero�engine is approximately �� rad�sec� RHP zeros close to this value

or smaller �closer to the origin� will therefore� cause problems and should be

avoided� It can be seen that the variable OPR� introduces �relatively� slow

RHP zeros� It was observed that these zeros move closer to the origin at higher

thrust levels� Thus Sets 
 and  are unfavourable for closed�loop control� This

along with the minimum singular value analysis leaves us with sets � and �

for further consideration

Relative gain array �RGA�� We here consider the RGA of the square

transfer matrices G�s� with three outputs�

"�G�s�� � G�s��G�T �s� �������

In Section 
���� it is argued that the RGA provides useful information for

the analysis of input�output controllability and for the pairing of inputs and

outputs� Speci�cally input and output variables should be paired so that the

diagonal elements of the RGA are as close as possible to unity� Furthermore�

if the plant has large RGA elements and an inverting controller is used� the

closed�loop system will have little robustness in the face of diagonal input

��� MULTIVARIABLE FEEDBACK CONTROL

uncertainty� Such a perturbation is quite common due to uncertainty in the

actuators� Thus we want " to have small elements and for diagonal dominance

we want "�I to be small� These two objectives can be combined in the single

objective of a small RGA�number� de�ned as

RGA�number
	
� k"� Iksum �

X
i
j

j �� �ij j �
X

i�
j
j �ij j �������

The lower the RGA number� the more preferred is the control structure�

Before calculating the RGA number over frequency we rearranged the output

variables so that the steady�state RGA matrix was as close as possible to the

identity matrix�
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The RGA numbers for the six candidate output sets are shown in Figure

������ As in the minimum singular value analysis above� we again see that

Sets ��� and 
 are less favourable� Again sets � and � are the best but too

similar to allow a decisive selection�

Hankel singular values� Notice that Sets � and � di�er only in one output

variable� NL in Set � and OPR� in Set �� Therefore� to select between them

we next consider the Hankel singular values of the two transfer functions

for sets � and �� Hankel singular values re�ect the joint controllability and

observability of the states of a balanced realization �as described in Section

���
�� The Hankel singular values are invariant under state transformations

but they do depend on scaling�

Figure ����� shows the Hankel singular values of the two transfer functions

for Sets � and � at two operating points� ��! maximum thrust and ��!

maximum thrust� A second operating point model is used because again the

di�erence is not decisive� However� both cases do indicate that Set � has

associated with it better state controllability and observability properties than

Set �� In other words� output OPR� �Set �� contains more information about

the system internal states than output NL �Set ��� It therefore seems to be
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marginally preferable to use OPR� for control purposes rather than NL in the

absence of no other information� and hence Set � is our �nal choice�

������ A two degrees�of�freedom H� loop�shaping

design

The design procedure given in Section ����
 will be used to design a two

degrees�of�freedomH� loop�shaping controller for the 
�input 
�output plant

G� An �� state linear plant modelG �including actuator dynamics�� is available

over the Internet� It is based on scaling� output selection �Set ��� and input�

output pairing as described above� To summarize� the selected outputs �Set

�� are

� engine inlet pressure� OPR�

� LP compressor	s exit mach number measurement� LPEMN

� HP compressor	s spool speed� NH

and the corresponding inputs are

� fuel �ow� WFE

� nozzle area� AJ

� inlet guide vane angle� IGV

The corresponding steady�state �s � �� model and RGA�matrix is

G �
�
	��
� �����
 �����

������ ����	� �����

	��
� ������ ����
�

� "�G� �
�
	���� ����� ������

����� ����� ������

������ ������ 	����
�

������
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Pairing of inputs and outputs� The pairing of inputs and outputs

is important in that it makes the design of the pre�lter simpler in a two

degree of freedom control con�guration� It is of even greater importance if a

decentralized control scheme is to be used� and gives insight into the working

of the plant� In Chapter �� it is argued that negative entries on the principal

diagonal of the steady�state RGA should be avoided and that the outputs in

G should be �re�arranged such that the RGA is close to the identity matrix�

For the selected output set �� we see from ������ that no rearranging of the

outputs is needed� that is� we should pair OPR�� LPEMN and NH with WFE�

AJ and IGV� respectively�

H� loop shaping design� We follow the design procedure given in

Section ����
� In steps � to 
 we discuss how pre� and postcompensators are

selected to obtain the desired shaped plant �loop shape� Gs � W�GW� where

W� � WpWaWb� In steps � to  we present the subsequent H� design�

�� The singular values of the plant are shown in Figure ����� �a� and indicate

a need for extra low frequency gain to give good steady�state tracking

and disturbance rejection� The precompensator weight is chosen as simple
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Figure ������ Singular values for plant and shaped plant�

integrators� i�e�� Wp � �
s
I�� and the postcompensator weight is selected as

W� � I��

�� W�GWp is next aligned at � rad�sec� The align gain Wa �used in front of

Wp� is the approximate real inverse of the shaped system at the speci�ed

frequency� The crossover is thus adjusted to � rad�sec in order to give

a closed�loop bandwidth of approximately �� rad�sec� Alignment should

not be used if the plant is ill�conditioned with large RGA elements at the

selected alignment frequency� In our case the RGA elements are small �see

Figure ������ and hence alignment is not expected to cause problems�



CASE STUDIES ���


� An additional gainWg is used in front of the align gain to give some control

over actuator usage� Wg is adjusted so that the actuator rate limits are not

exceeded for reference and disturbance steps on the scaled outputs� By some

trial and error� Wg is chosen to be diag��� ���� ��
�� This indicates that the

second actuator �AJ� is made to respond at higher rates whereas the third

actuator �IGV� is made slower� The shaped plant now becomes Gs � GW�

where W� � WpWaWg � Its singular values are shown in Figure ����� �b��

�� �min in ���� for this shaped plant is found to be ��
 which indicates that

the shaped plant is compatible with robust stability�

��  is set to � and the reference model Tref is chosen as Tref �

diag� �

�����s�� �

�

�����s�� �

�

���s�� �� The third output NH is thus made slower

than the other two in following reference inputs�

� The standardH� optimization de�ned by P in ������ is solved� � iterations

are performed and a slightly suboptimal controller achieving � � ��� is

obtained� Moving closer to optimality introduces very fast poles in the

controller� which if the controller is to be discretized� would ask for a very

high sample rate� Choosing a slightly suboptimal controller alleviates this

problem and also improves on the H� performance� The pre�lter is �nally

scaled to achieve perfect steady�state model matching� The controller �with

the weights W� and W�� has �� states�

������ Analysis and simulation results

Step responses of the linear controlled plant model are shown in Figure ����
�

The decoupling is good with less than ��! interactions� Although not shown
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Figure ������ Reference step responses�

here the control inputs were analyzed and the actuator signals were found to

lie within speci�ed limits� Responses to disturbance steps on the outputs were

also seen to meet the problem speci�cations� Notice that because there are

two degrees�of�freedom in the controller structure� the reference to output and

disturbance to output transfer functions can be given di�erent bandwidths�
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The robustness properties of the closed�loop system are now analyzed�

Figure ����� �a� shows the singular values of the sensitivity function� The
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peak value is less than � �actually it is ���� � 
�� dB�� which is considered

satisfactory� Figure ����� �b� shows the maximum singular values of T �

�I�GW�K��
��GW�K� and TI � �I�W�K�G���W�K�G� Both of these have

small peaks and go to zero quickly at high frequencies� From Section ������

this indicates good robustness both with respect to multiplicative output and

multiplicative input plant perturbations�

Nonlinear simulation results are shown in Figure ������ Reference signals
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Figure ������ Nonlinear simulation results

are given to each of the scaled outputs simultaneously� The solid lines show

the references� and the dash�dot lines� the outputs� It can be seen that the

controller exhibits good performance with low interactions�
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������ Conclusions

The case study has demonstrated the ease with which the two degrees�of�

freedom H� loop�shaping design procedure can be applied to a complex

engineering system� Some tools for control structure design have also been

usefully applied to the aero�engine example� We stress that a good control

structure selection is very important� It results in simpler controllers and in

general� a simpler design exercise�

���� Distillation process

A typical distillation column is shown in Figure ��� on page ���� The

overall � � � control problem is discussed in Example ��� �page ��
� and

it is recommended to read this �rst� The commonly used LV � and DV �

con�gurations� which are discussed below� are partially controlled systems

where 
 loops for liquid level and pressure have already been closed�

For a general discussion on distillation column control� the reader is also

referred to Shinskey ������ and Skogestad and Morari �����a�� and to the

survey paper by Skogestad �������

We have throughout the book studied a particular high�purity binary

distillation column with �� theoretical stages �
� trays and a reboiler� plus a

total condenser� This is %column A& in Skogestad et al� ������� The feed is

an equimolar liquid mixture of two components with a relative volatility of

���� The pressure p is assumed constant �perfect control of p using VT as an

input�� The operating variables �e�g� re�ux and boilup rates� are such that

we nominally have ��! purity for each product �yD and xB�� The nominal

holdups on all stages� including the reboiler and condenser� are M�
i �F � ���

min� The liquid �ow dynamics are modeled by a simple linear relationship�

Li�t� � L�i � �Mi�t� � M�
i ���L� with �L � ���
 min is the same on all

trays� No actuator or measurement dynamics are included� This results in a

model with �� states� This distillation process is di�cult to control because of

strong interactions between the two product compositions� More information�

including steady�state pro�les along the column� is available over the internet�

This distillation process has been used an example throughout the book�

and rather than repeating these results we here provide a summary�

Remark � The complete linear distillation column model with 	 inputs


L� V�D� B�� 	 outputs 
yD� xB�MD�MB�� � disturbances 
F� zF � and �� states is

available over the internet� The states are the mole fractions and liquid holdups on

each of the 	� stages� By closing the two level loops 
MD and MB� this model may

be used to generate the model for any con�guration 
LV � DV � etc��� For example�

the model for the LV �con�guration is generated using the MATLAB commands in

table �����

��	 MULTIVARIABLE FEEDBACK CONTROL

Table ����� MATLAB program for generating model of

various distillation con�gurations�

� Uses MATLAB Mu toolbox

� G�� State�space model of column �� inputs� � disturbances� � outputs� �� states	

� Level controllers using D and B�

Kd 
 �� Kb 
 ��

� P�controllers �bandwidth 
 �� rad�min	

�
� Now generate the LV�configuration from G� using sysic�

systemnames 
 �G� Kd Kb�

inputvar 
 ��L��	 V��	 d��	��

outputvar 
 ��G���	G���	��

input to G� 
 ��L V Kd Kb d ��

input to Kd 
 ��G���	��

input to Kb 
 ��G���	��

sysoutname 
�Glv�

cleanupsysic
�yes� sysic

�
� Modifications needed to generate DV�configuration�

Kl 
 �� Kb 
 ��

systemnames 
 �G� Kl Kb�

inputvar 
 ��D��	 V��	 d��	�� outputvar 
 ��G���	G���	��

input to G� 
 ��Kl V D Kb d ��

input to Kl 
 ��G���	�� input to Kb 
 ��G���	��

sysoutname 
�Gdv� cleanupsysic
�yes� sysic

�
� Modifications needed to generate DB�configuration�

Kl 
 �� Kv 
 ��

systemnames 
 �G� Kl Kv�

inputvar 
 ��D��	 B��	 d��	�� outputvar 
 ��G���	G���	��

input to G� 
 ��Kl Kv D B d ��

input to Kl 
 ��G���	�� input to Kv 
 ��G���	��

sysoutname 
�Gdb� cleanupsysic
�yes� sysic
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Remark � A ��state LV �model� obtained by model reducing the above model� is

given on page ���� This model is also available over the internet�

������ Idealized LV �model

The following idealized model of the distillation process� originally from

Skogestad et al� ������� has been used in examples throughout the book�

G�s� �

�

��s� �
�
���� ����

����� �����
�

�������

The inputs are the re�ux �L� and boilup �V �� and the controlled outputs are

the top and bottom product compositions �yD and xB�� This is a very crude

model of the distillation process� but it provides an excellent example of an

ill�conditioned process where control is di�cult� primarily due to the presence

of input uncertainty�

We refer the reader to the following places in the book where the model

������� is used�

Example ��� �page ��	� SVD�analysis� The singular values are plotted as a

function of frequency in Figure 
��b� on page �
�

Example ��
 �page ��	� Discussion of physics and interpretation of directions�

Example ���� �page ��	� The condition number� ��G�� is ������ and the �� ��

element of the RGA� ����G�� is 
��� �at all frequencies��

Motivating Example No� � �page ��	� Introduction to robustness problems

with inverse�based controller using simulation with ��! input

uncertainty�

Exercise ��
 �page ��	� Attempt to robustify above inverse�based design

using McFarlane�Glover H� loop�shaping procedure�

Exercise ��� �page ��	� Design of robust SVD�controller�

Exercise ��� �page ��	� Combined input and output uncertainty for inverse�

based controller�

Example ��� �page ��
	� Magnitude of inputs for rejecting disturbances �in

feed rate and feed composition�� at steady state�

Example ��� �page ��
	� Sensitivity to input uncertainty with feedforward

control �RGA��

Example ��
 �page ��
	� Sensitivity to input uncertainty with inverse�based

controller� sensitivity peak �RGA��

�� MULTIVARIABLE FEEDBACK CONTROL

Example ���� �page ���	� Sensitivity to element�by�element uncertainty �rel�

evant for identi�cation��

Example ��� �page ���	� Coupling between uncertainty in transfer function

elements�

Example in Section ������ �page ��	� � for robust performance which ex�

plains poor performance in Motivating Example No� ��

Example in Section ������ �page ���	� Design of ��optimal controller using

DK�iteration�

The model in ������� has also been the basis for two benchmark problems�

Original benchmark problem� The original control problem was

formulated by Skogestad et al� ������ as a bound on the weighted sensitivity

with frequency�bounded input uncertainty� The optimal solution to this

problem is provided by the one degree�of�freedom ��optimal controller given

in the example in Section ������ where a peak ��value of ����� �remark � on

page �� was obtained�

CDC benchmark problem� The original problem formulation is

unrealistic in that there is no bound on the input magnitudes� Furthermore�

the bounds on performance and uncertainty are given in the frequency domain

�in terms of weighted H� norm�� whereas many engineers feel time domain

speci�cations are more realistic� Limebeer ������ therefore suggested the

following CDC�speci�cations� The set of plants ' is de�ned by

eG�s� �

�

��s� �
�
����� �����

����� �����
� �
k�e
���s �

� k�e
���s

�

ki � � ��� ��� � � �i � � � ��� � �������

In physical terms this means ��! gain uncertainty and up to � min delay in

each input channel� The speci�cation is to achieve for for every plant eG � '�

S�� Closed�loop stability�

S�� For a unit step demand in channel � at t � � the plant output y� �tracking

and y� �interaction� should satisfy�

� y��t� � ��� for all t � 
� min�

� y��t� � ��� for all t�

� ���� � y���� � �����

� y��t� � ��� for all t�

� ����� � y���� � �����

Corresponding requirements hold for a unit step demand in channel ��
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S�� $
�Ky
eS� 	 ��
�� ���

S	� $
� eGKy� 	 � for � � ����

Note that a two degrees�of�freedom controller may be used and Ky then refers

to the feedback plant of the controller� In practice� speci�cation S� is indirectly

satis�ed by S
� Note that the uncertainty description Gp � G�I��I(I� with

wI � s����

���s�� �as used in the examples in the book� only allows for about ���

min time delay error� To get a weight wI �s� which includes the uncertainty

in ������� we may use the procedure described in Example ���� eq� ������ or

����� with rk � ��� and �max � ��

Several designs have been presented which satisfy the speci�cations for the

CDC�problem in �������� For example� a two degrees�of�freedom H� loop�

shaping design is given by Limebeer et al� ����
�� A two degrees�of�freedom

��optimal design is presented by Lundstr)om� Skogestad and Doyle ������

������ Detailed LV �model

We have also in the book used a ��state dynamic model of the same distillation

process which includes liquid �ow dynamics �in addition to the composition

dynamics� as well disturbances� This ��state model was obtained from model

reduction of the detailed model with �� states� The steady�state gains for the

two disturbances are given in ��������

The ��state model is similar to ������� at low frequencies� but the model

is much less interactive at higher frequencies� The physical reason is that the

liquid �ow dynamics decouple the response and make G�j�� upper triangular

at higher frequencies� The e�ect is illustrated in Figure ���� where we show

the singular values and the magnitude of the RGA�elements are a function of

frequency� As a comparison� for the simpli�ed model in �������� ����G� � 
���

at all frequencies �and not just at steady�state�� The implication is that control

at crossover frequencies is easier than expected from the simpli�ed model

��������

Applications based on the ��state model are found in�

Example ��� �page ���	� Controllability analysis of partial control and

feedforward control�

Example in Section ���� �page �
�	� Controllability analysis of decentral�

ized control�

Details about 
�state model� The state�space realization is

G�s�
s
�

�
A B

C �
�

� Gd�s�
s
�

�
A Bd

C �

�

�������
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where

A �
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Scaling� The model is scaled such that magnitude of � corresponds to� ����

mole fraction units for each output �yD and xB�� the nominal feed �owrate

for the two inputs �L and V �� and a ��! change for each disturbance �feed

rate F and feed composition zF �� Notice that the steady�state gains computed

with this model are slightly di�erent from the ones used in the examples�

Remark�A similar dynamic LV �model� but with � states� is given by Green and

Limebeer 
������ who also designed H� loop�shaping controllers�

Exercise ���� Redo the ��optimal design using DK�iteration in Section ������

using the model ������	�

������ Idealized DV �model

Finally� we have also made use of an idealized model for the DV �con�guration�

G�s� �

�

��s� �
�
����� ���

������ ����
�

�������

In this case the condition number ��G� � ���� is still large� but the RGA

elements are small �about �����



CASE STUDIES ���

Example ��� �page ���	 Bounds on sensitivity peak show that inverse�based

controller is robust with respect to diagonal input uncertainty�

Example ��� �page ���	� � for robust stability with a diagonal controller

is computed� The di�erence between diagonal and full�block input

uncertainty is signi�cant�

Remark� In practice� the DV �con�guration may not be as favourable as indicated

by these examples� because the level controller at the top of the column is not perfect

as was assumed when deriving 
�������

������ Further distillation case studies

The full distillation model� which is available over the internet� may form

the basis for several case studies �projects�� These could include input�output

controllability analysis� controller design� robustness analysis� and closed�loop

simulation� The following cases may be considered�

�� Model with � inputs and � outputs

�� LV �con�guration �studied extensively in the book�


� DV �con�guration

�� DB�con�guration

The models in the latter three cases are generated from the � � � model

by closing two level loops �see the MATLAB �le in Table ���
� to get a

partially controlled plant with � inputs and � outputs �in addition to the two

disturbances��

Remark � For the DV � and DB�con�gurations the resulting model depends quite

strongly on the tuning of the levelk loops� so one may consider separateley the two

cases of tight level control 
e�g� K � �� as in Table ����� or a loosely tuned level

controller 
e�g� K � ��� corresponding to a time constant of � min�� The level control

tuning may also be considered as a source of uncertainty�

Remark � The models do not include actuator or measurement dynamics� which

may also be considered as a source of uncertainty�

Remark � The model for the DB�con�guration contains a pure integrator in one

direction� and the steady�state gain matrix is therefore singular�
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APPENDIX A

MATRIX THEORY AND

NORMS

Most of the topics in this Appendix are included as background material which is

needed for the book� and should ideally be studied before reading Chapter ��

After studying the Appendix the reader should feel comfortable with a range

of mathematical tools including eigenvalues� eigenvectors and the singular value

decomposition� and should appreciate the di�erence between various norms for

vectors� matrices� signals and systems� and how these norms can be used to measure

performance�

The main references are� Strang ���	
� �for understanding�� Golub and van Loan

������ �for some details�� Horn and Johnson ����� �for more details� and Zhou

et al� ����
� �for norms��

A�� Basics

Let us start with a complex scalar

c � a� jb� where a � Re�c�� b � Im�c�

To compute the magnitude jcj� we multiply c by its conjugate �c �
� a�jb� Then

jcj � p�cc �
p
a� � j�b� �

p
a� � b�

A complex column vector a with m components �elements� is written

a �
����
a�

a�
���

am
����

where ai is a complex scalar� a
T is used to denote a row vector�
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Now consider a complex l � m matrix A with elements aij � Re�aij� �

j Im�aij�� l is the number of rows �number of �outputs	 when viewed as an

operator� and m is the number of columns ��inputs	�� Mathematically� we

write A � Cl�m if A is a complex matrix� or A � Rl�m if A is a real matrix�

Note that a column vector a with m elements may be viewed as an m � 


matrix�

The transpose of a matrix A is AT �with elements aji�� the conjugate is �A

�with elements Re�aij� � j Im�aij��� the conjugate transpose �or Hermitian

adjoint� matrix is AH �
� �AT �with elements Re�aji�� jIm�aji��� the trace is

trA �sum of diagonal elements�� and the determinant is detA� The inverse of

a non�singular matrix is A��� and is given by

A�� �
adjA

detA

�A�
�

where adjA is the adjugate �or �classical adjoint	� of A which is the

transposed matrix of cofactors of A� Here the ij�th cofactor of A is

cij � adjA�ji
�
� ��
�i�j detAij �A���

where Aij is a submatrix formed by deleting row i and column j of A� For

example� for a �� � matrix we have

A �
�
a�� a��

a�� a��
�
� detA � a��a�� � a��a��

A�� �



detA

�
a�� �a��

�a�� a��
�

�A���

We also have� assuming the inverses exist� that�

�AB�T � BTAT � �AB�H � BHAH � �AB��� � B��A�� �A���

A���� Some useful matrix identities

Lemma A�� The matrix inversion lemma� Let A�� A�� A� and A� be

matrices with compatible dimension such that the matrices A�A�A� and

�A� � A�A�A�� are de�ned� Also assume that the inverses given below exist�

Then
�A� �A�A�A��
�� � A��� �A��� A��A�A
��
� A� �A��� ���A�A

��
� �A���

Proof� Postmultiply the right hand side in �A�� with A� �A�A�A�� This gives the

identity matrix� �
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Lemma A�� Inverse of partitioned matrix� If A���� and X�� exist then�
A�� A��

A�� A��
���
�

�
A���� �A���� A��X
��A��A
��
�� �A���� A��X

��

�X��A��A
��
�� X��

�
�A���

where X � A�� � A��A
��
�� A�� is the Schur complement of A�� in A� also see

�A����� Similarly if A���� and Y �� exist then�
A�� A��

A�� A��
���
�

�
Y �� �Y ��A��A
��
��

�A���� A��Y
�� A���� �A���� A��Y
��A��A
��
��

�
�A���

where Y � A�� � A��A
��
�� A�� is the Schur complement of A�� in A� also see

�A�����

A���� Some determinant identities

The determinant is de�ned only for square matrices� so let A be an n � n

matrix� A matrix is non�singular if detA is non�zero� The determinant may

be de�ned inductively as detA �
Pn

i�� aijcij �expansion along column j� or

detA �
Pn

j�� aijcij �expansion along row i�� where cij is the ij�th cofactor

given in �A���� This inductive de�nition begins by de�ning the determinant of

an 
�
 matrix �a scalar� to be the value of the scalar� i�e� det a � a� We then

get for a �� � matrix detA � a��a�� � a��a�� and so on� From the de�nition

we directly get that detA � detAT � Some other determinant identities are

given below�


� Let A be a non�singular matrix� Then

detA�� � 
� detA �A���

�� Let c be a complex scalar and A an n� n matrix� Then

det�cA� � cn det�A� �A���

�� Let A� and A� be square matrices of the same dimension� Then

det�A�A�� � det�A�A�� � detA� � detA� �A�
��

�� Let A� and A� be matrices of compatible dimensions such that both

matrices A�A� and A�A� are square �but A� and A� need not themselves

be square�� Then

det�I �A�A�� � det�I �A�A�� �A�

�

This is actually a special case of Schur�s formula given next� �A�

� is

important in control area as it yields� e�g�� det�I �GK� � det�I �KG��
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�� The determinant of a triangular or block�triangular matrix is the product

of the determinants of the diagonal blocks�

det
�
A�� A��

� A��
�
� det

�
A�� �

A�� A��
�
� det�A��� � det�A��� �A�
��

�� Schur�s formula for the determinant of a partitioned matrix�

det
�
A�� A��

A�� A��
�
� det�A��� � det�A�� �A��A
��
�� A���

� det�A��� � det�A�� �A��A
��
�� A��� �A�
��

where it is assumed that A�� and�or A�� are non�singular�

Proof� Note that A has the following decomposition if A�� is nonsingular��
A�� A��

A�� A��
�

�
�
I �

A��A
��
�� I

��
A�� �

� X
��
I A��
�� A��

� I

�
�A����

where X � A�� � A��A
��
�� A��� Computing the determinant of A using �A���� and

�A���� then proves the �rst part of �A����� Similarly� if A�� is nonsingular��
A�� A��

A�� A��
�

�
�
I A��A
��
��

� I

��
Y �

� A��
��
I �

A��
�� A�� I

�
�A���

where Y � A�� �A��A
��
�� A��� and the last part of �A���� follows� �

A�� Eigenvalues and eigenvectors

De�nition A�� Eigenvalues and eigenvectors� Let A be a square n � n

matrix� The eigenvalues �i	 i � 
� � � � � n	 are the n solutions to the n
th order

characteristic equation

det�A� �I� � � �A�
��

The �right� eigenvector ti corresponding to the eigenvalue �i is the nontrivial

solution �ti �� �� to
�A� �iI�ti � � � Ati � �iti �A�
��

The corresponding left eigenvectors qi satisfy

qHi �A� �iI� � � � qHi A � �iq
H
i �A�
��

When we just say eigenvector we mean the right eigenvector�
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The eigenvalues are sometimes called characteristic gains� The set of

eigenvalues of A is called the spectrum of A� The largest of the absolute

values of the eigenvalues of A is the spectral radius of A� ��A�
�
� maxi j�i�A�j�

Note that if t is an eigenvector then so is �t for any constant �� Therefore�

the eigenvectors are usually normalized to have unit length� i�e� tHi ti � 
� An

important result for eigenvectors is that eigenvectors corresponding to distinct

eigenvalues are always linearly independent� For repeated eigenvalues� this

may not always be the case� that is� not all n � n matrices have n linearly

independent eigenvectors �these are the so�called �defective	 matrices��

The eigenvectors may be collected as columns in the matrix T and the

eigenvalues ��� ��� � � � � �n as diagonal elements in the matrix ��

T � ft�� t�� � � � � tng� � � diagf��� ��� � � � � �ng �A�
��

Then we may write �A�
�� in the following form

AT � T� �A����

Let us now consider using T for �diagonalization	 of the matrix A when

its eigenvectors are linearly independent such that T�� exists �which always

happens if the eigenvalues are distinct� but may also happen in other cases� e�g�

for A � I�� From �A���� we then get that the eigenvector matrix diagonalizes

A�

� � T��AT �A��
�

A���� Facts for eigenvalues�

Let in the following �i denote the eigenvalues of A�


� The sum of the eigenvalues of A is equal to trace of A �sum of the diagonal

elements�� trA �
P

i �i�

�� The product of the eigenvalues of A is equal to the determinant of A�

detA �
Q

i �i�

�� The eigenvalues of an upper or lower triangular matrix are equal to its

diagonal elements�

�� For a real matrix the eigenvalues are either real� or occur in complex

conjugate pairs�

�� A and AT have the same eigenvalues �but di�erent eigenvectors��

�� The inverse A�� exists if and only if all eigenvalues of A are non�zero� In

this case A�� has the eigenvalues 
���� � � � � 
��n�

�� The matrix A� cI has eigenvalues �i � c�

�� The matrix cAk where k is an integer has eigenvalues c�ki �

�� Consider the l � m matrix A and the m � l matrix B� Then the l � l

matrix AB and the m�m matrix BA have the same non�zero eigenvalues�

�
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To be more speci�c assume l � m� Then the matrix AB has the same m

eigenvalues as BA plus l � m eigenvalues which are identically equal to

zero�


�� The eigenvalues are invariant under similarity transformations� that is� A

and DAD�� have the same eigenvalues�



� The same eigenvectors diagonalize the matrix A and the matrix �I�A����

�
em Proof� T���I �A���T � �T���I �A�T ��� � �I ������ �


�� Gershgorin
s theorem The eigenvalues of the n � n matrix A lie in the

union of n circles in the complex plane� each with centre aii and radius

ri �
P

j ��i jaij j �sum of o��diagonal elements in row i�� They also lie in the

union of n circles� each with centre aii and radius r
�
i �

P
j ��i jajij �sum of

o��diagonal elements in column i��

From the above properties we have� for example� that

�i�S� � �i��I � L���� �




�i�I � L�
�





 � �i�L�

�A����

In this book we consider eigenvalues of two completely di�erent matrixes�

namely of the real state matrix� A� and of the complex transfer matrix at a

given frequency� e�g� L�j��� and it is important to realize the di�erence� This

is discussed next�

A���� Eigenvalues of the state matrix

Consider a system described by the linear di�erential equations�

�x � Ax�Bu �A����

Unless A is diagonal this is a set of coupled di�erential equations� For

simplicity� assume that the eigenvectors of A are linearly independent and

introduce the new state vector z � T��x� that is� x � Tz� We then get

T �z � ATz �Bu � �z � �z � T��Bu �A����

which is a set of uncoupled di�erential equations in terms of the new states

z � Tx� The unforced solution �i�e�� with u � �� is zi � z�ie
�it where z�i is

the value of the state at t � �� If �i is real then we see that we have stability

of this mode �zi � � as t � �� if and only if �i 	 �� If �i � Re�i � jIm�i

is complex then we get e�it � eRe�it�cos�Im�it� � j sin�Im�it�� and we have

stability �zi � � as t � �� if and only if Re�i 	 � �the fact that the new

state zi is complex is of no concern since the real physical states x � Tz of

course are real�� This is a general result� A linear system is stable if and only

if all the eigenvalues of the state matrix A have real parts less than �� that is�

lie in the open left�half plane�
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A���� Eigenvalues of transfer functions

The eigenvalues of the loop transfer function matrix� �i�L�j���� are sometimes

called the characteristic loci� and they may to some degree be used to

generalize L�j�� for a scalar system� We make use of �i�L� to study the

stability of the M��structure in Chapter � where L � M�� Even more

important in this context is the spectral radius� ��L� � maxi j�i�L�j���j�

A�� Singular Value Decomposition

De�nition A�� Unitary matrix� A �complex� matrix U is unitary if

UH � U�� �A����

All the eigenvalues of a unitary matrix have absolute value equal to 
� and

all its singular values are therefore �as we shall see from the de�nition below�

equal to 
�

De�nition A�� SVD� Any complex l�m matrix A may be decomposed into

a singular value decomposition�
A � U V H �A����

where the l � l matrix U and the m � m matrix V are unitary	 and l � m

matrix  contains a diagonal matrix  � with the real	 non�negative singular

values	 
i	 arranged in a descending order as in

 �
�
 �
�

�
� l 	 m �A����

or

 �  � � � � l 
 m �A����

where

 � � diagf
�� 
�� � � � � 
kg� k � minfl�mg �A����

and

�

�
� 
� 	 
� 	 � � � 	 
k

�
� 
 �A����

The unitary matrices U and V form orthonormal bases for the column

�output� space and the row �input� space of A� Here the column vectors of V �

denoted vi� are called right or input singular vectors and the column vectors

of U � denoted ui� are called left or output singular vectors�

Note that this decomposition is not unique since A � U � V �H � where

U � � US� V � � V S�� and S � diagfej�ig and �i is any real number� is

also an SVD of A� However� the singular values� 
i�� are unique�
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The singular values are the square roots of the k � min�l�m� largest

eigenvalues of both AAH and AHA� We have


i�A� �
q

�i�AHA� �
q

�i�AAH� �A��
�

Also� the columns of U and V are unit eigenvectors of AAH and AHA�

respectively� To derive �A��
� write

AAH � �U V H��U V H�H � �U V H��V  HUH� � U  HUH �A����

or equivalently since U is unitary and satis�es UH � U���

�AAH �U � U  H �A����

We then see that U is the matrix of eigenvectors of AAH and f
�i g are its

eigenvalues� Similarly� we have that V is the matrix of eigenvectors of AHA�

A���� Rank

De�nition A�	 The rank of a matrix is equal to the number of non�zero

singular values of the matrix� Let rank�A� � r	 then the matrix A is called

rank de�cient if r 	 k � min�l�m�	 and we have singular values 
i � � for

i � r�
� � � � k� A rank de�cient square matrix is a singular matrix �non�square

matrices are always singular��

The rank is unchanged upon left or right multiplication by a non�singular

matrix� Furthermore� for an l�m�matrix A and an m� p�matrix B� the rank

of their product AB is bounded as follows �Sylvester�s inequality�

rank�A� � rank�B��m 
 rank�AB� 
 minfrank�A�� rank�B�g �A����

A���� Singular values for �� � matrix

In general� the singular values must be computed numerically� For � � �

matrices an analytic expression is easily derived� Introduce

b
�
� tr�AHA� �

X
i�j

jaij j�� c
�
� det�AHA�

Furthermore� the sum of the eigenvalues of a matrix is equal to its trace and

the product is equal to its determinant� so

�� � �� � b� �� � �� � c
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Solving with respect to �� and ��� and using 
i�A� �
p
�i�AHA� then yields�

�
�A� �
s

b�
p
b� � �c

�

� 
�A� �
s

b�pb� � �c

�

�A����

For example� for A �
�

 �

� �
�
we have b �
P jaij j� � 
 � � � � � 
� � ���

c � �detA�� � ����� � �� and we get �
�A� � ����� and 
�A� � ������

Note that for singular �� � matrices �with detA � � and 
�A� � �� we get

�
�A� �
pP jaij j�� �
� kAkF �the Frobenius norm�� which is actually a special

case of �A�
����

A���� SVD of inverse

Since A � U V H we get� provided the m�m A is non�singular� that

A�� � V  ��UH �A����

This is the SVD of A�� but with the order of the singular values reversed�

Let j � m� i� 
� Then it follows from �A���� that


i�A
��� � 
�
j�A�� ui�A
��� � vj�A�� vi�A
��� � uj�A� �A����

and in particular

�
�A��� � 
�
�A� �A����

A���� Singular value inequalities

The singular values bound the magnitude of the eigenvalues �also see �A�

����


�A� 
 j�i�A�j 
 �
�A� �A����

The following is obvious from the SVD�de�nition�

�
�AH� � �
�A� and �
�AT � � �
�A� �A����

This important property is proved below �eq� A�����

�
�AB� 
 �
�A��
�B� �A��
�

For a non�singular A �or B� we also have a lower bound on �
�AB�


�A��
�B� 
 �
�AB� or �
�A�
�B� 
 �
�AB� �A����

We also have a lower bound on the minimum singular value


�A�
�B� 
 
�AB� �A����
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For a partitioned matrix the following inequalities are useful�

maxf�
�A�� �
�B�g 
 �

�
A

B
�



p
�maxf�
�A�� �
�B�g �A����

�

�
A

B
�

 �
�A� � �
�B� �A����

The following equality for a block�diagonal matrix is used extensively in the

book�

�

�
A �

� B
�
� maxf�
�A�� �
�B�g �A����

Another very useful result is Fan�s theorem �Horn and Johnson� 
���� p� 
��

and p� 
����


i�A� � �
�B� 
 
i�A�B� 
 
i�A� � �
�B� �A����

Two special cases of �A���� are�

j�
�A�� �
�B�j 
 �
�A�B� 
 �
�A� � �
�B� �A����


�A�� �
�B� 
 
�A�B� 
 
�A� � �
�B� �A����

�A���� yields


�A� � 
 
 
�I �A� 
 
�A� � 
 �A����

On combining �A���� and �A���� we get a relationship that is useful when

evaluating the ampli�cation for closed�loop systems�


�A�� 
 
 


�
�I � A���

 
�A� � 
 �A��
�

A���� Singularity of matrix A� E

From the left inequality in �A���� we �nd that

�
�E� 	 
�A� �A����

implies that 
�A�E� � �� and thus the smallest singular value 
�A� measures

how near the matrix A is to being singular or rank de�cient� This test is

often used in numerical analysis� and it is also an important inequality in the

formulation of various robustness tests�
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A���� SVD as sum of rank � matrices

Let r denote the rank of the l�m matrix A� We may consider then the SVD

as a decomposition of A into r l �m matrices� each of rank 
� We have

A � U V H �

rX
i��


iuiv
H
i �A����

�the remaining terms from r � 
 to k � minfl�mg have singular values equal

to � and give no contribution to the sum�� The �rst and most important

submatrix is given by A� � 
�u�v
H
� � If we now consider the residual matrix

A� � A�A� � A� 
�u�v
H
� �A����

then it may be shown that


��A
�� � 
��A� �A����

that is� the largest singular value of A� is equal to the second singular value

of the original matrix� This shows that the direction corresponding to 
��A�

is the second most important direction� and so on�

A���	 Economy size SVD

Since there are only r � rank�A� 
 minfl�mg non�zero singular values� and

since only the non�zero singular values contribute to the overall product� the

singular value decomposition of A is sometimes written as an economy size

SVD

Al�m � U l�r
r  r�rr �V m�r

r �H �A����

where the matrices Ur and Vr contain only the r �rst columns of the matrices

U and V introduced above� Here we have used the notation Al�m to indicate

that A is an l�m matrix�

Remark� The �economy size SVD� presently used in MATLAB is not quite as

economic as the one given in �A�
� as it uses m instead of r�

A���
 Pseudo�inverse �Generalized inverse

Consider the linear set of equations
y � Ax �A����

with a given l�
 vector y and a given l �m matrix A� A least squares solution

to �A���� is an m� 
 vector x such that kxk� �
p
x�� � x�� � � �x�m is minimized
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among all vectors for which ky �Axk� is minimized� and is given in terms of

the pseudo�inverse �Moore�Penrose generalized inverse� of A�

x � Ayy �A����

The pseudo�inverse may be obtained from an SVD of A � U V H by

Ay � Vr 
��
r UH
r �

rX
i��




i�A�

viu
H
i �A����

where r is the number of non�zero singular values of A� We have that


�A� � 
��
�Ay� �A����

Note that Ay exists for any matrix A� even for a singular square matrix and

a non�square matrix� The pseudo�inverse also satis�es

AAyA � A and AyAAy � Ay

Note the following cases �r is the rank of A��


� r � l � m� i�e�� A is a non�singular� In this case Ay � A�� is the inverse of

the matrix�

�� r � m 
 l� i�e�� A has full column rank� This is the �conventional least

square�s problem	 where we want to minimize ky�Axk�� and the solution

is

Ay � �AHA���AH �A��
�

In this case AyA � I so Ay is a left inverse of A�

�� r � l 
 m� i�e�� A has full row rank� In this case we have an in�nite number

of solutions to �A���� and we seek the one that minimizes kxk�� We get

Ay � AH �AAH��� �A����

In this case AAy � I so Ay is a right inverse of A�

�� r 	 k � minfl�mg �general case�� In this case both matrices AHA and

AAH are rank de�cient� and we have to use the SVD to obtain the pseudo�

inverse� In this case A has neither a left or right inverse�

Principal component regression 
PCR�

We note that the pseudo�inverse in �A���� may be very sensitive to noise and

�blow up	 if the smallest non�zero singular value� 
r is small� In the PCR

method one avoids this problem by using only the q 
 r �rst singular values

which can be distinguished from the noise� The PCR pseudo�inverse then

becomes

AyPCR �

qX
i��




i

viu
H
i �A����
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Remark� This is similar in spirit to the use of Hankel singular values for model

reduction�

A���� Condition number

The condition number of a matrix is in this book de�ned as the ratio

��A� � 
��A��
k�A� � �
�A��
�A� �A����

where k � min�l�m�� A matrix with a large condition number is said to be

ill�conditioned� This de�nition yields an in�nite condition number for rank

de�cient matrices� For a non�singular matrix we get from �A����

��A� � �
�A� � �
�A��� �A����

Other de�nitions for the condition number of a non�singular matrix are also

in use� for example�

�p�A� � kAk � kA��k �A����

where kAk denotes any matrix norm� If we use the induced ��norm �singular

value� then this yields �A����� From �A���� and �A��
� we get for non�singular

matrices

��AB� 
 ��A���B� �A����

Note that the condition number depends strongly on the scaling of the inputs

and outputs� To be more speci�c let y� � DOy and u
� � DIu where the scaling

matrices DO and DI are diagonal and real� Then the condition numbers of the

matrices A and DOADI may in general be arbitrarily far apart� In general�

the scalings DO and DI should be selected on physical ground� for example�

by dividing each input and output by its largest expected or desired value as

discussed in Chapter 
���

The minimized condition number is obtained by minimizing the

condition number over all possible scalings� We have

���G� �
� min

DI �DO

��DOGDI� �A����

where DI and DO are diagonal scaling matrices� For a � � � matrix� the

minimized condition number is given by �Grosdidier et al�� 
�����

���G� � k�ki� �
q
k�k�i� � 
 �A����

where k�ki� is the induced 
�norm �maximum column sum� of the RGA�

matrix of G� Note that� ��G� � I and ���G� � 
 for a triangular � � �
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matrix� If we allow only scaling on one side then we get the input and output

minimized condition numbers�

��I �G�
�
� min
DI

��GDI�� ��O�G�
�
� min
DO

��DOG� �A����

To compute these minimized condition numbers we de�ne

H �
�
� G��

G �

�

�A��
�

Then we have as proven by Braatz and Morari �
����p
���G� � min

DI �DO

�
�DHD���� D � diagfDI � DOg �A����

q
��I �G� � minDI

�
�DHD���� D � diagfDI � Ig �A����q
��O�G� � minDO

�
�DHD���� D � diagfI�DOg �A����

These convex optimization problems may be solved using available software

for the upper bound on the structured singular value ��H�� see ������� In

calculating ��H�� we use for �
��G� the structure � � diagf�diag��diagg�

for ��I �G� the structure � � diagf�diag��fullg� and for ��O�G� the structure

� � diagf�full��diagg�

A�� Relative Gain Array

The RGA was originally introduced by Bristol �
���� to measure steady�state

interactions caused by decentralized diagonal control� but the RGA also has a

number of important properties as a frequency�dependent function� Many of

these properties were stated by Bristol� but they were not proven rigorously

until the work by Grosdidier et al� �
����� Some additional properties are

given in Hovd and Skogestad �
�����

The Relative Gain Array of a complex non�singularm�mmatrixA� denoted

RGA�A� or ��A�� is a complex m�m matrix de�ned by

RGA�A� � ��A� �
� A� �A���T �A����

where the operation � denotes element by element multiplication �Hadamard

or Schur product�� If A is real then ��A� is also real� Example�

A� �
�

 ��

� �
�

� A��� �
�
��� ���

���� ��

�

� ��A�� �
�
��� ���

��� ���
�
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A���� Properties of RGA�matrix

Most of the following properties follow directly if we write the RGA�elements

in the following form

�ij � aij � a�ji � aij
cij

detA
� ��
�i�j aij detA

ij

detA

�A����

Here a�ji denotes the ji�th element of the matrix A
��� Aij denotes the matrix

A with row i and column j deleted� and cij � ��
�i�j detAij is the ij�th

cofactor of the matrix A�

For any non�singular m�m matrix A the following holds�


� ��A��� � ��AT � � ��A�T

�� Any permutation of the rows and columns of A results in the same

permutation in the RGA� That is� ��P�AP�� � P���A�P� where P� and P�

are permutation matrices� �A permutation matrix has a single 
 in every

row and column and all other elements equal to ��� ��P � � P for any

perturbation matrix�

�� The sum of all elements of each row and each column of the RGA is 
�

That is�
Pm

i�� �ij � 
 and
Pm

j�� �ij � 
�

�� ��A� � I if and only if A is a lower or upper triangular matrix� and in

particular the RGA of a diagonal matrix is the identity matrix�

�� The RGA is scaling invariant� More precisely� ��D�AD�� � ��A� where

D� and D� are diagonal matrices�

�� The RGA is a measure of sensitivity to relative element�by�element

uncertainty in the matrix� More precisely� the matrix A becomes singular

if we make a relative change �
��ij in its ij�th element� that is� if a single

element in A is perturbed from aij to a
�
ij � aij�
� �
�ij
��

�� The norm of the RGA is closely related to the minimized condition number�

���A� � minD��D�

��D�AD�� where D� and D� is any diagonal matrix� We

have the following lower and conjectured upper bound on ���A�

k�km � 

���A�

 ���A� 
 k�ksum � k�m� �A����

where k�m� is a constant� and k�km �
� �maxfk�ki�� k�ki�g and k�ksum �P

ij j�ij j �the matrix norms are de�ned in Section A������ The lower

bound is proven by Nett and Manousiouthakis �
����� The upper bound

is proven for � � � matrices with k��� � � �Grosdidier et al�� 
����� but

it is only conjectured for the general case with k��� � 
 and k��� � �

�Skogestad and Morari� 
���c� Nett and Manousiouthakis� 
����� Note

that k�km 
 k�ksum where the equality always holds in the � � � case�

Consequently� for � � � matrices �� and k�ksum are always very close in

�
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magnitude �also see �A������

�� � matrix � k�ksum � 

���A�

 ���A� 
 k�ksum �A����

�� The diagonal elements of the matrix ADA�� are given in terms of the

corresponding row�elements of the RGA� �Skogestad and Morari� 
���c��

More precisely� for any diagonal matrix D � diagfdig we have

ADA���ii � A��DA�ii �
mX

j��
�ij�A�dj �A����

�� It follows from Property � that � always has at least one eigenvalue and

one singular value equal to 
�

Proof of some of the properties� Property �� Since AA�� � I it follows thatPm
j��
aija

�
ji � �� From the de�nition of the RGA we then have that

Pm
j��
�ij � ��

Property �� If the matrix is upper triangular then aij � � for i � j� It then follows

that cij � � for j � i and all the o��diagonal RGA�elements are zero� Property ��

Let A� � D�AD�� Then a�ij � d�id�jaij and a��ij � �
d�j

�
d�i
a�ij and the result follows�

Property �� The determinant can be evaluated by expanding it in terms of the any

row or column� e�g� by row i� detA �
P

i
����i�jaij detA
ij � Let A� denote A with

a�ij substituted for aij � By expanding the determinant of A
� by row i and then using

�A�	
� we get

detA� � detA� ����i�j
aij

�ij
detAij	 
z �

detA

� �

Property �� The ii�th element of the matrix B � ADA�� is bii �
P

j
djaija

�
ji �P

j
dj�ij � �

Example A��

A� �
��� 
 

 	 �	

	 � �� ��

�� 

 � ��

� � � ��
��� � ��A�� �
��� 
��
 ���
� �	��� ����

���		 ���� ���
 �����

�
�
� ��	� �� ���
�

���� ����� ���		 ��	�
��� �A����

In this case ��A�� � ���A�����A�� � ��	�
�����
	 � ���� and ���A�� � ��	�

�obtained numerically using �A�	
��� Furthermore� k�km � �maxf������ ����g �

������ and k�ksum � ����� so �A�		� with k�m� � k��� � � is satised� The matrix

A� is non�singular and the �� ��element of the RGA is ����A�� � �	���� Thus from

Property � the matrix A� becomes singular if the �� ��element is perturbed from 	

to 	��� �

�����
� � �����
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A���� RGA of non�square matrix

The RGA may be generalized to a non�square l �m matrix A by use of the

pseudo inverse Ay de�ned in �A����� We have

��A� � A� �Ay�T �A��
�

Properties 
 and � �permutations� of the RGA also hold for non�square

matrices� but the remaining properties do not apply in the general case�

However� they partly apply if A is either full row rank or full column rank�


� A has full row rank	 i�e�� r � rank�A� � l �i�e� A may have more inputs than

outputs� and the outputs are linearly independent�� In this case AAy � I �

and the following properties hold

�a� The RGA is independent of output scaling� i�e� ��DA� � ��A��

�b� All rows of the RGA sum to 
�
Pm

j �ij � 
�

�c� Column j of the RGA sums to the square of the ��norm of the j�th row

in Vr�

lX
i��

�ij � keTj Vrk�� 
 
 �A����

Here Vr contains the �rst r input singular vectors for G� and ej is an

m � 
 basis vector for input uj � ej �  � � � � � 
 � � � � � �T where 


appears in position j�

�d� The diagonal elements of B � ADAy are bii �

Pm
j�� djaija

�
ji �Pm

j�� dj�ij � where a
�
ji denotes the ji�th element of A

y and D is any

diagonal matrix�

�� A has full column rank	 i�e�� r � rank�A� � m �i�e� A may have fewer

inputs than outputs� and the inputs are linearly independent�� In this case

AyA � I � and the following properties hold

�a� The RGA is independent of input scaling� i�e� ��AD� � ��A��

�b� All columns of the RGA sum to 
�
Pl

i �ij � 
�

�c� Row i of the RGA sums to the square of the ��norm of the i�th row in

Ur�

mX
i��

�ij � keTi Urk�� 
 
 �A����

Here Ur contain the �rst r output singular vectors for G� and ei is an

l � 
 basis vector for output yi� ei �  � � � � � 
 � � � � � �T where 


appears in position i�

�d� The diagonal elements of B � AyDA are equal to bjj �
Pl

i�� a
�
jidiaij �Pl

i�� di�ij � where a
�
ji denotes the ji�th element of A

y and D is any

diagonal matrix�
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�� General case� For a general square or non�square matrix which has neither

full row or full column rank� identities �A���� and �A���� still apply�

From this it also follows that the rank of any matrix is equal to the sum

of its RGA�elements� Let the l�m matrix G have rank r� thenX
i�j

�ij�G� � rank�G� � r �A����

Proof of �A��
� and �A����� We will prove these identities for the general case�

Write the SVD of G as G � Ur�rV
H
r �this is the economy size SVD from �A�
��

where �r is invertible� We have that gij � eHi Ur�rV
H
r ej �

�
Gy


ji
� eHj Vr�
��
r UH
r ei�

UH
r Ur � Ir and V H
r Vr � Ir� where Ir denotes identity matrix of dim r � r� For the

row sum �A���� we then get

mX
j��

�ij �

mX
j��

eHi Ur�rV
H
r eje

H
j Vr�

��
r UH
r ei �

eHi Ur�rV
H
r

mX
j��

eje
H
j	 
z �

Im

Vr�
��
r UH
r ei � eHi UrU

H
r ei � keHi Urk

�
�

and the result for the column sum �A���� is proved in a similar fashion� �

Remark� The extension of the RGA to nonsquare matrices was done by Chang and

Yu ������ who also stated most of its properties� although in a somewhat incomplete

form� More general and precise statements are found in e�g� Cao ������

A���� Computing RGA with MATLAB

If G is a constant matrix then the RGA can be computed using�

RGA � G��pinv�G����

If G�j�� is a frequency�dependent matrix generated using the  toolbox� e�g��

G�pck�A�B�C�D�� omega�logspace�	
�
����� Gw�frsp�G�omega��

then the RGA as a function of frequency can be computed using�

RGAw � veval������Gw�vpinv�vtp�Gw����

A�� Norms

It is useful to have a single number which gives an overall size of a vector

or a matrix� or of a signal or a system� For this purpose we use functions

which are called norms� In everyday life� the most commonly used norm is the
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Euclidean vector norm� kek� �
pje�j� � je�j� � � � � jemj�� This is simply the

distance between two points y and x� where ei � yi � xi is the di�erence in

their coordinates�

De�nition A�� A norm of e �which may be a vector	 matrix	 signal or

system� is a real number	 denoted kek	 that satis�es the following properties�

�� Non�negative� kek 	 ��

� Positive� kek � �� e � � �for seminorms we have kek � � � e � ���

�� Homogeneous� k� � ek � j�j � kek for all complex scalars ��

�� Triangle inequality�

ke� � e�k 
 ke�k� ke�k �A����

More precisely	 e is an element in a vector space V over the �eld C of complex

numbers	 and the properties above must be satis�ed e� e�� e� � V and � � C�

We will consider the norms of four di�erent objects �norms on four di�erent

vector spaces��


� e is a constant vector�

�� e is a constant matrix�

�� e is a time dependent signal� e�t�� which at each �xed t is a constant scalar

or vector�

�� e is a �system	� a transfer function G�s� or impulse response g�t�� which

at each �xed s or t is a constant scalar or matrix�

Cases 
 and � above involve spatial norms and the question is� �How do we

average or sum up the channels!	� Cases � and � involve function norms or

temporal norms where we want to �average	 or �sum up	 as a function of

time or frequency� Note that the �rst two are �nite dimensional norms� while

the latter two are in�nite�dimensional�

A remark on notation� The reader should be aware that the notation on

norms in the literature is not consistent� and one must be careful to avoid

confusion� First� in spite of the fundamental di�erence between spatial and

temporal norms� the same notation� k�k� is generally used for both of them� and

we shall adopt that here� Second� the same notation is often used to denote

entirely di�erent norms� For example� consider the in�nity�norm� kek�� If

e is a constant vector� then kek� is the largest element in the vector �we

often use kekmax for this�� If e�t� is a scalar time signal� then ke�t�k� is the

peak value of je�t�j as a function of time� If E is a constant matrix then

kEk� may denote the the largest matrix element �we use kAkmax for this��

while other authors use kEk� to denote the largest matrix row�sum �we use

kEki� for this�� Finally� if E�s� is a system �transfer function�� then kEk�

is the H� norm which is the peak value of the maximum singular value of E�

kE�s�k� � maxw �
�E�j��� �which is how we mostly use the ��norm in this

book��

� MULTIVARIABLE FEEDBACK CONTROL

A���� Vector norms

We will consider a vector a with m elements� that is� the vector space is

V � Cm� To illustrate the di�erent norms we will calculate each of them for

the vector

b �
�� b�

b�
b�

�A �
�� 


�
��

�A �A����

We will consider three norms which are special cases of the vector p�norm

kakp � �
X

i

jaijp���p �A����

where we must have p 	 
 to satisfy the triangle inequality �property � of a

norm�� Here a is a column vector with elements ai and jaij is the absolute

value of the complex scalar ai�

Vector �norm �or sum�norm �� This is sometimes referred to as the �taxi�

cab norm	� as in two dimensions it corresponds to the distance between two

points when following the �streets	� We have

kak� �
�

X
i

jaij �kbk� � 
 � � � � � �� �A����

Vector �norm 
Euclidean norm�� This is the most common vector

norm� and corresponds to the shortest distance between two points

kak� �
�

sX
i

jaij� �kbk� �
p

 � � � �� � ���
�� �A����

The Euclidean vector norm satis�es the property

aHa � kak�� �A����

where aH denotes the complex conjugate transpose of the vector a�

Vector � norm �or max norm �� This is the largest magnitude of the

elements in the vector� and we usually use the notation kakmax for this norm�

kak� � kakmax
�
� max
i

jaij �kbkmax � j � �j � �� �A��
�

Since the various vector norms only di�er by constant factors� they are often

said to be equivalent� For example� for a vector with m elements

kakmax 
 kak� 

p
m kakmax �A����

kak� 
 kak� 

p
m kak� �A����

In Figure A�
 the di�erences between the vector norms are illustrated by

plotting the contours for kakp � 
 for the case with m � ��
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�


�


a�

a�

p � �

p ��
p � 


Figure A��� Contours for the vector p�norm� kakp � � for p � �� ���

A���� Matrix norms

We will consider a constant l�m matrix A� Typically� A may be the complex

matrix G�j�� evaluated at a given frequency �� which may represent the

frequency response of a system with m inputs and l outputs� For numerical

illustration we shall consider the following �� � matrix

A� �
�

 �

�� �
�

�A����

De�nition A�� A norm on a matrix kAk is a matrix norm if	 in addition

to the four properties of a norm given above	 it also satis�es the multiplicative

property �also called consistency condition��

kABk 
 kAk � kBk �A����

Property �A���� is very important when combining systems� and forms the

basis for the small gain theorem� Note that there exist norms on matrices

�thus satisfying the four properties of a norm�� which are not matrix norms

�thus not satisfying �A������ Such norms are sometimes called generalized

matrix norms� The only generalized matrix norm considered in this book is

the largest�element norm� kAkmax�

Let us �rst examine three norms which are direct extensions of the

de�nitions of the vector p�norms�

Sum matrix norm� This is the sum of the element magnitudes

kAksum �
X

i�j
jaij j �kA�ksum � 
 � � � � � � � 
�� �A����
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Frobenius matrix norm �or Euclidean norm�� This is the square root of

the squared sum of the elements

kAkF �
sX

i�j
jaij j� �

q
tr�AAH � �

q
tr�AHA� �kA�kF �

p
�� � ������

�A����

Here tr is the sum of the the diagonal elements� and AH is the complex

conjugate transpose of A� The Frobenius norm is important in control because

it is used for summing up the channels� for example� when using LQG optimal

control�

Max element norm� This is the magnitude of the largest element

kAkmax � max
i�j

jaij j �kA�kmax � �� �A����

This norm is not a matrix norm as it does not satisfy �A����� However note

that
p
lm kAkmax is a matrix norm�

The three above norms are sometimes called the 
�� �� and ��norm�

respectively� but this is not used in this book to avoid confusion with the

more important induced p�norms introduced next�

Induced matrix norms

� �A

w z

Figure A��� Representation of �A����

Induced matrix norms are important because of their close relationship to

signal ampli�cation in systems� Consider the following equation which is

illustrated in Figure A��

z � Aw �A����

where we may think of w as the input vector and z as the output vector� We

want to consider the �ampli�cation	 or �gain	 of the matrix A as de�ned by

the ratio kzk�kwk� The maximum gain for all possible input directions is of

particular interest� This is given by the induced norm which is de�ned as

kAkip �
� max
w ���

kAwkp
kwkp �A�
���

where kwkp � �
P

i jwijp���p denotes the vector p�norm� In words� we are

looking for a direction of the vector w such that the ratio kzkp�kwkp is
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maximized� Thus� the induced norm gives the largest possible �amplifying

power	 of the matrix� The following equivalent de�nition is also used

kAkip � max

kwkp��
kAwkp � max

kwkp��
kAwkp �A�
�
�

For the induced 
�� �� and ��norms the following identities hold�

kAki� � max
j

�
X

i

jaij j� �maximum column sum	 �A�
���

kAki� � max
i

�
X

j

jaij j� �maximum row sum	 �A�
���

kAki� � �
�A� �
q

��AHA� �singular value or spectral norm	 �A�
���

Here the spectral radius ��A� � maxi j�i�A�j is the largest eigenvalue of the

matrix A� Note that the induced ��norm of a matrix is equal to the �largest�

singular value� and is often called the spectral norm� For the example matrix

in �A���� we get

kA�ki� � �� kA�ki� � �� kA�ki� � �
�A�� � ��

� �A�
���

Theorem A�� All induced norms kAkip are matrix norms and thus satisfy

the multiplicative property
kABkip 
 kAkip � kBkip �A�
���

� � �AB

w v z

Figure A��� Representation of �A���
��

Proof� Consider the following set of equations which is illustrated graphically in

Figure A���

z � Av� v � Bw � z � ABw �A���	�

From the de�nition of the induced norm we get by �rst introducing v � Bw� then

multiplying the numerator and denominator by kvkp �� �� and �nally maximizing

each term involving w and v independently�

kABkip
	
� max

w ��


kA

vz�	

Bw kp

kwkp

� max

w ��


kAvkp

kvkp
�
kBwkp

kwkp

� max
v ��


kAvkp

kvkp
�max
w ��


kBwkp

kwkp

and �A���
� follows from the de�nition of an induced norm� �
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Implications of multiplicative property

For matrix norms the multiplicative property kABk 
 kAk � kBk holds for

matrices A and B of any dimension as long as the product AB exists� In

particular� it holds if we choose A and B as vectors� From this observation we

get�

� Choose B to be a vector� i�e B � w� and we derive from �A���� for any

matrix norm

kAwk 
 kAk � kwk �A�
���

We say that the �matrix norm kAk is compatible with its corresponding vector

norm kwk	� Clearly� from �A�
��� any induced matrix p�norm is compatible

with its corresponding vector p�norm� Similarly� the Frobenius norm is

compatible with the vector ��norm �since when w is a vector kwkF � kwk���

�� From �A�
��� we also get for any matrix norm

kAk 	 max
w ���

kAwk
kwk �A�
���

Note that the induced norms are de�ned such that we have equality in the

above equation� The property kAkF 	 �
�A� then follows since kwkF � kwk��

�� Choose both A � zH and B � w as vectors� Then using the Frobenius

norm or induced ��norm �singular value� in �A���� we derive the Cauchy�

Schwarz inequality

jzHwj 
 kzk� � kwk� �A�

��

where z and w are column vectors of the same dimension and zHw is the

Euclidean inner product between the vectors z and w�

�� The inner product can also be used to de�ne the angle � between two

vectors z and w

� � arccos
� jzHwj

kzk� � kwk�
�

�A�


�

Note that with this de�nition � is between �o and ��o�

A���� The spectral radius

The spectral radius ��A� is the largest eigenvalue of the matrix A�

��A� � max
i

j�i�A�j �A�

��

It is not a norm as it does not satisfy properties � and � of a norm� For

example� for

A� �
�

 �


� 

�

� A� �
�

 
�

� 

�

�A�

��
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we have ��A�� � 
� ��A�� � 
� But ��A� � A�� � 
� is larger than

��A�� � ��A�� � � and is therefore inconsistent with the triangle inequality

�property � of a norm�� Also� it does not satisfy the multiplicative property

�A����� For example� ��A�A�� � 
�
��� which is larger than ��A����A�� � 
�

Although the spectral radius is not a norm� it provides a lower bound on

any matrix norm which can be very useful�

Theorem A��� For any matrix norm �and in particular for any induced

norm�

��A� 
 kAk �A�

��

Proof� Since �i�A� is an eigenvalue of A� we have that Ati � �iti where ti denotes

the eigenvector� We get
j�ij � ktik � k�itik � kAtik � kAk � ktik �A����

where the inequality follows from �A������ Thus for any matrix norm j�i�A�j � kAk

and since this must hold for all eigenvalues the result follows� �

For our example matrix in �A���� we get ��A�� �

p

� � ��
�� which is

less than all the induced norms �kA�ki� � �� kA�ki� � �� �
�A�� � ��

��

and also less than the Frobenius norm �kAkF � ������ and the sum�norm

�kAksum � 
���

A simple physical interpretation of �A�

�� is that the eigenvalue measures

the gain of the matrix only in certain directions �the eigenvectors�� and must

therefore be less than for an matrix norm which allows any direction and

yields the maximum gain� recall �A�
����

A���� Some matrix norm relationships

The various norms of the matrix A are closely related as seen from the

following inequalities taken from Golub and van Loan �
���� p� 
�� and Horn

and Johnson �
���� p� �
��� Let A be an l �m matrix� then

�
�A� 
 kAkF 

p
min�l�m� �
�A� �A�

��

kAkmax 
 �
�A� 

p
lm kAkmax �A�

��

�
�A� 

p
kAki�kAki� �A�

��


p
m
kAki� 
 �
�A� 


p
l kAki� �A�

��


p
l

kAki� 
 �
�A� 
 pm kAki� �A�
���

maxf�
�A�� kAkF � kAki�� kAki�g 
 kAksum �A�
�
�
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All these norms are matrix norms and satisfy �A���� except kAkmax� The

inequalities are tight� that is� there exist matrices of any size for which equality

holds� Note from �A�

�� that the singular value is quite closely related to the

largest element of the matrix kAkmax� that is� one can usually just by looking

at the matrix estimate the value of the largest singular value �this is not true

for the other singular values� however��

An important property of the Frobenius norm and the singular value

�induced ��norm� is that they are invariant with respect to unitary

transformations� i�e�� for unitary matrices Ui� satisfying UiU
H
i � I � we have

kU�AU�kF � kAkF �A�
���

�
�U�AU�� � �
�A� �A�
���

From an SVD of the matrix A � U V H and �A�
��� we then obtain an

important relationship between the Frobenius norm and the singular values�


i�A�

kAkF �
sX

i


�i �A� �A�
���

The Perron�Frobenius theorem applies to a square matrix A�

min
D

kDAD��ki� � min
D

kDAD��ki� � ��jAj� �A�
���

Here D is a diagonal �scaling	 matrix� jAj denotes the matrix A with all its

elements replaced by their magnitudes� and ��jAj� � maxi k�i�jAj�k is the

Perron root �Perron�Frobenius eigenvalue�� The Perron root is greater or equal

to the spectral radius� ��A� 
 ��jAj��

A���� Matrix and vector norms with MATLAB

The following MATLAB commands are used for matrices�

���A� � kAki� norm�A��� or max�svd�A��

kAki� norm�A���

kAki� norm�A��inf��

kAkF norm�A��fro��

kAksum sum �sum�abs�A���

kAkmax max�max�abs�A��� �which is not a matrix norm�

��A� max�abs�eig�A���

��jAj� max�eig�abs�A���

��A� � �
�A��
�A� cond�A�

For vectors�

kak� norm�a���

kak� norm�a���

kakmax norm�a��inf��



MATRIX THEORY AND NORMS 	

A���� Signal norms

We here consider the temporal norm of a time�varying �or frequency�varying�

signal� e�t�� In contrast with spatial norms �vector and matrix norms�� we

�nd that the choice of temporal norm makes a big di�erence� As an example�

consider Figure A�� which shows two signals� e��t� and e��t�� For signal e��t�

the in�nity�norm �peak� is one� ke�t�k� � 
� whereas since the signal does

not �die out	 the ��norm is in�nite� ke�t�k� ��� For signal e��t� the opposite

is true�

e��t�

e��t�

e

t




Figure A��� Signals with entirely di�erent ��norms and ��norms�

e

t

Area � kek�

kek�

e�t�

Figure A��� Signal ��norm and ��norm�

For signals we may compute the norm in two steps�


� �Sum up	 the channels at a given time or frequency using a vector norm

�for a scalar signal we simply take the absolute value��

�� �Sum up	 in time or frequency using a temporal norm�

Recall from above� that the vector norms are �equivalent	 in the sense that

they only di�er by a constant factor depending on the size of the vector�
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Therefore� it usually does not make too much di�erence which norm we use in

step 
� We normally use the same p�norm both for the vector and the signal�

and thus de�ne the temporal p�norm� ke�t�kp� of a time�varying vector as

lp norm� �ke�t�kp�p �
Z �

��
X

i

jei���jp	 
z �
ke	�
kpp

d� �A�
���

The following temporal norms of signals are commonly used�

Remark � Note that here ke���kp denotes the vector p�norm of the vector e�t� at

a �xed value t � � �
e��� �

����
e����

e����
���

em���
���� � ke���kp

	
�

�X
i

jei�� �j
p

���p

�A���	�

This should not be confused with the temporal norm ke�t�k used in Step � where t

is not �xed�

Remark � In most cases we assume e�t� � � for t 	 � so the lower value for the

integration may be changed to � � ��


�norm in time �integral absolute error �IAE�� see Figure A����

ke�t�k� �
Z �

��
X

i

jei���jd� �A�
���

��norm in time �quadratic norm� integral square error �ISE�� �energy	 of

signal��

ke�t�k� �
sZ �

��
X

i

jei���j�d� �A�
���

��norm in time �peak value in time� see Figure A����

ke�t�k� �� max
�

�
max
i

jei���j
�

�A�
���

Remark� To be mathematically correct we should here have used sup� �least upper

bound� rather than max� � since the maximum value may not actually be achieved

�e�g� if it occurs for t ����

In addition� we will consider the power�norm or RMS�norm �which is actually

only a seminorm since it does not satisfy property � of norms�

ke�t�kpow � lim
T��

vuut 

�T

Z T
�T

X
i

jei���j�d� �A�
�
�
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A���	 Signal interpretation of various system norms

Two system norms are considered in Chapter ��
�� These are the H� norm�

kG�s�k� � kg�t�k� and theH� norm� kG�s�k�� The main reason for including

the following section is to show that there exists many ways of evaluating

performance in terms of signals� and to show how the H� and H� norms

are useful measures in this context� This in turn will be useful to help us

understand how to select performance weights in controller design problems�

The derivations of the results in this section require a good background in

functional analysis and can be found in Doyle et al� �
���� and Zhou et al�

�
�����

Consider a system with input d and output e�

e � Gd �A�
���

For performance we may want the output signal e to be �small	 for any allowed

input signals d� We have to specify


� What the allowed d�s are� �What set does d belong to!�

�� What we mean by �small	� �What norm should we use for e!�

�� Some possible input signal sets are�


� d�t� consists of impulses� ��t�� �these generate step changes in the states�

which is the usual way of introducing the LQ�objective and gives rise to

the H� norm��

�� d�t� is a white noise process with zero mean�

�� d�t� � sin��t� with �xed frequency is applied from t � �� �steady�state

sinusoidal response�

�� d�t� is a set of sinusoids� all frequencies allowed

�� d�t� is bounded in energy� kw�t�k� 
 


�� d�t� is bounded in power� kd�t�kpow 
 


�� d�t� is bounded in magnitude� kd�t�k� 
 


The three �rst inputs are speci�c signals� whereas the latter three are

classes of inputs with bounded norm� Which of these input classes is the

most reasonable� depends on the physical problem at hand�

� To measure the output signal one may consider the following norms�


� 
�norm� ke�t�k�

�� ��norm �energy�� ke�t�k�

�� ��norm �peak magnitude�� ke�t�k�

�� Power� ke�t�kpow

and also other norms are possible� Again� it is an engineering issue to decide

which norm is the most appropriate� We will now consider which system norms
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result from the de�nitions of input classes� and output norms� respectively�

That is� we want to �nd the appropriate system gain to test for performance�

The results for SISO systems where d�t� and e�t� are scalar signals are

summarized in Tables A�
 and A��� In these tables G�s� is the transfer

function and g�t� is its corresponding impulse response� Note in particular

that

H� norm� kG�s�k� � maxd	t

ke	t
k�

kd	t
k� �A�
���

l� norm� kg�t�k� � maxd	t
 ke	t
k�kd	t
k� �A�
���

We see from Tables A�
 and A�� that the H� and H� norms appear in

numerous positions� This gives some basis for their popularity in control� In

addition� the H� norm results if we consider d�t� to be the set of sinusoids

with all frequencies allowed� and measure the output using the ��norm �not

shown in Tables A�
 and A��� but discussed in section ������� Also� the H�

norm results if the input is white noise and we measure the output using the

��norm�

d�t� � ��t� d�t� � sin��t�

jjejj� jjG�s�jj� � �usually�

jjejj� jjg�t�jj� �
�G�j���

jjejjpow � �p
�
�
�G�j���

Table A��� System norms for two speci�c input signals and three di�erent output

norms

jjdjj� jjdjj� jjdjjpow

jjejj� jjG�s�jj� � � �usually�

jjejj� jjG�s�jj� jjg�t�jj� � �usually�

jjejjpow � 
 jjG�s�jj� jjG�s�jj�

Table A��� System gains for three sets of norm�bounded input signals and three

di�erent output norms� The entries along the diagonal are induced norms�

The results in Tables A�
 and A�� may be generalized to MIMO systems

by use of the appropriate matrix and vector norms� In particular� the induced

norms along the diagonal in Table A�� generalize if we use for the H�

norm kG�s�k� � max� �
�G�j��� �as usual�� and for the l� norm we use

kg�t�k� � maxi kgi�t�k�� where gi�t� denotes row i of the impulse response



MATRIX THEORY AND NORMS 
�

matrix� The fact that the H� norm and l� norm are induced norms makes

them well suited for robustness analysis� for example� using the small gain

theorem� The two norms are also quite closely related as seen from the

following bounds for a proper scalar system

kG�s�k� 
 kg�t�k� 
 ��n� 
� kG�s�k� �A�
���

Here n is the number of states in a minimal realization� A multivariable

generalization for a strictly proper system is �Zhou et al�� 
����


� 
 kG�s�k� 

Z �

�

�
�g�t��dt 
 �
nX

i��

i 
 �n kG�s�k� �A�
���

where 
i is the i�th Hankel singular value of G�s� and g�t� � CeAtB is the

impulse response matrix�

A�� Factorization of the sensitivity function

Consider two plants G and G�� Typically� G is the nominal model and G�

is some alternative model of the plant� Assume that the same controller is

applied to both plants� Then the corresponding sensitivity functions are

S � �I �GK���� S� � �I �G�K��� �A�
���

A���� Output perturbations

Assume that G� is related to G by either an output multiplicative perturbation

EO � or an inverse output multiplicative perturbation EiO � Then S� can be

factorized in terms of S as follows

S� � S�I �EOT �
��� G� � �I �EO�G �A�
���

S� � S�I �EiOS�
���I �EiO�� G� � �I �EiO�
��G �A�
���

For a square plant� EO and EiO can be obtained from a given G and G� by

EO � �G
� �G�G��� EiO � �G
� �G�G��� �A�
���

Proof of �A������

I �G�K � I � �I �EO�GK � �I �EO GK�I �GK���	 
z �
T

��I �GK� �A�
�
�
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Proof of �A������

I �G�K � I � �I �EiO�
��GK � �I �EiO�
����I �EiO� �GK�

� �I �EiO�
���I �EiO �I �GK���	 
z �

S

��I �GK� �A�
���

Closely related factorizations may be written in terms of the complimentary

sensitivity �Horowitz and Shaked� 
���� Zames� 
��
�� For example� by writing

�A�
��� on the form S � S��I �EOT � and using the fact S�S� � T ��T � we

get

T � � T � S�EOT �A�
���

A���� Input perturbations

For a square plant the following factorization in terms of the multiplicative

uncertainty EI at the input to the plant is useful

S� � S�I�GEIG
��T ��� � SG�I�EITI�
��G��� G� � G�I�EI� �A�
���

Here TI � KG�I �KG��� is the input complementary sensitivity�

Proof� Substitute EO � GEIG
�� into �A����� and use G��T � TIG
��� �

Alternatively� we may factor out the controller to get

S� � �I � TK��EIK�
��S � K���I � TIEI �
��KS �A�
���

Proof� Start from I�G�K � I �G�I�EI�K and factor out �I�GK� to the left� �

A���� Stability conditions

The following Lemma then follows directly from the generalized Nyquist

Theorem and the factorization �A�
����

Lemma A��� Assume that the negative feedback closed�loop system consist�

ing of G�s�K�s� is stable� Suppose G� � �I � EO�G	 and let the number of

open loop unstable poles of G�s�K�s� and G��s�K�s� be P and P �	 respec�

tively� Then the negative feedback closed�loop system consisting of G��s�K�s�

is stable if and only if

N �det�I �EOT �� � P � P � �A�
���

where N denotes the number clockwise encirclements of the origin as s

traverses the Nyquist D�contour�
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Proof� Let N �f� denote the number of clockwise encirclements of the origin by

f�s� as s traverses the Nyquist D contour� For the encirclements of the product

of two functions we have N �f�f�� � N �f�� � N �f��and �A����� and the fact

det�AB� � detA � detB yields

N �det�I �G�K�� � N �det�I �EOT �� �N �det�I �GK�� �A���	�

For stability we need from Theorem ���� that N �det�I � G�K�� � �P � and

N �det�I � GK�� � �P and Lemma A��� follows� The Lemma is from Hovd and

Skogestad �����a�� similar results� at least for stable plants� have been presented by

e�g� Grosdidier and Morari ����
� and Nwokah and Perez ��������

�

In other words� �A�
��� says that for stability det�I �EOT � must provide for

the di�erence in the number of required encirclements between det�I �G�K�

and det�I � GK�� If this is not the case then at least one of the systems

consisting of GK or G�K must be unstable� We show in Theorem ��� that

information about what happens at s � � may provide useful information

about the number of encirclements�

A�� Linear Fractional Transformations

Linear Fractional Transformations �LFTs� as they are presently used in

the control literature were �rst introduced by Doyle �
����� These matrix

functions are very powerful tools in system analysis and design� Consider a

matrix P of dimension �n� � n��� �m� �m�� and partition it as follows

P �
�
P�� P��

P�� P��
�

�A�
���

Let the matrices � � Rm��n� and K � Cm��n� have compatible dimension

with the upper and lower partitions of P � respectively� We adopt the following

notation for the lower and upper linear fractional transformations

Fl�P�K�
�
� P�� � P��K�I � P��K�
��P�� �A�
���

Fu�P���
�
� P�� � P����I � P����
��P�� �A�
���

where subscript l denotes lower and subscript u upper� In the following let R

denote some transfer function resulting from an LFT�

The lower fractional transformation Fl�P�K� is the transfer function R

resulting from wrapping �positive� feedback K around the lower part of P

as illustrated in Figure A��a� To see this note that the block diagram in

Figure A�� �a� may be written as

z � P��w � P��u� v � P��w � P��u� u � Kv �A�
�
�
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� �

�

�

� �

�

�

w z

R
P

K

vu

R
�

Pw z

y�u�

Figure A��� a� R as lower LFT in terms of K� b� R as upper LFT in terms of ��

Eliminating y and u from these equations yields

z � Rw � Fl�P�K�w � P�� � P��K�I � P��K�
��P���w �A�
���

In words we say that �R is written as a lower LFT in terms of K	� Similarly�

in Figure A�� �b� we illustrate the upper LFT� R � Fu�P���� obtained by

wrapping �positive� feedback � around the upper part of P �

� �

�

�

� �

�

�
�

�

� �

�

�Q
K �

Q
M

K

P
K

R R

�b��a� �c�

K �

�� ��

Figure A��� Interconnection of LFTs yields a LFT�

A�	�� Interconnection of LFTs

An important property of LFTs is that any interconnection of LFTs is again

an LFT� Consider Figure A�� where R is written in terms of a lower LFT of

K �� which again is a lower LFT of K� and we want to express R directly as

an LFT of K� We have

R � Fl�Q�K
�� where K � � Fl�M�K� �A�
���
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and we want to obtain the P �in terms of Q and M� such that

R � Fl�P�K� �A�
���

We �nd

P �
�
P�� P��

P�� P��
�
��

Q�� �Q��M���I �Q��M���
��Q�� Q���I �M��Q���
��M��

M���I �Q��M���
��Q�� M�� �M��Q���I �M��Q���
��M��

�
�A�
���

Similar expressions apply when we use upper LFTs� For

R � Fu�M���� where �� � Fu�Q��� �A�
���

we get R � Fu�P��� where P is given in terms of Q and M by �A�
����

A�	�� Relationship between Fl and Fu�

Fl and Fu are obviously closely related� If we know R � Fl�M�K�� then we

may directly obtain R in terms of an upper transformation of K by reordering

M � We have

Fu�fM�K� � Fl�M�K� �A�
���

where fM �
�
� I

I �
�

M

�
� I

I �
�

�A�
���

A�	�� Inverse of LFT

On the assumption that all the relevant inverses exist we have

�Fl�M�K���� � Fl�fM�K� �A�
���

where fM is given by
fM �

�
M��
�� �M��
�� M��

M��M
��
�� M�� �M��M

��
�� M��

�

�A�
���

This expression follows easily from the matrix inversion lemma in �A����

A�	�� LFT in terms of inverse

Given an LFT in terms of K� it is possible to derive an equivalent LFT in

terms of K��� If we assume that all the relevant inverses exist we have

Fl�M�K� � Fl�cM�K��� �A�
�
�
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where cM is given by
cM �

�
M�� �M��M
��
�� M�� �M��M

��
��

M��
�� M�� M��
��

�

�A�
���

This expression follows from the fact that �I �L��� � I �L�I�L��� for any

square matrix L�

A�	�� Generalized LFT� The matrix star product

� �

� �

� �

�

�

��

����������
�

aa
aa
aa
aa
aa

�

R
Q

M

Q
M

nunlnunl ��

Figure A�	� Star product of Q and M � R � S�Q�M��

A generalization of the upper and lower LFTs above is provided by Redhe�er�s

star product� Consider Figure A�� where Q and M are interconnected such

that the last nu outputs from Q are the �rst nu inputs of M � and the �rst nl

outputs from M are the last nl inputs of Q� The correspondingly partitioned

matrices are

Q �
�
Q�� Q��

Q�� Q��
�

� M �
�
M�� M��

M�� M��
�

The overall matrix R with these interconnections closed �see Figure A��� is

called the star product� S�Q�M�� between Q and M � We �nd that

R � S�Q�M� ��
Q�� �Q��M���I �Q��M���
��Q�� Q���I �M��Q���
��M��

M���I �Q��M���
��Q�� M�� �M��Q���I �M��Q���
��M��

�
�A�
���

Note that S�Q�M� depends on the chosen partitioning of the matrices Q and

M � If one of the matrices is not partitioned then this means that this matrix
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has no external inputs and outputs� and S�Q�M� then gives the �maximum	

interconnection� For example� we have for the LFTs

Fl�P�K� � S�P�K� �A�
���

Fu�P��� � S��� P � �A�
���

�the order in the last equation is not a misprint�� Of course� this assumes that

the dimensions of K and � are smaller than that of P � The corresponding

command to �A�
��� in the MATLAB Mu�Toolbox is

starp�Q�M�nu�nl�

where nu and nl are as shown in Figure A��� If nu and nl are not speci�ed

then this results in a �maximum	 interconnection involving the corresponding

LFT in �A�
��� or �A�
����
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APPENDIX B

PROJECT WORK and EXAM

PROBLEM

B�� Project work

In many cases the students formulate their own project based on some

application they are working on� In other cases the project is given by the

instructor� In either case� a preliminary statement of the problem must be

approved before starting the project� see the �rst item below�


� Preliminary problem de�nition �Introduction�� State the problem�

i� Explain in words and with a simple �gure what the problem is about�

ii� Discuss brie"y what the control objective is �what output signal do

you want to keep small!��

iii� Specify exogenous inputs �disturbances� noise� setpoints�� manipulated

inputs� measurements� and controlled outputs �exogenous outputs��

iv� Describe the most important sources of model uncertainty�

v� What control problems are you expecting �Interactions� RHP�zeros�

etc��!

The preliminary statement �
�� pages� must be handed and approved

before starting the project�

�� Plant model� Specify parameters� etc� and obtain a linear model of your

plant� Comment� You may want to consider more than one operating point�

�� Analysis of the plant� For example� compute steady�state gain matrix or

plot gain elements as a function of frequency� obtain poles and zeros �both

of individual elements and overall system�� compute SVD and comment

on directions and condition number� perform RGA�analysis� disturbance

analysis� etc�� Does the plant seem to be di#cult to control!

�� Initial controller design� Design at least two controllers� for example�

�i� Decentralized �PID��
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�ii� 	Full	 �Using LQG� LTR� H� �in principle same as LQG� but di�erent

way of choosing weights�� H� loop shaping� H�� etc���

�iii� Decoupler combined with PI�

�� Simulations� Perform some simulations in the time domain for the

closedloop system�

�� Robustness analysis using �

�a� Choose reasonable performance and uncertainty weights� Plot all

weights as a function of frequency�

�b� State clearly how RP is de�ned for your problem �block diagram��

�c� Compute  for NP� RS� and RP�

�d� Perform some sensitivity analysis� For example� change weights

�e�g�� make one output channel faster and another slower�� move

uncertainties around �e�g�� from input to output�� change ��s from

a diagonal to full matrix� etc�

Comment� You may need to back to step �a� and rede�ne your weights if

you �nd out from step �c� that your original weights are unreasonable�

�� Optional� H� or �optimal controller design� Design a H� or �optimal

controller and see if you can improve the response and satisfy RP� Compare

simulations with previous designs�

�� Discussion� Discuss results� Also comment on how things could have been

changed such that you learned more from the project�

�� Conclusion�

B�� Sample exam problem

A ��hour exam�

Problem � 
����� Controllability analysis�

Perform a controllability analysis �compute poles� zeros� RGA���s�� check

for constraints� discuss the use of decentralized control �pairings�� etc�� for

the following four plants� You can assume that the plants have been scaled

properly�

a� �� � plant�
G�s� �




�s� ���s� 
�
�
�
s� 
 


�� 
��s� 
�
�

�B�
�

b� SISO plant with disturbance�

g�s� � ���

���
s� 


�s� 
������s� 
�
� gd�s� �

��
s� 


�B���
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c� Plant with two inputs and one output�

y�s� �

s

���s� 

u� �

�

���s� 

u� �

�

����s� 

d �B���

d� This ��� plant with 
 disturbance is given on state�space form� i� Find a

block diagram representation with each block on the form k�
��s� ii� Perform

a controllability analysis�

�x� � ���
x� � ���
u�

�x� � ����x� � 
�u�

�x� � ����x� � ����x� � ����x� � 
���d

y� � ���x�� y� � ��
x�

Problem � 
����� General Control Problem Formulation�

pH � 	

�y��

� �

�

����

pH � ��

�y��

� �

����

pH � ��

d u�

u�

ACID

ACID

Figure B��� Neutralization process

Consider the neutralization process in Figure B�
 where acid is added in

two stages� Most of the neutralization takes place in tank 
 where a large

amount of acid is used �input u�� to get pH about 
� �measurement y��� In

tank � the pH is �ne�tuned to about � �output y�� by using a small amount

of acid �input u��� �This is just to give you some idea of a real process� all the

information you need to solve the problem is given below��

A block diagram of the process is shown in Figure B��� There are one

disturbance� two inputs and two measurements �y� and y��� The main control

objective is to keep y� � r�� In addition we would like to reset input � to its
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�u� e�
d

� g� �y�q
�

e
�
u�

� g� �y�

Figure B��� Block diagram of neutralization process

� �

�

�

w z

P
K

vu

Figure B��� General control con�guration

nominal value� that is� we want at low frequencies u� � ru� � Note that there

is no particular control objective for y��

a� De�ne the general control problem� that is� �nd z� w� u� v and P �see

Figure B����

b� De�ne an H��problem based on P � Discuss brie"y how you want the

unweighted transfer functions from d to z to be� and use this to say a little

about how the performance weights should be�

�y�s d

� �
� k� �u� d

�

��
d
� g� �y�q

�

d

� �
� g� �y�q

�d�
�
�y�s�k�

�u�
q
�d� ��
u�s

�k�

Figure B��� Proposed control structure for neutralization process

c� A simple practical solution based on single loops is shown in

Figure B��� Explain brie"y the idea behind this control structure� and

�nd the interconnection matrix P with the generalized controller K �

diagf k�� k�� k� g �Note� u and y are di�erent in this case� while w and

z are the same as in a���

Problem � 
����� Various�

Brie"y answer the following questions�
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a� Consider the plant

�x�t� � a�
 � 
���a�x�t� � b�
 � ����b�u�t�� y � x

Here j�aj 
 
 and j�bj 
 
� For the feedback controller K�s� derive the

interconnection matrix M for robust stability�

b� For the above case assume you use the condition minD �
�DMD��� 	 


to check for robust stability �RS�� What is D �give as few parameters as

possible�! Is this RS�condition tight in this case!

c� When is the condition ��M�� 	 
 necessary and su#cient for robust

stability! Based on ��M�� 	 
 derive the RS�condition �M� 	 
� When is

it necessary and su#cient!

d� Let

Gp�s� �
�
g�� � w��� g�� � w���

g�� � w��� g��

�
� j��j 
 
� j��j 
 


Represent this uncertainty as Gp � G � W��W� where � is diagonal�

Represent this on the M��structure and derive the RS�condition�

e� Let

Gp�s� �

� �s


 � �s
� � � ���
 � w��� j�j 	 


and consider the controller K�s� � c�s� Represent this on the M��structure

and �nd the RS�condition�

g� Show by a counterexample that in general �
�AB� is not equal to �
�BA��

Under what conditions is �AB� � �BA�!

g� The PRGA matrix is de�ned as $ � GdiagG
��� What is its relationship to

RGA! Derive a performance condition for decentralized control involving the

PRGA�
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one degree	of	freedom controller� ��

two degrees	of	freedom controller� ���

uncertainty� ���

Gershgorin�s theorem� ���� ���

Glover	McFarlane loop shaping� see

H� loop shaping

Gramian matrix� ���� ���� ���� ���

H� norm� ��� �	�� ���

computation of� ���

stochastic interpretation� ���

H� optimal control� ���� �������

assumptions� ���

LQG control� ���

H� loop shaping� ��� �������

aero	engine� ���

anti	windup� ���

bumpless transfer� ���

controller implementation� ���

controller order� ���

design procedure� ���

discrete time control� ���

gain scheduling� ���

generalized plant� ���� ���

implementation� ���

MATLAB� ���

observer� ���

servo problem� ���� ���

two degrees	of	freedom controller� ����

���

weight selection� ���

H� norm� ��� �	�� ���

Hardy space� ��

induced �	norm� ���

MIMO system� ��

multiplicative property� ���

relationship to H� norm� ���

H� optimal control� ���� �������

�	iteration� ���

assumptions� ���

mixed sensitivity� ���� ���

robust performance� ���

signal	based� ���

Hadamard	weighted H� problem� ���

Hankel norm� ������� ���� ���� ���

model reduction� ���� �������

Hankel singular value� ��� ���� ����

��� ���

aero	engine� ���

Hanus form� ���

Helicopter case study� �������

Hidden mode� �
�

Hierarchical control� �������

�� � distillation process� ���

cascade control� ���

extra measurement� ���

partial control� ���� ���

sequential design� ���

Hurwitz� ���

Ideal resting value� ���

Identi�cation� ���

sensitivity to uncertainty� ���

Ill	conditioned� ��

Improper� �

Impulse function� ���

Impulse response� ��

Impulse response matrix� ���

Indirect control� ���� ���

partial control� ���

Induced norm� ��	

maximum column sum� ���

maximum row sum� ���

multiplicative property� ���

singular value� ���

spectral norm� ���

Inferential control� ���

Inner product� ���

Input constraint� ���� ���

acceptable control� ���� ���

anti	windup� ���

distillation process� ��

limitation MIMO� �������
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limitation SISO� �������

max	norm� ���

perfect control� ���� ���

two	norm� ���

unstable plant� ���

Input direction� ��

Input resetting� ���

Input selection� ���

Input uncertainty� ���� ���� ���

condition number� ���

diagonal� ���� ���

generalized plant� ���

magnitude of� ���

� see also Uncertainty

minimized condition number� ���

RGA� ���

Input� manipulated� ��

scaling� �

Input	output controllability� ���

analysis of� ��

application

aero	engine� �������

FCC process� ��� ��� ��

�rst	order delay process� ���

neutralization process� ��

room heating� ���

condition number� ��

controllability rule� ���

decentralized control� ��

exercises� ���

feedforward control� ���

plant design change� ��� ���

plant inversion� ��

remarks de�nition� ��

RGA analysis� ��

scaling MIMO� ���

scaling SISO� ��

summary
 MIMO� �������

summary
 SISO� �������

Input�output selection� ���

Integral absolute error �IAE�� ���

Integral action� ��

Integral control

uncertainty� ���

� see also Decentralized Integral

Controllability

Integral square error �ISE�� ��

optimal control� ���

Integrator� ���

Integrity� ��

determinant condition� ���

� see also Decentralized Integral

Controllability

Interaction� ��� ��

two	way� ��

Internal model control �IMC�� ��� ���

��� �
�

Internal model principle� ��

Internal stability� �
�� �������

disturbance model� ���

feedback system� ���

interpolation constraint� ���

two degrees	of	freedom controller� ���

Interpolation constraint� ���� ���

MIMO� ���

RHP	pole� ���

RHP	zero� ���

SISO� ���

Inverse response� ���

Inverse response process� �� �

loop	shaping design� �

LQG design� ��

P control� ��

PI control� ��

Inverse	based controller� ��� ��� ��� ���

input uncertainty and RGA� ���

robust performance� ���

structured singular value ���� ���

worst	case uncertainty� ���

ISE optimal control� ���

Jordan form� ���� ���� ���

Kalman �lter� ���� �

generalized plant� ���

robustness� ���

l� norm� ���

Laplace transform� ��� ���

�nal value theorem� ��

Least squares solution� ���

Left Half Plane �LHP�	zero� ���

Linear Fractional Transformation �LFT��

���� ��� ���� ���� ������

factorization of S� ���

interconnection� ���

inverse� ���

MATLAB� ��

stabilizing controller� ���

star product� ���

uncertainty� ���

Linear matrix inequality �LMI�� ���
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Linear model� �

Linear Quadratic Gaussian� see LQG

Linear Quadratic Regulator �LQR�� ��

cheap control� ���

robustness� ���

Linearization� �

Local feedback� ���� ���� ���

Loop shaping� ��� �� �����

desired loop shape� ��� ��� ��

disturbance rejection� ��

�exible structure� �

Robust Performance� ���

slope� ��

trade	o�� ��

� see also H� loop shaping

Loop transfer function� 	

Loop transfer recovery �LTR�� ��� ����

���

LQG control� ��� ��� ������

H� optimal control� ���

controller� �

inverse response process� ��

MATLAB� ��

problem de�nition� ��

robustness� ���� ���

Lyapunov equation� ���� ���� ���

Main loop theorem� ���

Manipulated input� see Input

MATLAB �les

coprime uncertainty� ���� ���

LQG design� ��

matrix norm� ���

mixed sensitivity� ��

model reduction� ��

RGA� ���

vector norm� ���

Matrix� ���

exponential function� ���

inverse� ���

Matrix inversion lemma� ���

Matrix norm� �� ���

Frobenius norm� ���

induced norm� ���

inequality� ���

MATLAB� ���

max element norm� ���

relationship between norms� ���

Maximum modulus principle� ���

Maximum singular value� ��

McMillan degree� �
�� ��

McMillan form� ���

Measurement� ��

cascade control� ���

Measurement selection� ���

distillation column� ���

MIMO system� ��

Minimal realization� �
�

Minimized condition number� ���� ���

input uncertainty� ���

Minimum phase� ��

Minimum singular value� ��� ���

aero	engine� ���

output selection� ���

plant� ���� ���

Minor of a matrix� �
�

Mixed sensitivity� ��� ���

disturbance rejection� ��

general control con�guration� ���

generalized plant� ���

H� optimal control� ���� ���

RP� ���

weight selection� ���

Mixed sensitivity �S�KS�� ��

disturbance process� ��

generalized plant� ���

MATLAB� ��

MIMO plant with RHP	zero� ��

MIMO weight selection� ��

Mixed sensitivity �S�T �

generalized plant� ���

Modal Truncation� ���

Model� ��

derivation of� �

scaling� 

Model matching� ���� ���

Model predictive control� ��

Model reduction� ������

aero	engine model� ��

balanced residualization� ���

balanced truncation� ���

coprime� ���

error bound� ���� ��

frequency weight� ���

Hankel norm approximation� ����

�������

MATLAB� ��

modal truncation� ���

residualization� ���

steady	state gain preservation� ���

truncation� ���

unstable plant� ������
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Model uncertainty� see Uncertainty

Moore	Penrose inverse� ���

�� see Structured singular value

�	synthesis� �������

Multilayer� ���

Multilevel� ���

Multiplicative property� �� ���� ���

Multivariable stability margin� ���

Multivariable zero� see Zero

Neutralization process� ������� ��

control system design� ���

mixing tank� ���

plant design change

multiple pH adjustments� ���

multiple tanks� ���

Niederlinski index� ���

Noise �n�� ��

Nominal Performance �NP�� �� ���� 
		

Nyquist plot� ���

Nominal Stability �NS�� �� 
		

Non	causal controller� ���

Non	minimum phase� ��

Norm� �������

� see also Matrix norm

� see also Signal norm

� see also System norm

� see also Vector norm

Normal rank� ���

Notation� ��

Nyquist D	contour� ���

Nyquist array� ��

Nyquist plot� ��� ��

Nyquist stability theorem� ���

argument principle� ���

generalized� MIMO� ���

SISO� ��

Observability Gramian� ���� ���

Observability matrix� ���

Observer� ���

H� loop shaping� ���

One degree	of	freedom controller� ��

Optimization� ��

closed	loop implementation� ���

open	loop implementation� ���

Optimization layer� ���

look	up table� ���

Orthogonal� �

Orthonormal� �

Output �y�� ��

primary� ��� ��

secondary� ��� ��

Output direction� �� ��� ���

disturbance� ��� 		

plant� �� ��

pole� ���� ��

zero� ���� ��

Output scaling� �

Output uncertainty� see Uncertainty

Overshoot� 
�

Pad�e approximation� ���� ���

Pairing� ���� ���� ���� ���

aero	engine� ���

� see also Decentralized control

Parseval�s Theorem� ���

Partial control� ���

�true � ���� ���

distillation process� ���

FCC process� ��

Partitioned matrix� ���� ���

Perfect control� ��

non	causal controller� ���� ���

unstable controller� ���

Performance� ��� ���� ��

H�norm� ��

frequency domain� ��

limitations MIMO� ��

limitations� SISO� ���

time domain� ��

weight selection� ��

weighted sensitivity� ��� ��

worst	case� ��� ���

� see also Robust performance

Performance Relative Gain Array �PRGA��

���� ��

Perron root �� �j A j��� ���� ���

Perron	Frobenius theorem� ���

Perturbation� ���

allowed� ���

destabilizing� ���

� see also Real perturbation

� see also Uncertainty

Phase lag

limitation SISO� ���

Phase Margin �PM�� 
�� �

LQG� ���

Phasor notation� ��

PI	controller� ��

Ziegler	Nichols tuning rule� ��

PID	controller� ���



INDEX ���

cascade form� ���

ideal form� ���

Pinned zero� ���

Plant �G�� ��

� see also Generalized plant �P �

Plant design change� ��� ���� ���

neutralization process� ���� ���

Pole� �
�� �������

e�ect of feedback� ���� ��

stability� ���

� see also RHP	pole

Pole direction� ���

from eigenvector� ���

Pole polynomial� ���

Polynomial system matrix� ���

Post	compensator� ��

Power spectral density� ��� ���

Pre	compensator� ��

Principal component regression� ���

Principal gain� �

� see also Singular value

Process noise� ��

Proper� �

Pseudo	inverse� ���

Q	parameterization� ���

Rank� ���

normal rank� ���

Rate feedback� ���

Real perturbation� ���

DGK	iteration� ���

�� ���� ���

robust stability� ���

Reference �r�� ��� ���

optimal value� ���

performance requirement MIMO� ��

performance requirement SISO� ����

���

scaling� �� 

Regulator problem� �

Regulatory control� ���

Relative disturbance gain �RDG�� ��

Relative Gain Array �RGA� !�� ��� �

aero	engine� ��

controllability analysis� ��

decentralized control� �� ������

diagonal input uncertainty� ��

DIC� ���

element uncertainty� ��

element	by	element uncertainty� ���

input uncertainty� ���� ���

input	output selection� ��

MATLAB� ���

measure of interaction� ���

non	square� ��� ��

properties of� ���

RGA	number� ��� ��� ���

RHP	zero� ��

steady	state� ���

Relative order� ���

Return di�erence� ��

factorization� ���� ���

RHP	pole� �� ��� ���� ���� ���

limitation MIMO� ���� ���

limitation SISO� ���

RHP	pole and RHP	zero

MIMO� ���

angle between pole and zero� ���

sensitivity peak� ���

SISO� ��

H� design� ��

stabilization� ��

RHP	zero� �� ��� ��� ���� ���

aero	engine� ��

bandwidth limitation� ���

complex pair� ���

decoupled response� ��

FCC process� ��

high	gain instability� ���

interaction� ���

inverse response� ���

limitation MIMO� ���

limitation SISO� ��� ���

low or high frequency� ���

move e�ect of� ��� ���

multivariable� ��

perfect control� ���� ���

phase lag� ��

positive feedback� ���

RGA� ��

weighted sensitivity� ���� ���� ���

performance at high frequency� ���

performance at low frequency� ���

Riccati equation� ���

H�optimal control� ���

H� loop shaping� ��

controller� ���

coprime uncertainty� ���

Kalman �lter� �

state feedback� ��

Right half plane �RHP�� ��
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Right Half Plane	pole� see RHP	pole

Right Half Plane	zero� see RHP	zero

Rise time� 
�

Robust Performance �RP�� �� ���� ����


		� ���

�� ���

H�optimal control� ���

condition number� ���� ���

distillation process� ���

graphical derivation� ���

input uncertainty� ������

inverse	based controller� ���

loop	shaping� ���

mixed sensitivity� ���

Nyquist plot� ���

output uncertainty� ���

relationship to robust stability� ���

relationship to RS� ���

SISO� ���� ���

structured singular value� ���

worst	case� ��

Robust Stability �RS�� �� ���� ���� 
		�

���� ���

M"	structure� ���� ���

complementary sensitivity� ���

coprime uncertainty� ��� ���

destabilizing perturbation� ���

determinant condition� ���

gain margin� ���

graphical derivation� ��

input uncertainty� ��� ���

inverse multiplicative uncertainty� ����

��

multiplicative uncertainty� ���

Nyquist plot� ��

real perturbation� ���

relationship to RP� ���

scaling� ���

sensitivity� ���

SISO� ���

skewed	�� ���

small gain theorem� ���

spectral radius condition� ���

spinning satellite� ���

structured singular value ���� ���

unstructured uncertainty� ���� ���

Robustness� ��� ���

H�norm� ���

LQG control� ���

LTR� ���

motivating examples� ��

Roll	o� rate� ��

Room heating process

controllability analysis� ���

deriving model� �

Scaling� 	��� ��� ���� ���

aero	engine� ���

MIMO controllability analysis� ���

SISO controllability analysis� ��

Schur complement� ���

Schur product� ���

Schur�s formula� ���

Second	order system� ��

Secondary output� ���

Selector

auctioneering� ���

override� ���

Self	regulation� ���� ���

Semi	proper� �

Seminorm� ���

Sensitivity function �S�� 	�	�� �

bandwidth ��B�� �

factorization� ���� ���

output �SO�� �

� see also Mixed sensitivity

� see also Weighted sensitivity

Sensitivity function peak �k S k��� ����

���

MIMO RHP	pole and RHP	zero� ���

MIMO RHP	zero� ���

SISO peak�M � MS�� 
�

SISO RHP	pole and RHP	zero� ���

SISO RHP	zero� ���

uncertainty� �������

Separation Theorem� ��� ��

Sequential design� ���� �

Servo problem� �� ��

H� loop shaping� ���

LQG� ��

non	causal controller� ���

Setpoint� see Reference �r�

Settling time� 
�

Shaped plant �Gs�� ��� ���

Shaping of closed	loop transfer func	

tion� ��� see also Loop shaping

Sign of plant MIMO� ���

Signal norm� ��

�	norm� ���

lp norm� ���

�	norm� ���

�	norm� ���
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ISE� ���

power	norm� ���

Singular approximation� ���

Singular matrix� �
�� ���

Singular value� �� ��

�� � matrix� ���

H�norm� ��

frequency plot� ��

inequalities� ���

Singular value decomposition �SVD��

�� �
�

�� � matrix� �

economy size� ���

nonsquare plant� ��

of inverse� ���

pseudo	inverse� ���

SVD	controller� ��

Singular vector� �� ��

Sinusoid� ��

Skewed	�� 

�� ��� ���

Small gain theorem� ���

robust stability� ���

Spatial norm� ���

� see also Matrix norm

� see also Vector norm

Spectral radius ���� ���� ��

Perron root �� �j A j��� ���

Spectral radius stability condition� ���

Spinning satellite� ��

robust stability� ���

Split	range control� ���

Stability� �� ��� �
�

closed	loop� ��

frequency domain� ���

internal� �
�

� see also Robust stability

Stability margin� ��

coprime uncertainty� ���

multivariable� ���

Stabilizable� �
�� ��

strongly stabilizable� ��

unstable controller� ���

Stabilizing controller� ���� �������

Star product� ���� ���

State controllability� �
	� ��

example
 tanks in series� ���

State matrix �A�� ���

State observability� �
�

example
 tanks in series� ���

State	space realization� ���� ���

hidden mode� ��

inversion of� ���

minimal �McMillan degree�� ��

unstable hidden mode� ��

� see also Canonical form

Steady	state o�set� ��� 
�

Step response� ��

Strictly proper� �

Structural property� ���

Structured singular value ��� SSV�� ����
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�	synthesis� �������

complex perturbations� ��

computational complexity� ���

discrete case� ��

DK	iteration� ���

distillation process� ���

interaction measure� ���

LMI� ���

nominal performance� ���

practical use� ���

properties of� ���

complex perturbation� ������

real perturbation� ���

real perturbation� ���

relation to condition number� ���

remarks de�nition� ���

robust performance� ���� ���� ���

robust stability� ���

RP� ���

scalar� ���

skewed	�� ���� ���� ��

state	space test� ��

upper bound� ���

worst	case performance� ��

Submatrix �Aij�� ���

Sum norm �k A ksum�� ���

Superposition principle� �� ���

Supervisory control� ���

Supremum� ��

System norm� �������� ���

System type� �

Temporal norm� ���

� see also Signal norm

� see also System norm

Time delay� ��� ���� ���� ���

increased delay� ���

limitation MIMO� ���

limitation SISO� ��� ���

perfect control� ���

phase lag� ��
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Time delay uncertainty� ��

Time response

decay ratio� ��

excess variation� ��

overshoot� ��

quality� ��

rise time� ��

settling time� ��

speed� ��

steady	state o�set� ��

total variation� ��

Total variation� 
	

Transfer function� �� ��� ���

closed	loop� ��

evaluation MIMO� �

evaluation SISO� ��

rational� �

state	space realization� ���

Transmission zero� see Zero� ���

Transpose �AT �� ���

Triangle inequality� �� ���

Truncation� ���

Two degrees	of	freedom controller� ���

���

H� loop shaping� �������

design� �����

internal stability� ���

local design� ���� ���

Uncertainty� ��� ��� ���� ���� ���

N"	structure� ���

additive� �� ��� ���

and feedback � bene�ts� ���

and feedback � problems� ���

at crossover� ���

chemical reactor� ���

complex SISO� ������

Convex set� ���

coprime factor� ���� ���

diagonal� ��

element	by	element� ���� ���

feedforward control� ��� ���

distillation process� ��

RGA� ���

frequency domain� ��

generalized plant� ���

in�nite order� ���

input� ���� ���� ���� see also Input

uncertainty

input and output� ���

� see also Input uncertainty

integral control� ���

inverse additive� ���

inverse multiplicative� ��� ���

LFT� ���� ���

limitation MIMO� �������

limitation SISO� ������

lumped� ��� ���

modelling SISO� ���

multiplicative� ��� ��� ���

neglected dynamics� ��� ���

nominal model� ���

Nyquist plot� ��� ���

output� ���� ���� ���

parametric� ��� ��� ���� ���

A	matrix� ���

gain� ��� ���

gain and delay� ���

pole� ���

repeated perturbations� ���

time constant� ��

zero� ���

physical origin� ��

pole� ���

RHP	pole� ���

RHP	zero� ���� ��

state space� ���

stochastic� ��

structured� ��

time	varying� ���

unmodelled� ��� ���

unstable plant� ���

unstructured� ��� ���

weight� ��� ���

Unitary matrix� �
�

Unstable hidden mode� ��

Unstable mode� ���

Unstable plant

frequency response� ��

Valve position control� ���

Vector norm� ���

p	norm� ���

Euclidean norm� ���

MATLAB� ���

max norm� ���

Waterbed e�ect� ��

Weight selection� ��� ���

H� loop shaping� ���� ���

mixed sensitivity� ���

mixed sensitivity �S�KS�� ��



INDEX ���

performance� ��� ���

Weighted sensitivity� ��

generalized plant� ���

MIMO system� ��

RHP	zero� ���� ���� ���

typical speci�cation� ��

Weighted sensitivity integral� ��

White noise� ��

Wiener	Hopf design� ��

Zero� ��� �������

decoupling zero� ���

e�ect of feedback� ���� ��

from state	space realization� ���

from transfer function� ���

input blocking� ���

invariant zero� ���

non	square system� ���� ���

pinned� ���

Zero direction� ���

Ziegler	Nichols� tuning rule� ��


