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HISTORICAL DEVELOPMENTS IN
OPTIMIZATIONOPTIMIZATION

• 300 B.C: Shortest distance from a point to a line300 B.C:  Shortest distance from a point to a line 
(Euclid)

• 1600s: Leibniz/Newton (Calculus)( )
• 1847:  Gradient methods (Cauchy)
• 1875: Minimum free energy principle (Gibbs)gy p p ( )
• Late 40’s:  Linear Optimization

– Army operations; Linear objective function and constraints

• Late 50’s:  Nonlinear Optimization
– Chemical process industries; Nonlinear functions

• 60’s: Integer Optimization
– Discrete manufacturing; Integer variables to model discrete 

decisions and economies of scale



GLOBAL OPTIMIZATION
OF MIXED INTEGER NONLINEAROF MIXED-INTEGER NONLINEAR 

OPTIMIZATION PROBLEMSCONVEXIFICATION
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Cl i l ti i ti l ith id l lClassical optimization algorithms provide a local 
minimum “closest”  to the starting point used
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BARON SOFTWARE

• First commercial software to offer 
deterministic guarantee of global optimality 
ffor multi-extremal nonlinear optimization 
problems

• Two pronged approach to technology transfer• Two-pronged approach to technology transfer
– Commercial

» Under the modeling languages GAMS and AIMMS
– Free

» Under the NEOS server for optimization



BARON IN APPLICATIONSBARON IN APPLICATIONS

• Development of new Runge Kutta methods• Development of new Runge-Kutta methods
for partial differential equations

– Ruuth and Spiteri, SIAM J. Numerical Analysis, 2004

• Energy policy making
– Manne and Barreto, Energy Economics, 2004

• Model estimation and automatic control
– Bemporand and Ljung, Automatica, 2004

A i lt l i• Agricultural economics
– Cabrini et al., Manufacturing and Service Operations 

Management, 2005

• Portfolio optimization for wealth-dependent 
risk preferences

Ri d S hi idi A l f O ti R h 2010– Rios and Sahinidis, Annals of Operations Research, 2010



THE ALGEBRAICTHE ALGEBRAIC 
OPTIMIZATION PARADIGM

• Algebraic models
– Require optimization expertise– Require optimization expertise
– Take a long time to develop
– Often require restrictive assumptions to increase 

solvabilitysolvability

• Practitioners do not have models when
– Proprietary software required for simulationProprietary software required for simulation
– Optimization is required in an experimental setting



MODEL CALIBRATION 
(Mugunthan and Shoemaker, 2005)
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MICROREACTOR OPTIMIZATION

McMullen and Jensen (2010)



AUTOMATIC TUNING OF 
OPTIMIZATION SOFTWARE

O tiOptions
• Relaxation

R d ti BARON• Reduction
• Branching

BARON

Optimize solver performance over
• A collection of test problems
• During run-time



DERIVATIVE FREEDERIVATIVE-FREE 
OPTIMIZATION

• Optimization of a function for which
– derivative information is not symbolically available
– derivative information is not numerically computable

• Studied in a variety of areas under the terms:• Studied in a variety of areas under the terms:
– Black-box optimization
– Simulation-based optimization
– Design of experiments
– Response surface methods
– Active learningg

Optimization without an algebraic model



TIMELINE OF INNOVATION
IN DERIVATIVE-FREE OPTIMIZATION
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NELDER-MEAD ALGORITHM
(Nelder and Mead, 1965)
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PATTERN SEARCH ALGORITHMS
(Hooke and Jeeves, 1961; Torczon, 1997)



DIRECT ALGORITHM
(Jones et al., 1993)

start Identify potentially 
optimal

Evaluate and divide
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DERIVATIVE-FREE 
OPTIMIZATION ALGORITHMS

LOCAL SEARCH METHODS GLOBAL SEARCH METHODS• LOCAL SEARCH METHODS
– Direct local search

» Nelder-Mead simplex

• GLOBAL SEARCH METHODS
– Deterministic global search

» Lipschitzian-based partitioning» Nelder Mead simplex 
algorithm

» Generalized pattern 
search and generating

» Lipschitzian based partitioning 
» Multilevel coordinate search

– Stochastic global optimization
search and generating 
search set

– Based on surrogate 
d l

» Hit-and-run
» Simulated annealing

G ti l ithmodels
» Trust-region methods
» Implicit filtering

» Genetic algorithms
» Particle swarm

– Based on surrogate models» Implicit filtering Based on surrogate models
» Response surface methods
» Surrogate management 

f kframework
» Branch-and-fit



DERIVATIVE-FREE 
OPTIMIZATION SOFTWARE

LOCAL SEARCH GLOBAL SEARCHLOCAL SEARCH
FMINSEARCH (Nelder-Mead)
DAKOTA PATTERN (PPS)
HOPSPACK (PPS)

DAKOTA SOLIS-WETS (Direct)
DAKOTA DIRECT (DIRECT)
TOMLAB GLBSOLVE (DIRECT)

SID-PSM (Simplex gradient PPS)
NOMAD  (MADS)
DFO (Trust region, quadratic model)
IMFIL (I li it Filt i )

TOMLAB GLBSOLVE (DIRECT)
TOMLAB GLCSOLVE (DIRECT)
MCS (Multilevel coordinate search)
TOMLAB EGO (RSM using Kriging)IMFIL (Implicit Filtering)

BOBYQA (Trust region, quadratic model)
NEWUOA (Trust region, quadratic model)

( g g g)
TOMLAB RBF (RSM using RBF)
SNOBFIT (Branch and Fit)
TOMLAB LGO (LGO algorithm)TOMLAB LGO (LGO algorithm)

STOCHASTIC
ASA  (Simulated annealing)
CMA-ES (Evolutionary algorithm)
DAKOTA  EA (Evolutionary algorithm)
GLOBAL (Clustering - Multistart)
PSWARM (Particle swarm)



SOLVERS COMPAREDSOLVERS COMPARED



APPROACHAPPROACH
• Started seven years agoy g
• Collected over 500 NLP benchmarks

– Algebraic formulations; global solutions known (BARON)

• Developed unified interface to 25+ solvers
• Average-case comparisons

– Based on median objective function value of 10 runs from 
randomly generated starting points

– Solver solved problem if solution within 0.01 or 1% of p
optimal

• Tested all solvers with default options
C i t d lt ith d l h• Communicated results with developers, who

– Revised software
– Revised algorithmic optionsRevised algorithmic options



TEST PROBLEM 
CHARACTERISTICSCHARACTERISTICS

Over 500 problemsOver 500 problems



QUESTIONS ADDRESSED

• Which solvers are most likely to find near-
global optima?global optima? 

• Which solvers are most likely to improve 
starting points?g p

• Does quality drop significantly as problem 
size increases?

• Is there a minimal subset of existing solvers 
that would suffice to solve a large fraction of 
problems?problems?



FRACTION OF PROBLEMS SOLVED: 
CO S OOCONVEX SMOOTH



FRACTION OF PROBLEMS SOLVED: 
CO O S OOCONVEX NONSMOOTH



FRACTION OF PROBLEMS SOLVED: 
O CO S OONONCONVEX SMOOTH



FRACTION OF PROBLEMS SOLVED: 
O CO O S OONONCONVEX NONSMOOTH



FRACTION OF PROBLEMS SOLVED 
AS A FUNCTION OF PROBLEM SIZEAS A FUNCTION OF PROBLEM SIZE



FRACTION OF PROBLEMS 
SOLVER WAS BEST



MINIMAL SET OF SOLVERSMINIMAL SET OF SOLVERS
ALL PROBLEMS



ERROR BARS



ERROR BARS—NEWUOAERROR BARS NEWUOA



APPLICATION TO TRUEAPPLICATION TO TRUE
BLACK-BOX MODELS

• Portfolio optimization using the omega 
functionfunction

– R. Desai (MS thesis 2010)

• Pairs tradingg
– Y. Zheng (MS thesis 2011)

• Protein structural alignment
– S. Shah (PhD thesis 2011)

• Optimizing polymerase chain reaction (PCR)
K F Ch (MS th i 2011)– K.-F. Chang (MS thesis 2011)

Relative solver performance on black-boxRelative solver performance on black box 
models is similar to that presented for 500+ 
algebraic models



PAIRS TRADING



TRAINING AND TRADING



OPTIMAL TRADINGOPTIMAL TRADING 
THRESHOLDS



CUMULATIVE RETURNS (9/81-4/97)

Annual return 19.5% versus 11.8% for S&P 500



NEW ALGORITHMS

• Simulation/experimentation is expensive
Solve auxiliary algebraic models to global• Solve auxiliary algebraic models to global 
optimality to expedite search

– Decide where to sample objective functionp j
» Guarantee geometry

– Construct surrogate models
» Higher quality surrogates» Higher-quality surrogates

– Solve trust-region subproblems
» Escape local minima; guarantee convergence

• BARON is highly efficient for problems below 
100 variables



MODEL-AND-SEARCH 
LOCAL ALGORITHM
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BRANCH AND MODELBRANCH-AND-MODEL 
GLOBAL ALGORITHM

Partition the space 
into a collection H 

f h b

Reduce H to a 
potentially optimal 

t O
For hypercubes in 
O, FIT modelsof hypercubes set O O,  FIT models

Sort O by size of 
hypercubes.
Evaluate n points

Sort O by predicted 
optimal values. 
Evaluate n points

Optimize models in 
OEvaluate n2 points Evaluate n1 points



PROTEIN LIGAND DOCKINGPROTEIN-LIGAND DOCKING

• Identify binding site and pose
• Conformation must minimize binding freeConformation must minimize binding free 

energy
• Docking packagesg p g

– AutoDock, Gold, FlexX …
– Most rely on genetic and other stochastic search algorithms



BINDING ENERGIES
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B&M outperformed AutoDock in 11 out of 12 cases, 
and found the best solution amongst all solvers for 3 complexes



CONCLUSIONS

D t i i ti l f b tt th• Deterministic solvers perform better than 
stochastic solvers

– Commercial TOMLAB solversCommercial TOMLAB solvers
– Free MCS/SNOBFIT solvers

• Many opportunities
– New algorithms and theory are needed
– Applications aboundApplications abound
– Systematic treatment of noise



Noise

Inputs Outputs
BLACK BOX

Inputs Outputs
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