
DIRECT Optimization Algorithm User Guide

Daniel E. Finkel
Center for Research in Scientific Computation

North Carolina State University
Raleigh, NC 27695-8205
definkel@unity.ncsu.edu

March 2, 2003

Abstract

The purpose of this brief user guide is to introduce the reader to the DIRECT optimiza-
tion algorithm, describe the type of problems it solves, how to use the accompanying
MATLAB program, direct.m, and provide a synopis of how it searches for the global
minium. An example of DIRECT being used on a test problem is provided, and the
motiviation for the algorithm is also discussed. The Appendix provides formulas and
data for the 7 test functions that were used in [3].

1 Introduction

The DIRECT optimization algorithm was first introduced in [3], motivated by a modification
to Lipschitzian optimization. It was created in order to solve difficult global optimization
problems with bound constraints and a real-valued objective function. More formally stated,
DIRECT attempts to solve:

Problem 1.1 (P) Let a, b ∈ RN , Ω =
{
x ∈ RN : ai ≤ xi ≤ bi

}
, and f : Ω → R be

Lipschitz continuous with constant α. Find xopt ∈ Ω such that

fopt = f(xopt) ≤ f∗ + ε, (1)

where ε is a given small positive constant.

DIRECT is a sampling algorithm. That is, it requires no knowledge of the objective
function gradient. Instead, the algorithm samples points in the domain, and uses the
information it has obtained to decide where to search next. A global search algorithm
like DIRECT can be very useful when the objective function is a ”black box” function or
simulation. An example of DIRECT being used to try and solve a large industrial problem
can be found in [1].

The DIRECT algorithm will globally converge to the minimal value of the objective func-
tion [3]. Unfortunately, this global convergence may come at the expense of a large and
exhaustive search over the domain. The name DIRECT comes from the shortening of the
phrase ”DIviding RECTangles”, which describes the way the algorithm moves towards the
optimum.
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The DIRECT method has been shown to be very competitive with existing algorithms in
its class [3]. The strengths of DIRECT lie in the balanced effort it gives to local and global
searches, and the few parameters it requires to run.

The accompanying MATLAB code for this document can be found at:

http://www4.ncsu.edu/ definkel/research/index.html.

Any comments, questions, or suggestions should be directed to Dan Finkel at the email
address above.

Section 2 of this guide is a reference for using the MATLAB function direct.m. An
example of DIRECT being used to solve a test problem is provided. Section 3 introduces the
reader to the DIRECT algorithm, and describes how it moves towards the global optimum.

2 How to use direct.m

In this section, we discuss how to implement the MATLAB code direct.m, and also provide
an example of how to run direct.m.

2.1 The program direct.m

The function direct.m is a MATLAB program that can be called by the sequence:

[minval,xatmin,hist] = Direct(’myfcn’,bounds,opts);.

Without the optional arguments, the function can be called

minval = Direct(’myfcn’,bounds);.

The input arguments are:

• ’myfcn’ - A function handle the objective function that one wishes to be minimized.

• bounds - An n× 2 vector which describes the domain of the problem.

bounds(i,1) ≤ xi ≤ bounds(i,2).

• opts - An optional vector argument to customize the options for the program.

– opts(1) - Jones factor. See Definition 3.2. The default value is .0001.

– opts(2) - Maximum number of function evaluations. The default is 20.

– opts(3) - Maximum number of iterations. The default value is 10.

– opts(4) - Maximum number of rectangle divisions. The default value is 100.

– opts(5) - This parameter should be set to 0 if the global minimum is known,
and 1 otherwise. The default value is 1.

– opts(6) - The global minimum, if known. This parameter is ignored if opts(5)
is set to 1.

The output arguments are:

• minval - The minimum value that DIRECT was able to find.
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• xatmin - The location of minval in the domain. An optional output argument.

• hist - An optional argument, hist returns an array of iteration history which is useful
for plots and tables. The three columns returned are iteration, function evaluations,
and minimal value found.

The program termination criteria differs depending on the value of the opts(5). If
the value is set to 1, DIRECT will terminate as soon as it exceeds its budget of iterations,
rectangle divisions, or function evaluations. The function evaluation budget is a tentative
value, since DIRECT may exceed this value by a slight amount if it is in the middle of an
iteration when the budget has been exhausted.

If opts(5) is set to 0, then DIRECT will terminate when the minimum value it has found
is within 0.01% of the value provided in opts(6).

2.2 Example of DIRECT

Here we provide an example of DIRECT being used on the Goldstein-Price (GP) test function
[2]. The function is given by the equation:

f(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]
[30 + (2x1 − 3x2)2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)] (2)

The domain of the GP function is −2 ≤ xi ≤ 2, for i ∈ {1, 2}, and it has a global minimum
value of fmin = 3. Figure 1 shows the function plotted over its domain.
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Figure 1: The Goldstein-Price test function.

A sample call to DIRECT is provided below. The following commands were made in the
MATLAB Command Window.

>> opts = [1e-4 50 500 100 0 3];
>> bounds = [-2 2; -2 2];
>> [minval,xatmin,hist] = Direct(’myfcn’,bounds,opts);
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Since opts(4) is set to 0, DIRECT ignores the bounds on function evaluations, and
iterations. Instead it terminates once it has come within 0.01% of the value given in opts(6).
The iteration history would look like:

>> hist

hist =

1.0000 5.0000 200.5487
2.0000 7.0000 200.5487
3.0000 13.0000 200.5487
4.0000 21.0000 8.9248
5.0000 27.0000 8.9248
6.0000 37.0000 3.6474
7.0000 49.0000 3.6474
8.0000 61.0000 3.0650
9.0000 79.0000 3.0650
10.0000 101.0000 3.0074
11.0000 123.0000 3.0074
12.0000 145.0000 3.0008
13.0000 163.0000 3.0008
14.0000 191.0000 3.0001

A useful plot for evaluating optimization algorithms is shown in Figure 2. The x-axis is the
function count, and the y-axis is the smallest value DIRECT had found.

>> plot(hist(:,2),hist(:,3),’-*’)
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Figure 2: DIRECT iteration for GP function.
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3 The DIRECT Algorithm

In this section, we introduce the reader to some of the theory behind the DIRECT algorithm.
For a more complete description, the reader is recommended to [3]. DIRECT was designed
to overcome some of the problems that Lipschitzian Optimization encounters. We begin by
discussing Lipschitz Optimization methods, and where these problems lie.

3.1 Lipschitz Optimization

Recall the definition of Lipschitz continuity on R1:

Definition 3.1 Lipschitz Let M ⊆ R1 and f : M → R. The function f is called Lipschitz
continuous on M with Lipschitz constant α if

|f(x)− f(x′)| ≤ α|x− x′| ∀x, x′ ∈M. (3)

If the function f is Lipschitz continuous with constant α, then we can use this information
to construct an iterative algorithm to seek the minimum of f . The Shubert algorithm is
one of the more straightforward applications of this idea. [9].

For the moment, let us assume that M = [a, b] ⊂ R1. From Equation 3, it is easy to see
that f must satisfy the two inequalities

f(x) ≥ f(a)− α(x− a) (4)
f(x) ≥ f(b) + α(x− b) (5)

for any x ∈ M . The lines that correspond to these two inequalities form a V-shape below
f , as Figure 3 shows. The point of intersection for the two lines is easy to calculate, and

a b x
1
 

slope = −α 

slope = +α 

f(x) 

Figure 3: An initial Lower bound for f using the Lipschitz Constant.

provides the 1st estimate of the minimum of f . Shubert’s algorithm continues by performing
the same operation on the regions [a, x1] and [x1, b], dividing next the one with the lower
function value. Figure 4 visualizes this process for a couple of iterations.
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Figure 4: The Shubert Algorithm.

There are several problems with this type of algorithm. Since the idea of endpoints
does not translate well into higher dimensions, the algorithm does not have an intuitive
generalization for N > 1. Second, the Lipschitz constant frequently can not be determined
or reasonable estimated. Many simulations with industrial applications may not even be
Lipschitz continous throughout their domains. Even if the Lipschitz constant can be esti-
mated, a poor choice can lead to poor results. If the estimate is too low, the result may not
be a minimum of f , and if the choice is too large, the convergence of the Shubert algorithm
will be slow.

The DIRECT algorithm was motivated by these two shortcomings of Lipschitzian Op-
timization. DIRECT samples at the midpoints of the search spaces, thereby removing any
confusion for higher dimensions. DIRECT also requires no knowledge of the Lipschitz con-
stant or for the objective function to even be Lipschitz continuous. It instead uses all
possible values to determine if a region of the domain should be broken into sub-regions
during the current iteration [3].

3.2 Initialization of DIRECT

DIRECT begins the optimization by transforming the domain of the problem into the unit
hyper-cube. That is,

Ω̄ =
{
x ∈ RN : 0 ≤ xi ≤ 1

}
The algorithm works in this normalized space, referring to the original space only when

making function calls. The center of this space is c1, and we begin by finding f(c1).
Our next step is to divide this hyper-cube. We do this by evaluating the function at the

points c1± δei, i = 1, ..., n, where δ is one-third the side-length of the hyper-cube, and ei is
the ith unit vector (i.e., a vector with a one in the ith position and zeros elsewhere).
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The DIRECT algorithm chooses to leave the best function values in the largest space;
therefore we define

wi = min(f(c1 + δei), f(c1 − δei)), 1 ≤ i ≤ N

and divide the dimension with the smallest wi into thirds, so that c1 ± δei are the centers
of the new hyper-rectangles. This pattern is repeated for all dimensions on the ”center
hyper-rectangle”, choosing the next dimension by determining the next smallest wi. Figure
5 shows this process being performed on the GP function.

3542.4 600.4 

358.2 

67207 

200.6 

Figure 5: Domain Space for GP function after initialization.

The algorithm now begins its loop of identifying potentially optimal hyper-rectangles,
dividing these rectangles appropriately, and sampling at their centers.

3.3 Potentially Optimal Hyper-rectangles

In this section, we describe the method that DIRECT uses to determine which rectangles are
potentially optimal, and should be divided in this iteration. DIRECT searches locally and
globally by dividing all hyper-rectangles that meet the criteria of Definition 3.2.

Definition 3.2 Let ε > 0 be a positive constant and let fmin be the current best function
value. A hyperrectangle j is said to be potentially optimal if there exists some K̂ > 0 such
that

f(cj)− K̂dj ≤ f(ci)− K̂di, ∀i, and
f(cj)− K̂dj ≤ fmin − ε|fmin|

In this definition, cj is the center of hyper-rectangle j, and dj is a measure for this hyper-
rectangle. Jones et. al. [3] chose to use the distance from cj to its vertices as the measure.
Others have modified DIRECT to use different measures for the size of the rectangles [6].
The parameter ε is used so that f(cj) exceeds our current best solution by a non-trivial
amount. Experimental data has shown that, provided 1 × 10−2 ≤ ε ≤ 1 × 10−7, the value
for ε has a negligible effect on the calculations [3]. A good value for ε is 1× 10−4.

A few observations may be made from this definition:

• If hyper-rectangle i is potentially optimal, then f(ci) ≤ f(cj) for all hyper-rectangles
that are of the same size as i (i.e. di = dj).

7



• If di ≥ dk, for all k hyper-rectangles, and f(ci) ≤ f(cj) for all hyper-rectangles such
that di = dj , then hyper-rectangle i is potentially optimal.

• If di ≤ dk for all k hyper-rectangles, and i is potentially optimal, then f(ci) = fmin.

An efficient way of implementing Definition 3.2 can be done by utilizing the following
lemma:

Lemma 3.3 Let ε > 0 be a positive constant and let fmin be the current best function value.
Let I be the set of all indices of all intervals existing. Let

I1 = {i ∈ I : di < dj}
I2 = {i ∈ I : di > dj}
I3 = {i ∈ I : di = dj} .

Interval j ∈ I is potentially optimal if

f(cj) ≤ f(ci), ∀i ∈ I3, (6)

there exists K̂ > 0 such that

max
i∈I1

f(cj)− f(ci)
dj − di

≤ K̂ ≤ min
i∈I2

f(ci)− f(cj)
di − dj

, (7)

and
ε ≤ fmin − f(cj)

|fmin|
+

dj
|fmin|

min
i∈I2

f(ci)− f(cj)
di − dj

, fmin 6= 0, (8)

or
f(cj) ≤ dj min

i∈I2

f(ci)− f(cj)
di − dj

, fmin = 0. (9)

The proof of this lemma can be found in [5]
For the example we are examining, only one rectangle is potentially optimal in the first

iteration. The shaded region of Figure 6 identifies it. In general, there may be more than
one potentially optimal rectangle found during an iteration. Once these potentially optimal
hyper-rectangles have been identified, we complete the iteration by dividing them.

3.4 Dividing Potentially Optimal Hyper-Rectangles

Once a hyper-rectangle has been identified as potentially optimal, DIRECT divides this hyper-
rectangle into smaller hyper-rectangles. The divisions are restricted to only being done along
the longest dimension(s) of the hyper-rectangle. This restriction ensures that the rectangles
will shrink on every dimension. If the hyper-rectangle is a hyper-cube, then the divisions
will be done along all sides, as was the case with the initial step.

The hierarchy for dividing potentially optimal rectangle i is determined by evaluating
the function at the points ci ± δiej , where ej is the jth unit vector, and δi is one-third the
length of the maximum side of hyper-rectangle i. The variable j takes on all dimensions of
the maximal length for that hyper-rectangle. As was the case in the initialization phase,
we define

wj = min {f(ci + δiej), f(ci − δiej)} , j ∈ I.
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Figure 6: Potentially Optimal Rectangle in 1st Iteration.

In the above definition, I is the set of all dimensions of maximal length for hyper-rectangle
i. Our first division is done in the dimension with the smallest wj , say wĵ . DIRECT splits
the hyper-rectangle into 3 hyper-rectangles along dimension ĵ, so that ci, ci + δeĵ , and
ci − δ are the centers of the new, smaller hyper-rectangles. This process is done again in
the dimension of the 2nd smallest wj on the new hyper-rectangle that has center ci, and
repeated for all dimensions in I.

Figure 7 shows several iterations of the DIRECT algorithm. Each row represents a new
iteration. The transition from the first column to the second represents the identifying
process of the potentially optimal hyperrectangles. The shaded rectangles in column 2 are
the potentially optimal hyper-rectangles as identified by DIRECT. The third column shows
the domain after these potentially optimal rectangles have been divided.

3.5 The Algorithm

We now formally state the DIRECT algorithm.

Algorithm DIRECT(’myfcn’,bounds,opts)
1: Normalize the domain to be the unit hyper-cube with center c1

2: Find f(c1), fmin = f(c1), i = 0 , m = 1
3: Evaluate f(c1 ± δei , 1 ≤ i ≤ n, and divide hyper-cube
4: while i ≤ maxits and m ≤ maxevals do
5: Identify the set S of all pot. optimal rectangles/cubes
6: for all j ∈ S
7: Identify the longest side(s) of rectangle j
8: Evaluate myfcn at centers of new rectangles, and divide j into smaller rectangles
9: Update fmin, xatmin, and m

10: end for
11: i = i+ 1
12: end while

Figure 8 shows the domain of the GP function after the Direct algorithm terminated.
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Figure 7: Several Iterations of DIRECT.

The termination occured when DIRECT was within 0.01% of the global minimum value.
DIRECT used 191 function evaluations in this calculation.
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Figure 8: Domain Space for GP function after 191 function evaluations.
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Table 1: Parameters for the Shekel’s family of functions.
i aTi ci
1 4.0 4.0 4.0 4.0 .1
2 1.0 1.0 1.0 1.0 .2
3 8.0 8.0 8.0 8.0 .2
4 6.0 6.0 6.0 6.0 .4
5 3.0 7.0 3.0 7.0 .4
6 2.0 9.0 2.0 9.0 .6
7 5.0 5.0 3.0 3.0 .3
8 8.0 1.0 8.0 1.0 .7
9 6.0 2.0 6.0 2.0 .5
10 7.0 3.6 7.0 3.6 .5
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A Appendix

Here we present the additional test problems that were used in [3] to analyze the effectiveness
of the DIRECT algorithm. These functions are available at the web-page listed in Section 1.
If x∗, the location of the global minimizer, is not explicitly stated, it can be found in the
comments of the MATLAB code.

A.1 The Shekel Family

f(x) = −
m∑
i=1

1
(x− ai)T (x− ai) + ci

, x ∈ RN .

There are three instances of the Shekel function, named S5, S7 and S10, with N = 4, and
m = 5, 7, 10. The values of ai and ci are given in Table 1. The domain of all the Shekel
functions is

Ω =
{
x ∈ R4 : 0 ≤ xi ≤ 10, 1 ≤ i ≤ 4

}
.

All three Shekel functions obtain their global minimum at (4, 4, 4, 4)T , and have optimal
values:

S5∗ = −10.1532
S7∗ = −10.4029

S10∗ = −10.5364
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Table 2: Parameters for the Hartman’s family of functions. First case: N = 3,m = 4.
i ai ci pi
1 3 10 30 1 0.3689 0.1170 0.2673
2 .1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 1 0.1091 0.8732 0.5547
4 .1 10 35 3.2 0.0382 0.5743 0.8828

Table 3: Second case: N = 6,m = 4.
i ai ci
1 10 3 17 3.5 1.7 8 1
2 0.05 10 17 0.1 8 14 1.2
3 3 3.5 1.7 10 17 8 3
4 17 8 0.05 10 0.1 14 3.2

i pi
1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

A.2 Hartman’s Family

f(x) = −
m∑
i=1

ci exp

− N∑
j=1

aij (xj − pij)2

 , x ∈ RN .

There are two instances of the Hartman function, named H3 and H6. The values of the
parameters are given in Table 2. In H3, N = 3, while in the H6 function, N = 6. The
domain for both of these problems is

Ω =
{
x ∈ RN : 0 ≤ xi ≤ 1, 1 ≤ i ≤ N

}
.

The H3 function has a global optimal value H3∗ = −3.8628 which is located at x∗ =
(0.1, 0.5559, 0.8522)T . The H6 has a global optimal at H6 = −3.3224 located at x∗ =
(0.2017, 0.15, 0.4769, 0.2753, 0.3117, 0.6573)T .

A.3 Six-hump camelback function

f(x1, x2) = (4− 2.1x2
1 + x4

1/3)x2
1 + x1x2 + (−4 + 4x2

2)x2
2.

The domain of this function is

Ω =
{
x ∈ R2 : −3 ≤ xi ≤ 2, 1 ≤ i ≤ 2

}
The six-hump camelback function has two global minimizers with values −1.032.

A.4 Branin Function

f(x1, x2) =
(
x− 2− 5.1

4π2
x2

1 +
5
π
x1 − 6

)2

+ 10
(

1− 1
8π

)
cosx1 + 10.
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The domain of the Branin function is:

Ω =
{
x ∈ R2 : −5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15, ∀i

}
.

The global minimum value is 0.3978, and the function has 3 global minimum points.

A.5 The two-dimensional Shubert function

f(x1, x2) =

 5∑
j=1

j cos[(j + 1)x1 + j]

 5∑
j=1

j cos[(j + 1)x2 + j]

 .
The Shubert function has 18 global minimums, and 760 local minima. The domain of the
Shubert function is:

Ω =
{
x ∈ R2 : −10 ≤ xi ≤ 10, ∀i ∈ [1, 2]

}
.

The optimal value of the function is -186.7309.
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