Release-Notes to direct.m
June 22, 2004

This short document provides a description of the updates to the direct.m
software. The software, this document, and several examples can be found at

http://www4.ncsu.edu/"definkel/research/index.html

The examples provided on the web-site are meant to supplement this document,
and clear up any ambiguities about how to use the new features of direct.m.
The code direct.m is now designed to solve problems of the form

(P) min flx)

subject to ¢(z) <0, [<z <w.

The ability of the code to address constraints is a new feature. The software
still uses the DIRECT algorithm to solve problems. When a point is sampled
that violates the constraints, it assigns an artificial function value to that point.
There are two approaches to determining the artificial value, and we describe
them both below.

Change in Calling Structure: There is a subtle change to the calling struc-
ture of direct.m. In older versions, the objective function was passed to
the program as a character array. In the new version, it is passed as part
of a strucutre. The calling sequence is still of the form

>> [fmin,xmin,history] = Direct(Problem,bounds,options);

Here, Problem is a MATLAB structure. For a simple, bound-constrained
problem, you only need to set one field of the Problem structure

>> Problem.f = ’myTestProblem’;

where your objective function is the MATLAB file myTestProblem.m. The
variable bounds is still an n x 2 vector of the lower and upper bounds for
each variable, and options is a MATLAB structure which contains specific
options for the program. The options structure is described in the sample

files, and by typing

>> help Direct

at the command prompt.

Choices for handling additional constraints The new version of direct.m
has two methods built into it for solving problems which have constraints
in addition to those on the bounds. Note, if you have the output turned
on, then an asterisk will be shown next to infeasible function values.

e L1 Penalty Functions.
One approach is to transform the constrained problem into an un-
constrained one. If we are trying to solve Problem (P), then we can
instead try to solve

min f(z) + p? max (c¢(x),0)

where [< z < u, and p is a user-supplied penalty parameter. This
method can be very effective because information about the feasibility
of a point is included in the objective function. It does, however,
require explicit knowledge of the constraint, and an educated guess
at the appropriate value for the penalty parameter. For example, say
we are trying to solve

min flay)=z+y
subject to c¢1(z,y) =22 +y* -6 < 0
cz,y) =2z +y < 0

and —10 < z,y < 10. We assume that the objective function,
and the two constraints are in three separate files named objfcn.m,
cl.m and c2.m, respectively. The following shows a sample call to
direct.m for this problem:

>> bounds = [-10 10;-10 10];

>> Problem.f = ’objfcn’;

>> Problem.constraint(1).func = ’c1’;

>> Problem.constraint (1) .penalty = 1;

>> Problem.constraint(2).func = ’c2’;

>> Problem.constraint(2) .penalty = 1;

>> Problem.numconstraints = 2;

>> options. ... (set your options)

>> [fmin,xmin,hist] = Direct(Problem,bounds,options);

For each constraint, you are allowed to choose a unique penalty pa-
rameter for it. NOTE;, if you do not wish to use penalty function ca-
pabilities, simply leave the Problem. constraint, and Problem.numconstraints
fields empty.
e Neighborhood Assignment Strategy (NAS)
This approach was first described in [2], and was suggested by R.

Carter. We do not go into the details, and instead refer the reader
to [2, 1] for more information on the details of this approach.

If the constraints ¢(x) are not explicitly known, or you do not wish to
use penalty approach for addressing your ¢, direct.m has a feature
which allows the algorithm to assign a value to infeasible points based
on the values of feasible points in it’s neighborhood.

To use this approach, add the additional option:

>> options.impcons = 1;

By setting this option, direct.m will now expect the objective func-
tion to return two values. A sample header for the objective function
is now

[retval, fflag] = testfcn(x);

The variable fflag is set to zero if the point sampled is feasible, and
one otherwise. This lets direct.m know if it needs to calculate and
assign an artificial value for this point.

A sample call to the program is:

>> bounds = [-10 10;-10 10];

>> Problem.f = ’objfcn’;

>> options. ... %set your options

>> options.impcons = 1;

>> [fmin,xmin,hist] = Direct(Problem,bounds,options);

Please see the sample files on the web-site for complete examples.

References

[1] J. M. Gablonsky. DIRECT Version 2.0 User Guide. Technical Report CRSC-
TRO01-08, Center for Research in Scientific Computation, North Carolina
State University, April 2001.

[2] J.M. Gablonsky. Modifications of the DIRECT Algorithm. PhD thesis, North
Carolina State University, 2001.

