

Simulador Dinâmico de Processos Orientado por Equações

– Aula 5 –

Argimiro R. Secchi

PEQ-COPPE/UFRJ Janeiro de 2011

Modelo Dinâmico de um Reator Tubular

Considerações:

- Propriedades físicas constantes (ρ , μ , c_{ρ});
- Fluido Newtoniano;
- Simetria angular;
- $V_r = V_{\theta} = 0$

Classificação dos modelos de acordo com os princípios físico-químicos

Modelo Microscópico:

$$(\nabla . \overline{\nu}) = 0 \longrightarrow \overline{v}_{z} = \overline{v}_{z}(r, t)$$

$$\frac{\partial \overline{C}_{i}}{\partial t} = -\overline{v}_{z}(r, t) \frac{\partial \overline{C}_{i}}{\partial z} - (\nabla \cdot \overline{C}_{i}' \overline{\nu}') + (\nabla \cdot D^{(l)} \nabla \overline{C}_{i}) + R_{i}$$

$$Dc_{p} \frac{\partial \overline{T}}{\partial t} = -\rho c_{p} \overline{v}_{z}(r, t) \frac{\partial \overline{T}}{\partial z} - \rho c_{p} (\nabla \cdot \overline{\nu' T'}) + (\nabla \cdot k^{(l)} \nabla \overline{T}) + (\mu^{(l)} \phi_{\nu}^{(l)} + \mu^{(t)} \phi_{\nu}^{(t)}) + \overline{S}_{r}$$

$$\rho \frac{\partial v}{\partial t} = -\rho \overline{v} \cdot \nabla \overline{v} - \rho [\nabla \cdot \overline{v' v'}] - \nabla \overline{P} + \mu^{(l)} \nabla^2 \overline{v} + \rho g$$

Modelo de turbulência (exemplo simples):

$$\overline{v'c_i'} = J_i^{(t)} = -\mathbf{D}^{(t)} \nabla \overline{C_i}$$

$$\rho c_p \overline{v'T'} = q^{(t)} = -k^{(t)} \nabla \overline{T}$$

$$\rho \overline{v'v'} = \tau^{(t)} = -\mu^{(t)} \nabla \overline{v}$$

Método de resolução recomendado

Volumes Finitos:

Consiste na realização de balanços de propriedades em volumes elementares (volumes finitos), ou de forma equivalente na integração sobre o volume elementar da equação diferencial na forma conservativa (ou forma divergente, onde os fluxos aparecem dentro das derivadas).

→ Uso de softwares de CFD (dinâmica de fluido computacional)

Exemplo simples do uso do método dos volumes finitos:

Equação da reação-difusão transiente em uma partícula catalítica esférica

Exemplo simples do uso do método dos volumes finitos

$$C_{p} = \frac{\int_{w}^{e} Cr^{2}dr}{\int_{w}^{e} r^{2}dr} = \frac{3}{\left(r_{e}^{2} - r_{w}^{2}\right)} \int_{w}^{e} Cr^{2}dr \qquad \text{valc}$$

valor médio

$$\frac{dC_p}{dt} = \frac{3}{\left(r_e^3 - r_w^3\right)} \left[r^2 \frac{\partial C}{\partial r}\right]_w^e - \Phi^2 C_p \qquad \qquad \frac{\partial C}{\partial r}\Big|_{r=r_e} = \frac{C_E - C_p}{\Delta r_e} \qquad \qquad \frac{\partial C}{\partial r}\Big|_{r=r_w} = \frac{C_p - C_W}{\Delta r_w}$$

$$\frac{dC_p}{dt} = A_W C_W + A_p C_p + A_E C_E - \Phi^2 C_p \qquad p = 2, ..., N - 1$$

$$A_{W} = \frac{3r_{w}^{2}}{\left(r_{e}^{3} - r_{w}^{3}\right)\Delta r_{w}} \qquad A_{p} = \frac{-3}{\left(r_{e}^{3} - r_{w}^{3}\right)} \left(\frac{r_{e}^{2}}{\Delta r_{e}} + \frac{r_{w}^{2}}{\Delta r_{w}}\right) \qquad A_{E} = \frac{3r_{e}^{2}}{\left(r_{e}^{3} - r_{w}^{3}\right)\Delta r_{e}}$$

Exemplo simples do uso do método dos volumes finitos

Condições de contorno

Ou um sistema não-linear para reações de ordem \neq 1:

$$\frac{d\tilde{C}}{dt} = \tilde{F}(\tilde{C})$$

Modelo de Gradientes Múltiplos:

$$\overline{\mathbf{D}} = \mathbf{D}^{(t)} + \mathbf{D}^{(l)} \qquad \overline{k} = k^{(t)} + k^{(l)} \qquad \overline{\mu} = \mu^{(t)} + \mu^{(l)}$$
$$\frac{\partial \overline{C}_i}{\partial t} = -\overline{v}_z(r, t) \frac{\partial \overline{C}_i}{\partial z} + (\nabla \cdot \overline{\mathbf{D}} \nabla \overline{C}_i) + R_i$$
$$\rho c_p \frac{\partial \overline{T}}{\partial t} = -\rho c_p \overline{v}_z(r, t) \frac{\partial \overline{T}}{\partial z} + (\nabla \cdot \overline{k} \nabla \overline{T}) + \overline{\mu} \overline{\phi}_v + \overline{S}_r$$

$$\rho \frac{\partial v_z}{\partial t} = -\nabla \overline{P} + \overline{\mu} \nabla^2 \overline{v}_z + \rho g$$

Condições de Contorno:

Balanço de massa por componente (removendo a notação de média temporal):

$$\frac{\partial C_i}{\partial t} = \mathcal{D}_z(r,t) \frac{\partial^2 C_i}{\partial z^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \mathcal{D}_R(r,t) \frac{\partial C_i}{\partial r} \right) - v_z(r,t) \frac{\partial C_i}{\partial z} + R_i$$

$$v_{z}(r,t)C_{i0}(t) = v_{z}(r,t)C_{i}(0,r,t) - D_{z}(r,t)\frac{\partial C_{i}(0,r,t)}{\partial z}$$

$$\frac{\partial C_i}{\partial z}(L,r,t) = 0$$

 $\frac{\partial C_i}{\partial r}(z,0,t) = 0$

$$\frac{\partial C_i}{\partial r}(z, R, t) = 0$$

 $C_i(z,r,0) = C_{i_{-in}}(z,r)$

Sem reação na saída

Simetria

Parede impermeável

Condição inicial

Balanço de energia (removendo a notação de média temporal):

$$\begin{split} \rho \, c_p \, \frac{\partial T}{\partial t} &= k_z(r,t) \frac{\partial^2 T}{\partial z^2} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \, k_R(r,t) \frac{\partial T}{\partial r} \right) - \rho \, c_p \, v_z(r,t) \frac{\partial T}{\partial z} + \Delta H_r \, R_A \\ v_z(r,t) T_0(t) &= v_z(r,t) T(0,r,t) - \frac{k_z(r,t)}{\rho \, c_p} \frac{\partial T(0,r,t)}{\partial z} \\ \frac{\partial T}{\partial z} (L,r,t) &= 0 \\ \frac{\partial T}{\partial r} (z,0,t) &= 0 \\ k_R(R,t) \frac{\partial T}{\partial r} (z,R,t) &= U \left[T_w - T(z,R,t) \right] \\ Troca \, de \, calor \, pela \, parede \\ T(z,r,0) &= T_{in}(z,r) \\ \end{split}$$

Balanço de quantidade de movimento (removendo a notação de média temporal):

$$\rho \frac{\partial v_z}{\partial t} = -\frac{\partial P}{\partial z} + \mu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial v_z}{\partial r} \right)$$

$$\frac{\partial v_z}{\partial r}(0,t) = 0$$

 $v_z(R,t) = 0$

Simetria

Parede imóvel

 $v_z(r,0) = v_{z_{-in}}(r)$

Condição inicial

Simplificação adicional:

- coeficientes difusivos efetivos constantes
- velocidade constante

 $C_i(z,r,0) = C_{i_{-in}}(z,r)$

Métodos de resolução de S.E.D.P.

Para simulação dinâmica o mais indicado é o método das linhas:

- discretização espacial (diferenças finitas, volumes finitos, elementos finitos)
- integração temporal

Exemplo: diferenças finitas na direção axial e colocação ortogonal na radial

$$\frac{dC_{i,j,k}}{dt} = D_L \left(\frac{C_{i,j+1,k} - 2C_{i,j,k} + C_{i,j-1,k}}{\Delta z^2} \right) + 4D_R \left[\sum_{m=0}^{n+1} \left(u_k B_{k,m} + A_{k,m} \right) C_{i,j,m} \right] - v_z \left(\frac{C_{i,j+1,k} - C_{i,j-1,k}}{2\Delta z} \right) + R_{i,j,k}$$

$$c_p \frac{dT_{j,k}}{dt} = k_L \left(\frac{T_{j+1,k} - 2T_{j,k} + T_{j-1,k}}{\Delta z^2} \right) + 4k_R \left[\sum_{m=0}^{n+1} \left(u_k B_{k,m} + A_{k,m} \right) T_{j,m} \right] - \rho c_p v_z \left(\frac{T_{j+1,k} - T_{j-1,k}}{2\Delta z} \right) + \Delta H_r R_{A,j,k}$$

onde: $u = r^{2} \qquad l_{m}(u) = \prod_{p=0}^{n+1} \frac{u - u_{p}}{u_{m} - u_{p}} \qquad A_{k,m} = \frac{dl_{m}(u_{k})}{du} \qquad B_{k,m} = \frac{d^{2}l_{m}(u_{k})}{du^{2}}$ $j = 1, 2, ..., N \qquad k = 1, 2, ..., n \qquad y(u) \cong P_{n+1}^{(\alpha,\beta)}(u) = \sum_{m=0}^{n+1} l_{m}(u) y_{m}$ 14

Métodos de resolução de S.E.D.P.

Condições de contorno

$$v_z C_{i0}(t) = v_z C_{i,1,k} - D_L \left(\frac{C_{i,2,k} - C_{i0}(t)}{2\Delta z} \right)$$

 $C_{i,N+1,k} - C_{i,N,k} = 0$

 $\sum_{m=0}^{n+1} A_{0,m} C_{i,j,m} = 0$

$$\sum_{m=0}^{n+1} A_{n+1,m} C_{i,j,m} = 0$$

 $C_{i,j,k} = C_{i_in,j,k}$

 $v_{z} T_{0}(t) = v_{z} T_{1,k} - \frac{k_{L}}{\rho c_{p}} \left(\frac{T_{2,k} - T_{0}(t)}{2\Delta z} \right)$ $T_{N+1,k} - T_{N,k} = 0$ $\sum_{m=0}^{n+1} A_{0,m} T_{j,m} = 0$ $k_{R} \sum_{m=0}^{n+1} A_{n+1,m} T_{j,m} = U \left[T_{w} - T_{j,n+1} \right]$

 $T_{i,k} = T_{in, i,k}$

- j = 1, 2, ..., N k = 1, 2, ..., n
- Resulta em um sistema de equações algébrico-diferenciais, ou somente diferenciais se as condições de contorno (lineares) forem incorporadas nas equações diferenciais

Outro Modelo de Gradientes Múltiplos: (ignorando gradientes radiais)

PFR com dispersão axial

$$\frac{\partial C_i}{\partial t} = D_L \frac{\partial^2 C_i}{\partial z^2} - v_z \frac{\partial C_i}{\partial z} + R_i$$

$$r_z C_{i0}(t) = v_z C_i(0,t) - D_L \frac{\partial C_i(0,t)}{\partial z}$$

$$\frac{\partial C_i}{\partial z}(L,t) = 0$$

$$C_i(z,0) = C_{i_in}(z)$$

$$\rho c_p \frac{\partial T}{\partial t} = k_L \frac{\partial^2 T}{\partial z^2} - \rho c_p v_z \frac{\partial T}{\partial z} + \frac{2U}{R} (T_w - T) + \Delta H_r R_A$$

$$\overline{T}(z,t) = \frac{\int_0^R T(r,z,t) r dr}{\int_0^R r dr}$$

$$v_z T_0(t) = v_z T(0,t) - \frac{k_L}{\rho c_p} \frac{\partial T(0,t)}{\partial z}$$

$$\frac{\partial T}{\partial z}(L,t) = 0$$

$$T(z,0) = T_{in}(z)$$

R

Métodos de resolução do S.E.D.P.

Método das linhas:

v

- discretização espacial (D.F., V.F., colocação ortogonal em elementos finitos)
- integração temporal

Exemplo: diferenças finitas na direção axial

$$\begin{aligned} \frac{dC_{i,j}}{dt} &= D_L \left(\frac{C_{i,j+1} - 2C_{i,j} + C_{i,j-1}}{\Delta z^2} \right) - v_z \left(\frac{C_{i,j+1} - C_{i,j-1}}{2\Delta z} \right) + R_{i,j} \\ j &= 1,2,...,N \end{aligned}$$

$$\rho c_p \frac{dT_j}{dt} &= k_L \left(\frac{T_{j+1} - 2T_j + T_{j-1}}{\Delta z^2} \right) - \rho c_p v_z \left(\frac{T_{j+1} - T_{j-1}}{2\Delta z} \right) + \frac{2U}{R} \left(T_w - T_j \right) + \Delta H_r R_{A,j} \\ z C_{i0}(t) &= v_z C_{i,1} - D_L \left(\frac{C_{i,2} - C_{i0}(t)}{2\Delta z} \right) \\ v_z T_0(t) &= v_z T_1 - \frac{k_L}{\rho c_p} \left(\frac{T_2 - T_0(t)}{2\Delta z} \right) \\ C_{i,N+1} - C_{i,N} &= 0 \\ C_{i,j} &= C_{i,j-1} \\ \end{bmatrix}$$

17

Modelo de Gradiente Máximo: (ignorando dispersão axial)

PFR sem dispersão axial

$$\frac{\partial C_i}{\partial t} = -v_z \frac{\partial C_i}{\partial z} + R_i$$
$$C_i(0,t) = C_{i0}(t)$$
$$C_i(z,0) = C_{i_{-in}}(z)$$

$$\rho c_p \frac{\partial T}{\partial t} = -\rho c_p v_z \frac{\partial T}{\partial z} + \frac{2U}{R} (T_w - T) + \Delta H_r R_A$$
$$T(0,t) = T_0(t)$$
$$T(z,0) = T_{in}(z)$$

Resulta em um sistema de equações diferenciais ordinárias ao aplicar o método das linhas Modelo de Macroscópico:

$$V \frac{dC_i}{dt} = C_{i0}(t) v_z S - C_i v_z S + \overline{R}_i V$$

$$C_i(0) = \overline{C}_{i_in}$$

$$C_p V \frac{dT}{dt} = \rho c_p v_z S T_0(t) - \rho c_p v_z S T + U A_i (\overline{T_w - T}) + \Delta H_r \overline{R}_A V \quad \longleftarrow \quad \overline{T}(t) = \frac{\int_0^L T(z, t) S dz}{\int_0^L S dz}$$

$$T(0) = \overline{T}_{in}$$

Resulta em um sistema de equações diferenciais ordinárias

ρ

 $\int^{L} C_{i}(z,t) S \, dz$

DD as Plugin (Type="OCFEM", Boundary="BOTH", InternalPoints=5 alfa=1, beta=1)

Plugin: ocfem_emso.dll

Reator de leito fixo com dispersão axial (reação de ordem *m*)

$$\frac{\partial y}{\partial \tau} + \frac{\partial y}{\partial x} = \frac{1}{Pe} \frac{\partial^2 y}{\partial x^2} - Da y^m$$

Condições de contorno:

$$-\frac{1}{Pe} \frac{\partial y}{\partial x}\Big|_{x=0} = 1 - y(\tau, 0) \qquad \text{ou} \qquad y(\tau, 0) = 1$$
$$\frac{\partial y}{\partial x}\Big|_{x=1} = 0$$

Condição inicial:

y(0,x) = 0

<u>Sistema de Equações Diferenciais Parciais</u> – Método das Linhas com D.F. e Colocação Ortogonal –

Exemplo: adicionar o Plugin ocfem_emso.dll e executar os flowsheets dos arquivos FDM_ss.mso, OCM_ss.mso e OCFEM_ss.mso e comparar os resultados das discretizações. Fazer o mesmo para o caso transiente nos arquivos FDM_din.mso e OCM_din.mso.

Comparando os Resultados

y(x=1) = 0.151418 (exato)

Estudo de Caso

• Produção de anidrido acético em reator PFR adiabático

- O anidrido acético, em especial, é um dos mais importantes produtos químicos, e freqüentemente é preparado pela reação de um ácido acético com um composto chamado ceteno, obtido a partir do aquecimento da acetona a 700-770°C.
- Etapa importante é o craqueamento em fase vapor de acetona para ceteno e metano:

 $CH_{3}COCH_{3} \rightarrow CH_{2}CO + CH_{4}$

- A segunda etapa é a reação do ceteno com ácido acético.

 $CH_2CO + CH_3COOH \rightarrow (CH_3CO)O$

Ref: G. V. Jeffreys, *A Problem in Chemical Engineering Design: The Manufacture of Acetic Anhydride*, 2nd ed. (London: Institution of Chemical Engineers, 1964)

Estudo de Caso

- Definição do problema
 - A primeira etapa da produção é realizada através de uma reação na fase vapor de acetona em um reator tubular (PFR) adiabático.

onde A = acetona; B = ceteno e C = metano

$$A \rightarrow B + C$$

 A reação é de 1^a ordem em relação à cetona na reação de craqueamento, com constante de Arrhenius dada por:

•
$$k - \text{segundos}$$

• $T - \text{Kelvin}$ $k = \exp\left(34.34 - \frac{34222}{T}\right)$

Estudo de Caso

• Descrição do Processo

- Geometria do reator
 - um reator tubular adiabático contínuo;
 - contém um banco de 1000 tubos de 1 in sch. 40 correspondendo uma seção transversal de 0,557 m²;
 - com comprimento total de 2,28 m;
- Condições de operação
 - temperatura da carga 762°C (1035 K);
 - pressão de operação de 1,6 atm
 - vazão de 8000 kg/h (137,9 kmol/h);
- Composição
 - Acetona (ACETONE), Ceteno (KETENE) e Metano (METHANE)
 - alimentação de acetona pura
- Cinética
 - ocorre uma reação de primeira ordem,
 - fator pré-exponencial (k_0): 8,2 x 10¹⁴ s⁻¹
 - energia de ativação (E/R): 34222 K
 - calor da reação de -80,77 kJ/mol

Estudo de Caso - Produção de anidrido acético -

Exemplo: executar o FlowSheet do arquivo PFR_Adiabatico.mso e construir os perfis de temperatura e composição no estado estacionário. Mostrar também a evolução do perfil de temperatura da condição inicial até o estado estacionário. Discutir o tipo e a qualidade da discretização usada neste exemplo.

Exercícios

1) Resolver o problema da reação-difusão em uma partícula catalítica esférica, descrito por:

$$\frac{\partial y}{\partial t} = \frac{1}{r^2} \frac{\partial y}{\partial r} \left(r^2 \frac{\partial y}{\partial r} \right) - \Phi^2 y^{1/2}$$

$$\frac{\partial y}{\partial r}\Big|_{r=0} = 0 \qquad y(t,r)\Big|_{r=1} = 1 \qquad y(t,r)\Big|_{t=0} = 0$$

 $\Phi = 2$ (módulo de Thiele)

2) Apresentar os resultados do exemplo do slide 27.

Bibliografia

• Himmelblau, D. M. & Bischoff, K. B., "Process Analysis and Simulation - Deterministic Systems", John Wiley & Sons, 1968.

• Finlayson, B. A., "The Method of Weighted Residuals and Variational Principles with Application in Fluid Mechanics, Heat and Mass Transfer", Academic Press, 1972.

• Villadsen, J. & Michelsen, M. L., "Solution of Differential Equation Models by Polynomial Approximation", Prentice-Hall, 1978.

• Davis, M. E., "Numerical Methods and Modeling for Chemical Engineers", John Wiley & Sons, 1984.

- Denn, M., "Process Modeling", Longman, New York, 1986.
- Luyben, W. L., "Process Modeling, Simulation, and Control for Chemical Engineers", McGraw-Hill, 1990.
- Silebi, C.A. & Schiesser, W.E., "Dynamic Modeling of Transport Process Systems", Academic Press, Inc., 1992.
- Biscaia Jr., E.C. "Método de Resíduos Ponderados com Aplicação em Simulação de Processos", XV CNMAC, 1992
- Ogunnaike, B.A. & Ray, W.H., "Process Dynamics, Modeling, and Control", Oxford Univ. Press, New York, 1994.
- Rice, R.G. & Do, D.D., "Applied Mathematics and Modeling for Chemical Engineers", John Wiley & Sons, 1995.
- Maliska, C.R. "Transferência de Calor e Mecânica dos Fluidos Computacional", 1995.
- Bequette, B.W., "Process Dynamics: Modeling, Analysis, and Simulation", Prentice Hall, 1998.
- Fogler, H.S., "Elementos de Engenharia de Reações Químicas", Prentice Hall, 1999.

Agradecimentos especiais

Prof. Rafael de Pelegrini Soares, D.Sc.Eng. Gerson Balbueno Bicca, M.Sc.Eng. Euclides Almeida Neto, M.Sc.Eng. Eduardo Moreira de Lemos, M.Sc.Eng. Marco Antônio Müller

Pela preparação de parte do material do curso.

Pelo apoio ao Projeto ALSOC.

... obrigado pela sua atenção!

http://www.enq.ufrgs.br/alsoc

Lab. de Modelagem, Simulação e Controle de Processos

- Fone: +55-21-2562-8301
- E-mail: arge@peq.coppe.ufrj.br
- http://www.peq.coppe.ufrj.br/Areas/Modelagem_e_simulacao.html