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PREFACE

This is a book on practical feedback control and not on system theory
generally. Feedback is used in control systems for two reasons: First, to
change the dynamics of the system — usually, to make the response stable and
sufficiently fast. Second, to reduce the sensitivity of the system to uncertainty
— both signal uncertainty (disturbances) and model uncertainty. Important
topics covered in the book, include

e classical frequency-domain methods

analysis of directions in multivariable systems using singular value
decomposition

input-output controllability (inherent control limitations in the plant)
model uncertainty and robustness

performance requirements

methods for controller design and model reduction

control structure selection and decentralized control

The treatment is limited to linear systems, mainly because the theory is
then much simpler and more well developed, but also because a large amount
of practical experience tells us that in many cases linear controllers designed
using linear methods provide satisfactory performance when applied to real
nonlinear plants.

We have attempted to keep the mathematics at a reasonably simple level,
and we have tried to emphasize results that enhance insight and intuition. The
design methods currently available for linear systems are well developed, and
with associated software it is relatively straightforward to design controllers
for most multivariable plants. However, without insight and intuition it is
difficult to judge a solution, and to know how to proceed (e.g. how to change
weights) in order to improve a design.

The book is appropriate for use as a text for an introductory graduate
course in multivariable control or for an advanced undergraduate course. We
also think it will be useful for engineers who want to understand multivariable
control, its limitations, and how can it be applied in practice. There are
numerous worked examples, exercises and case studies which make frequent
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use of MATLAB.

The prerequisites for reading this book are an introductory course in
classical single-input single-output (SISO) control and some elementary
knowledge of matrices and linear algebra. It would be an advantage to have
some knowledge of system theory or multivariable control, including state-
space realization theory and optimal control.

The book is partly based on a graduate multivariable control course given
by the first author in the Control (Cybernetics) Department at the Norwegian
University of Science and Technology in Trondheim. About 10 students from
Electrical, Chemical and Mechanical Engineering have taken the course each
year since 1989. The course has usually consisted of 3 lectures a week for 12
weeks. In addition to regular assignments, the students have been required to
complete a 50 hour design project using MATLAB. In Appendix B, a project
outline is given together with a sample exam problem.

By covering parts of the book it should be suitable as a basis for a number of
linear control courses on various levels: introduction to multivariable control,
advanced multivariable control, robust control, control system design, and
control structure design and controllability analysis.

Examples and ftp

Most of the numerical examples have been solved using MATLAB. Some
sample files are included in the text to illustrate the steps involved. Most
of these files use the u-toolbox, and some the Robust Control toolbox, but in
most cases the problems could have been solved easily using other software
packages.

The following are available over the Internet from Trondheim and Leicester,

MATLARB files for examples and figures

Solutions to selected exercises

Linear state-space models for plants used in the case studies
Corrections, comments to chapters, extra exercises

The addresses are:

Anonymous ftp to ftp.kjemi.unit.no: cd /pub/che/Control.Group/Skogestad
Web service: http://www.kjemi.unit.no/pub/che/Control.Group/Skogestad/b

After 1 Sept. 1996: Replace unit by ntnu.
Comments and questions. Please send questions, errors and any
comments you may have by email to:

Sigurd.Skogestad@kjemi.unit.no

ixp@le.ac.uk
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INTRODUCTION

In this chapter, we begin with a brief outline of the design process for control systems.
We then discuss linear models and transfer functions which are the basic building
blocks for the analysis and design techniques presented in this book. The scaling of
variables is critical in applications and so we provide a simple procedure for this. An
example is given to show how to derive a linear model in terms of deviation variables
for a practical application. Finally, we summarize the most important notation used
in the book.

1.1 The process of control system design

The process of designing a control system usually makes many demands of
the engineer or engineering team. These demands often emerge in a step by
step design procedure as follows:

1. Study the system (plant) to be controlled and obtain initial information

about the control objectives.

. Model the system and simplify the model, if necessary.

. Analyze the resulting model; determine its properties.

. Decide which variables are to be controlled (controlled outputs).

. Decide on the measurements and manipulated variables: what sensors and

actuators will be used and where will they be placed?

. Select the control configuration.

7. Decide on the type of controller to be used.

8. Decide on performance specifications, based on the overall control
objectives.

9. Design a controller.

10. Analyze the resulting controlled system to see if the specifications are
satisfied; and if they are not satisfied modify the specifications or the type
of controller.

11. Simulate the resulting controlled system, either on a computer or a pilot
plant.

T = W N

(=2}
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12. Repeat from step 2, if necessary.

13. Choose hardware and software and implement the controller.

14. Test and validate the control system, and tune the controller on-line, if
necessary.

Control courses and text books usually focus on steps 9 and 10 in the
above procedure; that is, on methods for controller design and control system
analysis. Interestingly, many real control systems are designed without any
consideration of these two steps. For example, even for complex systems with
many inputs and outputs, it may be possible to design workable control
systems, often based on a hierarchy of cascaded control loops, using only
on-line tuning (involving steps 1, 4 5, 6, 7, 13 and 14). However, in this case
a suitable control structure may not be known at the outset, and there is a
need for systematic tools and insights to assist the designer with steps 4, 5
and 6. A special feature of this book is the provision of tools for input-output
controllability analysis (step 3) and for control structure design (steps 4, 5, 6
and 7).

Input-output controllability is affected by the location of sensors and
actuators, but otherwise it cannot be changed by the control engineer.
Simply stated, “even the best control system cannot make a Ferrari out of a
Volkswagen”. Therefore, the process of control system design should in some
cases also include a step 0, involving the design of the process equipment itself.
The idea of looking at process equipment design and control system design
as an integrated whole is not new as is clear from the following quote taken
from a paper by Ziegler and Nichols (1943):

In the application of automatic controllers, it is important to
realize that controller and process form a unit; credit or discredit
for results obtained are attributable to one as much as the
other. A poor controller is often able to perform acceptably on
a process which is easily controlled. The finest controller made,
when applied to a miserably designed process, may not deliver the
desired performance. True, on badly designed processes, advanced
controllers are able to eke out better results than older models,
but on these processes, there is a definite end point which can be
approached by instrumentation and it falls short of perfection.

Ziegler and Nichols then proceed to observe that there is a factor in equipment
design that is neglected, and state that

...the missing characteristic can be called the “controllability”,
the ability of the process to achieve and maintain the desired
equilibrium value.

To derive simple tools with which to quantify the inherent input-output
controllability of a plant is the goal of Chapters 5 and 6.

INTRODUCTION 3
1.2 The control problem

The objective of a control system is to make the output y behave in a
desired way by manipulating the plant input u. The regulator problem is to
manipulate u to counteract the effect of a disturbance d. The servo problem is
to manipulate u to keep the output close to a given reference input r. Thus, in
both cases we want the control error e = y — r to be small. The algorithm for
adjusting u based on the available information is the controller K. To arrive
at a good design for K we need a priori information about the expected d
and 7, and of the plant model (G) and disturbance model (G4). In this book
we make use of linear models of the form

y=Gu+Gqd (1.1)

A major source of difficulty is that the models (G, G4) may be inaccurate or
may change with time. In particular, inaccuracy in G may cause problems
because the plant will be part of a feedback loop. To deal with such a
problem we will make use of the concept of model uncertainty. For example,
instead of a single model G we may study the behaviour of a class of models,
G, = G + E, where the “uncertainty” or “perturbation” E is bounded,
but otherwise unknown. In most cases weighting functions, w(s), are used
to express E = wA in terms of normalized perturbations, A, where the
magnitude (norm) of A is less than 1. The following terms are useful:

Nominal stability (NS). The system is stable with no model uncertainty.

Nominal Performance (NP). The system satisfies the performance spec-
ifications with no model uncertainty.

Robust stability (RS). The system is stable for all perturbed plants about
the nominal model up to the worst-case model uncertainty.

Robust performance (RP). The system satisfies the performance speci-
fications for all perturbed plants about the nominal model up to the
worst-case model uncertainty.

We will discuss these terms in detail in Chapters 7 and 8.

1.3 Transfer functions

The book makes extensive use of transfer functions, G(s), and of the frequency
domain, which are very useful in applications for the following reasons:

e Invaluable insights are obtained from simple frequency-dependent plots.
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e Important concepts for feedback such as bandwidth and peaks of closed-
loop transfer functions may be defined.

e G(jw) gives the steady-state response to a sinusoidal input of frequency w.

e A series interconnection of systems corresponds in the frequency domain to
multiplication of the individual system transfer functions, whereas in the
time domain the evaluation of complicated convolution integrals is required.

e Poles and zeros appear explicitly in factorized scalar transfer functions.

¢ Uncertainty is more easily handled in the frequency domain. This is related
to the fact that two systems can be described as close (i.e. have similar
behaviour) if their frequency responses are similar. On the other hand, a
small change in a parameter in a state-space description can result in an
entirely different system response.

We consider linear, time-invariant systems whose input-output responses
are governed by linear ordinary differential equations with constant
coefficients. An example of such a system is

I.l (t) = —a1r (t) + x9 (t) + blu(t)
Ig(t) = —a21 (t) + bzu(t) (12)
y(t) = = (t)

where #(t) = dz/dt. Here u(t) represents the input signal, z1(t) and z2(t)
the states, and y(¢) the output signal. The system is time-invariant since the
coefficients ay, as, by and by are independent of time. If we apply the Laplace
transform to (1.2) we obtain indexLaplace transform

sT(s) —x1(t=0) = —a1Z1(s) + Ta(s) + bru(s)
$Ta(s) —xa(t =0) = —asZi(s) + batu(s) (1.3)
y(s) = z1(s)

where §(s) denotes the Laplace transform of y(¢), and so on. To simplify our
presentation we will make the usual abuse of notation and replace §(s) by
y(s), etc.. In addition, we will omit the independent variables s and ¢ when
the meaning is clear.

If u(t),x1(t), z2(t) and y(t) represent deviation variables away from a
nominal operating point or trajectory, then we can assume 1 (t = 0) = z5(t =
0) = 0. The elimination of z;(s) and z»(s) from (1.3) then yields the transfer
function

bls + bg
2 +a1s+ as

y(s) _ _
m —G(S) =

Importantly, for linear systems, the transfer function is independent of the
input signal (forcing function). Notice that the transfer function in (1.4) may
also represent the following system

(1.4)

() + a1y(t) + azy(t) = biu(t) + bau(t) (1.5)

INTRODUCTION 5

with input u(t) and output y(t).

Transfer functions, such as G(s) in (1.4), will be used throughout the book
to model systems and their components. More generally, we consider rational
transfer functions of the form

Br.s" + -+ Bis+ o
s+ ap_15" 4+ +ais+ao

G(s) =

(1.6)

For multivariable systems, G(s) is a matrix of transfer functions. In (1.6) n is
the order of the denominator or pole polynomial and is also called the order
of the system, and n is the order of the numerator or zero polynomial. Then
n — n, is referred to as the pole excess or relative order.

For a proper system, with n > n., we may realize (1.6) by a state-space
description, # = Az+ Bu, y = Cz+ Du, similar to (1.2). The transfer function
may then be written as G(s) = C(sI — A)~' B + D, similar to (1.3).

Definition 1.1

S
S
S
S

A system G
A system G
A system G
A system G

is strictly proper if G(s) = 0 as s — oc.

is semi-proper or bi-proper if G(s) = D #0 as s — co.
which is strictly proper or semi-proper is proper.

is improper if G(s) = 00 as s = oc.

e o o o
A~~~
PSRN N

All practical systems will have zero gain at a sufficiently high frequency,
and are therefore strictly proper. It is often convenient, however, to model
high frequency effects by a non-zero D-term, and hence semi-proper models
are frequently used. Furthermore, certain derived transfer functions, such as
S = (I + GK)~!, are semi-proper.

Usually we use G(s) to represent the effect of the inputs u on the outputs
y, whereas G4(s) represents the effect on y of the disturbances d. We then
have the following linear process model in terms of deviation variables

y(s) = G(s)u(s) + Ga(s)d(s) (1.7)

Here we have made use of the superposition principle for linear systems, which
implies that a change in a dependent variable (y) can simply be found by
adding together the separate effects resulting from changes in the independent
variables (u and d) considered one at a time.

All the signals u(s), d(s) and y(s) are deviation variables. This is sometimes
shown explicitly, for example, by use of the notation du(s), but since we always
use deviation variables when we consider Laplace transforms, the § is normally
omitted.
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1.4 Scaling

Scaling is very important in practical applications as it makes model analysis
and controller design (weight selection) much simpler. It requires the engineer
to make a judgement at the start of the design process about the required
performance of the system. To do this, decisions are made on the expected
magnitudes of disturbances and reference changes, on the allowed magnitude
of each input signal, and on the allowed deviation of each output.

Let the unscaled (or originally scaled) linear model of the process in
deviation variables be

j=Gu+Ged, e=5-7 (1.8)

where a hat (7 ) is used to show that the variables are in their unscaled
(original) units. A useful approach for scaling is to make the variables less
than one in magnitude. This is done by dividing each variable by its mazimum
ezxpected or allowed change. For disturbances and manipulated inputs, we use
the scaled variables

d=d/dmax, U =10/Umax (1.9)
where
° Jmax — largest expected change in disturbance
® Upax — largest allowed input change

The maximum deviation from a nominal value should be chosen by thinking
of the maximum value one can expect, or allow, as a function of time.

The variables 7, € and 7 are in the same units, so the same scaling factor
should be applied to each. Two alternatives are possible:

® Emax — largest allowed control error
e Tmax — largest expected change in reference value

Since a major objective of control is to minimize the control error €, we here
usually choose to scale with respect to the maximum control error:

y= g/gmaxa r= ?/gmaxa €= /e\/é\max (110)

To formalize the scaling procedure, introduce the scaling factors

De = é\maxa Du = amax; Dd = dmax; Dr = ?max (111)

For MIMO systems each variable in the vectors d,7,4 and € may have a
different maximum value, in which case D, D,, D,y and D, become diagonal
scaling matrices. This ensures, for example, that all errors (outputs) are of
about equal importance in terms of their magnitude.

INTRODUCTION 7

The corresponding scaled variables to use for control purposes are then
d=D;'d, u= D7, y=D;'y, e= D '¢, r = D' (1.12)
On substituting (1.12) into (1.8) we get
Dey = @’Duu + @dDdd; Dee =D,y — Der
and introducing the scaled transfer functions
G=D;'GD,, Gq=D;'GuDy (1.13)
then yields the following model in terms of scaled variables
y=Gu+Gad; e=y-—r (1.14)

Here u and d should be less than 1 in magnitude, and it is useful in some cases
to introduce a scaled reference 7, which is less than 1 in magnitude. This is
done by dividing the reference by the maximum expected reference change

F=7/Pmax = D, 'T (1.15)
We then have that
r=RrF where RZ2 D7'D, =7max/Cmax (1.16)

Here R is the largest expected change in reference relative to the allowed

d T
Gq R
U + Y

Figure 1.1: Model in terms of scaled variables.

control error; typically, R > 1. The block diagram for the system in scaled
variables may then be written as in Figure 1.1, for which the following control
objective is relevant:

e In terms of scaled variables we have that |d(¢)] < 1 and |7(¢)] < 1, and
our control objective is to design w with |u(¢)] < 1 such that |e(t)] =
ly(t) — r(t)] <1 (at least most of the time).
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Remark 1 A number of the interpretations used in the book depend critically
on a correct scaling. In particular, this applies to the input-output controllability
analysis presented in Chapters 5 and 6. Furthermore, for a MIMO system one cannot
correctly make use of the sensitivity function S = (I + GK)~' unless the output
errors are of comparable magnitude.

Remark 2 With the above scalings, the worst-case behaviour of a system is
analyzed by considering disturbances d of magnitude 1, and references 7 of
magnitude 1.

Remark 3 With r = R7 the control error may be written as
e=y—r=Gu+Gqd— Rr (1.17)

We see that a normalized reference change 7 may be viewed as a special case of a
disturbance with G4 = —R, where R is usually a constant diagonal matrix. We will
sometimes use this to unify our treatment of disturbances and references.

Remark 4 The above scaling of the outputs is used when analyzing a given plant.
However, if the issue is to select which outputs to control, see Section 10.3, then it
one may choose to scale the outputs with respect to their expected variation (which
is similar to Tmax)-

Remark 5 If the expected or allowed variation of a variable about 0 (its nominal
value) is not symmetric then the largest variation should be used for c?max and the
smallest variation for Umax and emax. For example, if the disturbance is —5 < d<10
then dmax = 10, and if the manipulated input is —5 < % < 10 then Umax = 5. This
approach may be conservative (in terms of allowing too large disturbances etc.)
when the variations in several variables are not symmetric.

A further discussion on scaling and performance is given in Chapter 5 on
page 172.

1.5 Deriving linear models

Linear models may be obtained from physical “first-principle” models, from
analyzing input-output data, or from a combination of these two approaches.
Although modelling and system identification are not covered in this book, it
is always important for a control engineer to have a good understanding of a
model’s origin. The following steps are usually taken when deriving a linear
model for controller design based on a first-principle approach:

1. Formulate a nonlinear state-space model based on physical knowledge.
2. Determine the steady-state operating point (or trajectory) about which to
linearize.
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3. Introduce deviation variables and linearize the model. There are essentially
three parts to this step:

(a) Linearize the equations using a Taylor expansion where second and
higher order terms are omitted.
(b) Introduce the deviation variables by substitution, e.g., dx(t) defined by

z(t) = z* + dz(t)

where the superscript * denotes the steady-state operating point or
trajectory along which we are linearizing.

(c) Subtract the steady-state to eliminate the terms involving only steady-
state quantities.

These parts are usually accomplished together. For example, for a nonlinear
state-space model of the form

dx
i f(z,u) (1.18)

the linearized model in deviation variables (dz, du) is

dox ()5, (O
= <83:) 5w+<6u) Su (1.19)
A B

Here z and u may be vectors, in which case the Jacobians A and B are
matrices.

4. Scale the variables to obtain scaled models which are more suitable for
control purposes.

In most cases steps 2 and 3 are performed numerically based on the model
obtained in step 1. Also, since (1.19) is in terms of deviation variables, its
Laplace transform becomes sdz(s) = Adx(s) + Bou(s), or

dz(s) = (sI — A)"' Béu(s) (1.20)

Example 1.1 Physical model of a room heating process.

The above steps for deriving a linear model will be illustrated on the simple example
depicted in Figure 1.2, where the control problem is to adjust the heat input Q to
maintain constant room temperature T. The outdoor temperature T, is the main
disturbance. Units are shown in square brackets.

1. Physical model. An energy balance for the room requires that the change
in energy in the room must equal the net inflow of energy to the room (per unit of
time). This yields the following state-space model

d
Z(OvT) = Q+a(T, = T) (1.21)
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Figure 1.2: Room heating process.

where T' [K] is the room temperature, Cv [J/K] is the heat capacity of the room, @
[W] is the heat input (from some heat source), and the term a(To—T) [W] represents
the net heat loss due to exchange of air and heat conduction through the walls.

2. Operating point. Consider a case where the heat input Q~ is 2000 W and the
difference between indoor and outdoor temperatures T =T, is 20K. Then the steady-
state energy balance yields o = 2000/20 = 100 [W/K]. We assume the room heat
capacity is constant, Cy = 100 [kJ/K]. (This value corresponds approzimately to the
heat capacity of air in a room of about 100m?; thus we neglect heat accumulation in
the walls.)

3. Linear model in deviation variables. If we assume « is constant the model
in (1.21) is already linear. Then introducing deviation variables

ST () = T(1) = T"(1), 8QE) = Q) — Q" (), 6Tolt) = To(t) — T (1)
yields
CV%W@) = 5Q(1) + a (6T, (1) — §T(1)) (1.22)

Remark. If a depended on the state variable (T in this ezample), or on one of the
independent variables of interest (Q or T, in this example), then one would have to
include an extra term (T™ — T, )éa(t) on the right hand side of Equation (1.22).

On taking Laplace transforms in (1.22), assuming 6T(t) = 0 at t = 0, and
rearranging we get

! (16Q(s)+§T ©));
s+ 1\« ° T

The time constant for this ezample is T = 100-10% /100 = 1000 [s] = 17 [min] which
is reasonable. It means that for a step increase in heat input it will take about 17min
for the temperature to reach 63% of its steady-state increase.

o

(e}

§T(s) = (1.23)
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4. Linear model in scaled variables. Introduce the following scaled variables

6T (s) | _6Q(s) . _ 8T,(s)
- 61—‘1)’1&)(’ U(S) - 6QTD&X7 d(S) - 6T0,’V"L(11) (1.24)
In our case the acceptable variations in room temperature T are 21K, i.e. 6Tmax =
bemax = 1 [K]. Furthermore, the heat input can vary between 0W and 6000 W, and
since its nominal value is 2000 W we have §Qmax = 2000 [W] (see Remarks on 8).
Finally, the expected variations in outdoor temperature are £10K, i.e. 6To maz = 10
[K]. The model in terms of scaled variables then becomes

y(s)

1 6Qumax 1 20
Iel - -
(s) 75+ 1 0Tmar @ 10005 + 1
1 TO max 1
Culs) = $Toman _ __10 (1.25)

754+1 6Tmax  1000s + 1

Note that the static gain for the input is k = 20, whereas the stalic gain for the
disturbance is kg = 10. The fact that |kd| > 1 means that we need some control
(feedback or feedforward) to keep the output within its allowed bound (le| < 1) when
there is o disturbance of magnitude |d| = 1. The fact that |k| > |kq| means that
we have enough “power” in the inputs to reject the disturbance at steady state, that
is, we can, using an input of magnitude |u| < 1, have perfect disturbance rejection
(e = 0) for the mazimum disturbance (|d| = 1). We will return with a detailed
discussion of this when we consider input-output controllability analysis in Chapter
5. The room heating process is considered in detail in Section 5.16.2.

1.6 Notation

There is no standard notation to cover all of the topics covered in this book.
We have tried to use the most familiar notation from the literature whenever
possible, but an overriding concern has been to be consistent within the book,
to ensure that the reader can follow the ideas and techniques through from
one chapter to another.

The most important notation is summarized in Figure 1.3, which shows
a one degree-of-freedom control configuration with negative feedback, a two
degrees-of-freedom control configuration, and a general control configuration.

The latter can be used to represent a wide class of controllers, including
the one and two degrees-of-freedom configurations, as well as feedforward and
estimation schemes and many others; and, as we will see, it can also be used
to formulate optimization problems for controller design. The symbols used
in Figure 1.3 are defined in Table 1.1. Apart from the use of v to represent
the controller inputs for the general configuration, this notation is reasonably
standard.

Lower-case letters are used for vectors and signals (e.g., u, y, n), and
capital letters for matrices, transfer functions and systems (e.g., G, K). Matrix
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Ga

Table 1.1: Nomenclature

Ym K controller, in whatever configuration. Sometimes the controller is

broken down into its constituent parts. For example, in the two

K,
K, } where

degrees-of-freedom controller in Figure 1.3 (b), K = [
K, is a prefilter and K is the feedback controller.

ﬁ
+
=
S
Y
D
+ +
3 T_}_ ¥
<

(a) One degree-of-freedom control configuration For the conventional control configurations (Figure 1.3 (a) and (b)):
G plant model
Gg disturbance model
r reference inputs (commands, setpoints)
ld d disturbances (process noise)
n measurement noise
Y plant outputs. These signals include the variables to be controlled

(“primary” outputs with reference values r) and possibly some

Ga
r + additional “secondary” measurements to improve control. Usually
K LB e . the signals y are measurable.
+
+
+ f
n

Ym measured y

Ym w control signals (manipulated plant inputs)

For the general control configuration (Figure 1.3 (c)):

P generalized plant model. It will include G and G4 and the
interconnection structure between the plant and the controller. In
addition, if P is being used to formulate a design problem, then it

b) Two d -of-freed trol confi ti
(b) Two degrees-of-freedom control configuration will also include weighting functions.

w exogenous inputs: commands, disturbances and noise
v ) z exogenous outputs; “error” signals to be minimized, e.g., y — r.
> P v controller inputs for the general configuration, e.g., commands,
" v measured plant outputs, measured disturbances, etc. For the
special case of a one degree-of-freedom controller with perfect
Ko measurements we have v =r — y.

(c) General control configuration

Figure 1.3: Control configurations
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elements are usually denoted by lower-case letters, so g;; is the ¢j’th element in
the matrix G. However, sometimes we use upper-case letters G;;, for example if
G is partitioned so that G; is itself a matrix, or to avoid conflicts in notation.
The Laplace variable s is often omitted for simplicity, so we often write G
when we mean G(s).

For state-space realizations we use the standard (A4, B, C, D)-notation. That
is, a system G with a state-space realization (A, B,C,D) has a transfer
function G(s) = C(sI — A)~'B + D. We sometimes write

G(s) 2 [%’%] (1.26)

to mean that the transfer function G(s) has a state-space realization given by
the quadruple (A, B,C, D).

For closed-loop transfer functions we use S to denote the sensitivity at the
plant output, and 7" to denote the complementary sensitivity. With negative
feedback, S = (I+ L)™' and T = L(I+ L)™', where L is the transfer function
around the loop as seen from the output. In most cases L. = GK, but if
we also include measurement dynamics (y, = Gy + n) then L = GKG,,.
The corresponding transfer functions as seen from the input of the plant are
L;=KG (01" L= KGmG), Sr = (I+ L])_l and T = L](I—F L])_l.

To represent uncertainty we use perturbations E (not normalized) or A
(normalized such that their magnitude is less than one). The nominal plant
model is G, whereas the perturbed model with uncertainty is denoted G,
(usually for a set of possible perturbed plants) or G’ (usually for a particular
perturbed plant). For example, with additive uncertainty we may have G' =
G+ E4qs=G+waAy, where wy is weight representing the magnitude of the
uncertainty.

By the right half plane (RHP) we mean the closed right half of the complex
plane, including the imaginary axis (jw-axis). The left half plane (LHP) is the
open left half of the complex plane, excluding the imaginary axis. A RHP-
pole (unstable pole) is a pole located in the right half plane, and thus includes
poles on the imaginary axis. Similarly, a RHP-zero (“unstable” zero) is a zero
located in the right half plane.

We use AT to denote the transpose of a matrix A, and A" to represent its
complex conjugate transpose.

Mathematical terminology

The symbol 2 is used to denote equal by definition, and 4 is used to denote
equivalent by definition.

Let A and B be logic statements. Then the following expressions are
equivalent:

INTRODUCTION 15

A<B

A if B, or: If B then A

A is necessary for B
B = A, or: B implies A

B is sufficient for A

B only if A
not A = not B
The remaining notation, special terminology and abbreviations will be
defined in the text.
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2

CLASSICAL FEEDBACK
CONTROL

In this chapter, we review the classical frequency-response techniques for the
analysis and design of single-loop (single-input single-output, SISO) feedback control
systems. These loop-shaping techniques have been successfully used by industrial
control engineers for decades, and have proved to be indispensable when it comes
to providing insight into the benefits, limitations and problems of feedback control.
During the 1980’s the classical methods were extended to a more formal method
based on shaping closed-loop transfer functions, for example, by considering the
Hoonorm of the weighted sensitivity function. We introduce this method at the end
of the chapter.

The same underlying ideas and techniques will recur throughout the book as we
present practical procedures for the analysis and design of multivariable (multi-input
multi-output, MIMO) control systems.

2.1 Frequency response

On replacing s by jw in a transfer function model G(s) we get the so-
called frequency response description. Frequency responses can be used to
describe: 1) a system’s response to sinusoids of varying frequency, 2) the
frequency content of a deterministic signal via the Fourier transform, and
3) the frequency distribution of a stochastic signal via the power spectral
density function.

In this book we use the first interpretation, namely that of frequency-by-
frequency sinusoidal response. This interpretation has the advantage of being
directly linked to the time domain, and at each frequency w the complex
number G(jw) (or complex matrix for a MIMO system) has a clear physical
interpretation. It gives the response to an input sinusoid of frequency w. This
will be explained in more detail below. For the other two interpretations we
cannot assign a clear physical meaning to G(jw) or y(jw) at a particular
frequency — it is the distribution relative to other frequencies which matters

18 MULTIVARIABLE FEEDBACK CONTROL

then.

One important advantage of a frequency response analysisof a system is
that it provides insight into the benefits and trade-offs of feedback control.
Although this insight may be obtained by viewing the frequency response
in terms of its relationship between power spectral densities, as is evident
from the excellent treatment by Kwakernaak and Sivan (1972), we believe
that the frequency-by-frequency sinusoidal response interpretation is the most
transparent and useful.

Frequency-by-frequency sinusoids

We now want to give a physical picture of frequency response in terms of a
system’s steady-state response to persistent sinusoids. It is important that
the reader has this picture in mind when reading the rest of the book. For
example, it is needed to understand the response of a multivariable system
in terms of its singular value decomposition. A physical interpretation of the
frequency response for a stable linear system y = G(s)u is a follows. Apply a
sinusoidal input signal with frequency w [rad/s] and magnitude uy, that is,

u(t) = up sin(wt + )

The input signal is persistent, that is, it has been applied since t = —o0.
Then as t — oo (i.e., after some initial period when the response is more
complicated) the steady-state output signal is a sinusoid of the same frequency,
namely

y(t) = yosin(wt + B)

Here ug and yo represent magnitudes and are therefore both non-negative.
Note that the output sinusoid has a different amplitude y and is also shifted
in phase from the input by

$2B-a

Importantly, it can be shown that y,/u, and ¢ can be obtained directly from
the Laplace transform G(s) after inserting the imaginary number s = jw and
evaluating the magnitude and phase of the resulting complex number G(jw).
We have

Yo/uo = |G(jw)l; ¢ = LG(jw) [rad] (2.1)

For example, let G(jw) = a + jb, with real part a = ReG(jw) and imaginary
part b = ImG(jw), then

|IG(jw)| = Va? +b?; LG(jw) = arctan(b/a) (2.2)

In words, (2.1) says that after sending a sinusoidal signal through a system
G(s), the signal’s magnitude is amplified by a factor |G(jw)| and its phase is
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shifted by /G (jw). In Figure 2.1, this statement is illustrated for the following
first-order delay system (time in seconds),

ke—@s

Gls) = g k=5,0=27=10 (2.3)

At frequency w = 0.2 [rad/s], we see that the output y lags behind the
input by about a quarter of a period and that the amplitude of the output is
approximately twice that of the input. More accurately, the amplification is

|G(jw)| =k/V(Tw)?2 +1=5//(10w)? + 1 =2.24
and the phase shift is

¢ = LG(jw) = —arctan(tw) —fw = — arctan(10w) —2w = —1.51rad = —86.4°

Time [sec]

Figure 2.1: Sinusoidal response for system G(s) = 5¢727/(10s + 1) at frequency
w =0.2 [rad/s].

G(jw) is called the frequency response of the system G(s). It describes
how the system responds to persistent sinusoidal inputs of frequency w. The
magnitude of the frequency response, |G(jw)|, being equal to |y,(w)|/|ue(w)],
is also referred to as the system gain. Sometimes the gain is given in units of
dB (decibel) defined as

A [dB] = 20log;, A (2.4)

For example, A = 2 corresponds to A = 6.02 dB, and A = v/2 corresponds to
A =3.01dB, and A =1 corresponds to A =0 dB.

Both |G(jw)| and ZG(jw) depend on the frequency w. This dependency
may be plotted explicitly in Bode plots (with w as independent variable)
or somewhat implicitly in a Nyquist plot (phasor diagramIn Bode plots we
usually employ a log-scale for frequency and gain and a linear scale for the
phase. In Figure 2.2, the Bode plots are shown for the system in (2.3). We note
that in this case both the gain and phase fall monotonically with frequency.
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Figure 2.2: Frequency response (Bode plots) of G(s) = 5e™2°/(10s + 1).

This is quite common for process control applications. The delay 6 only shifts
the sinusoid in time, and thus affects the phase but not the gain. The system
gain |G(jw)| is equal to k at low frequencies; this is the steady-state gain and
is obtained by setting s = 0 (or w = 0). The gain remains relatively constant
up to the break frequency 1/7 where it starts falling sharply. Physically, the
system responds too slowly to let high-frequency (“fast”) inputs have much
effect on the outputs, and sinusoidal inputs with w > 1/7 are attenuated by
the system dynamics.

The frequency response is also useful for an unstable plant G(s), which by
itself has no steady-state response. Let G(s) be stabilized by feedback control,
and consider applying a sinusoidal forcing signal to the stabilized system. In
this case all signals within the system are persistent sinusoids with the same
frequency w, and G(jw) yields as before the sinusoidal response from the input
to the output of G(s).

Phasor notation. From Euler’s formula for complex numbers we have that
e¥* = cos z+ j sin 2. It then follows that sin(wt) is equal to the imaginary part
of the complex function e/*, and we can write the time domain sinusoidal
response in complex form as follows:

u(t) = uoIme? @) gives as t — oo y(t) = yoIme’ “1+7) (2.5)
where
Yo = G(jw)uo, B=LG(jw)+a (2.6)

and |G(jw)| and ZG(jw) are defined in (2.2). Now introduce the complex
numbers A _ A _
u(w) = upe’®,  y(w) = yoe'” (2.7)
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where we have used w as an argument because yo and 8 depend on frequency,
and in some cases so may wug and a. Note that u(w) is not equal to u(s)
evaluated at s = w nor is it equal to u(t) evaluated at ¢+ = w. Since
G(jw) = |G(jw)| 3£G(iv) the sinusoidal response in (2.5) and (2.6) can then
be written on complex form as follows

y(W)e! = G(jw)u(w)e’ (2.8)
or because the term e/“? appears on both sides
ly(w) = G(jw)u(w)| (2.9)

which we refer to as the phasor notation. At each frequency, u(w), y(w) and
G(jw) are complex numbers, and the usual rules for multiplying complex
numbers apply. We will use this phasor notation throughout the book. Thus
whenever we use notation such as u(w) (with w and not jw as an argument),
the reader should interpret this as a (complex) sinusoidal signal, u(w)el“t,
(2.9) also applies to MIMO systems where u(w) and y(w) are complex vectors
representing the sinusoidal signal in each channel and G(jw) is a complex
matrix.

Minimum phase systems. For stable systems which are minimum phase
(no time delays or right-half plane (RHP) zeros) there is a unique relationship
between the gain and phase of the frequency response. This may be quantified
by the Bode gain-phase relationship which gives the phase of G (normalized!
such that G(0) > 0) at a given frequency wg as a function of |G (jw)| over the
entire frequency range:

) 1 [ dn|G(jw)|, |w+wo| dw
VA =— 1 - — 21
G (o) T J_ oo, dlnw " w—wy| w (2.10)
N(w)

The name minimum phase refers to the fact that such a system has the
minimum possible phase lag for the given magnitude response |G(jw)|. The
term N (w) is the slope of the magnitude in log-variables at frequency w. In
particular, the local slope at frequency wq is

dln |G(jw)|
N =|——" 2.11
(wo) < dlnw wewn ( )
The term In ij:}’g in (2.10) is infinite at w = wy, so it follows that ZG(jwy) is
primarily determined by the local slope N(wg). Also ffooo In %ﬁ . %“’ = §

1 The normalization of G(s) is necessary to handle systems such as $ and %, which
have equal gain, are stable and minimum phase, but their phases differ by 180°. Systems
with integrators may be treated by replacing ~ by e where ¢ is a small positive number.
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which justifies the commonly used approximation for stable minimum phase
systems

LG (jwo) =~ gN(wo) [rad] = 90° - N (wp)

The approximation is exact for the system G(s) = 1/s" (where N(w) = —n),
and it is good for stable minimum phase systems except at frequencies close
to those of resonance (complex) poles or zeros.

RHP-zeros and time delays contribute additional phase lag to a system when
compared to that of a minimum phase system with the same gain (hence the
term non-minimum phase system). For example, the system G(s) = _sij'a“ with
a RHP-zero at s = a has a constant gain of 1, but its phase is —2 arctan(w/a)
[rad] (and not 0 [rad] as it would be for the minimum phase system G(s) = 1
of the same gain). Similarly, the time delay system e~% has a constant gain
of 1, but its phase is —w#f [rad].

10°

Magnitude

Phase
8

-135

-180 ‘ ‘ ‘ ‘ ‘
10° 107 10" 3 10" 10° 10°

10
Frequency [rad/s]

Figure 2.3: Bode plots of transfer function L, = 30 The asymptotes

s+1
(s40.01)2(s+10) *
are given by dotted lines. The vertical dotted lines on the upper plot indicate the
break frequencies w1, ws and ws.

Straight-line approximations. For the design methods used in this book
it is useful to be able to sketch quickly Bode plots, and in particular the
magnitude (gain) diagram. The reader is therefore advised to become familiar
with asymptotic Bode plots (straight-line approximations). For example, for

a transfer function
(s+2z1)(s+22)---

(s+p1)(s+p2)---
the asymptotic Bode plots of G(jw) are obtained by approximating each
term s + a by jw+a = a for w < a and by jw + a = jw for w > a.

G(s) = (2.12)
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These approximations yield straight lines on a log-log plot which meet at the
so-called break point frequency w = a. In (2.12) therefore, the frequencies

21,22,...,P1,P2,... are the break points where the asymptotes meet. For
complex poles or zeros, the term s® + 2(swp + w3 (where [¢| < 1) is
approximated by w? for w < wp and by s = (jw)? = —w? for w > wo.

The magnitude of a transfer function is usually close to its asymptotic value,
and the only case when there is significant deviation is around the resonance
frequency wp for complex poles or zeros with a damping |(| of about 0.3 or
less. In Figure 2.3, the Bode plots are shown for

(s+1)

Lis) =30 =5 onets 7 10y

(2.13)

The asymptotes are shown by dotted lines. We note that the magnitude
follows the asymptotes closely, whereas the phase does not. In this example
the asymptotic slope of L is 0 up to the first break frequency at 0.01 rad/s
where we have two poles and then the slope changes to N = —2. Then at
1 rad/s there is a zero and the slope changes to N = —1. Finally, there is
a break frequency corresponding to a pole at 10 rad/s and so the slope is
N = —2 at this and higher frequencies.

2.2 Feedback control

Gq
+ Y
r : K L S o@ > —
y?TL
+
+
n

Figure 2.4: Block diagram of one degree-of-freedom feedback control system.
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2.2.1 One degree-of-freedom controller

In most of this chapter, we examine the simple one degree-of-freedom negative
feedback structure shown in Figure 2.4. The input to the controller K(s) is
r — Y Where y,,, = y + n is the measured output and n is the measurement
noise. Thus, the input to the plant is

u=K(s)(r—y—n) (2.14)

The objective of control is to manipulate u (design K) such that the control
error e remains small in spite of disturbances d. The control error e is defined
as

e=y—r (2.15)

where r denotes the reference value (setpoint) for the output. Note that we
do not define e as the controller input 7 — y,, which is frequently done.

2.2.2 Closed-loop transfer functions

The plant model is written as
y=G(s)u+ Gq(s)d (2.16)

and for a one degree-of-freedom controller the substitution of (2.14) into (2.16)
yields
y=GK(r—y—n)+ Gud

or
(I+GK)y =GKr+ Gqd — GKn (2.17)

and hence the closed-loop response is

y=(I+GEK)'"GKr+ (I +GK) ' Gyd— (I+GK)'GKn  (2.18)

T S T

The control error is

e=y—r=-5Sr+SG4d—Tn (2.19)
where we have used the fact 7'—I = —S. The corresponding plant input signal
is

u=KSr— KSGqd — KSn (2.20)

The following notation and terminology are used

L =GK loop transfer function
S=(I+GK)'=(I+L)"! sensitivity function
T=(I+GK)'GK=(I+L)"'L complementary sensitivity function
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We see that S is the closed-loop transfer function from the output disturbances
to the outputs, while T is the closed-loop transfer function from the reference
signals to the outputs. The term complementary sensitivity for T' follows from
the identity:

S+T=1 (2.21)

To derive (2.21), write S +T = (I + L)™' + (I + L)™' L and factor out the
term (I + L)~!. The term sensitivity function is natural because S gives the
sensitivity reduction afforded by feedback. To see this, consider the “open-
loop” case i.e. with no feedback. Then

y=GKr+Gqd+0-n (2.22)

and a comparison with (2.18) shows that, with the exception of noise, the
response with feedback is obtained by premultiplying the right hand side by
S.

Remark 1 Actually, the above is not the original reason for the name “sensitivity”.
Bode first called S sensitivity because it gives the relative sensitivity of the closed-
loop transfer function 7' to the relative plant model error. In particular, at a given
frequency w we have for a SISO plant, by straightforward differentiation of 7', that

dT/T
— =85 2.23
dG /G (2:23)
Remark 2 Equations (2.14)-(2.22) are written in matrix form because they also
apply to MIMO systems. Of course, for SISO systems we may write S+ 7T = 1,
S= g, I'= %£ and so on.
Remark 3 In general, closed-loop transfer functions for SISO systems with
negative feedback may be obtained from the rule
“direct”
OUTPUT = —— = _ . INPUT (2.24)
1+ “loop”

where “direct” represents the transfer function for the direct effect of the input on
the output (with the feedback path open) and “loop” is the transfer function around
the loop (denoted L(s)). In the above case L = GK. If there is also a measurement
device, G (s), in the loop, then L(s) = GKGr. The rule in (2.24) is easily derived
by generalizing (2.17). In Section 3.2, we present a more general form of this rule
which also applies to multivariable systems.

2.2.3 Why feedback?

At this point it is pertinent to ask why we should use feedback control at
all  rather than simply using feedforward control. A “perfect” feedforward
controller is obtained by removing the feedback signal and using the controller
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K(s) = G7'(s) (we assume for now that it is possible to obtain and
physically realize such an inverse, although this may of course not be true).
We also assume that the plant and controller are both stable and that all the
disturbances are known, that is, we know G4d, the effect of the disturbances
on the outputs. Then with r — G4d as the controller input, this feedforward
controller would yield perfect control assuming G was a perfect model of the
plant:

y=Gu+Gyd=GK(r—Guqd) + Gaqd =r (2.25)

Unfortunately, G is never an exact model, and the disturbances are never
known exactly. The fundamental reasons for wusing feedback control are
therefore the presence of

1. Signal uncertainty — Unknown disturbance
2. Model uncertainty
3. An unstable plant

The third reason follows because unstable plants can only be stabilized by
feedback (see internal stability in Chapter 4).

The ability of feedback to reduce the effect of model uncertainty is of
crucial importance in controller design. One strategy for dealing with model
uncertainty is to approximate its effect on the feedback system by adding
fictitious disturbances or noise. For example, this is the only way of handling
model uncertainty within the so-called LQG approach to optimal control (see
Chapter 9). Is this an acceptable strategy? In general, the answer is no. This
is easily illustrated for linear systems where the addition of disturbances does
not affect system stability, whereas model uncertainty combined with feedback
may easily create instability. For example, consider a perturbed plant model
G, = G + E where E represents additive model uncertainty. Then the output
of the perturbed plant is

y=Gu+d, +ds; dy=FEu, dy=Gud (2.26)
where y is different from what we ideally expect (namely Gu) for two reasons:

1. Uncertainty in the model (dy).
2. Signal uncertainty (ds)

In LQG control we set wg = d; +ds where wy is assumed to be an independent
variable such as white noise. Then in the design problem we may make wy
large by selecting appropriate weighting functions, but its presence will never
cause instability. However, in reality wy = Eu + d2, so wgq depends on the
signal u and this may cause instability in the presence of feedback when u
depends on y. Specifically, the closed-loop system (I + (G + E)K)~! may be
unstable for some E # 0. In conclusion, it may be important to explicitly take
into account model uncertainty when studying feedback control.
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2.3 Closed-loop stability

One of the main issues in designing feedback controllers is stability. If the
feedback gain is too large, then the controller may “overreact” and the closed-
loop system becomes unstable. This is illustrated next by a simple example.

25
Time [sec]

Figure 2.5: Effect of proportional gain K. on the closed-loop response y(t) of the
inverse response process.

Example 2.1 Inverse response process. Consider the plant (time in seconds)

3(—2s+1)

GO = Gar s +1)

(2.27)

This is one of two main example processes used in this chapter to illustrate the
techniques of classical control. The model has a right-half plane (RHP) zero at
s = 0.5 [rad/s]. This imposes a fundamental limitation on control, and high
controller gains will induce closed-loop instability.

This is illustrated for a proportional (P) controller K(s) = K. in Figure 2.5,
where the response y = Tr = GK.(1 + GK.)™'r to a step change in the reference
(r(t) =1 for t > 0) is shown for four different values of K.. The system is seen
to be stable for K. < 2.5, and unstable for K. > 2.5. The controller gain at the
limit of instability, K, = 2.5, is sometimes called the ultimate gain and for this
value (K. = K, ) the system is seen to cycle continuously with a period P, = 15.2s,

corresponding to the frequency w., 2 2m /P, = 0.42 [rad/s].
Two methods are commonly used to determine closed-loop stability:

1. The poles of the closed-loop system are evaluated. That is, the zeros of
1+ L(s) = 0 are found where L is the transfer function around the loop.
The system is stable if and only if all the closed-loop poles are in the open
left-half plane (LHP) (that is, poles on the imaginary axis are considered
“unstable”). The poles are also equal to the eigenvalues of the state-space
A-matrix, and this is usually how the poles are computed numerically.
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2. The frequency response (including region in frequencies) of L(jw) is
plotted in the complex plane and the number of encirclements it makes
of the critical point —1 is counted. By Nyquist’s stability criterion (as is
illustrated in Figure 2.12 and for which a detailed statement is given in
Theorem 4.14) closed-loop stability is inferred by equating the number
of encirclements to the number of open-loop unstable poles (RHP-poles).
For open-loop stable systems where /L(jw) falls with frequency such that
L/ L(jw) crosses —180° only once (from above at frequency wigg), one may
equivalently use Bode’s stability condition which says that the closed-loop
system is stable if and only if the loop gain |L| is less than 1 at this
frequency, that is

Stability < |L(jwiso)| <1 (2.28)
where wygg is the phase crossover frequency defined by ZL(jwigp) = —180°.

Method 1, which involves computing the poles, is best suited for numerical
calculations. However, time delays must first be approximated as rational
transfer functions, e.g., Padé approximations. Method 2, which is based on
the frequency response, has a nice graphical interpretation, and may also be
used for systems with time delays. Furthermore, it provides useful measures
of relative stability and forms the basis for several of the robustness tests used
later in this book.

Example 2.2 Stability of inverse response process with proportional
control. Let us determine the condition for closed-loop stability of the plant G in
(2.27) with proportional control, that is, with K(s) = K. and L(s) = K.G(s).

1. The system is stable if and only if all the closed-loop poles are in the LHP. The
poles are solutions to 1 4+ L(s) = 0 or equivalently the roots of

(5s+1)(10s + 1) + K.3(—2s+1) =0

o 5054 (15— 6K.)s+ (1+3K.) =0 (2.29)

But since we are only interested in the half plane location of the poles, it is not
necessary to solve (2.29). Rather, one may consider the coefficients a; of the
characteristic equation ans™ + - -ai1s + a0 = 0 in (2.29), and use the Routh-
Hurwitz test to check for stability. For second order systems, this test says that
we have stability if and only if all the coefficients have the same sign. This yields
the following stability conditions

(15 —6K.) > 0; (1+3K.)>0

or equivalently —1/3 < K. < 2.5. With negative feedback (K. > 0) only the
upper bound is of practical interest, and we find that the mazimum allowed gain
(“ultimate gain”) is K, = 2.5 which agrees with the simulation in Figure 2.5.
The poles at the onset of instability may be found by substituting K. = K, = 2.5
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into (2.29) to get 505> + 8.5 =0, i.e., s = +51/8.5/50 = +j0.412. Thus, at the
onset of instability we have two poles on the imaginary azis, and the system will
be continuously cycling with a frequency w = 0.412 [rad/s] corresponding to a
period P, = 2w /w = 15.2 s. This agrees with the simulation results in Figure 2.5.

Magnitude
&

10 10 10° 10
w180

o7 ‘ ‘
107 10" 10’ 10'

Frequency [rad/s]

Figure 2.6: Bode plots for L(s) = Kc% with K, = 1.

2. Stability may also be evaluated from the frequency response of L(s). A graphical
evaluation is most enlightening. The Bode plots of the plant (i.e. L(s) with
K. = 1) are shown in Figure 2.6. From these one finds the frequency wiso
where /L is —180° and then rteads off the corresponding gain. This yields
|L(jwigo)| = Kc|G(jwiso)| = 0.4K., and we get from (2.28) that the system is
stable if and only if K. < 2.5 (as found above). Alternatively, the phase crossover
frequency may be obtained analytically from:

LL(jwlgo) = — arctan(2wlgo) — arctan(5w130) — arctan(lOwlgo) = —180°
which gives wiso = 0.412 [rad/s] as found in the pole calculation above. The loop
gain at this frequency is

. 3/ (2wis0)? + 1
|L(jwiso)| = Ke ‘ ( ) = 04K,
V/(bwiso)? + 1+ 1/(10wis0)? + 1

which is the same as found from the graph in Figure 2.6. The stability condition
|L(jwigo)| < 1 then yields K. < 2.5 as expected.

2.4 Evaluating closed-loop performance

Although closed-loop stability is an important issue, the real objective of
control is to improve performance, that is, to make the output y(¢) behave
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in a more desirable manner. Actually, the possibility of inducing instability is
one of the disadvantages of feedback control which has to be traded off against
performance improvement. The objective of this section is to discuss ways of
evaluating closed-loop performance.

2.4.1 Typical closed-loop responses

The following example which considers proportional plus integral (PI) control
of the inverse response process in (2.27), illustrates what type of closed-loop
performance one might expect.

Example 2.3 PI-control of inverse response process. We have already
studied the use of a proportional controller for the process in (2.27). We found that
a controller gain of K. = 1.5 gave a reasonably good response, except for a steady-
state offset (see Figure 2.5). The reason for this offset is the nonzero steady-state
sensitivity function, S(0) = 1_'_[(170@ = 0.18 (where G(0) = 3 is the steady-state
gain of the plant). From e = —Sr it follows that for r = 1 the steady-state control
error is —0.18 (as is confirmed by the simulation in Figure 2.5). To remove the
steady-state offset we add integral action in the form of a PI-controller

1
K(s) = K. (1 + —) (2:30)
TIS
The settings for K. and 71 can be determined from the classical tuning rules of
Ziegler and Nichols (1942):

K. =K,/2.2, 71=P,/1.2 (2.31)

where K, us the mazimum (ultimate) P-controller gain and P, is the corresponding
period of oscillations. In our case K, = 2.5 and P, = 15.2s (as observed from the
simulation in Figure 2.5), and we get K. = 1.14 and 71 = 12.7s. Alternatively, K,
and P, can be obtained from the model G(s),

Ku =1/|G(jwu)|, Pu=2m/w, (2.32)

where w,y, is defined by LG(jw,) = —180°.

The closed-loop response, with PI-control, to a step change in reference is shown in
Figure 2.7. The output y(t) has an initial inverse response due to the RHP-zero, but
it then rises quickly and y(t) = 0.9 at t = 8.0 s (the rise time). The response is quite
oscillatory and it does not settle to within £5% of the final value until after t = 65 s
(the settling time). The overshoot (height of peak relative to the final value) is about
62 % which is much larger than one would normally like for reference tracking. The
decay ratio, which is the ratio between subsequent peaks, is about 0.35 which is also
a bit large. (However, for disturbance rejection the controller settings may be more
reasonable, and one can always add a prefilter to improve the response for reference
tracking, resulting in a two degrees-of-freedom controller).

The corresponding Bode plots for L, S and 1" are shown in Figure 2.8. Later, in
Section 2.4.3, we define stability margins and from the plot of L(jw), repeated in
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Time [sec]

Figure 2.7: Closed-loop response to a step change in reference for the inverse
response process with PI-control.

Figure 2.11, we find that the phase margin (PM) is 0.34 rad = 19.4° and the gain
margin (GM) is 1.63. These margins are too small according to common rules of
thumb. The peak value of |S| is Ms = 3.92, and the peak value of |T| is M = 3.35
which again are high according to normal design rules.

Exercise 2.1 Use (2.82) to compute K, and P, for the process in (2.27).

In summary, for this example, the Ziegler-Nichols’ PI-tunings are somewhat
“aggressive” and give a closed-loop system with smaller stability margins and
a more oscillatory response than would normally be regarded as acceptable.

2.4.2 Time domain performance

Step response analysis. The above example illustrates the approach often
taken by engineers when evaluating the performance of a control system. That
is, one simulates the response to a step in the reference input, and considers
the following characteristics (see Figure 2.9):

e Rise time (t,) : the time it takes for the output to first reach 90% of its
final value, which is usually required to be small.

e Settling time (ts) : the time after which the output remains within £5% of
its final value, which is usually required to be small.

e Quershoot : the peak value divided by the final value, which should typically
be 1.2 (20%) or less.

e Decay ratio : the ratio of the second and first peaks, which should typically
be 0.3 or less.

o Steady-state offset : the difference between the final value and the desired
final value, which is usually required to be small.

The rise time and settling time are measures of the speed of the response ,
whereas the overshoot, decay ratio and steady-state offset are related to the
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Figure 2.8: Typical Bode magnitude and phase plots of L = GK, S and T.

G(s) = %, K(s) =1.136(1 + 7*-) (Ziegler-Nichols PI controller).

quality of the response . Another measure of the quality of the response is:

e Excess variation : the total variation (TV) divided by the overall change at
steady state, which should be as close to 1 as possible.

The total variation is the total movement of the output as illustrated in
Figure 2.10. For the cases considered here the overall change is 1, so the excess
variation is equal to the total variation. Note that the step response is equal
to the integral of the corresponding impulse response (e.g., set u(7) = 1 in
4.11). Some thought then reveals that one can compute the total variation as
the integrated absolute area (1-norm) of the corresponding impulse response
(Boyd and Barratt, 1991, p. 98). That is, let y = T'r, then the total variation

Overshoot = A

1.5 Decay ratio = B/A |
T Al S
=
B
0.5
0
t t
" Time &

Figure 2.9: Characteristics of closed-loop response to step in reference.
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in y for a step change in r is

TV = / " lar@ldr 2 lgr®)ls (2.33)

where gr(t) is the impulse response, i.e., y(t) resulting from an impulse change
in 7(t).

Time

Figure 2.10: Total variation is TV =) . v;, and Excess variation is TV /vo.

The above measures address the output response, y(t). In addition, one
should consider the magnitude of the manipulated input (control signal, u),
which usually should be as small and smooth as possible. If there are important
disturbances, then the response to these should also be considered. Finally,
one may investigate in simulation how the controller works if the plant model
parameters are different from their nominal values.

Another way of quantifying time domain performance is in terms of some
norm of the error signal e(t) = y(t) — r(¢). For example, one might use
the integral squared error (ISE), or its square root which is the 2-norm

of the error signal, [le(t)]l2 = /[," |e(r)|?dr. Note that in this case the

various objectives related to both the speed and quality of response are
combined into one number. Actually, in most cases minimizing the 2-norm
seems to give a reasonable trade-off between the various objectives listed
above. Another advantage of the 2-norm is that the resulting optimization
problems (such as minimizing ISE) are numerically easy to solve. One
can also take input magnitudes into account by considering, for example,

J = \/f00<>(Q|¢'3(t)|2 + R|u(t)|?)dt where @ and R are positive constants. This
is similar to linear quadratic (LQ) optimal control, but in LQ-control one

normally considers an impulse rather than a step change in r(t), and e(t)
normally represents the system states.
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2.4.3 Frequency domain performance

The frequency-response of the loop transfer function, L(jw), or of various
closed-loop transfer functions, may also be used to characterize closed-loop
performance. Typical Bode plots of L, T and S are shown in Figure 2.8. One
advantage of the frequency domain compared to a step response analysis, is
that it considers a broader class of signals (sinusoids of any frequency). This
makes it easier to characterize feedback properties, and in particular system
behaviour in the crossover (bandwidth) region. We will now describe some
of the important frequency-domain measures used to assess performance e.g.
gain and phase margins, the maximum peaks of S and T', and the various
definitions of crossover and bandwidth frequencies used to characterize speed
of response.

Gain and phase margins

Magnitude
5

-2 -1 0
10 10 We W1s0 10

—2 -1 0

1
Frequency [rad/s]

Figure 2.11: Typical Bode plot of L(jw) with PM and GM indicated

Let L(s) denote the loop transfer function of a system which is closed-loop
stable under negative feedback. A typical Bode plot and a typical Nyquist
plot of L(jw) illustrating the gain margin (GM) and phase margin (PM) are
given in Figures 2.11 and 2.12, respectively.

The gain margin is defined as

where the phase crossover frequency wigo is where the Nyquist curve of L(jw)



CLASSICAL CONTROL 35

A Im
v AN
7 AN
7/
/ 0.5 \\
/ \

/ \
,1/ 1 L(jwiso) \\
! GM //_\ w =+ \ Re

|
‘ i
—1‘\ PM 05 1n
!
\ .
S — L(]WC) //
\ /
\ -0.5 /
\ /
N 7
N 7/
N 7
~ -
. b ~ ~ - -
L(jw) i

Figure 2.12: Typical Nyquist plot of L(jw) for stable plant with PM and GM
indicated. Closed-loop instability occurs if L(jw) encircles the critical point —1.

crosses the negative real axis between —1 and 0, that is
ZL(jwlso) = —1800 (235)

If there is more than one crossing the largest value of |L(jw1so)] is taken. On a
Bode plot with a logarithmic axis for |L|, we have that GM (in logarithms, e.g.
in dB) is the vertical distance from the unit magnitude line down to | L(jwiso)],
see Figure 2.11. The GM is the factor by which the loop gain |GK (jw)| may
be increased before the closed-loop system becomes unstable. The GM is thus
a direct safeguard against steady-state gain uncertainty (error). Typically we
require GM> 2. If the Nyquist plot of L crosses the negative real axis between
—1 and —oo then a gain reduction margin can be similarly defined from the
smallest value of |L(jwise| of such crossings.
The phase margin is defined as

PM = /L(jw.) + 180° (2.36)

where the gain crossover frequency w, is where |L(jw)| first crosses 1 from
above, that is

IL(jwe)| =1 (2.37)
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The phase margin tells how much negative phase (phase lag) we can add to
L(s) at frequency w,. before the phase at this frequency becomes —180° which
corresponds to closed-loop instability (see Figure 2.12). Typically, we require
PM larger than 30° or more. The PM is a direct safeguard against time delay
uncertainty; the system becomes unstable if we add a time delay of

Bimax = PM/w, (2.38)

Note that the units must be consistent, so if w, is in rad/s then PM must
be in radians. It is important to note that decreasing the value of w. (lower
closed-loop bandwidth, slower response) means that we can tolerate larger
time delay errors.

Example 2.4 For the Pl-controlled inverse response process evample we have
PM= 194° = 19.4/57.3 [rad] = 0.34 [rad] and w. = 0.236 [rad/s]. The allowed
time delay error is then Omax = 0.34 [rad]/0.236 [rad/s] = 1.44 [s].

From the above arguments we see that gain and phase margins provide
stability margins for gain and delay uncertainty. However, as we show below
the gain and phase margins are closely related to the peak values of |S(jw)|
and |T'(jw)| and are therefore also useful in terms of performance. In short, the
gain and phase margins are used to provide the appropriate trade-off between
performance and stability.

Exercise 2.2 Prove that the mazimum additional delay for which closed-loop
stability is maintained is given by (2.38).

Exercise 2.3 Derive the approzimation for K, = 1/|G(jw.)| given in (5.76) for
a first-order delay system.

Maximum peak criteria

The maximum peaks of the sensitivity and complementary sensitivity
functions are defined as

Ms = max|S(jw)|; Mr =max|T(jw)] (2.39)
w w

(Note that Mg = ||S]|e and Mt = ||T'||c in terms of the H s, norm introduced
later.) Typically, it is required that Mg is less than about 2 (6 dB) and My is
less than about 1.25 (2 dB). A large value of Mg or My (larger than about 4)
indicates poor performance as well as poor robustness. Since S + 7T = I, the
values of Mg and My are close when the peaks are large. For stable plants
we usually have Mg > My, but this is not a general rule. An upper bound on
M has been a common design specification in classical control and the reader
may be familiar with the use of M-circles on a Nyquist plot or a Nichols chart
used to determine My from L(jw).
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We now give some justification for why we may want to bound the value
of Mg. Recall that without control e = y — r = G4d — r, and with feedback
control e = S(Gqd — r). Thus, feedback control improves performance in
terms of reducing |e| at all frequencies where |S| < 1. Usually, |S| is small
at low frequencies, for example, |S(0)| = 0 for systems with integral action.
But because all real systems are strictly proper we must at high frequencies
have that L — 0 or equivalently S — 1. At intermediate frequencies one
cannot avoid in practice a peak value, Mg, larger than 1 (e.g., see the
argument following (2.40)). Thus, there is an intermediate frequency range
where feedback control degrades performance, and the value of Mg is a
measure of the worst-case performance degradation. One may also view Mg as
a robustness measure, as is now explained. To maintain closed-loop stability
the number of encirclements of the critical point —1 by L(jw) must not change;
so we want L to stay away from this point. The smallest distance between
L(jw) and the -1 point is M;l, and therefore for robustness, the smaller Mg,
the better.

There is a close relationship between these maximums peaks and the gain
and phase margins. Specifically, for a given Mg we are guaranteed

Mg
M > ~
G = Ms-1

1
PM > 2arcsin(=—

QMS) > s [rad] (2.40)

For example, with Mg = 2 we are guaranteed GM> 2 and PM> 29.0°.
Similarly, for a given value of My we are guaranteed

1 1 1
>14 —; > in(—— — .
GM >1 ; PM > 2 arcsm(2 ) > [rad] (2.41)

and therefore with M7 = 2 we have GM> 1.5 and PM> 29.0°.

Proof of (2.40) and (2.41:. To derive the GM-inequalities notice that L(jwiso) =
—1/GM (since GM= 1/|L(jwis0)| and L is real and negative at wigp), from which
we get
=l S(jwise) = ——— (2.42)
= 5 180) = .
GM -1’ 1— &

T'(jwiso)

and the results follow.
To derive the PM-inequalities in (2.40) and (2.41) consider Figure 2.13 where we
have |S(jw.)| = 1/|1 + L(j/we)| = 1/| = 1 — L(jw.)| and we obtain

1

ISGeo)l = 1T (o)l = 5oy

(2.43)

and the inequalities follow. Alternative formulae, which are sometimes used, follow

from the identity 2sin(PM/2) = 1/2(1 — cos(PM)). O

We note with interest that (2.42) requires |S| to be larger than 1 at
frequency wigo. This means that provided wigo exists, that is, L(jw) has
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Figure 2.13: At frequency w. we see from the figure that |1+ L(jw.)| = 2sin(PM/2).

more than —180° phase lag at some frequency (which is the case for any
real system), then the peak of |S(jw) must exceed 1.

In conclusion, we see that specifications on the peaks of |S(jw)| or |T'(jw)
(Mg or Mr), can make specifications on the gain and phase margins
unnecessary. For instance, requiring Mg < 2 implies the common rules of
thumb GM> 2 and PM> 30°.

2.4.4 Relationship between time and frequency domain
peaks

For a change in reference r, the output is y(s) = T(s)r(s). Is there any
relationship between the frequency domain peak of T'(jw), My, and any
characteristic of the time domain step response, for example the overshoot or
the total variation? To answer this consider a prototype second-order system
with complementary sensitivity function

1

T()= —
(s) 7252 + 27(s + 1

(2.44)

For underdamped systems with ( < 1 the poles are complex and yield
oscillatory step responses. With r(¢) = 1 (a unit step change) the values of the
overshoot and total variation for y(¢) are given, together with My and Mg,
as a function of ¢ in Table 2.1. From Table 2.1, we see that the total variation
TV correlates quite well with Mp. This is further confirmed by (A.93) and
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Table 2.1: Peak values and total variation of prototype second-order system

Time domain Frequency domain

¢ Overshoot | Total variation || Mt Mg
2.0 1 1 1 1.05
1.5 1 1 1 1.08
1.0 1 1 1 1.15
0.8 1.02 1.03 1 1.22
0.6 1.09 1.21 1.04 1.35
0.4 1.25 1.68 1.36 1.66
0.2 1.53 3.22 2.55 2.73
0.1 1.73 6.39 5.03 5.12
0.01 1.97 63.7 50.0 50.0

% MATLAB code (Mu toolbox) to generate Table:
tau=1;zeta=0.1;t=0:0.01:100;

T = nd2sys(1, [tauxtau 2*tau*zeta 1]1); S = msub(1,T);
[A,B,C,D]=unpck(T); yl1 = step(A,B,C,D,1,t);
overshoot=max(yl) ,tv=sum(abs(diff(y1)))
Mt=hinfnorm(T,1.e-4) ,Ms=hinfnorm(S,1.e-4)

(2.33) which together yield the following general bounds:
My <TV < (2n+1)My (2.45)

Here n is the order of T'(s), which is 2 for our prototype system in (2.44). Given
that the response of many systems can be crudely approximated by fairly low-
order systems, the bound in (2.45) suggests that My may provide a reasonable
approximation to the total variation. This provides some justification for the
use of Mr (rather than Mg) in classical control to evaluate the quality of the
response.

2.4.5 Bandwidth and crossover frequency

The concept of bandwidth is very important in understanding the benefits
and trade-offs involved when applying feedback control. Above we considered
peaks of closed-loop transfer functions, Mg and My, which are related to the
quality of the response. However, for performance we must also consider the
speed of the response, and this leads to considering the bandwidth frequency
of the system. In general, a large bandwidth corresponds to a faster rise
time, since high frequency signals are more easily passed on to the outputs.
A high bandwidth also indicates a system which is sensitive to noise and to
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parameter variations. Conversely, if the bandwidth is small, the time response
will generally be slow, and the system will usually be more robust.

Loosely speaking, bandwidth may be defined as the frequency range w1, wa)
over which control is effective. In most cases we require tight control at steady-
state so w; = 0, and we then simply call wy = wp the bandwidth.

The word “effective” may be interpreted in different ways, and this may
give rise to different definitions of bandwidth. The interpretation we use is
that control is effective if we obtain some benefit in terms of performance. For
tracking performance the error is e = y — r = —Sr and we get that feedback
is effective (in terms of improving performance) as long as the relative error
e/r = —S is reasonably small, which we may define to be less than 0.707 in
magnitude. We then get the following definition:

Definition 2.1 The (closed-loop) bandwidth, wp, is the frequency where
|S(jw)| first crosses 1/+/2 = 0.707(~ —3 dB) from below.

Another interpretation is to say that control is effective if it significantly
changes the output response. For tracking performance, the output is y = T'r
and since without control y = 0, we may say that control is effective as long
as T is reasonably large, which we may define to be larger than 0.707. This
leads to an alternative definition which has been traditionally used to define
the bandwidth of a control system: The bandwidth in terms of T, wpr, is
the highest frequency at which |T(jw)| crosses 1/v/2 = 0.707(~ =3 dB) from
above. In most cases, the two definitions in terms of S and T yield similar
values for the bandwidth. However, as we demonstrate below, the definition in
terms of 7' may in some cases be a misleading indicator of closed-loop control
performance.

In cases where wp and wpr differ, the situation is generally as follows. Up
to the frequency wg, |S| is less than 0.7, and control is effective in terms of
improving performance. In the frequency range [wg,wpr] control still affects
the response, but does not improve performance — in most cases we find that
in this frequency range |S| is larger than 1 and control degrades performance.
Finally, at frequencies higher than wpr we have S =~ 1 and control has no
significant effect on the response. The situation just described is illustrated in
Example 2.5 below (see Figure 2.15).

The gain crossover frequency, w,., defined as the frequency where |L(jw.))|
first crosses 1 from above, is also sometimes used to define closed-loop
bandwidth. It has the advantage of being simple to compute and usually
gives a value between wp and wpr. Specifically, for systems with PM < 90°
we have

wp < W, < WRBT (2.46)

Proof of (2.46): Note that |L(jwe)| = 150 |S(jwe)| = |T'(jwe)|- Thus, when PM= 90°
we get |S(jwe)| = |T(jwe)| = 0.707 (see (2.43)), and we have wp = w. = wpr. For
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PM< 90° we get |S(jwe)| = |T (jwe)| > 0.707, and since wp is the frequency where
|S(jw)| crosses 0.707 from below we must have wp < w.. Similarly, since wpr is the
frequency where |T'(jw)| crosses 0.707 from above, we must have wpr > we. m]

Another important frequency is the phase crossover frequency, wiso, defined
as the first frequency where the Nyquist curve of L(jw) crosses the negative
real axis between —1 and 0. From (2.42) we get that wigo > wpr for
GM> 2414, and wigo < wpr for GM< 2.414, and since in many cases the
gain margin is about 2.4 we conclude that wigp is usually close to wpyp. It is
also interesting to note from (2.42) that at wigo the phase of T (and of L)
is —180°, so from y = Tr we conclude that at frequency w;go the tracking
response is completely out of phase. Since as just noted wpr is often close to
w180, this further illustrates that wgy may be a poor indicator of the system
bandwidth.

In conclusion, wp (which is defined in terms of S) and also w, (in terms of
L) are good indicators of closed-loop performance, while wpr (in terms of T')
may be misleading in some cases.

Example 2.5 Comparison of wg and wpr as indicators of performance.
An ezample where wpr 1s a poor indicator of performance is the following:
—s+z —s+z 1

L= s T'= ; =0.1 =1 24
s(rs+712+2)’ stz s+l 01,7 (247)

For this system, both L and T have a RHP-zero at z = 0.1, and we have GM= 2.1,
PM=60.1°, Ms = 1.93 and Mr = 1. We find that wp = 0.036 and w. = 0.054 are
both less than z = 0.1 (as one should ezpect because speed of response is limited by
the presence of RHP-zeros), whereas wpr = 1/7 = 1.0 is ten times larger than z.
The closed-loop response to a unit step change in the reference is shown in Figure
2.14. The rise time is 31.0 s, which is close to 1/wp = 28.0s, but very different from
1/wpr = 1.0s, dllustrating that wp is a better indicator of closed-loop performance
than wpr.

_1 Il Il Il Il Il Il Il Il Il
0 5 10 15 20... 25{ 30 35 40 45 50
Time [sec]

—s+0.1 1
s4+0.1 s+1°

Figure 2.14: Step response for system 7" =
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Figure 2.15: Plot of [S| and |T'| for system 7' = =*t0d o

The Bode plots of S and T are shown in Figure 2.15. We see that |T| = 1 up to
about wer. However, in the frequency range from wp to wer the phase of T (not
shown,) drops from about —40° to about —220°, so in practice tracking is poor in
this frequency range. For example, at frequency wiso = 0.46 we have T =~ —0.9, and
the response to a sinusoidally varying reference r(t) = sinwisot is completely out of
phase, i.e., y(t) = —0.97(t).

We thus conclude that |T'| by itself is not a good indicator of performance;
we must also consider its phase. The reason is that we want 7' & 1 in order
to have good performance, and it is not sufficient that || ~ 1. On the other
hand, |S| by itself is a reasonable indicator of performance; it is not necessary
to consider its phase. The reason for this is that for good performance we
want S close to 0 and this will be the case if |S| = 0 irrespective of the phase
of S.

2.5 Controller design

We have considered ways of evaluating performance, but one also needs
methods for controller design. The Ziegler-Nichols’ method used earlier is
well suited for on-line tuning, but most other methods involve minimizing
some cost function. The overall design process is iterative between controller
design and performance (or cost) evaluation. If performance is not satisfactory
then one must either adjust the controller parameters directly (for example,
by reducing K. from the value obtained by the Ziegler-Nichols’ rules) or
adjust some weighting factor in an objective function used to synthesize the
controller.

There exists a large number of methods for controller design and some of
these will be discussed in Chapter 9. In addition to heuristic function rules and
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on-line tuning we can distinguish between three main approaches to controller
design:

1. Shaping of transfer functions. In this approach the designer specifies
the magnitude of some transfer function(s) as a function of frequency, and
then finds a controller which gives the desired shape(s).

(a) Loop shaping. This is the classical approach in which the magnitude
of the open-loop transfer function, L(jw), is shaped. Usually no
optimization is involved and the designer aims to obtain |L(jw)| with
desired bandwidth, slopes etc. We will look at this approach in detail
later in this chapter. However, classical loop shaping is difficult to apply
for complicated systems, and one may then instead use the Glover-
McFarlane H ., loop-shaping design presented in Chapter 9. The method
consists of a second step where optimization is used to make an initial
loop-shaping design more robust.

(b) Shaping of closed-loop transfer functions, such as S, T and KS.
Optimization is usually used, resulting in various H~, optimal control
problems such as mixed weighted sensitivity; more on this later.

2. The signal-based approach. This involves time domain problem

formulations resulting in the minimization of a norm of a transfer function.
Here one considers a particular disturbance or reference change and then
one tries to optimize the closed-loop response. The “modern” state-space
methods from the 1960’s, such as Linear Quadratic Gaussian (LQG)
control, are based on this signal-oriented approach. In LQG the input
signals are assumed to be stochastic (or alternatively impulses in a
deterministic setting) and the expected value of the output variance (or
the 2-norm) is minimized. These methods may be generalized to include
frequency dependent weights on the signals leading to what is called the
Wiener-Hopf (or Hz-norm) design method.
By considering sinusoidal signals, frequency-by-frequency, a signal-based
H o~ optimal control methodology can be derived in which the H,, norm of
a combination of closed-loop transfer functions is minimized. This approach
has attracted significant interest, and may be combined with model
uncertainty representations, to yield quite complex robust performance
problems requiring p-synthesis; an important topic which will be addressed
in later chapters.

3. Numerical optimization. This often involves multi-objective optimiza-
tion where one attempts to optimize directly the true objectives, such as
rise times, stability margins, etc. Computationally, such optimization prob-
lems may be difficult to solve, especially if one does not have convexity.
Also, by effectively including performance evaluation and controller de-
sign in a single step procedure, the problem formulation is far more criti-
cal than in iterative two-step approaches. The numerical optimization ap-

44 MULTIVARIABLE FEEDBACK CONTROL

proach may also be performed on-line, which might be useful when dealing
with cases with constraints on the inputs and outputs. On-line optimiza-
tion approaches such as model predictive control are likely to become more
popular as faster computers and more efficient and reliable computational
algorithms are developed.

2.6 Loop shaping

In the classical loop-shaping approach to controller design, “loop shape” refers
to the magnitude of the loop transfer function L = GK as a function of
frequency. An understanding of how K can be selected to shape this loop
gain provides invaluable insight into the multivariable techniques and concepts
which will presented later in the book, and so we will discuss loop shaping in
some detail in the next two sections.

2.6.1 Trade-offs in terms of L

Recall equation (2.19), which yields the closed-loop response in terms of the
control error e =y — r:

e=—(T+L)'r+(T+L)"'Ged-(I+L)"'Ln (2.48)
N e N e’
S S T

For “perfect control” we want e = y — r = 0; that is, we would like
ex0-d+0-r4+0-n (2.49)

The first two requirements in this equation, namely disturbance rejection and
command tracking, are obtained with S = 0, or equivalently, T' &~ I. Since
S = (I + L)1, this implies that the loop transfer function L must be large
in magnitude. On the other hand, the requirement for zero noise transmission
implies that T' ~ 0, or equivalently, S = I, which is obtained with L = 0. This
illustrates the fundamental nature of feedback design which always involves a
trade-off between conflicting objectives; in this case between large loop gains
for disturbance rejection and tracking, and small loop gains to reduce the
effect of noise.

It is also important to consider the magnitude of the control action u (which
is the input to the plant). We want u small because this causes less wear and
saves input energy, and also because u is often a disturbance to other parts
of the system (e.g. consider opening a window in your office to adjust your
body temperature and the undesirable disturbance this will impose on the air
conditioning system for the building). In particular, we usually want to avoid
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fast changes in u. The control action is given by u = K(r — y,,) and we find
as expected that a small u corresponds to small controller gains and a small
L=_GK.

The most important design objectives which necessitate trade-offs in
feedback control are summarized below:

1. Performance, good disturbance rejection: needs large controller gains, i.e.

L large.

Performance, good command following: L large.

Stabilization of unstable plant: L large.

Mitigation of measurement noise on plant outputs: L small.

Small magnitude of input signals: K small and L small.

Physical controller must be strictly proper: K — 0 at high frequencies.

Nominal stability (stable plant): L small (because of RHP-zeros and time

delays).

8. Robust stability (stable plant): L small (because of uncertain or neglected
dynamics).

Nt W

Fortunately, the conflicting design objectives mentioned above are generally
in different frequency ranges, and we can meet most of the objectives by using
a large loop gain (|L| > 1) at low frequencies below crossover, and a small
gain (|L| < 1) at high frequencies above crossover.

2.6.2 Fundamentals of loop-shaping design

By loop shaping one usually means a design procedure that involves explicitly
shaping the magnitude of the loop transfer function, |L(jw)|. Here L(s) =
G(s)K(s) where K(s) is the feedback controller to be designed and G(s)
is the product of all other transfer functions around the loop, including
the plant, the actuator and the measurement device. Essentially, to get the
benefits of feedback control we want the loop gain, |L(jw)|, to be as large
as possible within the bandwidth region. However, due to time delays, RHP-
zeros, unmodelled high-frequency dynamics and limitations on the allowed
manipulated inputs, the loop gain has to drop below one at and above
some frequency which we call the crossover frequency w.. Thus, disregarding
stability for the moment, it is desirable that |L(jw)| falls sharply with
frequency. To measure how | L| falls with frequency we consider the logarithmic
slope N = dIn|L|/dInw. For example, a slope N = —1 implies that |L| drops
by a factor of 10 when w increases by a factor of 10. If the gain is measured
in decibels (dB) then a slope of N = —1 corresponds to —20 dB/ decade. The
value of — NV at higher frequencies is often called the roll-off rate.

The design of L(s) is most crucial and difficult in the crossover region
between w, (where |L| = 1) and w;gg (where ZL = —180°). For stability, we at
least need the loop gain to be less than 1 at frequency wisgo, i.e., |L(jwiso)| < 1.
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Thus, to get a high bandwidth (fast response) we want wygo large, that is, we
want the phase lag in L to be small. Unfortunately, this is not consistent with
the desire that |L(jw)| should fall sharply. For example, the loop transfer
function L = 1/s™ (which has a slope N = —n on a log-log plot) has a phase
LL = —n - 90°. Thus, to have a phase margin of 45° we need /L > —135°,
and the slope of |L| cannot exceed N = —1.5.

In addition, if the slope is made steeper at lower or higher frequencies, then
this will add unwanted phase lag at intermediate frequencies. As an example,
consider L;(s) given in (2.13) with the Bode plot shown in Figure 2.3. Here
the slope of the asymptote of |L| is —1 at the gain crossover frequency (where
|Li(jw.)| = 1), which by itself gives —90° phase lag. However, due to the
influence of the steeper slopes of —2 at lower and higher frequencies, there is
a “penalty” of about —35° at crossover, so the actual phase of L; at w,. is
approximately —125°.

The situation becomes even worse for cases with delays or RHP-zeros in
L(s) which add undesirable phase lag to L without contributing to a desirable
negative slope in L. At the gain crossover frequency w,, the additional phase
lag from delays and RHP-zeros may in practice be —30° or more.

In summary, a desired loop shape for |L(jw)| typically has a slope of about
—1 in the crossover region, and a slope of —2 or higher beyond this frequency,
that is, the roll-off is 2 or larger. Also, with a proper controller, which is
required for any real system, we must have that L = GK rolls off at least
as fast as G. At low frequencies, the desired shape of |L| depends on what
disturbances and references we are designing for. For example, if we are
considering step changes in the references or disturbances which affect the
outputs as steps, then a slope for |L| of —1 at low frequencies is acceptable.
If the references or disturbances require the outputs to change in a ramp-like
fashion then a slope of —2 is required. In practice, integrators are included in
the controller to get the desired low-frequency performance, and for offset-free
reference tracking the rule is that

o L(s) must contain at least one integrator for each integrator in r(s).

To see this, let L(s) = Z(s)/s’” where E(O) is nonzero and finite and ny is
the number of integrators in L(s) — sometimes ny is called the system type.
Consider a reference signal of the form r(s) = 1/s"". For example, if r(t) is
a unit step then r(s) = 1/s (n, = 1), and if r(¢) is a ramp then r(s) = 1/s>
(n, = 2). The final value theorem for Laplace transforms is

lim e(t) = lim se(s) (2.50)

t—o0 5—0
In our case, the control error is
1 gnI—nr

e(s) = —TL(S)T(S =

sy L(s)
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and to get zero offset (i.e. e(t = oo) = 0) we must from (2.50) require n; > n,,
and the rule follows. In Section 2.6.4, we discuss how to specify the loop shape
when disturbance rejection is the primary objective of control.

In conclusion, one can define the desired loop transfer function in terms of
the following specifications:

1. The gain crossover frequency, w,, where |L(jw.)| = 1.

2. The shape of L(jw), e.g., in terms of the slope of |L(jw)| in certain
frequency ranges. Typically, we desire a slope of about N = —1 around
crossover, and a larger roll-off at higher frequencies. The desired slope at
lower frequencies depends on the nature of the disturbance or reference
signal.

3. The system type, defined as the number of pure integrators in L(s).

Loop-shaping design is typically an iterative procedure where the designer
shapes and reshapes |L(jw)| after computing the phase and gain margins,
the peaks of closed-loop frequency responses (M and Mg), selected closed-
loop time responses, the magnitude of the input signal, etc. The procedure is
illustrated next by an example.

Example 2.6 Loop-shaping design for the inverse response process.
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Figure 2.16: Frequency response of L(s) in (2.51) for loop-shaping design with
K. = 0.05. (GM= 2.92, PM= 54°, w, = 0.15, wiso = 0.43, Ms = 1.75, Mr = 1.11)

We will now design a loop-shaping controller for the example process in (2.27)
which has a RHP-zero at s = 0.5. The RHP-zero limits the achievable bandwidth
and so the crossover region (defined as the frequencies between w. and wigo) will
be at about 0.5 rad/s. We only require the system to have one integrator (type 1
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Figure 2.17: Response to step in reference for loop-shaping design.
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Figure 2.18: Magnitude Bode plot of controller (2.52) for loop-shaping design.

system), and therefore a reasonable approach is to let the loop transfer function have

a slope of —1 at low frequencies, and then to roll off with a higher slope at frequencies
beyond 0.5 rad/s. We choose the following loop-shape

L(s) = 3K (—25+1)

“5(25+1)(0.335 + 1) (2.51)

The frequency response (Bode plots) of L is shown in Figure 2.16. The asymptotic
slope of |L| is —1 up to 3 rad/s where it changes to —2. The controller corresponding
to the loop-shape in (2.51) is

K(s) = K. (10s +1)(5s + 1)

K. =0.05 2.52
“s(25+1)(0.33s +1)" ¢ (2:52)

The controller has zeros at the locations of the plant poles. This is desired in this case
because we do not want the slope of the loop shape to drop at the break frequencies
1/10 = 0.1 [rad/s] and 1/5 = 0.2 [rad/s] just before crossover. The controller
gain K. was selected to get a reasonable trade-off between speed of response and
the robustness margin to instability. The phase of L is —90° at low frequency, and
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at w = 0.5 [rad/s] the additional contribution from the term _Zi:_"il in (2.51) is
—90°, so for stability we need w. < 0.5 [rad/s]. The selection of K. = 0.05 yields
we = 0.15 [rad/s] corresponding to GM= 2.92 and PM=54°. The corresponding time
response is shown in Figure 2.17. It is seen to be much better than the responses with
either the simple Pl-controller in Figure 2.7 or with the P-controller in Figure 2.5.
Figure 2.17 also shows that the magnitude of the input signal is reasonable (assuming
the signals have been scaled such that we want the input to be less than about 1 in
magnitude). This means that the controller gain is not too large at high frequencies.
The magnitude Bode plot for the controller (2.52) is shown in Figure 2.18. It is
interesting to note that in the crossover region around w = 0.5 [rad/s] the controller
gain 18 quite constant, around 1 in magnitude, which is similar to the “best” gain
found using a P-controller (see Figure 2.5).

Limitations imposed by RHP-zeros and time delays.

Based on the above loop-shaping arguments we can now examine how the
presence of delays and RHP-zeros limit the achievable control performance.
We have already argued that if we want the loop shape to have a slope of
—1 around crossover (w.), with preferably a steeper slope before and after
crossover, then the phase lag of L at w. will necessarily be at least —90°,
even when there are no RHP-zeros or delays. Therefore, if we assume that for
performance and robustness we want a phase margin of about 35° or more,
then the additional phase contribution from any delays and RHP-zeros at
frequency w, cannot exceed about —55°.

First consider a time delay 6. It yields an additional phase contribution of
—6w, which at frequency w = 1/6 is —1 rad = —57° (which is more than —55°).
Thus, for acceptable control performance we need w. < 1/6, approximately.

Next consider a real RHP-zero at s = z. To avoid an increase in slope caused
by this zero we place a pole at s = —z such that the loop transfer function
contains the term _si";z, the form of which is referred to as all-pass since its
magnitude equals 1 at all frequencies. The phase contribution from the all-
pass term at w = z/2 is —2arctan(0.5) = —53° (which is close to —55°), so
for acceptable control performance we need w. < z/2, approximately.

2.6.3 Inverse-based controller design

In Example 2.6, we made sure that L(s) contained the RHP-zero of G(s),
but otherwise the specified L(s) was independent of G(s). This suggests the
following possible approach for a minimum-phase plant (i.e, one with no RHP-
zeros or time delays). Select a loop shape which has a slope of —1 throughout
the frequency range, namely

L(s) =22 (2.53)
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where w, is the desired gain crossover frequency. This loop shape yields a
phase margin of 90° and an infinite gain margin since the phase of L(jw)
never reaches —180°. The controller corresponding to (2.53) is
We 1

K(s) = ?G’ (s) (2.54)
That is, the controller inverts the plant and adds an integrator (1/s). This
is an old idea, and is also the essential part of the IMC (Internal Model
Control) design procedure of Morari (Morari and Zafiriou, 1989) which has
proved successful in many applications. However, there are at least two good
reasons for why this controller may not be a good choice:

1. The controller will not be realizable if G(s) has more poles than zeros, and
may in any case yield large input signals. These problems may be partly
fixed by adding high-frequency dynamics to the controller.

2. The loop shape resulting from (2.53) is not generally desirable, unless the
references and disturbances affect the outputs as steps. This is illustrated
by the following example.

Example 2.7 Disturbance process. We now introduce our second main
example process and control problem in which disturbance rejection is an important
objective in addition to command tracking. We assume that the plant has been
appropriately scaled as outlined in Section 1.4.

Problem formulation. Consider the disturbance process described by

200 1 100
)= im0 “O = 041

(2.55)

with time in seconds. A block diagram is shown in Figure 2.20. The control objectives
are:

1. Command tracking: The rise time (to reach 90% of the final value) should be less
than 0.3 [s] and the overshoot should be less than 5%.

2. Disturbance rejection: The output in response to a unit step disturbance should
remain within the range [—1,1] at all times, and it should return to 0 as quickly
as possible (|y(t)| should at least be less than 0.1 after 3 s).

3. Input constraints: u(t) should remain within the range [—1,1] at all times to avoid
input saturation (this is easily satisfied for most designs).

Analysis. Since Gq(0) = 100 we have that without control the output response to a
unit disturbance (d = 1) will be 100 times larger than what is deemed to be acceptable.
The magnitude |Gq(jw)| is lower at higher frequencies, but it remains larger than 1
up to wqg = 10 [rad/s] (where |Gq(jwq)| = 1). Thus, feedback control is needed up to
frequency wa, so we need we to be approzimately equal to 10 rad/s for disturbance
rejection. On the other hand, we do not want w. to be larger than necessary because
of sensitivity to noise and stability problems associated with high gain feedback. We
will thus aim at a design with w. &~ 10 [rad/s].
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Inverse-based controller design. We will consider the “inverse-based” design as
given by (2.53) and (2.54) with we. = 10. This yields an unrealizable controller and
therefore we choose to approzimate the plant term (0.05s + 1)* by (0.1s + 1) and
then in the controller we let this term be effective over one decade, i.e., we use
(0.1s 4+ 1)/(0.01s + 1) to give the realizable design

we10s+1 0.1s+1 We 0.1s+1
K = — —, L = — =10
o) =500t L) T S s 00D -
(2.56)
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1 1
= =
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(a) Tracking response. (b) Disturbance response.

Figure 2.19: Responses with “inverse-based” controller Ko(s) for disturbance
process.

The response to a step reference is excellent as shown in Figure 2.19 (a). The rise
time is about 0.16 s and there is no overshoot so the specifications are more than
satisfied. However, the response to a step disturbance (Figure 2.19 (b)) is much too
sluggish. Although the output stays within the range [—1,1], it is still 0.75 at t = 3
s (whereas it should be less than 0.1). Because of the integral action the output does
eventually return to zero, but it does not drop below 0.1 until after 23 s.

The above example illustrates that the simple “inverse-based” design
method where L has a slope of about N = —1 at all frequencies, does
not always yield satisfactory designs. The objective of the next section is
to understand why the disturbance response was so poor, and to propose a
more desirable loop shape for disturbance rejection.

2.6.4 Loop shaping for disturbance rejection

At the outset we assume that the disturbance has been scaled such that at each
frequency |d(w)| < 1, and the main control objective is to achieve |e(w)| < 1.
With feedback control we have e = y = SG4d, so to achieve |e(w)| < 1 for
|d(w)] = 1 (the worst-case disturbance) we require |SG4(jw)| < 1,Vw, or
equivalently,

1+ L|>|G4 VYw (2.57)
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At frequencies where |G4| > 1, this is approximately the same as requiring
|L| > |Gq4|. However, in order to minimize the input signals, thereby reducing
the sensitivity to noise and avoiding stability problems, we do not want to use
larger loop gains than necessary (at least at frequencies around crossover).
A reasonable initial loop shape Lmin(s) is then one that just satisfies the
condition

| Lusinl % |Gl (2.58)

where the subscript min signifies that L,;, is the smallest loop gain to satisfy
le(w)] < 1. Since L = GK the corresponding controller with the minimum
gain satisfies

| Kmin| = |GGy (2.59)

In addition, to improve low-frequency performance (e.g. to get zero steady-
state offset), we often add integral action at low frequencies, and use

S+ wy

1] = 1226 Gl (2.60)

This can be summarized as follows:

e For disturbance rejection a good choice for the controller is one which
contains the dynamics (G4) of the disturbance and inverts the dynamics
(G) of the inputs (at least at frequencies just before crossover).

e For disturbances entering directly at the plant output, G4 = 1, and we
get [Kmin| = |G|, so an inverse-based design provides the best trade-off
between performance (disturbance rejection) and minimum use of feedback.

e For disturbances entering directly at the plant input (which is a common
situation in practice — often referred to as a load disturbance), we have
G4 = G and we get |Kpin| = 1, so a simple proportional controller with
unit gain yields a good trade-off between output performance and input
usage.

e Notice that a reference change may be viewed as a disturbance directly
affecting the output. This follows from (1.17), from which we get that a
maximum reference change r = R may be viewed as a disturbance d = 1
with G4(s) = —R where R is usually a constant. This explains why selecting
K to be like G~! (an inverse-based controller) yields good responses to step
changes in the reference.

In addition to satisfying |L| ~ |Gq4| (eq. 2.58) at frequencies around
crossover, the desired loop-shape L(s) may be modified as follows:

1. Around crossover make the slope NV of |L| to be about —1. This is to achieve
good transient behaviour with acceptable gain and phase margins.

2. Increase the loop gain at low frequencies as illustrated in (2.60) to improve
the settling time and to reduce the steady-state offset. Adding an integrator
yields zero steady-state offset to a step disturbance.
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3. Let L(s) roll off faster at higher frequencies (beyond the bandwidth) in
order to reduce the use of manipulated inputs, to make the controller
realizable and to reduce the effects of noise.

The above requirements are concerned with the magnitude, |L(jw)|. In
addition, the dynamics (phase) of L(s) must be selected such that the closed-
loop system is stable. When selecting L(s) to satisfy |L| &~ |G4| one should
replace G4(s) by the corresponding minimum-phase transfer function with the
same magnitude, that is, time delays and RHP-zeros in G4(s) should not be
included in L(s) as this will impose undesirable limitations on feedback. On
the other hand, any time delays or RHP-zeros in G(s) must be included in
L = GK because RHP pole-zero cancellations between G(s) and K (s) yield
internal instability, see Chapter 4.

Remark. The idea of including a disturbance model in the controller is well known
and is more rigorously presented in, for example, research on the internal model
principle (Wonham, 1974), or the internal model control design for disturbances
(Morari and Zafiriou, 1989). However, our development is simple, and sufficient for
gaining the insight needed for later chapters.

Example 2.8 Loop-shaping design for the disturbance process

ld
0.5
T + w i-'- p Y
~ K(s) (0.05;1)2 + 15231 >

Figure 2.20: Block diagram representation of the disturbance process in (2.55)

Consider again the plant described by (2.55). The plant can be represented by
the block diagram in Figure 2.20, and we see that the disturbance enters at the plant
input in the sense that G and G4 share the same dominating dynamics as represented
by the term 200/(10s + 1).

Step 1. Initial design. From (2.58) we know that a good initial loop shape looks like
|Lmin| = |G4| = %| at frequencies up to crossover. The corresponding controller
is K(5) = G™ Linin = 0.5(0.055 4 1)%. This controller is not proper (i.e, it has more
zeros than poles), but since the term (0.05s+1)> only comes into effect at 1/0.05 = 20
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[rad/s], which is beyond the desired gain crossover frequency w. = 10 [rad/s], we may
replace it by a constant gain of 1 resulting in a proportional controller

Ki(s) =0.5 (2.61)

The magnitude of the corresponding loop transfer function, |Li(jw)|, and the
response (y1(t)) to a step change in the disturbance are shown in Figure 2.21. This
simple controller works surprisingly well, and for t < 3s the response to a step change
in the disturbance response is not much different from that with the more complicated
inverse-based controller Ko(s) of (2.56) as shown earlier in Figure 2.19. However,
there is no integral action and yi(t) — 1 as t — co.

10 15
Ls,L3
o 2 ’ . y
<10
Z Ly
E}
<10 0.5
10
Y3
5 Ls Y2
10° fol 0
107 10’ 10? 0 1 2 3
Frequency [rad/s] Time [sec]
(a) Loop gains. (b) Disturbance responses.

Figure 2.21: Loop shapes and disturbance responses for controllers K1, K> and K3
for the disturbance process.

Step 2. More gain at low frequency. To get integral action we multiply the
controller by the term 5'*'%, where wr s the frequency up to which the term is
effective (the asymptotic value of the term is 1 for w > wr). For performance we
want large gains at low frequencies, so we want wr to be large, but in order to
maintain an acceptable phase margin (which is 44.7° for controller K1) the term
should not add too much negative phase at frequency we, so wr should not be too
large. A reasonable value is wr = 0.2w. for which the phase contribution from 5+;JI
is arctan(1/0.2) — 90° = —11° at we. In our case we = 10 [rad/s], so we select the
following controller

s+ 2
s

Ka(s) =0.5 (2.62)

The resulting disturbance response (y2) in shown in Figure 2.21 satisfies the
requirement that |y(t)] < 0.1 at time t = 3 s, but y(t) ezceeds 1 for a short time.
Also, the response is slightly oscillatory as might be expected since the phase margin
is only 31° and the peak values for |S| and |T| are Ms = 2.28 and M = 1.89 (see
Table 2.2).

Step 3. High-frequency correction. 7o increase the phase margin and improve
the transient response we supplement the controller with “derivative action” by
multiplying Ka(s) by a lead-lag term which is effective over one decade starting
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at 20 rad/s:
s+2 0.05s+1

s 0.005s +1
The corresponding disturbance response (ys) is seen to be faster initially and ys(t)
stays below 1.

Ks(s) = 0.5 (2.63)

Table 2.2: Alternative loop-shaping designs for the disturbance process

Reference Disturbance
GM PM We Ms | Mr t, Ymax Ymax | Y(t =3)
Spec.— ~ 10 <3| <105 <1 <0.1
Ko 9.95 | 72.9° | 114 | 1.34 1 .16 1.00 0.95 .75
K 4.04 | 44.7° 8.48 1.83 | 1.33 21 1.24 1.35 .99
K> 3.24 | 30.9° 8.65 2.28 | 1.89 .19 1.51 1.27 .001
K3 19.7 | 50.9° 9.27 1.43 | 1.23 .16 1.24 0.99 .001

Table 2.2 summarizes the results for the four loop-shaping designs; the inverse-
based design Ko for reference tracking and the three designs Ki, K> and K3
for disturbance rejection. Although controller Ks satisfies the requirements for
disturbance rejection, it is not satisfactory for reference tracking; the overshoot is
24% which 1is significantly higher than the mazimum value of 5%. On the other
hand, the inverse-based controller Ko inverts the term 1/(10s + 1) which is also in
the disturbance model, and therefore yields a very sluggish response to disturbances
(the output is still 0.75 at t = 3 s whereas it should be less than 0.1).

2.6.5 Two degrees-of-freedom design

For the disturbance process example we see from Table 2.2 that none of
the controller designs meet all the objectives for both reference tracking and
disturbance rejection. The problem is that for reference tracking we typically
want the controller to look like %Gil see (2.54), whereas for disturbance
rejection we want the controller to look like %GilGd, see (2.60). We cannot
achieve both of these simultaneously with a single (feedback) controller.

The solution is to use a two degrees-of-freedom controller where the
reference signal r and output measurement y,, are independently treated by
the controller, rather than operating on their difference r — y,,. There exist
several alternative implementations of a two degrees-of-freedom controller.
The most general form is shown in Figure 1.3(b) on page 12 where the
controller has two inputs (r and y,,) and one output (u). However, the
controller is often split into two separate blocks as shown in Figure 2.22 where
K, denotes the feedback part of the controller and K, a reference prefilter. The
feedback controller K, is used to reduce the effect of uncertainty (disturbances
and model error) whereas the prefilter K, shapes the commands to improve
performance. In general, it is optimal to design the combined two degrees-of-
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Figure 2.22: Two degrees-of-freedom controller.

freedom controller K in one step. However, in practice K, is often designed
first for disturbance rejection, and then K, is designed to improve reference
tracking. This is the approach taken here.

Let 7= L(1+ L)™' (with L = GK,) denote the complementary sensitivity
function for the feedback system. Then for a one degree-of-freedom controller
y = T'r, whereas for a two degrees-of-freedom controller y = TK,r. If the
desired transfer function for reference tracking (often denoted the reference
model) is Tyef, then the corresponding ideal reference prefilter K, satisfies
TK, = ref, OT

K. (s) = T (s)Tret (5) (2.64)

Thus, in theory we may design K,(s) to get any desired tracking response
Tref(s). However, in practice it is not so simple because the resulting K,.(s)
may be unstable (if G(s) has RHP-zeros) or unrealizable, and relatively
uncertain if T'(s) is not known exactly. A convenient practical choice of
prefilter is the lead-lag network

TleadS + 1
K, = — 2.65
(5 = Dt (2.65

Here we select Tieaq > Tiag if we want to speed up the response, and Tieaqa < Tiag
if we want to slow down the response. If one does not require fast reference
tracking, which is the case in many process control applications, a simple lag
is often used (with 7Tjeqq = 0).

Example 2.9 Two degrees-of-freedom design for the disturbance process

In Ezample 2.8 we designed a loop-shaping controller K3(s) for the plant in (2.55)
which gave good performance with respect to disturbances. However, the command
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y3(t)

y3(t)(two degrees-of-freedom)

0.5 b
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Figure 2.23: Tracking responses with the one degree-of-freedom controller (K3)
and the two degrees-of-freedom controller (K3, K,3) for the disturbance process.

tracking performance was not quite acceptable as is shown by ys in Figure 2.23.
The rise time is 0.16 s which is better than the required value of 0.3 s, but the
overshoot is 24% which is significantly higher than the mazimum value of 5%. To
improve upon this we can use a two degrees-of-freedom controller with K, = Kas,
and we design K, (s) based on (2.64) with reference model Trer = 1/(0.1s + 1)
(a first-order response with no overshoot). To get a low-order K,(s), we may
either use the actual T(s) and then use a low-order approzimation of K,(s), or
we may start with a low-order approzimation of T'(s). We will do the latter. From
the step response ys in Figure 2.23 we approximate the response by two parts; a
fast response with time constant 0.1 s and gain 1.5, and a slower response with
time constant 0.5 s and gain —0.5 (the sum of the gains is 1). Thus we use

. . 0.7s+1 . . s
T(s) ~ 0.1lsi1 - O.gsil = 0.1s(+1)8(-(')—.5)s+1)7 from which (2.64) yields Kr(s) = 8.?;1'
Following closed-loop simu(lations we modified this slightly to arrive at the design
0.55s +1 1
Kra(s) = (2.66)

T 0.655+1 0.03s+1

where the term 1/(0.03s + 1) was included to avoid the initial peaking of the input
signal u(t) above 1. The corresponding tracking response is shown in Figure 2.23. The
rise time is 0.25s which is still better than the requirement of 0.3s, and the overshoot
is only 2.3%. The disturbance response is the same as curve ys in Figure 2.21. In
conclusion, we are able to satisfy all specifications using a two degrees-of-freedom
controller.

Loop shaping applied to a flexible structure

The following example shows how the loop-shaping procedure for disturbance
rejection, can be used to design a one degree-of-freedom controller for a very
different kind of plant.

Example 2.10 Loop shaping for a flexible structure
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(a) Magnitude plot of |G| = |Gyq].

Figure 2.24: Flexible structure in (2.67).

Consider the following model of a flexible structure with disturbances occurring at

the plant input
2.5s(s” +1)

(s% 4+ 0.52)(s% + 22)
From the Bode magnitude plot in Figure 2.2 (a) we see that |Gq(jw)] >> 1
around the resonance frequencies of 0.5 and 2 [rad/s], so control is needed at these
frequencies. The dashed line in Figure 2.2/ (b) shows the open-loop response to a
unit step disturbance. The output y(t) is seen to cycle between —2 and 2 (outside
the allowed range —1 to 1), which confirms that control is needed. From (2.59)
a controller which meets the specification |y(w)] < 1 for |d(w)| = 1 is given by
| Kmin (jw)| = |G_1Gd| = 1. Indeed the controller

G(s) = Ga(s) = (2.67)

K(s) =1 (2.68)

turns out to be a good choice as is verified by the closed-loop disturbance response in
Figure 2.2/ (b) (solid line); the output goes up to about 0.5 and then returns to zero.
The fact that the choice L(s) = G(s) gives closed-loop stability is not immediately
obvious since |G| has 4 gain crossover frequencies. However, instability cannot occur
because LG > —180° at all frequencies.

2.6.6 Conclusion loop shaping

The loop-shaping procedure outlined and illustrated by the examples above
is well suited for relatively simple problems, as might arise for stable plants
where L(s) crosses the negative real axis only once. Although the procedure
may be extended to more complicated systems the effort required by the
engineer is considerably greater. In particular, it may be very difficult to
achieve stability.

Fortunately, there exist alternative methods where the burden on the
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engineer is much less. One such approach is the Glover-McFarlane #, loop-
shaping procedure which is discussed in detail in Chapter 9. It is essentially
a two-step procedure, where in the first step the engineer decides on a loop
shape, |L| (denoted the “shaped plant” Gs) as outlined in this section, and
in the second step the optimization provides the necessary phase corrections
to get a stable and robust design. The method is applied to the disturbance
process in Example 9.3 on page 9.3.

Remark. Another design philosophy which deals directly with shaping both the
gain and phase of L(s) is the quantitative feedback theory (QFT), see Horowitz
(1991).

2.7 Shaping closed-loop transfer functions

In this section, we introduce the reader to shaping of closed-loop transfer
functions where we synthesize a controller by minimizing an H., performance
objective. The topic is discussed further in Section 3.4.6 and in more detail in
Chapter 9.

Specifications directly on the open-loop transfer function L = GK, as in
the loop-shaping design procedures of the previous section, make the design
process transparent as it is clear how changes in L(s) affect the controller
K(s) and vice versa. An apparent problem with this approach, however, is
that it does not consider directly the closed-loop transfer functions, such as
S and T, which determine the final response. The following approximations

apply

IL(jw)|>1 = S~L7 Tx1

ILjw)| <1 = S=~1; TxL

but in the crossover region where |L(jw)| is close to 1, one cannot infer
anything about S and T from |L(jw)|. The phase of L(jw) is then crucial.
For example, |S| and |T'| may experience large peaks if L(jw) is close to —1.

An alternative design strategy is to directly shape the magnitudes of closed-
loop transfer functions, such as S(s) and T'(s). Such a design strategy can
be formulated as an #H., optimal control problem, thus automating the
actual controller design and leaving the engineer with the task of selecting
reasonable bounds (“weights”) on the desired closed-loop transfer functions.
Before explaining how this may be done in practice, we discuss the terms H
and 7‘[2.
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2.7.1 The terms H,, and Hs>

The Hoo, norm of a stable scalar transfer function f(s) is simply its peak value
as a function of frequency, that is,

1£(8) oo = max | £ () (2.69)

Strictly speaking, we should here replace “max” (the maximum value) by
“sup” (the supremum, the least upper bound). This is because the maximum
may only be approached as w — oo and may therefore not actually be
achieved. However, for engineering purposes there is no difference between
“sup” and “max”.

The terms Ho norm and Hs control are intimidating at first, and a
name conveying the engineering significance of ., would have been better.
After all, we are simply talking about a design method which aims to press
down the peak(s) of one or more selected transfer functions. However, the
term H,, which is purely mathematical, has now established itself in the
control community. To make the term less forbidding, an explanation of its
background may help. First, the symbol co comes from the fact that the
maximum magnitude over frequency may be written as

o 1/p
max £ = fim ([ 1#Gopas)

Essentially, by raising | f| to an infinite power we pick out its peak value. Next,
the symbol H stands for “Hardy space”, and Hoo in the context of this book
is the set of transfer functions with bounded occ-norm, which is simply the set
of stable and proper transfer functions.

Similarly, the symbol > stands for the Hardy space of transfer functions
with bounded 2-norm, which is the set of stable and strictly proper transfer
functions. The H» norm of a strictly proper stable transfer function is defined
as

I17(s)]2 2 (% /: f(jw)de>1/2 (2.70)

The factor 1/v/2x is introduced to get consistency with the 2-norm of the
corresponding impulse response, see (4.119). Note that the Hs-norm of a
semi-proper (or bi-proper) transfer function (where lims_,o, f(s) is a nonzero
constant) is infinite, whereas its Ho, norm is finite. An example of a semi-
proper transfer function (with an infinite Hs norm) is the sensitivity function
S=(I+GK)™'.

We will now outline H, optimal design, and give an example. We will return
with more details regarding both H, and #, optimal control in Chapter 9.
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2.7.2 Weighted sensitivity

As already discussed, the sensitivity function S is a very good indicator
of closed-loop performance, both for SISO and MIMO systems. The main
advantage of considering S is that because we ideally want S small, it is
sufficient to consider just its magnitude |S|; that is, we need not worry about
its phase. Typical specifications in terms of S include:

1. Minimum bandwidth frequency w}; (defined as the frequency where |S(jw)|
crosses 0.707 from below).

Maximum tracking error at selected frequencies.

System type, or alternatively the maximum steady-state tracking error, A.
Shape of S over selected frequency ranges.

Maximum peak magnitude of S, ||S(jw)||cc < M.

Uk LN

The peak specification prevents amplification of noise at high frequencies,
and also introduces a margin of robustness; typically we select M = 2.
Mathematically, these specifications may be captured simply by an upper
bound, 1/|wp(s)|, on the magnitude of S where wp(s) is a weight selected by
the designer.. The subscript P stands for performance since S is mainly used
as a performance indicator, and the performance requirement becomes

1S(jw)| < 1/lwp(jw)|, Yw (2.71)
& |wpS|<1,Vw & [JwpS)e <1 (2.72)

The last equivalence follows from the definition of the H, norm, and in words
the performance requirement is that the H., norm of the weighted sensitivity,
wpS, must be less than one. In Figure 2.25 (a), an example is shown where
the sensitivity, |S|, exceeds its upper bound, 1/|wp|, at some frequencies.
The resulting weighted sensitivity, |wpS| therefore exceeds 1 at the same
frequencies as is illustrated in Figure 2.25 (b). Note that we usually do not
use a log-scale for the magnitude when plotting weighted transfer functions,
such as |wpS]|.

Weight selection. An asymptotic plot of a typical upper bound, 1/|wp],
is shown in Figure 2.26. The weight illustrated may be represented by

s/M + w3
B

and we see that |wp(jw)|™! is equal to A < 1 at low frequencies, is equal
to M > 1 at high frequencies, and the asymptote crosses 1 at the frequency,
wp, which is approximately the bandwidth requirement. For this weight the
loop shape L = wy/s yields an S which exactly matches the bound (2.72)
at frequencies below the bandwidth and easily satisfies (by a factor M) the
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Figure 2.25: Case where |S| exceeds its bound 1/|wp|, resulting in ||wpS||e > 1.

bound at higher frequencies. This L has a slope in the frequency range below
crossover of N = —1. In some cases, in order to improve performance, we
may want a steeper slope for L (and S) below the bandwidth, and then a
higher-order weight may be selected. A weight which asks for a slope —2 for
L at lower frequencies is

_ (/M2 +wpp)?

~ oA =

wpa(s)

The insight gained from the previous section on loop-shaping design is very
useful for selecting weights. For example, for disturbance rejection we must
satisfy |SGq4(jw)| < 1 at all frequencies (assuming the variables have been
scaled to be less than 1 in magnitude). It then follows that a good initial choice
for the performance weight is to let w,(s) look like |G4(jw)| at frequencies
where |G 4| > 1. In other cases, one may first obtain an initial controller using
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Figure 2.26: Inverse of performance weight. Exact and asymptotic plot of
1/|wp (jw)| in (2.73).

another design procedure, and the resulting sensitivity |S(jw)| may then be
used to select a performance weight for a subsequent H, design.

Exercise 2.4 Make an asymptotic plot of 1/|wp2| in (2.74) and compare with the
asymptotic plot of 1/|wp| in (2.73).

2.7.3 Stacked requirements: mixed sensitivity

The specification || wpS||s < 1 puts a lower bound on the bandwidth, but not
an upper one, and nor does it allow us to specify the roll-off of L(s) above the
bandwidth. To do this one can make demands on another closed-loop transfer
function, for example, on the complementary sensitivity 7' = I — S = GKS.
Also, to achieve robustness or to avoid too large input signals, one may want
to place bounds on the transfer function KS.

For instance, one might specify an upper bound 1/|wr| on the magnitude
of T to make sure that L rolls off sufficiently fast at high frequencies, and
an upper bound, 1/|w,|, on the magnitude of KS to restrict the size of
the input signals, u = KS(r — G4d). To combine these “mixed sensitivity”
specifications, a “stacking approach” is usually used, resulting in the following
overall specification:

UJPS
IN|loo = maxa(N(jw)) <1; N=| wyT (2.75)
¢ wy, KS
We here use the maximum singular value, &(N (jw)), to measure the size of

the matrix N at each frequency. For SISO systems, N is a vector and (V)
is the usual Euclidean vector norm:

&(N) = VwpSP + wr TP + [w, K S (2.76)
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The stacking procedure is selected for mathematical convenience as it does not
allow us to exactly specify the bounds on the individual transfer functions as
described above. For example, assume that ¢, (K) and ¢» (K) are two functions
of K (which might represent ¢1(K) = wpS and ¢5(K) = wrT) and that we
want to achieve

1] <1 and |¢o| <1 (2.77)

This is similar to, but not quite the same as the stacked requirement

o m = VIGE T IBE <1 (2.78)

Objectives (2.77) and (2.78) are very similar when either |¢1| or |¢2| is small,
but in the worst case when |¢1| = |@2|, we get from (2.78) that |¢1| < 0.707
and |@a| < 0.707. That is, there is a possible “error” in each specification
equal to at most a factor v/2 ~ 3 dB. In general, with n stacked requirements
the resulting error is at most /n. This inaccuracy in the specifications is
something we are probably willing to sacrifice in the interests of mathematical
convenience. In any case, the specifications are in general rather rough, and
are effectively knobs for the engineer to select and adjust until a satisfactory
design is reached.

After selecting the form of N and the weights, the H., optimal controller
is obtained by solving the problem

min ||V (Kl (2.79)

where K is a stabilizing controller. Let 79 = ming ||[N(K)||s denote the
optimal H, norm. An important property of H.o-optimal controllers is that
they yield a flat frequency response, that is, 5(N (jw)) = 7o at all frequencies.
The practical implication is that, except for at most a factor /n, the transfer
functions resulting from a solution to (2.79) will be close to 7y times the
bounds selected by the designer. This gives the designer a mechanism for
directly shaping the magnitudes of 5(S), a(T), (KS), and so on. A good
tutorial introduction to Heocontrol is given by Kwakernaak (1993).

Example 2.11 H., mixed sensitivity design for the disturbance process.
Consider again the plant in (2.55), and consider an Ho mized sensitivity S/KS
design in which
| wpS
N= [quS} (2.80)
It was stated earlier that appropriate scaling has been performed so that the inputs
should be about 1 or less in magnitude, and we therefore select a simple input weight
wy, = 1. The performance weight is chosen, in the form of (2.73), as

s/M +wp

M=15 wy=10, A=10""* 2.81
S+WEA7 5,0.)3 07 0 (8)

wp1(s) =



CLASSICAL CONTROL 65

A walue of A =0 would ask for integral action in the controller, but to get a stable
weight and to prevent numerical problems in the algorithm used to synthesize the
controller, we have moved the integrator slightly by using a small non-zero value
for A. This has no practical significance in terms of control performance. The value
wp = 10 has been selected to achieve approzimately the desired crossover frequency
we of 10 rad/s. The Hoo-problem is solved with the p-toolbor in MATLAB using the
commands in table 2.3 (see Section 3.8 for more details).

Table 2.3: MATLAB program to synthesize an H., controller.
% Uses the Mu-toolbox
G=nd2sys(1,conv([10 1],conv([0.05 1],[0.05 11)),200); %Plant is G.
M=1.5; wb=10; A=1.e-4; Wp = nd2sys([1/M wb], [1 wbxA]); Wu = 1; % Weights.
A

% Generalized plant P is found with function sysic:

y
h

systemnames = G Wp Wu’;

inputvar = °[ r(1); u(1)]’;

outputvar = ’[Wp; Wu; r-G]’;
input_to_G = ’[ul’;

input_to Wp = ’[r-G]’;

input_to_Wu = ’[u]’;

sysoutname = ’P’;

cleanupsysic = ’yes’;

sysic;

)

% Find H-infinity optimal controller:
h

nmeas=1; nu=1; gmn=0.5; gmx=20; tol=0.001;
[khinf,ghinf,gopt] = hinfsyn(P,nmeas,nu,gmn,gmx,tol);
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1/wp1 //” l/wpg
» g
16 g ‘ ‘
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10
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Figure 2.27: Inverse of performance weight (dashed line) and resulting sensitivity
function (solid line) for two Hoo designs (1 and 2) for the disturbance process.

For this problem, we achieved an optimal He morm of 1.37, so the weighted

sensitivity requirements are not quite satisfied (see design 1 in Figure 2.27).
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(a) Tracking response. (b) Disturbance response.

Figure 2.28: Closed-loop step responses for two alternative Hoo designs (1 and 2)
for the disturbance process.

Nevertheless, the design seems good with Ms = 1.30, My = 1.0, GM= 8.04,
PM= 71.2° and w. = 7.22, and the tracking response is very good as shown by
curve y1 in Figure 2.28 (a). The design is actually very similar to the loop-shaping
design for references, Ko, which was an inverse-based controller.

However, we see from curve yi in Figure 2.28 (b) that the disturbance response
is very sluggish. If disturbance rejection is the main concern, then from our earlier
discussion in Section 2.6.4 this motivates the need for a performance weight that
specifies higher gains at low frequencies. We therefore try

1/2 N2

wps(s) = % M =15wy =10,A=10"° (2.82)
The inverse of this weight is shown in Figure 2.27, and is seen from the dashed line
to cross 1 in magnitude at about the same frequency as weight wp1, but it specifies
tighter control at lower frequencies. With the weight wp2, we get a design with an
optimal Hoo norm of 2.21, yielding Ms = 1.63, My = 1.43, GM = 4.76, PM = 43.3°
and we. = 11.34. The design is actually very similar to the loop-shaping design
for disturbances, K3. The disturbance response is very good, whereas the tracking
response has a somewhat high overshoot, see curve y2 in Figure 2.28 (a).

In conclusion, design 1 is best for reference tracking whereas design 2 is best for
disturbance rejection. Two get a design with both good tracking and good disturbance
rejection we need a two degrees-of-freedom controller.

2.8 Conclusion

The main purpose of this chapter has been to present the classical ideas and
techniques of feedback control. We have concentrated on SISO systems so
that insights into the necessary design trade-offs, and the design approaches
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available, can be properly developed before MIMO systems are considered. We
introduced the Ho-problem based on weighted sensitivity, for which typical
performance weights are given in (2.73) and (2.74).



3

INTRODUCTION TO
MULTIVARIABLE CONTROL

In this chapter, we introduce the reader to multi-input multi-output (MIMO)
systems. We discuss the singular value decomposition (SVD), multivariable control,
and multivariable RHP-zeros. The need for a careful analysis of the effect of
uncertainty in MIMO systems is motivated by two examples. Finally we describe a
general control configuration that can be used to formulate control problems. In this
chapter we introduce many important topics which are considered in greater detail
later in the book. It is hoped that the chapter should be accessible also to readers
with only a course on classical SISO control as their basis.

3.1 Introduction

We consider a multi-input multi-output (MIMO) plant with m inputs and [
outputs. Thus, the basic transfer function model is y(s) = G(s)u(s), where y
is an I x 1 vector, u is an m x 1 vector and G(s) is an | X m transfer function
matrix.

If we make a change in the first input, u,, then this will generally affect
all the outputs, y1, yo, ..., yi, that is, there is interaction between the inputs
and outputs. A non-interacting plant would result if u; only affects yi, us
only affects y» and so on.

The main difference between a scalar (SISO) system and a MIMO system
is the presence of directions in the latter. Directions are relevant for vectors
and matrices, but not for scalars. However, despite the complicating factor
of directions, most of the ideas and techniques presented in the previous
chapter on SISO systems may be extended to MIMO systems. The singular
value decomposition (SVD) provides a useful way of quantifying multivariable
directionality, and we will see that most SISO results involving the absolute
value (magnitude) may be generalized to multivariable systems by considering
the maximum singular value. An exception to this is Bode’s stability condition
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which has no generalization in terms of singular values. This is related to the
fact that it is difficult to find a good measure of phase for MIMO transfer
functions.

The chapter is organized as follows. We start by presenting some rules
for determining multivariable transfer functions. Although most of the
formulae for scalar systems apply, we must exercise some care since matrix
multiplication is not commutative, that is, in general GK # KG. Then we
introduce the singular value decomposition and show how it may be used to
study directions in multivariable systems. We also give a brief introduction to
multivariable control and decoupling. We then consider a simple plant with a
multivariable RHP-zero and show how the effect of this zero may be shifted
from one output channel to another. After this we discuss robustness, and
study two example plants, each 2 x 2, which demonstrate that the simple gain
and phase margins used for SISO systems do not generalize easily to MIMO
systems. Finally, we consider a general control problem formulation for use
later in the book.

At this point, you may find it useful to browse through Appendix A where
some important mathematical tools are described. Exercises to test your
understanding of this mathematics are given at the end of this chapter.

3.2 Transfer functions for MIMO systems

(a) Cascade system (b) Positive feedback system

Figure 3.1: Block diagrams for the cascade rule and the feedback rule.

The following three rules are useful when evaluating transfer functions for
MIMO systems

Cascade rule. For the cascade (series) interconnection of G1 and G2 in
Figure 3.1 (a), the overall transfer function matriz is G = G2G1 .

Remark. The order of the transfer function matrices in GG = G2G1 (from left to
right) is the reverse of the order in which they appear in the block diagram of
Figure 3.1 (a) (from left to right). This has led some authors to use block diagrams
in which the inputs enter at the right hand side. However, in this case the order of
the transfer function blocks in a feedback path will be reversed compared with their
order in the formula, so no fundamental benefit is obtained.
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Feedback rule. With reference to the positive feedback system in
Figure 8.1 (b) we have v = (I — L)~'u where L = G2G is the transfer
function around the loop.

Push-through rule. For matrices of appropriate dimensions

Gi(I—-GyG)™ = -G1Gy)™'Gy (3.1)

Proof: Equation (3.1) is verified by pre-multiplying both sides by (I — G1G2) and
post-multiplying both sides by (I — G2G1). O

Exercise 3.1 Derive the cascade and feedback rules.

The cascade and feedback rules can be combined into the following MIMO
rule for evaluating closed-loop transfer functions from block diagrams.

MIMO Rule: Start from the output and write down the blocks as you
meet them when moving backwards (against the signal flow), taking the
most direct path towards the input. If you exit from a feedback loop then
include a term (I — L)™1 for positive feedback (or (I+ L)~ for negative
feedback) where L is the transfer function around that loop (evaluated
against the signal flow starting at the point of exit from the loop).

Care should be taken when applying this rule to systems with nested loops.
For such systems it is probably safer to write down the signal equations and
eliminate internal variables to get the transfer function of interest. The rule
is best understood by considering an example.

P22

Pll

Y

+Y

Figure 3.2: Block diagram corresponding to (3.2).

Example 3.1 The transfer function for the block diagram in Figure 3.2 is given

by
z= (P + PoK(I - PaK) ' Pa)w (3.2)
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To derive this from the MIMO rule above we start at the output z and move
backwards towards w. There are two branches, one of which gives the term Pi1
directly. In the other branch we move backwards and meet P»1 and then K. We then
exit from a feedback loop and get a term (I— L)™' (positive feedback) with L = Py K,
and finally we meet Pr2.

Exercise 3.2 Use the MIMO rule to derive the transfer functions from u to y and
from u to z in Figure 3.1(b). Use the push-through rule to rewrite the two transfer
Sfunctions.

Exercise 3.3 Use the MIMO rule to show that (2.18) corresponds to the negative
feedback system in Figure 2./.

Negative feedback control systems

d> dy
r + u+ YT +y 7t Yy

—»?—» K G —

Figure 3.3: Conventional negative feedback control system.

For the negative feedback system in Figure 3.3, we define L to be the loop
transfer function as seen when breaking the loop at the output of the plant.
Thus, for the case where the loop consists of a plant G and a feedback

controller K we have
L=GK (3.3)

The sensitivity and complementary sensitivity are then defined as
A 1 A —1
S=(I+L)y; T=I-S=L(I+1L) (3.4)

In Figure 3.3, T is the transfer function from r to y, and S is the transfer
function from d; to y; also see equations (2.16) to (2.20) which apply to MIMO
systems.

S and T are sometimes called the output sensitivity and output
complementary sensitivity, respectively, and to make this explicit one may
use the notation Lo 2= GK, So 2 S and To 2 T. This is to distinguish
them from the corresponding transfer functions evaluated at the input to the
plant.

We define L; to be the loop transfer function as seen when breaking the
loop at the input to the plant with negative feedback assumed. In Figure 3.3

L =KG (3.5)
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The input sensitivity and input complementary sensitivity functions are then
defined as

Sp=(I+L)™" Tr=I-S =LI+L;)" (3.6)

In Figure 3.3, =77 is the transfer function from dy to u. Of course, for SISO
systems Ly =L, Sy =S,and Ty =T.

Exercise 3.4 In Figure 3.3, what transfer function does Sr represent? Evaluate
the transfer functions from di and d2 tor —y.

The following relationships are useful:

(I+L)'"+LUI+L)'=S+T=1I (3.7)
G(I+KG) ™' =(+GK)'G (3.8)
GK(I+GK)™'=GUI+KG) 'K =(I+GK)"'GK (3.9)
T=LI+L)y'=T+@L)H! (3.10)

Note that the matrices G and K in (3.7)-(3.10) need not be square whereas
L = GK is square. (3.7) follows trivially by factorizing out the term (I +L)~!
from the right. (3.8) says that GS; = SG and follows from the push-through
rule. (3.9) also follows from the push-through rule. (3.10) can be derived from
the identity M My = (MaM;)~1.

Similar relationships, but with G and K interchanged, apply for the transfer
functions evaluated at the plant input. To assist in remembering (3.7)-(3.10)
note that G comes first (because the transfer function is evaluated at the
output) and then G and K alternate in sequence. A given transfer matrix
never occurs twice in sequence. For example, the closed-loop transfer function
G(I + GK)~! does not exist (unless G is repeated in the block diagram, but
then these G’s would actually represent two different physical entities).

Remark 1 The above identities are clearly useful when deriving transfer functions
analytically, but they are also useful for numerical calculations involving state-space
realizations, e.g. L(s) = C(sI — A)"'B + D. For example, assume we have been
given a state-space realization for L = GK with n states (so A is a n x n matrix)
and we want to find that of 7. Then we can first form S = (I + L)~ with n states,
and then multiply it by L to obtain 7" = SL with 2n states. However, a minimal
realization of 7" has only n states. This may be obtained numerically using model
reduction, but it is preferable to find it directly using 7' =T — S, see (3.7).

Remark 2 Note also that the right identity in (3.10) can only be used to compute
the state-space realization of T if that of L™' exists, so L must semi-proper with
D # 0 (which is rarely the case in practice). On the other hand, since L is square,
we can always compute the frequency response of L(jw) ' (except at frequencies
where L(s) has jw-axis poles), and then obtain T'(jw) from (3.10).
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In Appendix A.6 we present some factorizations of the sensitivity function
which will be useful in later applications. For example, (A.138) relates the
sensitivity of a perturbed plant, S’ = (I + G'K)™!, to that of the nominal
plant, S = (I + GK)~!. We have

S'=S(I+EoT)™, Eo2 (G —G)G! (3.11)

where Ep is an output multiplicative perturbation representing the difference
between G and G', and T is the nominal complementary sensitivity function.

3.3 Multivariable frequency response analysis

The transfer function G(s) is a function of the Laplace variable s and can be
used to represent a dynamic system. However, if we fix s = s then we may
view G(sp) simply as a complex matrix, which can be analyzed using standard
tools in matrix algebra. In particular, the choice so = jw is of interest since
G(jw) represents the response to a sinusoidal signal of frequency w.

3.3.1 Obtaining the frequency response from G(s)

— G(s) b——

Figure 3.4: System G(s) with input d and output y

The frequency domain is ideal for studying directions in multivariable systems
at any given frequency. Consider the system G(s) in Figure 3.4 with input d(s)
and output y(s):

y(s) = G(s)d(s) (3.12)

(We here denote the input by d rather than by u to avoid confusion with
the matrix U used below in the singular value decomposition). In Section 2.1
we considered the sinusoidal response of scalar systems. These results may
be directly generalized to multivariable systems by considering the elements
9ij(jw) of the matrix G(jw). We have

¢ g;j(jw) represents the sinusoidal response from input j to output 4.

To be more specific, apply to input channel j a scalar sinusoidal signal given
by
dj (t) = djo sin(wt == Otj) (313)
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This input signal is persistent, that is, it has been applied since ¢ = —oco. Then
the corresponding persistent output signal in channel 7 is also a sinusoid with
the same frequency

Yi(t) = yio sin(wt + 3;) (3.14)

where the amplification (gain) and phase shift may be obtained from the
complex number g;;(jw) as follows

Yio

0 =Gl i —aj = Lgi;(jw) (3.15)
jo

In phasor notation, see (2.7) and (2.9), we may compactly represent the
sinusoidal time response described in (3.13)-(3.15) by

Yi(w) = gi;(jw)d; (W) (3.16)

where _
dij(w) = djoe?%,  yi(w) = yioe?” (3.17)

Here the use of w (and not jw) as the argument of d; (w) and y;(w) implies that
these are complex numbers, representing at each frequency w the magnitude
and phase of the sinusoidal signals in (3.13) and (3.14).

The overall response to simultaneous input signals of the same frequency
in several input channels is, by the superposition principle for linear systems,
equal to the sum of the individual responses, and we have from (3.16)

yi(w) = gin (jw)di (w) + giz(jw)da (w Zgu jw)d, (3.18)

or in matrix form

y(w) = G(jw)d(w) (3.19)
where ~ _ _ -
dl(w) y1(w)
dz(w) y2(w)
d(w) = dj(:w) and y(w)= | (3.20)
[ ()] [ () ]

represent the vectors of sinusoidal input and output signals.

Example 3.2 Consider a 2x2 multivariable system where we simultaneously apply
sinusoidal signals of the same frequency w to the two input channels.

i) = [ 60] = [dmnter + ) @2
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The corresponding output signal is

) = [ 0] = [posnter 2] 22

which can be computed by multiplying the complex matriz G(jw) with the complex
vector d(w):

. JB1 diped 1
W) =Gl ) = ] =[] G
3.3.2 Directions in multivariable systems

For a SISO system y = Gd the gain at a given frequency is simply

ly()| _ |GGw)d@)] _ yo
|d(w| d(w)] do

=1G(jw)|

The gain depends of the frequency w, but since the system is linear it is
independent of the input magnitude |d(w)|. Things are not quite as simple
for MIMO systems where the input and output signals are both vectors, and
we need to “sum up” the magnitudes of the elements in the vector by use of
some norm, as discussed in Appendix A.5.1. If we select the vector 2-norm,
the usual measure of length, then at a given frequency w the magnitude of
the vector input signal is

ld(w)ll2 = /Z |dj (W) = \/dio + d3p + - (3.24)

and the magnitude of the vector output signal is

ly(@ll2 = ‘/ lyi(w)[* = \/yio + ¥30 + (3.25)

The gain of the system G(s) for a particular input signal d(w) is then given
by the ratio

ly@llz _ IGGw)dW)ll2 _ Vyio +y30 + - (3.26)
l[d(w)ll2 lld(w)ll2 VB +d3y+ -
Again the gain depends on the frequency w and again it is independent of the

input magnitude ||d(w)||». However, for a MIMO system there are additional
degrees of freedom and the gain depends also on the direction of the input d.
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Example 3.3 For a system with two inputs, d = [d}0:|, the gain is in general

dao
different for the following five inputs:

1 0 0.707 0.707 0.6
= {0} d2 = {1] ds = {0.707} da = {—0.707} rds = [—0.8}
(which all have the same magnitude ||d||2 = 1 but are in different directions). For
example, for the 2 x 2 system

5 4
o=[t 1] .

(a constant matriz) we get for the five inputs

_[s] 4 _[6.36 _ [o.707 _[-02
Y=g 27 19| ¥ = |354(°% 7 |0.707]|°% 7 | 0.2

and the 2-norm of these five outputs (i.e. the gain for the five inputs) are
llyillz = 5.83, [|yzll2 = 4.47, [lyall2 = 7-30, [|yall= = 1.00, [|ys|> = 0.28

This dependency of the gain on the input direction is illustrated graphically in
Figure 3.5 where we we have used the ratio dxo/dio as an independent variable to
represent the input direction. We see that, depending on the ratio dao/di0, the gain
varies between 0.27 and 7.34.

The maximum value of the gain in (3.26) as the direction of the input is
varied is the maximum singular value of G,

Gd||-
= max 192 _ o Gy, (3.28)

7(G) = max = ma
@ d#0 |ldll2  lld.=1

whereas the minimum gain is the minimum singular value of G,
- NIGd]2
0(G) = min = n [|Gd|: 3.29
—( ) d£0 ”d”2 d][a=1 || ”2 ( )
We will discuss this in detail below. The last identities in (3.28) and (3.29)

follow because the gain is independent of the input magnitude for a linear
system.

3.3.3 Eigenvalues are a poor measure of gain

Before discussing the singular values we want to demonstrate that the
magnitudes of the eigenvalues of a transfer function matrix, e.g. |\;(G(jw)],
do not provide a useful means of generalizing the SISO gain, |G(jw)|. First of
all, eigenvalues can only be computed for square systems, and even then they
can be very misleading. To see this consider the system y = Gd with

0 100}

G:[o 0

(3.30)
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o(G1) =7.34

0
dao/d10

Figure 3.5: Gain ||G1d||2/]|d||2 as a function of da0/d10 for Gy in (3.27).

which has both eigenvalues \; equal to zero. However, to conclude from the
eigenvalues that the system gain is zero is clearly misleading. For example,
with an input vector d = [0 1] we get an output vector y = [100 0]T.

The “problem” is that the eigenvalues measure the gain for the special case
when the inputs and the outputs are in the same direction, namely in the
direction of the eigenvectors. To see this let ¢; be an eigenvector of G and
consider an input d = t;. Then the output is y = Gt; = \;t; where ); is the
corresponding eigenvalue, and so |);| measures the gain in the direction ¢;.
This may be useful for stability analysis, but not for performance.

To find useful generalizations of |G| for the case when G is a matrix, we
need the concept of a matriz norm, denoted ||G||. Two important properties
which must be satisfied for a matrix norm are the triangle inequality

1G1 + Gaf| < [|G1ll + G2l
and the multiplicative property
[G1Ga| < (|Gl - |G|l

(see Appendix A.5 for more details). As we may expect, the magnitude of the

largest eigenvalue, p(G) = |Amaz (G)| (the spectral radius), does not satisfy
the properties of a matrix norm, also see (A.113).

In Appendix A.5.2 we introduce several matrix norms, such as the Frobenius
norm ||G| F, the sum norm ||G||sum, the maximum column sum ||G|;1, the
maximum row sum ||G||i, and the maximum singular value |G|z = 7(G)
(the latter three norms are induced by a vector norm, e.g. see (3.28); this is
the reason for the subscript 7). We will use all of these norms in this book,
each depending on the situation. However, in this chapter we will mainly use
the induced 2-norm, 5(G). Notice that 5(G) = 100 for the matrix in (3.30).

Exercise 3.5 Compute the spectral radius and the five matriz norms mentioned
above for the matrices in (3.27) and (3.30).
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3.3.4 Singular value decomposition

The singular value decomposition (SVD) is defined in Appendix A.3. Here
we are interested in its physical interpretation when applied to the frequency
response of a MIMO system G(s) with m inputs and I outputs.

Consider a fixed frequency w where G(jw) is a constant I x m complex
matrix, and denote G(jw) by G for simplicity. Any matrix G may be
decomposed into its singular value decomposition, and we write

G=Uxv# (3.31)
where

¥ is an | X m matrix with £ = min{l, m} non-negative singular values, o;,
arranged in descending order along its main diagonal; the other entries
are zero. The singular values are the square roots of the eigenvalues of
GH @G, where G is the complex conjugate transpose of G.

O'Z(G) = Al(GHG) (332)

U is an [ x [ unitary matrix of output singular vectors, u;,
V' is an m X m unitary matrix of input singular vectors, v;,

This is illustrated by the SVD of a real 2 x 2 matrix which can be written

_ [cosﬁl —sinﬁl} [al 0] [ cosfy +sinfy ]’ (3.33)

sinf; cosb; 0 oy —sinfy; £ cosb,

U b VT

where the two singular values are given in (A.35). From (3.33) we see that the
matrices U and V involve rotations and that their columns are orthonormal.
The singular values are sometimes called the principal values or principal
gains, and the associated directions are called principal directions.

Caution. It is standard notation to use the symbol U to denote the matrix of
output singular vectors. This is unfortunate as it is also standard notation to use
u (lower case) to represent the input signal. The reader should be careful not to
confuse these two. When we refer to u; below, then this is the output singular vector
formed from the i’th column of U.

Input and output directions. The column vectors of U represent the

output directions of the plant. They are orthogonal and of unit length
(orthonormal), that is

luillz = V/Tun? + fuzPo + Jual? = 1 (3.34)
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ufui=1, uwflu;=0, i#j (3.35)

Likewise, the column vectors of V' are orthogonal and of unit length, and
represent the input directions. These input and output directions are related
through the singular values. To see this, note that since V' is unitary we have
VHV = I, 50 (3.31) may be written as GV = UY, which for column i becomes

where v; and u; are vectors, whereas o; is a scalar. That is, if we consider an
input in the direction v;, then the output is in the direction u;. Furthermore,
since |lvil]s = 1 and ||u;||2 = 1 we see that the i’th singular value o; gives
directly the gain of the matrix G in this direction. In other words

_ G|z

0i(G) = |Guill2 = il (3.37)

Some advantages of the SVD over the eigenvalue decomposition for analyzing
gains and directionality of multivariable plants are:

1. The singular values give better information about the gains of the plant.
2. The plant directions obtained from the SVD are orthogonal.
3. The SVD also applies directly to non-square plants.

Maximum and minimum singular value. As already stated, it can be
shown that the largest gain for any input direction is equal to the maximum
singular value

IGdll> _ (|Goall2

max = =01 (G
Fi T Y PR

and that the smallest gain for any input direction is equal to minimum singular

value

>

7(@) (3.38)

NGl _ (|Gl
= =o,(G
T Tl
where k = min{l,m}. Thus, for any vector d we have that

e

(@) (3.39)

<a(G) (3.40)

Define uy = @,v, = ¥, u = u and vy = v. Then it follows that
Gv = o1, Guv=cou (3.41)

The vector ¥ corresponds to the input direction with largest amplification, and
@ is the corresponding output direction in which the inputs are most effective.
The direction involving ¢ and @ is sometimes referred to as the “strongest”,
“high-gain” or “most important” direction. The next most important direction
is associated with vy and wus, and so on (see Appendix A.3.6) until the “least
important”, “weak” or “low-gain” direction which is associated with v and w.
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Example 3.4 Consider again the system (3.27) in Ezample 3.3,
5 4
G = {3 2} (3.42)

The singular value decomposition of G1 is

G {0.872 0.490} {7.343 0 ] [0.794 —O.GOS]H
L=

0.490 —0.872 0 0.272 0.608 0.794
4 5 e
. . . . . ) _ 0.794
The largest gain of 7.843 is for an input in the direction v = [0 608]’ and the

—0.608

smallest gain of 0.272 is for an input in the direction v = [ 0.794

] . This confirms
the findings in Ezample 3.3.

Since in (3.42) both inputs affect both outputs, we say that the system is
interactive. This follows from the relatively large off-diagonal elements in Gj .
Furthermore, the system is ill-conditioned, that is, some combinations of the
inputs have a strong effect on the outputs, whereas other combinations have a
weak effect on the outputs. This may be quantified by the condition number;
the ratio between the gains in the strong and weak directions; which for the
system in (3.42) is 7.343/0.272 = 27.0.

Example 3.5 Shopping cart. Consider a shopping cart (supermarket trolley)
with fized wheels which we may want to move in three directions; forwards, sideways
and upwards. This is a simple illustrative ezample where we can easily figure out the
principal directions from ezperience. The strongest direction, corresponding to the
largest singular value, will clearly be in the forwards direction. The next direction,
corresponding to the second singular wvalue, will be sideways. Finally, the most
“difficult” or “weak” direction, corresponding to the smallest singular value, will
be upwards (lifting up the cart).

For the shopping cart the gain depends strongly on the input direction, i.e.,
the plant is ill-conditioned. Control of ill-conditioned plants is sometimes difficult,
and the control problem associated with the shopping cart can be described as
follows: Assume we want to push the shopping cart sideways (maybe we are blocking
someone). This is rather difficult (the plant has low gain in this direction) so a
strong force is needed. However, if there is any uncertainty in our knowledge about
the direction the cart is pointing, then some of our applied force will be directed
forwards (where the plant gain is large) and the cart will suddenly move forward
with an undesired large speed. We thus see that the control of an ill-conditioned
plant may be especially difficult if there is input uncertainty which can cause the
input signal to “spread” from one input direction to another. We will discuss this in
more detail later.
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Example 3.6 Distillation process. Consider the following steady-state model of

a distillation column
87.8 —86.4
G= [108.2 —109.6} (3.43)

The variables have been scaled as discussed in Section 1.4. Thus, since the elements
are much larger than 1 in magnitude this suggests that there will be no problems with
input constraints. However, this is somewhat misleading as the gain in the low-gain
direction (corresponding to the smallest singular value) is actually only just above 1.
To see this consider the SVD of G:

H
02[0.625 —0.781} [197.2 0 } [0.707 —0.708} (3.44)

0.781  0.625 0 1.39 —0.708 —0.707

.

U = vH

From the first input singular vector, vi = [0.707 —0.708], we see that the gain is
197.2 when we increase one inputs and decrease the other input by a similar amount.
On the other hand, from the second input singular vector, va = [—0.708 —0.707]T,
we see that if we increase both inputs by the same amount then the gain is only
1.39. The reason for this is that the plant is such that the two inputs counteract each
other. Thus, the distillation process is ill-conditioned, at least at steady-state, and
the condition number is 197.2/1.39 = 141.7. The physics of this ezample is discussed
in more detail below, and later in this chapter we will consider a simple controller
design (see Motivating robustness ezample No. 2 in Section 3.7.2).

Example 3.7 Physics of Distillation process. The model in (3.43) represents
two-point (dual) composition control of a distillation column, where the top
composition is to be controlled at yp = 0.99 (output y1) and the bottom composition
at xg = 0.01 (output y2), using reflur L (input wi) and boilup V (input uz) as
manipulated inputs (see Figure 10.6 on page 454). Note that we have here returned
to the convention of using ui and us to denote the manipulated inputs; the output
singular vectors will be denoted by @ and wu.

The 1, 1-element of the gain matriz G is 87.8. Thus an increase inui by 1 (with uz
constant) yields a large steady-state change in y, of 87.8, that is, the outputs are very
sensitive to changes in ui. Similarly, an increase in uz by 1 (with w1 constant) yields
y1 = —86.4. Again, this is a very large change, but in the opposite direction of that
for the increase in ui. We therefore see that changes in u1 and us counteract each
other, and if we increase w1 and uz simultaneously by 1, then the overall steady-state
change in y1 is only 87.8 —86.4 = 1.4.

Physically, the reason for this small change is that the compositions in the
distillation column are only weakly dependent on changes in the internal flows (i.e.,
simultaneous changes in the internal flows L and V). This can also be seen from the
smallest singular value, o(G) = 1.39, which is obtained for inputs in the direction

_ | —0.708 —0.781
v= [,0_707 0.625 ] we see that the effect

18 to move the outputs in different directions, that is, to change y1 — y2. Therefore,
it takes a large control action to move the compositions in different directions, that
is, to make both products purer simultaneously. This makes sense from a physical
point of view.

]. From the output singular vector u = [
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On the other hand, the distillation column is very sensitive to changes in external
flows which make L and V more different (i.e., increase u1 — us = L — V). This
0.707
—0.708
singular value, and is a general property of distillation columns where both products
are of high purity. The reason for this is that the external distillate flow (which varies
as V — L) has to be about equal to the amount of light component in the feed, and
even a small imbalance leads to large changes in the product compositions.

can be seen from the input singular vector v = |: ] associated with the largest

For dynamic systems the singular values and their associated directions
vary with frequency, and for control purposes it is usually the frequency
range corresponding to the closed-loop bandwidth which is of main interest.
The singular values are usually plotted as a function of frequency in a Bode
magnitude plot with a log-scale for frequency and magnitude. Typical plots
are shown in Figure 3.6.
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(a) Spinning satellite in (3.72). (b) Distillation process in (3.77)

Figure 3.6: Typical plots of singular values

Nonsquare plants

The SVD is also useful for nonsquare plants. For example, consider a plant
with 2 inputs and 3 outputs. In this case the third output singular vector, us,
tells us in which output direction the plant cannot be controlled. Similarly, for
a plant with more inputs than outputs, the additional input singular vectors
tell us in which directions the input will have no effect.

Exercise 3.6 For a system with m inputs and 1 output, what is the interpretation
of the singular values and the associated input directions (V)¢ What is U in this
case? (Answer: va,...,vm yield the input directions with no effect on the output.

U=1.)
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Use of the minimum singular value of the plant

The minimum singular value of the plant, ¢(G(jw), evaluated as a function
of frequency, is a useful measure for evaluating the feasibility of achieving
acceptable control. If the inputs and outputs have been scaled as outlined
in Section 1.4, then we can, with an manipulated input of unit magnitude
(measured with the 2-norm), achieve an output of magnitude of at least o (G)
in any output direction. We generally want g(G) as large as possible, at at least
to avoid input saturation we want ¢(G) larger than about 1 at all frequencies
where control is required.

Remark. The relationship between ¢(G) an input saturation is discussed in
Section 6.9. In Section 10.3 on selection of controlled outputs it is shown that it may
be desirable to have g(G(jw) large even when input saturation is not a concern.
The minimum singular value of the plant to analyze achievable performance was
discussed by Morari (1983) and Yu and Luyben (1986) call g(G(jw)) the “Morari
resiliency index”.

3.3.5 Singular values for performance

So far we have used the SVD primarily to gain insight into the directionality
of MIMO systems. But the maximum singular value is also very useful in
terms of frequency-domain performance and robustness. We here consider

performance.
For a one degree-of-freedom feedback control system the closed-loop
response from references, r, to control errors, e = y — r, is e = —Sr. We have

previously argued for SISO systems that |S(jw)| evaluated as a function of
frequency gives useful information about the effectiveness of feedback control,
because for sinusoids |e(w)|/|r(w)| = |S(jw)|. For MIMO systems a useful
generalization results if we consider the ratio ||e(w)||2/]|7(w)]||2 where || - |2 is
the vector 2-norm. As explained above, this ratio depends on the direction of
r(w) and we have from (3.40)

o(S(jw)) < :'(ﬂ < 6(S(jw)) (3.45)

Ir(w)ll2
In terms of performance, it is reasonable to require that the ratio
lle(w)|l2/]|7(w)]|2 remains small for any direction of r(w), including the “worst-
case” direction which gives the ratio as (S(jw)). Let at each frequency

1/|wp(jw)| represent the maximum allowed magnitude of ||e]|2/||7||2- This
results in the following performance requirement:

7(S(jw)) < 1/lwp(jw)|, Vw & a(wpS) <1, Yw
& JlwupSlle <1 (3.46)
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where the Ho norm (see page 60) is defined as the peak of the maximum
singular value of the frequency response

1M (s) oo 2 max (M (jw)) (347)

By using the Ho, norm to define performance most of the ideas presented in
Chapter 2 can be generalized to MIMO systems. Typical performance weights
are given in Section 2.7.2, which should be studied carefully.

The singular values of S(jw) may be plotted as a function of frequency
as illustrated in Figure 3.10 (a). Typically, they are small at low frequencies
where feedback is effective, and they approach 1 at high frequencies because
any real system is strictly proper. The maximum singular value, &(S(jw)),
usually has a peak larger than 1 at crossover frequencies. This peak is
undesirable, but it is unavoidable for real systems.

As for SISO systems we define the bandwidth as the frequency up to
which feedback is effective. For MIMO systems the bandwidth will depend
on directions, and we have a bandwidth region between a lower frequency
where the maximum singular value, 5(S5), reaches 0.7 (the low-gain or worst-
case direction), and a higher frequency where the minimum singular value,
o(S), reaches 0.7 (the high-gain or best direction). If we want to associate a
single bandwidth frequency for a multivariable system, then we consider the
worst-case (low-gain) direction, and define

e Bandwidth, wp: Frequency where 5(S) crosses % = 0.7 from below.

It is then understood that the bandwidth is at least wp for any direction of
the input (reference or disturbance) signal. Since S = (I+ L)~ !, (A.51) yields

1
L)-1<——<g(L)+1 4
o(L) - 12 s <o)+ (3.48)
Thus at frequencies where feedback is effective (namely where g(L) > 1) we
have 5(S) ~ 1/g(L)), and at the bandwidth frequency (where 1/6(S(jwg)) =
V2 = 1.41) we have that g(L(jwg)) is between 0.41 and 2.41. Thus, the
bandwidth is approximately where g(L(jw)) crosses 1. Finally, at higher

frequencies where for any real system ¢g(L) (and (L)) is small we have that
7(S) ~ 1.

3.4 Control of multivariable plants
Consider the simple feedback system in Figure 3.7. A conceptually simple

approach to multivariable control is given by a two-step procedure in which
we first design a “compensator” to deal with the interactions in G, and then
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Figure 3.7: One degree-of-freedom feedback control configuration.

design a diagonal controller using methods similar to those for SISO systems.
This approach is discussed below.

The most common approach is to design a pre-compensator, Wi (s), which
counteracts the interactions in the plant and results in a “new” shaped plant:

G4(s) = G(s)Wy(s) (3.49)

which is more diagonal and easier to control than the original plant G(s).
After finding a suitable W (s) we can design a diagonal controller K,(s) for
the shaped plant. The overall controller is then:

K(s) = Wi(s)K,(s) (3.50)

In many cases effective compensators may be derived on physical grounds and
may include nonlinear elements such as ratios.

Some design approaches in this spirit are the Nyquist Array technique of
Rosenbrock (1974) and the characteristic loci technique of MacFarlane and
Kouvaritakis (1977). In the latter, Wy is usually chosen as a constant matrix
obtained by inverting a real approximation of G(jw) at a given frequency.

Remark. The Ho loop-shaping design procedure described in detail in Section 9.4
is similar in that a precompensator is first chosen to yield a shaped plant, G, = GW7q,
with desirable properties, and then a controller K,(s) is designed. The main
difference is that K,(s) is a full multivariable controller, and secondly it is designed
based on optimization (to optimize Ho robust stability).
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3.4.1 Decoupling

Decoupling results when the compensator is chosen such that G in (3.49) is
diagonal at a selected frequency. The following different cases are possible:

1. Dynamic decoupling: Gs(s) is diagonal (at all frequencies). For example,
with G4(s) = I and a square plant, we get W; = G~1(s) (disregarding the
possible problems involved in realizing G!(s)). In this case a reasonable
overall controller (corresponding to K,(s) = I(s)I with e.g. I(s) = k/s)
might be given by

K(s) = Kine(s) 2 1(s)G ' (s) (3.51)
We will later refer to (3.51) as an inverse-based controller. It results
in a decoupled nominal system with identical loops, i.e. L(s) = I(s)I,
— — _ls)
S(s) = H}Tl and T'(s) = s L

In some cases we may want to keep the diagonal elements in the shaped
plant unchanged by selecting W; = Gildeg. In other cases we may want
the diagonal elements in W; to be 1; this may be obtained by selecting
Wi =G (G diag) ™"

2. Steady-state decoupling: G4(0) is diagonal. This may be obtained by
selecting a constant precompensator W; = G~!(0) (and for a non-square
plant we may use the pseudo-inverse provided G(0) has full row (output)
rank).

3. Approzimate decoupling at frequency w,: Gs(jw,) is as diagonal as possible.
This is usually obtained by choosing a constant precompensator W; = G,!
where G, is a real approximation of G(jw,). G, may be obtained, for
example, using the align algorithm of Kouvaritakis (1974). The bandwidth
frequency is a good selection for w, because the effect on performance of
reducing interaction is normally greatest at this frequency.

The idea of using a decoupling controller is appealing, but there are several
difficulties:

1. We cannot in general choose G freely. For example, W (s) must not cancel
any RHP-zeros in G(s).

2. If the plant has RHP-zeros then the requirement of decoupling generally
introduces extra RHP-zeros in the closed-loop system, see Section 6.5.1.

3. As we might expect, decoupling may be very sensitive to modelling
errors and uncertainties. This is illustrated in Section 3.7.2 and is further
discussed in Section 6.10.

4. The requirement of decoupling may not be desirable for disturbance
rejection. The reasons are similar to those given for SISO systems in
Section 2.6.4, and are discussed further below, see (3.54).
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Even though decoupling controllers may not be desirable in practice,
they are of interest from a theoretical point of view. They also yield
insights into the limitations imposed by the multivariable interactions on
achievable performance. One popular design method, which essentially yields
a decoupling controller is the internal model control (IMC) approach (Morari
and Zafiriou, 1989).

Another common strategy, which avoids most of the problems just
mentioned, is to use partial (one-way) decoupling where G4(s) in (3.49) is
upper or lower triangular.

3.4.2 Pre- and post-compensators and the
SVD-controller

The above pre-compensator approach may be extended by introducing a post-
compensator W (s), as shown in Figure 3.8. One then designs a diagonal

Figure 3.8: Pre- and post-compensator, Wi and W». K, is diagonal.
controller K for the shaped plant W5GW;. The overall controller is then
K(s) = W1 KW, (3.52)

The SVD-controller is a special case of a pre- and post-compensator design.
Here W7 =V, and Wy = UOT , where V,, and U, are obtained from a singular
value decomposition of G, = UOZOVOT, where G, is a real approximation
of G(jw,) at a given frequency w, (often around the bandwidth). SVD-
controllers are studied by Hung and MacFarlane (1982), and by Hovd, Braatz
and Skogestad (1994) who found that the SVD controller structure is optimal
in some cases, e.g. for plants consisting of symmetrically interconnected
subsystems.

In summary, the SVD-controller provides a useful class of controllers. By
by selecting K, = I(s)X;! a decoupling design is achieved, and by selecting
a diagonal K with a low condition number (y(K) small) we generally get a
robust controller (see Section 6.10).
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3.4.3 Diagonal controller (decentralized control)

Another simple approach to multivariable controller design is to use a diagonal
or block-diagonal controller K (s). This is often referred to as decentralized
control. Clearly, this works well if G(s) is close to diagonal, because then the
plant to be controlled is essentially a collection of independent sub-plants,
and each element in K(s) may be designed independently. However, if off-
diagonal elements in G(s) are large, then the performance with decentralized
diagonal control may be poor because no attempt is made to counteract the
interactions.

3.4.4 What is the shape of the “best” feedback
controller?

Consider the problem of disturbance rejection. The closed-loop disturbance
response is y = SGyd. Suppose we have scaled the system (see Section 1.4)
such that at each frequency the disturbances are of magnitude 1, ||d||]» < 1,
and our performance requirement is that ||y|l2 < 1. This is equivalent to
requiring 6(SG4) < 1. In many cases there is a trade-off between input use
and performance, such that the controller that minimizes the input magnitude
is one that yields all singular values of SG4 equal to 1, i.e., 0;(SGq) = 1,Vw.
This corresponds to

SminGa = Uy (3.53)

where Ui (s) is an all-pass transfer function which at each frequency has all

its singular values equal to 1. The subscript min refers to the use of the
smallest loop gain that satisfies the performance objective. For simplicity,
we assume that Gy is square so U;(jw) is a unitary matrix. At frequencies
where feedback is effective we have S = (I + L)™' ~ L™!, and (3.53) yields
Liin = GKnin =~ Gdel. In conclusion, the controller and loop shape with
the minimum gain will often look like

Kpin ® GT'GaU,  Lpin = GaU (3.54)

where U = U;' is some all-pass transfer function matrix. This provides a
generalization of |Kmin| & |G 1G4| which was derived in (2.59) for SISO
systems, and the conclusions following (2.59) on page 52 therefore also apply
to MIMO systems. For example, we see that for disturbances entering at
the plant inputs, G4 = G, we get Kmin = U, so a simple constant unit
gain controller yields a good trade-off between output performance and input
usage. We also note with interest that it is generally not possible to select a
unitary matrix U such that Ly, = G4U is diagonal, so a decoupling design
is generally not optimal for disturbance rejection. These insights can be used
as a basis for a loop-shaping design; see more on H, loop-shaping in Chapter
9.
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3.4.5 Multivariable controller synthesis

The above design methods are based on a two-step procedure in which we
first design a pre-compensator (for decoupling control) or we make a pairing
selection (for decentralized control) and then we design a diagonal controller
K,(s). Invariably this two-step procedure results in a suboptimal design.

The alternative is to synthesize directly a multivariable controller K (s)
based on minimizing some objective function (norm). We here use the word
synthesize rather than design to stress that this is a more formalized approach.
Optimization in controller design become prominent in the 1960’s with
“optimal control theory” based on minimizing the expected value of the output
variance in the face of stochastic disturbances. Later, other approaches and
norms were introduced, such as H, optimal control. We next provide a brief
summary of the S/K S and other mixed-sensitivity H., design methods which
are used in later examples.

3.4.6 Summary of mixed-sensitivity H,, design (S/KS)
In the S/K S problem the objective is to minimize the Ho, norm of

N= {V[V/Z’;(SS} (3.55)

This problem was discussed for SISO systems earlier, and it is recommended
to read Section 2.7.3 carefully. A sample MATLAB file is provided in Example
2.11, page 64.

The following issues should be considered when selecting the the weights
Wp and Wy:

1. K S is the transfer function from r to u in Figure 3.7, so for a system which
has been scaled as in Section 1.4, a reasonable initial choice for the input
weight is W, = I.

2. S is the transfer function from d to e = y —r. A common choice for the
performance weight is Wp = diag{wp;} with

_s/M; +whp;

i = , Akl 3.56

(see also Figure 2.26 on 63). Selecting A; < 1 ensures approximate integral
action with S(0) = 0. Often we select M; = 2 for all outputs, whereas
w}p; may be different for each output. A large value of wj;; yields a faster
response for output i.

3. To find a reasonable initial choice for the weight Wp, one can first design
a controller with some other method, plot the magnitude of the resulting
diagonal elements of S as a function of frequency, and then use a rational
approximation of 1/|S;;|) for wp;(s).
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4. For disturbance rejection, we may in some cases want a steeper slope for
wp;(s) at low frequencies than that given in (3.56), e.g. as illustrated by
the weight in (2.74). However, it may be better to consider the disturbances
explicitly by considering the H~, norm of

| WeS  WpSGy
N= [WuKS WuKSGd] (3:57)
or equivalently
| WpSWy . _
N = {WMKSW,J with Wy =[1 Gq] (3.58)

where N represents the transfer function from [2} to the weighted outputs
|:Wpe

Wyu
to better satisfy our original objectives. The helicopter case study in
Section 12.2 illustrates this by introducing a scalar parameter a to adjust
the magnitude of G4.

5. T is the transfer function from —n to y. To reduce sensitivity to noise and
uncertainty, we want 7' small at high frequencies, that is, we may want
additional roll-off in L. This can be achieved in several ways. One approach
is to add WrT to the stack for N in (3.55), where Wr = diag{wr;} and
|wr;| is smaller than 1 at low frequencies and large at high frequencies.
A more direct approach is to add high-frequency dynamics, Wi (s), to the
plant model to ensure that the resulting shaped plant, G = GW1, rolls off
with the desired slope. We then obtain an H,-optimal controller K for
this shaped plant, and finally include Wi (s) in the controller, K = W1 K.

]. In some situations we may want to adjust Wp or G4 in order

More details about H, design are given in Chapter 9.

3.5 Introduction to multivariable RHP-zeros

By means of an example, we now give the reader an appreciation of the fact
that MIMO systems also have zeros even though their presence may not be
obvious from the elements of G(s). As for SISO systems, we find that RHP-
zeros impose fundamental limitations on control.

Zeros of MIMO systems are defined as the values s = z where G(s) loses
rank, see Section 4.5, and we can find the direction of the zero by looking
at the direction in which the matrix G(z) has zero gain. For square systems
we essentially have that the poles and zeros of G(s) are the poles and zeros
of det G(s). However, this crude method may fail in some cases, as it may
incorrectly cancel poles and zeros at the same location but with different
directions.
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Example 3.8 Consider the following plant

1 11
)= G+ D6+D [1 +2s 2} (3.59)

The responses to a step in each individual input are shown in Figure 3.9 (a) and
(b). We see that the plant is interactive, but for these two inputs there is no inverse

2 2 1.5
15 15 Y2 S AP
Y2 0.5
1 1
Y1
Y1 y1 0
05 05 0s
% 5 10 % 5 10 X 5 10
Time [sec] Time [sec] Time [sec]
(a) Step in w1, u = (b) Step in u2, u = (¢) Combined step in u;
(1 o). [o 1)7T. and w2, u =[1 —1]7T.

Figure 3.9: Open-loop response for G(s) in (3.59)
response to indicate the presence of a RHP-zero. Nevertheless, the plant does have a

multivariable RHP-zero at z = 0.5, that is, G(s) loses rank at s = 0.5. The singular
value decomposition of G(0.5) is

G(0.5):%[1 1}:[0.45 0.89} [1.92 0} {0.71 —0.71} (3.60)

512 2 0.89 —0.45 0 0 0.71 0.71
————
U b VH
and we have as ezpected o(G(0.5)) = 0. The input and output directions
corresponding to the RHP-zero are v = [_007711] and u = [30825} Thus, the

RHP-zero is associated with both inputs and with both outputs. The presence of the
multivariable RHP-zero is also observed from the time response in Figure 3.9 (c),
which is for a simultaneous input change in opposite directions, u=[1 -1 ]T. We
see that y» displays an inverse response whereas y1 happens to remain at zero for
this particular input change.

To see how the RHP-zero affects the closed-loop response, we design a controller
which minimizes the Hoo norm of the weighted S/K S matriz

WpS
ve ] aon

with weights (see (3.56))

Wa=1, Wp= [“’Pl

0 _s[M; + wy,
0 wps ,Wpi =

A;=10"" .62
s+ wy A 0 (3.62)
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The MATLARB file for the design is the same as in Table 2.3 on 65, except that we
now have a 2 X 2 system. Since there is a RHP-zero at z = 0.5 we expect that this
will somehow limit the bandwidth of the closed-loop system.

Design 1. We weight the two outputs equally and select

Design 1: M; = M> =1.5; wp; =wpy =2/2=0.25

This yields an Hoo norm for N of 2.80 and the resulting singular values of S are
shown by the solid lines in Figure 3.10 (a). The closed-loop response to a reference
change r =1 —1]" is shown by the solid lines in Figure 3.10 (b). We note that
both outputs behave rather poorly and both display an inverse response.

2 Design 1: ——
g Design 2: - - -
Ei 1
ES
) 0
=
e Design 1: — I R —
e Design 2: - - - Y2
= -2
107 10° 10° 0 1 2 3 4
Frequency [rad/s] Time [sec]

(b) Response to change in refer-

(a) Singular values of S. ence, 7 —[1 —1]7.

Figure 3.10: Alternative designs for 2 x 2 plant (3.59) with RHP-zero.

Design 2. For MIMO plants, one can often move most of the deteriorating effect
(e.g., inverse response) of a RHP-zero to a particular output channel. To illustrate
this, we change the weight wps so that more emphasis is placed on output 2. We do
this by increasing the bandwidth requirement in output channel 2 by a factor of 100:

Design 2: M= M>=15; wh =025, why, =25

This yields an optimal design with an Hoo norm of 2.92. In this case we see from the
dashed line in Figure 3.10 (b) that the response for output 2 (y2) is excellent with
no inverse response. However, this comes at the expense of output 1 (y1) where the
response is somewhat poorer than for Design 1.

Design 3. We can also interchange the weights wp1 and wpa to stress output 1
rather than output 2. In this case (not shown) we get an excellent response in output
1 with no inverse response, but output 2 responds very poorly (much poorer than
output 1 for Design 2). Furthermore, the Hoo norm is 6.73, whereas it was only 2.92
for Design 2.

Thus, we see that it is easier in this erxample to get tight control of output 2
than of output 1. This may be expected from the output direction of the RHP-zero,

0.89
—0.45 |’

more detail in Section 6.5.1.

u = which is mostly in the direction of output 1. We will discuss this in
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Remark 1 We find from this example that we can direct the effect of the RHP-zero
to either of the two outputs. This is typical of multivariable RHP-zeros, but there
are cases where the RHP-zero is associated with a particular output channel and
it is mot possible to move its effect to another channel. The zero is then called a
“pinned zero” (see Section 4.6.2).

Remark 2 It is observed from the plot of the singular values in Figure 3.10 (a),
that we were able to obtain with Design 2 a very large improvement in the “good”
direction (corresponding to g(S)) at the expense of only a minor deterioration in the
“bad” direction (corresponding to (S)). Thus Design 1 demonstrates a shortcoming
of the Hoo norm: only the worst direction (maximum singular value) contributes to
the Ho norm and it may not always be easy to get a good trade-off between the
various directions.

3.6 Condition number and RGA

Two measures which are used to quantify the degree of directionality and the
level of (two-way) interactions in MIMO systems, are the condition number
and the relative gain array (RGA), respectively. We define the two measures
and present an overview of their practical use. We do not prove each result, but
refer to other places in the book where the details can be found. Some algebraic
properties of the condition number and the RGA are given in Appendix A.4.1.

3.6.1 Condition number

We define the condition number of a matrix as the ratio between the maximum
and minimum singular values

v(G) =0(Q)/a(G) (3.63)

Qi

A matrix with a large condition number is said to be ill-conditioned. For a
nonsingular (square) matrix ¢(G) = 1/5(G7!), so 7v(G) = 6(@)5(G™1). It
then follows from (A.117) that the condition number is large if both G' and
G~ have large elements.

The condition number depends strongly on the scaling of the inputs and
outputs. To be more specific, if D; and D, are diagonal scaling matrices,
then the condition numbers of the matrices G and D;GD, may be arbitrarily
far apart. In general, the matrix G should be scaled on physical grounds, for
example, by dividing each input and output by its largest expected or desired
value as discussed in Section 1.4.

One might also consider minimizing the condition number over all possible
scalings. This results in the minimized or optimal condition number which is
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defined by
¥*(G) = min y(D1GD-) (3.64)
D1,D>
and can be computed using (A.72).

The condition number has been used as an input-output controllability
measure, and in particular it has been assumed that a large condition number
indicates sensitivity to uncertainty. This is not true in general, but the reverse
holds:

If the condition number is small, then multivariable effects of uncertainty is
not likely to be a problem (see (6.72)).

If the condition number is large (say, larger than 10), then this may indicate
control problems:

1. A large condition number y(G) = 6(G)/a(G) may be caused by a small
value of (@), which is generally undesirable (on the other hand a large
value of 6(G) need not necessarily be a problem).

2. A large condition number may mean that the plant has a large minimized
condition number, or equivalently, it has large RGA-elements, which
indicates fundamental control problems, see below.

Remark. A large condition number does imply that the system is sensitive to
“unstructured” (full-block) input uncertainty with an inverse-based controller,
(see (8.135)), but this kind of uncertainty may not occur in practice. We can
therefore not conclude that a plant with a large condition number is sensitive to
uncertainty, see also the example plant in .

3.6.2 Relative Gain Array (RGA

The Relative Gain Array (RGA) of a nonsingular square matrix G is a square
matrix defined as

RGA(G) = A(G) 2 G x (G™H)T (3.65)

where x denotes element-by-element multiplication (the Schur product). For
a 2 x 2 matrix with elements g;; the RGA is

Ay = (3.66)

__ 912921
911922

/\11 /\12 /\11 1- >\11
AG) = = :
@) [/\21 /\22} {1 SV

The RGA has a number of interesting algebraic properties, of which the most
important are (see Appendix A.4 for more details):

1. It is independent of input and output scaling.
2. Its rows and columns sum to one.
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3. The sum-norm of the RGA, ||Allsum, is very close to the minimized
condition number v*, see (A.77). This means that plants with large RGA-
elements are always ill-conditioned (with a large value of v(G)), but the
reverse may not hold (i.e., a plant with a large v(G) may have small RGA-
elements).

4. A relative change in an element of G equal to the negative inverse of its
corresponding RGA-element yields singularity.

5. The RGA is the identity matrix if G is upper or lower triangular.

From the last property it follows that the RGA (or more precisely A — I)
provides a measure of two-way interaction.

The definition of the RGA may be generalized to non-square matrices by
using the pseudo inverse, see Appendix A.4.2.

Bristol (1966), originally introduced the RGA as a steady-state measure
of interactions for decentralized control. Unfortunately, based on the original
definition, many people have dismissed the RGA as being “only meaningful at
w = 07. To the contrary, in most cases it is the value of the RGA at frequencies
close to crossover which is most important.

In addition to the algebraic properties listed above, the RGA has a
surprising number of useful control properties:

1. The RGA is a good indicator of sensitivity to uncertainty:

(a) Uncertain in the input channels (diagonal input uncertainty). Plants
with large RGA-elements around the crossover-frequency are fundamen-
tally difficult to control because of sensitivity to this uncertainty, e.g.,
caused by uncertain or neglected actuator dynamics. In particular, de-
couplers or other inverse-based controllers should not be used for such
plants (see page 260).

(b) Element uncertainty. As stated by algebraic property no. 4 above, large
RGA-elements imply sensitivity to element-by-element uncertainty.
However, this source of uncertainty may not occur due to physical
couplings between the transfer function elements, so the diagonal input
uncertainty mentioned above (which always is present) is usually of more
concern.

2. RGA and RHP-zeros. If the sign of an RGA-element changes from s = 0
to s = 00, then there is a RHP-zero somewhere (see Theorem 10.7).

3. Non-square plants. Extra inputs: If the sum of the elements in a column of
RGA are small (< 1), then one may consider deleting the corresponding
input. Extra outputs: If all elements in a row of RGA are small (<« 1),then
the corresponding output cannot be controlled. (See Section 10.4.)

4. Diagonal dominance. The RGA can be used to measure diagonal
dominance, by the simple quantity

RGA-number = ||A(G) — I||sum (3.67)
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For decentralized control we prefer pairings for which the RGA-number at
crossover frequencies is close to 1 (see pairing rule 1 on page 463). Similarly,
for certain multivariable design methods, it is simpler to choose the weights
and shape the plant if we first rearrange the inputs and outputs to make
the plant diagonally dominant with a small RGA-number.

5. RGA and decentralized control.

(a) Integrity: For stable plants avoid pairing on negative steady-state RGA-
elements. Otherwise, if the sub-controllers are designed independently
each with integral action, the interactions will cause instability either
when all of the loops are closed, or when the loop corresponding to the
negative relative gain becomes inactive (e.g. because of saturation) (see
Theorem 10.6). Interestingly, this is the only use of the RGA directly
related to its original definition.

(b) Stability: Prefer pairings corresponding to an RGA-number close to 0 at
crossover frequencies (see page 463).

Remark. An iterative evaluation of the RGA, A*(G) = A(A(G)) etc., has in
applications proved to be useful for choosing pairings for large systems. Wolff (1994)
found numerically that (with the exception of “borderline” cases)

A® 2 lim A*(G) (3.68)

k—oo
is a permuted identity matrix (the result is proved for a positive definite Hermitian
matrix G by Johnson and Shapiro (1986). Typically, A* approaches A for k
between 4 and 8. This permuted identity matrix may then be used as a candidate

.. . _ 1 2 _ 1033 0.67 2 _
pairing choice. For example, for G = [_1 1] we get A = [0.67 0.33], A =

~0.33 1.33 3 _ [—007 1.07 4 _ [0.00 1.00 o
1.33 70.33] A= [ 1.07 70.07] and A" = [0.00 1.00]’ which indicates

that the off-diagonal pairing should be considered. Note that
Lambda®™ may sometimes “recommend” a pairing on negative RGA-elements, even
if a positive pairing exists.

Example 3.9 Consider a diagonal plant

a(G) _ @ — 100, 7 (G) =1

G = [100 0} L AG) =1, 1(G) =
0 1

Here the condition number is large which means that the plant gain depends strongly

on the input direction. However, since the plant is diagonal there are no interactions

so A(G) = I and v*(G) = 1, and no sensitivity to uncertainty (or other control

problems) is normally expected.

Remark. An exception would be if there was uncertainty caused by unmodelled or
neglected off-diagonal elements in G'. This would couple the high-gain and low-gain
directions, and the large condition number indicates sensitivity to this off-diagonal
(“unstructured”) uncertainty.
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Example 3.10 Consider the triangular matriz

G = {1 2} , Gl = {1 _2] LAG) =1, 1(6) = E =583, 77(6) = 1

0 1 0 1
(3.69)
Note that for a triangular matriz the RGA is always the identity matriz and v (G)
is always 1.

Example 3.11 Consider again the distillation process for which we have at steady-
state

_ | 87.8 —86.4 ~1_ 10399 —0.315 _ | 351 =341
G= [108.2 —109.6} » G = {0.394 —0.320:| » MG) = {—34.1 35.1 }

(3.70)
In this case y(G) = 197.2/1.391 = 141.7 is only slightly larger than v*(G) = 138.268.
The magnitude sum of the elements in the RGA-matriz s ||Al|sum = 138.275. This
confirms (A.78) which states that, for 2 x 2 systems, ||A(G)|lsum = 7*(G) when
v (G) is large. The condition number is large, but since the minimum singular
value g(G) = 1.391 is larger than 1 this does not by itself imply a control problem.
However, the RGA-elements (and v*(G)) are large, which indicate control problems;
and fundamental control problems are expected if an analysis shows that G(jw) has
large RGA-elements also in the crossover frequency range. (Indeed, the idealized
dynamic model (3.77) used below has large RGA-elements at all frequencies, and we
will confirm in simulations a strong sensitivity to input channel uncertainty with an
inverse-based controller).

Example 3.12 Consider a 3 x 3 plant for which we have

16.8 305 4.30 150 099 —1.48
G=|-167 310 —141 —041 097 045 (3.71)
127 541 5.40 —0.08 —0.95 2.03

and y = 69.6/1.63 = 42.6 and v* = 7.80. The magnitude sum of the elements in the
RGA is ||Al|lsum = 8.86 which is close to v* as ezpected from (A.77). Note that rows
and the columns of A sum to 1. Since o(G) is larger than 1 and the RGA-elements
are relatively small, this steady-state analysis does not indicate any particular control
problems for the plant.

» MG) =

Remark. (3.71) represents the steady-state model of a fluid catalytic cracking (FCC)
process. A dynamic model of the FCC process in (3.71) is given in Ezercise 6.17.

For a more detailed analysis of achievable performance of the plant (input-
output controllability analysis), one must also also consider the singular
values, RGA and condition number as a function of frequency. In particular,
the crossover frequency range is important. In addition, disturbances and the
presence of unstable (RHP) plant poles and zeros must be considered. All
these issues are discussed in much more detail in Chapters 5 and 6 where we
discuss achievable performance and input-output controllability analysis for
SISO and MIMO plants, respectively.
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3.7 Introduction to robustness

To motivate the need for a deeper understanding of robustness, we present
two examples which illustrate that MIMO systems can display a sensitivity to
uncertainty not found in SISO systems. We focus our attention on diagonal
input uncertainty, which is present in any real system and often limits
achievable performance because it enters between the controller and the plant.

3.7.1 Motivating robustness example no. 1: Spinning
Satellite

Consider the following plant (Doyle, 1986; Packard, Doyle and Balas, 1993)
which can itself be motivated by considering the angular velocity control of a
satellite spinning about one of its principal axes:

1 s—a?  a(s+1)
$2+a2|—a(s+1) s—a®

G(s) = ; a=10 (3.72)

A minimal, state-space realization, G = C(sI — A)"!B + D, is

0 all 0
s[A|B] | —a 0]0 1

G_{C’\D]_ T al0 0 (8.73)
—a 1|0 0

The plant has a pair of jw-axis poles at s = £ja so it needs to be stabilized.
Let us apply negative feedback and try the simple diagonal controller

K=1I
We get,
T(s)= GK(I+GK) "' = —— | 1 @ (3.74)
s+1|—-a 1
The closed-loop system has two poles at s = —1 and so it is stable. This can

be verified by evaluating the closed-loop state matrix

0 a 1 a -1 0
ACI_A_BKC_L(I 0}_{7(1 1}_{0 71]

(To derive A, use & = Az + Bu,y = Cx and u = —K - y).

First let us consider performance. The singular values of L = GK = G are
shown in Figure 3.6 (a). We see that ¢(L) = 1 at low frequencies and starts
dropping off at about w = 10. Since g (L) never exceeds 1 this implies that we
do not have tight control in the low-gain direction for this plant (recall the
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discussion following (3.48)). For example, at steady-state a(7') = 10.05 and
7(S) = 10. This is also seen from the large off-diagonal elements in T'(s) which
indicate strong interactions in the closed-loop system and poor performance.
(For reference tracking, however, this may be counteracted by use of a two
degrees-of-freedom controller.)

Now let us consider stability robustness. In order to determine stability
margins with respect to perturbations in each input channel, one may consider
Figure 3.11 where we have broken the loop at the first input. The loop transfer
function at this point (the transfer function from w; to z1) is Li(s) = 1/s
(which is consistent with ¢11(s) = 11? = l_flL(ls()s)). This corresponds to an
infinite gain margin and a phase margin of 90°. On breaking the loop at the
second input we get the same result. This suggests good robustness properties
irrespective of the value of a. However, the design is far from robust as a further
analysis shows. Consider input gain uncertainty, and let ¢; and €2 denote the

21 w1

Y+

\
A
Y

Figure 3.11: Checking stability margins “one-loop-at-a-time”.
relative error in the gain in each input channel. Then
up=(1+e)ur, uy=(1+e)us (3.75)

where v} and wu) are the actual changes in the manipulated inputs, while u;
and us are the desired changes as computed by the controller. It is important
to stress that this diagonal input uncertainty, which stems from our inability
to know the exact values of the manipulated inputs, is always present. In
terms of a state-space description, (3.75) may be represented by replacing B

by
;| 14+e 0
B_|: 0 1+62:|
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The corresponding closed-loop state matrix is

P A _prr—| 0 al _|1I+e 0 1 a
A =4 BKC_La 0} { 0 1+52}{7a 1]

which has a characteristic polynomial given by

det(sI —AL) =s>+(2+e1+e)s+1+e +e+ (a® +1)eea  (3.76)

ai ag

The perturbed system is stable if and only if both the coefficients ag and a;
are positive. We therefore see that the system is always stable if we consider
uncertainty in only one channel at a time (at least as long as the channel gain
is positive). More precisely, we have stability for (—1 < €; < co0,€e2 = 0) and
(61 = 0,—1 < €3 < 00). This confirms the infinite gain margin seen earlier.
However, the system can only tolerate small simultaneous changes in the two
channels. For example, let e, = —ea, then the system is unstable (ag < 0) for
1
|61| > \/az——i—l ~ 0.1

In summary, we have found that checking single-loop margins is inadequate
for MIMO problems. We have also observed that large values of &(T") or 5(S)
indicate robustness problems. We will return to this in Chapter 8, where we
show that with input uncertainty, |¢;| < 1/6(T) guarantees robust stability
(even for “full-block complex perturbations”).

In the next example we find that we may have sensitivity to diagonal input
uncertainty also in cases when (7") and 3 (S) have no large peaks. This can
not happen for a diagonal controller, see (6.77), but it will happen if we use
an inverse-based controlled for a plant with large RGA-elements, see (6.78).

3.7.2 Motivating robustness example no. 2: Distillation
Process

The following is an idealized dynamic model of a distillation column

1 [878 —864
G = 7557 [108.2 —109.6} (3.77)

The physics of this example was discussed in Example 3.7. This is admittedly
a very crude model of a distillation column; there should be a high-order lag
in the transfer function from input 1 to output 2 to represent the liquid flow
down to the column, and higher-order composition dynamics should also be
included. Nevertheless, the model is simple and displays important features
of distillation column behaviour. The plant is ill-conditioned with condition
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number y(G) = 141.7 at all frequencies. The plant is also strongly two-way
interactive and the RGA-matrix at all frequencies is

35.1 —34.1
RGA(G) = [734.1 35.1 } (8.78)
The large elements in this matrix indicate that this process is fundamentally
difficult to control (see section A.4). It should be noted that with a more
detailed model as just discussed, the RGA-elements would approach 1 at
frequencies around 1 rad/min, indicating less of a control problem.

25 ”// \\\\\ Nominal plant: —— ]
28 . Perturbed plant: - - - |
! (S
1.5+ r/' N |
I \ S
I N S~a o Y1
1, \ I
1 N
0.5 N |
I ~._ Yo
0 — I
0 10 20 30 40 50 60

Time [min]

Figure 3.12: Response with decoupling controller to filtered reference input 71 =
1/(5s 4+ 1). The perturbed plant has 20% gain uncertainty as given by (3.81).

We consider the following inverse-based controller, which may also be looked
upon as a steady-state decoupler with a PI controller:

ki 4 k1(1475s) [0.3994 —0.3149
Kin(8) = 5G7(s) = == 03043 —0.3200]° T =0T (379
We have GKiny = KinyG = %I. With no model error this controller should
counteract all the interactions in the plant and give rise to two decoupled first-
order responses each with time constant 1/0.7 = 1.43 min. This is confirmed
by the solid line in Figure 3.12 which shows the simulated response to a
reference change in y;. The responses are clearly acceptable, and we conclude
that nominal performance (NP) is achieved with the decoupling controller.

The resulting sensitivity and complementary sensitivity functions with this
controller are

s 1

“srort TR =i d!

Thus, 6(S) and 6(T) are both less than 1 at all frequencies, so there are no
peaks indicating robustness problems. We also find that this controller gives
an infinite gain margin (GM) and a phase margin (PM) of 90° in each channel.

S=5; (3.80)
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Thus, use of the traditional margins and the peak values of S and T indicate
no robustness problems. However, from the large RGA-elements there is cause
for concern, and this is confirmed in the following.

We consider again the input gain uncertainty (3.75) as in the previous
example, and we select €¢; = 0.2 and €3 = —0.2. We then have

uy =1.2u;, ubh =0.8us (3.81)

Note that the uncertainty is on the change in the inputs (flow rates), and not
on their absolute values. A 20% error is typical for process control applications
(see Remark 2 on page 318). The uncertainty in (3.81) does not by itself yield
instability. This is verified by computing the closed-loop poles, which assuming
no cancellations are solutions to det(I+L(s)) = det(I+L;(s)) = 0, see (4.103)
and (A.11). In our case
/ ’ 1 + €1 0 07 1 + €1 0
LI(S):KinvG :KinvG|: 0 1+€2:|:?|: 0 1+62:|

so the perturbed closed-loop poles are
S1 = *07(1 + 61), SS9 = *07(1 + 62) (382)

and we have closed-loop stability as long as the input gains 1+ €; and 1+ €,
remain positive, so we can have up to 100% error in each input channel. We
thus conclude that we have robust stability (RS) with respect to input gain
errors for the decoupling controller.

For SISO systems we generally have that nominal performance (NP) and
robust stability (RS) imply robust performance (RP), but this is not the case
for MIMO systems. This is clearly seen from the dotted lines in Figure 3.12
which show the closed-loop response of the perturbed system. It differs
drastically from the nominal response represented by the solid line, and even
though it is stable, the response is clearly not acceptable; it is no longer
decoupled, and y;(t) and y»(¢) reach a value of about 2.5 before settling at
their desired values of 1 and 0. Thus RP is not achieved for the decoupling
controller.

Remark 1 There is a simple reason for the observed poor response to the reference
change in yi1. To accomplish this change, which occurs mostly in the direction
corresponding to the low plant gain, the inverse-based controller generates relatively
large inputs u; and wug, while trying to keep u1 — us very small. However, the input
uncertainty makes this impossible — the result is an undesired large change in the
actual value of u}| — uh, which subsequently results in large changes in y1 and y»
because of the large plant gain (6(G) = 197.2) in this direction, as seen from (3.44).

Remark 2 The system remains stable for gain uncertainty up to 100% because
the uncertainty occurs only at one side of the plant (at the input). If we also
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consider uncertainty at the output then we find that the decoupling controller yields
instability for relatively small errors in the input and output gains. This is illustrated
in Exercise 3.9 below.

Remark 3 It is also difficult to get a robust controller with other standard design
techniques for this model. For example, an S/ K S-design as in (3.55) with Wp = wpl
(using M = 2 and wp = 0.05 in the performance weight) and W, = I, yields a
good nominal response (it is not decoupled, but the inputs are smaller than for the
decoupling controller and remain less than 1 in magnitude), but the system is very
sensitive to input uncertainty, and the outputs go up to about 3.4 and settle very
slowly when there is 20% input gain error.

Remark 4 Attempts to make the inverse-based controller robust using the second
step of the Ho loop-shaping procedure are also unhelpful, see Exercise 3.7 This
shows that robustness with respect to coprime factor uncertainty does not necessarily
imply robustness with respect to input uncertainty. The solution is to avoid inverse-
based controllers for a plant with large RGA-elements, also see 260.

Exercise 3.7 Consider again the distillation process G(s) in (8.77). The response
using the inverse-based controller Kiny in (3.79) was found to be sensitive to input
gain errors. We want to see if controller can be modified to yield a more robust system
by using the McFarlane-Glover Hoo loop-shaping procedure. To this effect, let the
shaped plant be Gs = G Kiny, i.e. W1 = Kinv, and design an Hoo controller Ks for the
shaped plant (see page 406 and Chapter 9), such that the overall controller becomes
K = KinvKs. (You will find that Ymin = 1.414 which indicates good robustness with
respect to coprime factor uncertainty, but the loop shape is almost unchanged and
the system remains sensitive to to input uncertainty.)

Exercise 3.8 Design a SVD-controller K = W1KsWs for the distillation process
in (3.77), i.e. select Wi =V and Wo = UT where U and V are given in (3.44).
Select K in the form
¢ 18541 0
K=" OS p TBuEL
8§

and try the following values:

(a) c1 = c2 = 0.005;
(b) c1 =0.005, co = 0.05;
(¢) ¢1 =0.7/197 = 0.0036, c2 = 0.7/1.39 = 0.504.

Simulate the closed-loop reference response with and without uncertainty. Designs (a)
and (b) should be robust. Which has the best performance? Design (c) should give
the response in Figure 3.12. In the simulations, include high-order plant dynamics
by replacing G(s) by (0_02§+1)J G(s). What is the condition number of the controller
in the three cases? Discuss the results. (See also the conclusion on page 260).

Exercise 3.9 Consider again the distillation process (3.77) with the decoupling
controller, but also include output gain uncertainty €;. That is, let the perturbed loop
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transfer function be

~

! _ g _E 1+€ 0 1+¢ 0 -1
L'(s) = G' Kinv = S[ 0 1+%]G[ 0 1+62}G (3.83)

Lo

where Lo has mo dynamics for the distillation example. The closed-loop poles of
the perturbed system are solutions to det(I + L'(s)) = det(I + (k1/s)Lo) = 0, or
equivalently

det(kill + Lo) = (s/k1)? + tr(Lo)(s/k1) + det(Lo) =0 (3.84)

For ki > 0 we see that instability occurs if and only if the trace and/or the
determinant of Lo are negative. Since det(Lo) > 0 for any gain error less than
100%, instability can only occur if tr(Lo) < 0. Evaluate tr(Lo) and show that with
gain errors of equal magnitude the combination of errors which most easily yields
instability is with € = —es = —e1 = €3 = e. Use this to show that the perturbed

system is unstable if
/ 1
€ > m (3.85)

where A\i1 = gi11922/ det G is the 1,1-element of the RGA of G. In our case
A11 = 35.1 and we get instability for e > 0.120. Check this numerically.

Remark. The instability condition in (3.85) for simultaneous input and output
gain uncertainty, applies to the very special case of a 2 x 2 plant, in which all
elements share the same dynamics, G(s) = g(s)Go, and an inverse-based controller,

K(s) = (k1/s)G~'(s).

3.7.3 Robustness conclusions

From the two motivating examples above we found that multivariable plants
can display a sensitivity to uncertainty (in this case input uncertainty) which
is fundamentally different from what is possible in SISO systems.

In the first example (spinning satellite), we had excellent stability margins
(PM and GM) when considering one loop at a time, but small simultaneous
input gain errors gave instability. This could be expected from the peak values
(Hoo norms) for S and 7', defined as

ITlleo = maxa(T(jw)), [[Sllec = maxa(S(jw)) (3.86)

which were both large (about 10) for this example.

In the second example (distillation process), we again had excellent stability
margins (PM and GM), and the system was also robustly stable to errors (even
simultaneous) of up to 100% in the input gains. However, in this case small
input gain errors gave terrible output performance, so robust performance

106 MULTIVARIABLE FEEDBACK CONTROL

was not satisfied, and adding simultaneous output gain uncertainty resulted
in instability (see Exercise 3.9). These problems with the decoupling controller
could be expected because the plant has large RGA-elements, see (6.78). For
this example the H., norms of S and T" were both about 1, so the absence of
a peak in S and T does not guarantee robustness.

Although sensitivity peaks, RGA-elements, etc. are useful indicators of
robustness problems, they provide no exact answer to whether a given source
of uncertainty will yield instability or poor performance. This motivates the
need for better tools for analyzing the effects of model uncertainty. We want to
avoid a trial-and-error procedure based on checking stability and performance
for a large number of candidate plants. This is very time consuming, and in
the end one does not know whether those plants are the limiting ones. What
is desired, is a simple tool which is able to identify the worst-case plant. This
will be the focus of Chapters 7 and 8 where we show how to represent model
uncertainty in the H o, framework, and introduce the structured singular value
p as our tool. The two motivating examples are studied in more detail in
Example 8.7 and Section 8.11.3 where a p-analysis predicts the robustness
problems found above.

3.8 General control problem formulation

(weighted) (weighted)
exogenous inputs exogenous outputs
w P z
U v
control signals sensed outputs

K <

Figure 3.13: General control configuration for the case with no model uncertainty

In this section we consider a general method of formulating control problems
introduced by Doyle (1983; 1984) The formulation makes use of the general
control configuration in Figure 3.13, where P is the generalized plant and K
is the generalized controller as explained in Table 1.1 on page 13. Note that
positive feedback is used.

The overall control objective is to minimize some norm of the transfer
function from w to z, for example, the H., norm. The controller design
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problem is then:

e Find a controller K which based on the information in v, generates an input
u which counteracts the influence of w on z, thereby minimizing the norm
from w to z.

The configuration in Figure 3.13 may at first glance seem restrictive.
However, this is not the case, and we will demonstrate the generality of the
setup with a few examples, including the design of observers (the estimation
problem) and feedforward controllers. The most important point of this
section is to appreciate that almost any linear control problem can be
formulated using the block diagram in Figure 3.13 (for the nominal case)
or in Figure 3.20 (with model uncertainty).

Remark. We may generalize the control configuration still further by including
diagnostics as additional outputs from the controller giving the 4-parameter
controller introduced by Nett (1986), but this is not considered in this book.

3.8.1 Obtaining the generalized plant P

The routines in MATLAB for synthesizing Ho, and H, optimal controllers
assume that the problem is in the general form of Figure 3.13, that is, they
assume that P is given. To derive P (and K) for a specific case we must first
find a block diagram representation and identify the signals w, z, u and v. To
construct P one should note that it is an open-loop system and remember to
break all “loops” entering and exiting the controller K. Some examples are
given below and further examples are given in Section 9.3 (Figures 9.9, 9.10,
9.11 and 9.12).

Example 3.13 One degree-of-freedom feedback control configuration.
We want to find P for the conventional one degree-of-freedom control configuration
in Figure 8.14. The first step is to identify the signals for the generalized plant:

Ym

Figure 3.14: One degree-of-freedom control configuration.
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Figure 3.15: Equivalent representation of Figure 3.14 where the error signal to be
minimized is z = y — r and the input to the controller is v = r — Y.

w1 d
w=|w|=|r|; z=e=y—r; v=r—gym=r—y-n (3.87)

w3 n

With this choice of v, the controller only has information about the deviation r — Y, .
Also note that z = y — r, which means that performance is specified in terms of the
actual output y and not in terms of the measured output ym . The block diagram in
Figure 3.1/ then yields

z = y—r=Gu+d—r=Iw —Iws+ 0ws + Gu

v = r—yn=r—Gu—d—n=—Iw + [wy — [ws — Gu
and P which represents the transfer function matriz from [w u]” to [z v]T is

I -1 0 &
r=| T 0 (3.88)

Note that P does not contain the controller. Alternatively, P can be obtained by
inspection from the representation in Figure 3.15.

Remark. Obtaining the generalized plant P may seem tedious. However, when
performing numerical calculations P can be generated using software. For example,
in MATLAB we may use the simulink program, or we may use the sysic program
in the p-toolbox. The code in Table 3.1 generates the generalized plant P in (3.88)
for Figure 3.14.
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Table 3.1: MATLAB program to generate P in (3.88).
% Uses the Mu-toolbox

systemnames = ’G’; % G is the SISO plant.
inputvar = ’[d(1);r(1);n(1);u(l)]’; % Consists of vectors w and u.
input_to G = ’[u]’;

outputvar = ’[G+d-r; r-G-d-n]’; % Consists of vectors z and v.
sysoutname = ’P’;

sysic;

3.8.2 Controller design: Including weights in P

To get a meaningful controller synthesis problem, for example, in terms of
the Hoo or Ho norms, we generally have to include weights W, and W,, in
the generalized plant P. That is, we consider the weighted or normalized
exogenous inputs w (where w = W,w consists of the “physical” signals
entering the system; disturbances, references and noise), and the weighted or
normalized controlled outputs z = W,z (where Z often consists of the control
error y — r and the manipulated input u), and The weighting matrices are
usually frequency dependent and typically selected such that weighted signals
w and z are of magnitude 1, that is, such that the norm from w to z should be
less than 1. Thus, in most cases only the magnitude of the weights matter, and
we may without loss of generality assume that W,,(s) and W.(s) are stable
and minimum phase (they need not even be rational transfer functions but if
not they will be unsuitable for controller synthesis using current software).

Example 3.14 Stacked S/T/KS problem. Consider an Hoo problem where we
want to bound 5 (S) (for performance), a(T) (for robustness and to avoid sensitivity
to noise) and a(KS) (to penalize large inputs). These requirements may be combined
into a stacked Hoo problem

W,KS
] (3.89)

min [[N(K)leo, N = [ Wr'T
K WpS

where K is a stabilizing controller. In other words, we have z = Nw and the objective
18 to minimize the Hoo morm from w to z. Except for some negative signs which have
no effect when evaluating ||N||eo, the N in (3.89) may be represented by the block
diagram in Figure 3.16 (convince yourself that this is true). Here w represents a
reference command 