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Inverted Pendulum: State-Space Methods for

Controller Design

Key MATLAB commands used in this tutorial are: ss , eig , lsim , lqr , ctrb , plotyy ,

obsv , place
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From  the  main  problem,  the  dynamic  equations  of  the  inverted  pendulum  system  in

state-space form are the following:

To see how this problem was originally set up and the system equations were derived,

consult the Inverted Pendulum: System Modeling page. For this problem the outputs are

the cart's  displacement  (  in  meters)  and the pendulum angle  (  in  radians)  where 

represents the deviation of the pedulum's position from equilibrium, that is, .

The design criteria for this system for a 0.2-m step in desired cart position  are as follows:

Settling time for  and  of less than 5 seconds

Rise time for  of less than 0.5 seconds

Pendulum angle  never more than 20 degrees (0.35 radians) from the vertical

Steady-state error of less than 2% for  and 

As  you  may  have  noticed  if  you  went  through  some  of  the  other  inverted  pendulum

examples, the design criteria for this example are different. In the other examples we were

attemping to keep the pendulum vertical  in response to an impulsive disturbance force

applied to the cart. We did not attempt to control the cart's position. In this example, we are

attempting to keep the pendulum vertical while controlling the cart's position to move 0.2

meters to the right. A state-space design approach is well suited to the control of multiple
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outputs as we have here.

This problem can be solved using full-state feedback. The schematic of this type of control

system is shown below where  is a matrix of control gains. Note that here we feedback all

of the system's states, rather than using the system's outputs for feedback.

Open-loop poles

In  this  problem,   represents  the  step  command  of  the  cart's  position.  The  4  states

represent the position and velocity of the cart and the angle and angular velocity of the

pendulum.  The  output   contains  both  the  position  of  the  cart  and  the  angle  of  the

pendulum. We want to design a controller so that when a step reference is given to the

system, the pendulum should be displaced, but eventually return to zero (i.e. vertical) and

the cart  should move to its  new commanded position.  To view the system's open-loop

response please refer to the Inverted Pendulum: System Analysis page.

The first step in designing a full-state feedback controller is to determine the open-loop

poles of the system. Enter the following lines of code into an m-file. After execution in the

MATLAB command window, the output will list the open-loop poles (eigenvalues of ) as

shown below.

M = 0.5;

m = 0.2;

b = 0.1;

I = 0.006;

g = 9.8;

l = 0.3;

p = I*(M+m)+M*m*l^2; %denominator for the A and B matrices

A = [0      1              0           0;

     0 -(I+m*l^2)*b/p  (m^2*g*l^2)/p   0;

     0      0              0           1;

     0 -(m*l*b)/p       m*g*l*(M+m)/p  0];

B = [     0;

     (I+m*l^2)/p;

          0;

        m*l/p];
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(3)

C = [1 0 0 0;

     0 0 1 0];

D = [0;

     0];

states = {'x' 'x_dot' 'phi' 'phi_dot'};

inputs = {'u'};

outputs = {'x'; 'phi'};

sys_ss = ss(A,B,C,D,'statename',states,'inputname',inputs,'outputname',o

poles = eig(A)

poles =

         0

   -5.6041

   -0.1428

    5.5651

As you can see, there is one right-half  plane pole at 5.5651. This should confirm your

intuition that the system is unstable in open loop.

Linear Quadratic Regulation (LQR)

The next step in the design process is to find the vector of state-feedback control gains 

assuming that we have access (i.e. can measure) all four of the state variables. This can be

accomplished in a number of ways. If you know the desired closed-loop pole locations, you

can use the  MATLAB commands place  or  acker.  Another  option  is  to  use the  lqr

command which returns the optimal controller gain assuming a linear plant, quadratic cost

function, and reference equal to zero (consult your textbook for more details).

Before  we  design  our  controller,  we  will  first  verify  that  the  system  is  controllable.

Satisfaction of this property means that we can drive the state of the system anywhere we

like in  finite  time (under  the physical  constraints  of  the  system).  For  the system to be

completely state controllable, the controllability matrix must have rank  where the rank of

a matrix is the number of independent rows (or columns). The controllability matrix of the

system takes the form shown below. The number  corresponds to the number of state

variables of the system. Adding additional  terms to the controllability  matrix with higher

powers of the matrix  will not increase the rank of the controllability matrix since these

additional terms will just be linear combinations of the earlier terms.

Since our controllability matrix is 4x4, the rank of the matrix must be 4. We will use the

MATLAB command ctrb to generate the controllability matrix and the MATLAB command

rank to test the rank of the matrix. Adding the following additional commands to your m-file

and running in the MATLAB command window will produce the following output.

co = ctrb(sys_ss);
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controllability = rank(co)

controllability =

     4

Therefore, we have verified that our system is controllable and thus we should be able to

design a controller that achieves the given requirements. Specifically, we will use the linear

quadratic regulation method for determining our state-feedback control gain matrix .

The MATLAB function lqr  allows you to choose two parameters,  and ,  which will

balance  the  relative  importance  of  the  control  effort  ( )  and  error  (deviation  from  0),

respectively, in the cost function that you are trying to optimize. The simplest case is to

assume , and . The cost function corresponding to this  and  places

equal importance on the control and the state variables which are outputs (the pendulum's

angle and the cart's position).  Essentially,  the lqr  method allows for  the control  of  both

outputs. In this case, it is pretty easy to do. The controller can be tuned by changing the

nonzero  elements  in  the   matrix  to  achieve  a  desirable  response.  To  observe  the

structure of , enter the following into the MATLAB command window to see the output

given below.

Q = C'*C

Q =

     1     0     0     0

     0     0     0     0

     0     0     1     0

     0     0     0     0

The element in the (1,1) position of  represents the weight on the cart's position and the

element in the (3,3) position represents the weight on the pendulum's angle. The input

weighting  will remain at 1. Ultimately what matters is the relative value of  and , not

their absolute values. Now that we know how to interpret the  matrix, we can experiment

to find the  matrix that will give us a "good" controller. We will go ahead and find the 

matrix and plot the response all in one step so that changes can be made in the control and

seen automatically in the response. Add the following commands to the end of your m-file

and  run  in  the  MATLAB command  window  to  get  the  following  value  for   and  the

response plot shown below.

Q = C'*C;

R = 1;

K = lqr(A,B,Q,R)

Ac = [(A-B*K)];

Bc = [B];

Cc = [C];

Dc = [D];
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states = {'x' 'x_dot' 'phi' 'phi_dot'};

inputs = {'r'};

outputs = {'x'; 'phi'};

sys_cl = ss(Ac,Bc,Cc,Dc,'statename',states,'inputname',inputs,'outputnam

t = 0:0.01:5;

r =0.2*ones(size(t));

[y,t,x]=lsim(sys_cl,r,t);

[AX,H1,H2] = plotyy(t,y(:,1),t,y(:,2),'plot');

set(get(AX(1),'Ylabel'),'String','cart position (m)')

set(get(AX(2),'Ylabel'),'String','pendulum angle (radians)')

title('Step Response with LQR Control')

K =

   -1.0000   -1.6567   18.6854    3.4594

The curve in  green represents  the pendulum's angle in  radians,  and the curve in  blue

represents the cart's position in meters. As you can see, this plot is not satisfactory. The

pendulum and cart's overshoot appear fine, but their settling times need improvement and

the cart's rise time needs to be reduced. As I'm sure you have noticed, the cart's final

position is also not near the desired location but has in fact moved in the opposite direction.

This error will be dealt with in the next section and right now we will focus on the settling

and rise times. Go back to your m-file and change the  matrix to see if you can get a

better response. You will find that increasing the (1,1) and (3,3) elements makes the settling

and rise times go down, and lowers the angle the pendulum moves. In other words, you are

putting more weight on the errors at the cost of increased control effort . Modifying your

m-file so that the (1,1) element of  is 5000 and the (3,3) element is 100, will produce the

following value of  and the step response shown below.

Q = C'*C;
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Q(1,1) = 5000;

Q(3,3) = 100

R = 1;

K = lqr(A,B,Q,R)

Ac = [(A-B*K)];

Bc = [B];

Cc = [C];

Dc = [D];

states = {'x' 'x_dot' 'phi' 'phi_dot'};

inputs = {'r'};

outputs = {'x'; 'phi'};

sys_cl = ss(Ac,Bc,Cc,Dc,'statename',states,'inputname',inputs,'outputnam

t = 0:0.01:5;

r =0.2*ones(size(t));

[y,t,x]=lsim(sys_cl,r,t);

[AX,H1,H2] = plotyy(t,y(:,1),t,y(:,2),'plot');

set(get(AX(1),'Ylabel'),'String','cart position (m)')

set(get(AX(2),'Ylabel'),'String','pendulum angle (radians)')

title('Step Response with LQR Control')

Q =

        5000           0           0           0

           0           0           0           0

           0           0         100           0

           0           0           0           0

K =

  -70.7107  -37.8345  105.5298   20.9238
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You may have noted that if you increased the values of the elements of  even higher, you

could  improve  the  response  even  more.  The  reason  this  weighting  was  chosen  was

because it just satisfies the transient design requirements. Increasing the magnitude of 

more would make the tracking error smaller, but would require greater control force . More

control effort generally corresponds to greater cost (more energy, larger actuator, etc.).

Adding precompensation

The controller we have designed so far meets our transient requirements, but now we must

address the steady-state error. In contrast to the other design methods, where we feedback

the output  and compare it  to  the reference input  to  compute an error,  with  a full-state

feedback controller we are feeding back all of the states. We need to compute what the

steady-state value of the states should be, multiply that by the chosen gain , and use a

new value  as  our  "reference"  for  computing  the  input.  This  can be done by  adding  a

constant gain  after the reference. The schematic below shows this relationship:

We can find this   factor  by employing the used-defined function rscale.m  as  shown

below. The  matrix is modified to reflect the fact that the reference is a command only on

cart position.

Cn = [1 0 0 0];

sys_ss = ss(A,B,Cn,0);

Nbar = rscale(sys_ss,K)

Nbar =

  -70.7107

Note that the function rscale.m is not a standard function in MATLAB. You will have to

download it here and place it in your current directory. More information can be found here,

Extras: rscale.m. Now you can plot the step response by adding the above and following

lines of code to your m-file and re-running at the command line.

sys_cl = ss(Ac,Bc*Nbar,Cc,Dc,'statename',states,'inputname',inputs,'outp

t = 0:0.01:5;

r =0.2*ones(size(t));
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[y,t,x]=lsim(sys_cl,r,t);

[AX,H1,H2] = plotyy(t,y(:,1),t,y(:,2),'plot');

set(get(AX(1),'Ylabel'),'String','cart position (m)')

set(get(AX(2),'Ylabel'),'String','pendulum angle (radians)')

title('Step Response with Precompensation and LQR Control')

Now, the steady-state error is within our limits, the rise and settle times are met, and the

pendulum's overshoot is within range of the design criteria.

Note that the precompensator  employed above is calculated based on the model of the

plant  and  further  that  the  precompensator  is  located  outside  of  the  feedback  loop.

Therefore, if there are errors in the model (or unknown disturbances) the precompensator

will not correct for them and there will be steady-state error. You may recall that the addition

of integral control may also be used to eliminate steady-state error, even in the presence of

model uncertainty and step disturbances. For an example of how to implement integral

control in the state space setting, see the Motor Position: State-Space Methods example.

The tradeoff with using integral control is that the error must first develop before it can be

corrected for, therefore, the system may be slow to respond. The precompensator on the

other hand is able to anticipitate the steady-state offset using knowledge of the plant model.

A useful technique is to combine the precompensator with integral control to leverage the

advantages of each approach.

Observer-based control

The response achieved above is  good,  but  was based on the assumption of  full-state

feedback,  which  is  not  necessarily  valid.  To  address  the  situation  where  not  all  state

variables  are  measured,  a  state  estimator  must  be  designed.  A  schematic  of  state-

feedback control with a full-state estimator is shown below, without the precompensator .
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Before we design our estimator,  we will  first  verify that our system is observable.  The

property of observability determines whether or not based on the measured outputs of the

system we  can  estimate  the  state  of  the  system.  Similar  to  the  process  for  verifying

controllability, a system is observable if its observability matrix is full rank. The observability

matrix is defined as follows.

We can employ the MATLAB command obsv to contruct the observability matrix and the

rank command to check its rank as shown below.

ob = obsv(sys_ss);

observability = rank(ob)

observability =

     4

Since the observability  matrix  is  8x4 and has rank 4,  it  is  full  rank and our  system is

observable. The observability matrix in this case is not square since our system has two

outputs. Note that if we could only measure the pendulum angle output, we would not be

able  to  estimate  the  full  state  of  the  system.  This  can  be  verified  by  the  fact  that

obsv(A,C(2,:)) produces an observability matrix that is not full rank.

Since we know that we can estimate our system state, we will now describe the process for

designing  a  state  estimator.  Based  on  the  above  diagram,  the  dynamics  of  the  state

estimate are described by the following equation.

The spirit  of  this equation is similar to that of  closed-loop control  in that last term is a
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correction based on feedback. Specifically, the last term corrects the state estimate based

on the difference between the actual output  and the estimated output . Now let's look at

the dynamics of the error in the state estimate.

Therefore, the state estimate error dynamics are described by

and the error will approach zero (  will approach ) if the matrix  is stable (has

negative eigenvalues). As is with the case for control, the speed of convergence depends

on the poles of the estimator (eigenvalues of ). Since we plan to use the state

estimate as the input to our controller, we would like the state estimate to converge faster

than is desired from our overall closed-loop system. That is, we would like the observer

poles to be faster than the controller poles. A common guideline is to make the estimator

poles 4-10 times faster than the slowest controller pole. Making the estimator poles too fast

can be problematic if  the measurement is corrupted by noise or there are errors in the

sensor measurement in general.

Based on this logic, we must first find the controller poles. To do this, copy the following

code to the end of your m-file. If you employed the updated  matrix, you should see the

following poles in the MATLAB command window.

poles = eig(Ac)

poles =

  -8.4910 + 7.9283i

  -8.4910 - 7.9283i

  -4.7592 + 0.8309i

  -4.7592 - 0.8309i

The slowest poles have real part equal to -4.7592, therefore, we will place our estimator

poles  at  -40.  Since  the  closed-loop  estimator  dynamics  are  determined  by  a  matrix  (

) that has a similar form to the matrix that determines the dynamics of the state-

feedback system ( ), we can use the same commands for finding the estimator

gain  as we can for  finding the state-feedback gain  .  Specifically,  since  taking  the

transpose  of   leaves  the  eigenvalues  unchanged  and  produces  a  result

 that exactly matches the form of , we can use the acker or place

commands. Recalling that the place command cannot place poles of multiplicity greater

than one, we will place the observer poles as follows. Add the following commands to your

m-file to calculate the  matrix and generate the output shown below.

P = [-40 -41 -42 -43];

L = place(A',C',P)'

L =

   1.0e+03 *

    0.0826   -0.0010
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    1.6992   -0.0402

   -0.0014    0.0832

   -0.0762    1.7604

We are using both outputs (the angle of the pendulum and the position of the cart)  to

design the observer.

Now we will combine our state-feedback controller from before with our state estimator to

get the full compensator. The resulting closed-loop system is described by the following

matrix equations.

The closed-loop system described above can be implemented in MATLAB by adding the

following commands to the end of your m-file. After running the m-file the step response

shown will be generated.

Ace = [(A-B*K) (B*K);

       zeros(size(A)) (A-L*C)];

Bce = [B*Nbar;

       zeros(size(B))];

Cce = [Cc zeros(size(Cc))];

Dce = [0;0];

states = {'x' 'x_dot' 'phi' 'phi_dot' 'e1' 'e2' 'e3' 'e4'};

inputs = {'r'};

outputs = {'x'; 'phi'};

sys_est_cl = ss(Ace,Bce,Cce,Dce,'statename',states,'inputname',inputs,'o

t = 0:0.01:5;

r = 0.2*ones(size(t));

[y,t,x]=lsim(sys_est_cl,r,t);

[AX,H1,H2] = plotyy(t,y(:,1),t,y(:,2),'plot');

set(get(AX(1),'Ylabel'),'String','cart position (m)')

set(get(AX(2),'Ylabel'),'String','pendulum angle (radians)')

title('Step Response with Observer-Based State-Feedback Control')
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This response is almost identical to the response achieved when it was assumed that we

had full access to the state variables. This is because the observer poles are fast, and

because the model we assumed for the observer is identical to the model of the actual

plant (including the same initial conditions). Therefore, all of the design requirements have

been met with the minimal control effort expended. No further iteration is needed.

This  example  demonstrates  that  it  is  much  easier  to  control  multi-input,  multi-output

systems with the state-space method than with the other methods we have presented.

Published with MATLAB® 7.14

All contents licensed under a Creative Commons Attribution-ShareAlike 4.0 International

License.

Control Tutorials for MATLAB and Simulink - Inverted Pendulum: Sta... http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPend...

12 de 12 18/10/2015 22:45


