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Chapter 1

Introduction

Optimization problems with multiple local optima are encountered in all
areas of engineering and the sciences. Determining global optima finds nu-
merous applications in fields such as structural and shape optimization, me-
chanical equipment and parts design, analysis and design of control systems,
integrated circuit design, prediction of molecular structures and molecular
design, and chemical process synthesis and operations.

Motivated by a large number of potential applications, we have developed
BARON, a computational system for facilitating the solution of nonconvex
optimization problems to global optimality. The Branch And Reduce Opti-
mization Navigator derives its name from its combining interval analysis and
duality in its “reduce” arsenal with enhanced “branch and bound” concepts
as it winds its way through the hills and valleys of complex optimization
problems in search of global solutions.

1.1 Historical Notes

The first version of BARON was merely 1800 lines of code written in the
GAMS modeling language [2] in 1991-93 when duality-based range reduction
techniques were developed [16]. The code was initially applied to standard
engineering design problems [16], design of just-in-time manufacturing sys-
tems [8], circuit layout and compaction [4], and chemical process planning
[10].

The second version was approximately 10,000 lines of code written in
FORTRAN 77 in 1994-95. This code incorporated some additional range
reduction techniques [17] and was applied to polynomial and multiplicative
programs [17], and robust controller design [22]. This code also included
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specialized algorithms for separable concave minimization problems [19],
and fixed-charge and other concave minimization problems arising in mul-
tiperiod planning problems [11]. At that time, heuristic techniques were
added for feasibility-based range reduction as well as branching schemes to
ensure finiteness for certain problem classes [19]. These specialized codes and
FORTRAN version of BARON were first made available through anonymous
FTP on 2 March, 1995.

Version 3.0 of BARON was developed in 1996-97. It offered, among other
new features, more efficient memory management techniques, a specialized
code for factorable nonlinear programming problems, an easy-to-use parser,
and a detailed manual. This version of the code was approximately 23,000
lines of FORTRAN 90 code and 10,000 lines of code written in C.

Version 4.0 of the code was developed in 1997-98. Compressed data
storage and fast tree traversal techniques were incorporated. The factorable
NLP module allows an entirely linear programming based solution approach
and utilizes faster gradient evaluation. The separable convex quadratic and
indefinite quadratic solver were merged into a single module capable of han-
dling mixed-integer positive definite, negative definite, and indefinite objec-
tives. Modules can now interface to the linear programming solver CPLEX
and the nonlinear programming solver SNOPT in addition to OSL and MI-
NOS which previously were the only ones allowable. This code was used to
solve blending and pooling problems [1], fractional programs in 0 — 1 vari-
ables [20, 21], and multiplicative programs [18]. This version of BARON is
currently approximately 26,000 lines of FORTRAN 90 code and 17,000 lines
of code written in C.

1.2 Disclaimer

The program is provided with no warranty. It may be used and distributed
freely as long as it is not sold for profit or incorporated in commercial
products. Please report any comments and suggestions to Nick Sahinidis
(nikos@uiuc.edu).

1.3 Acknowledgments

All my students contributed, each one in his own unique way, to the shap-
ing, development and testing of the ideas that are implemented in this code.
These students were, in chronological order, Russ Vander Wiel, Ming Long
Liu, Hong Ryoo, Joseph Shectman, Ramon Gutierrez, Shabbir Ahmed,
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Vinay Ghildyal, Mohit Tawarmalani, Nilanjan Adhya, Minrui Yu, Kevin
Furman, Anastasia Vaia, Yannis Voudouris, Hussain Arsiwalla, Gautam
Nanda, Mayank Mishra, and Sumit Mehra. Their contributions are far
too many to be detailed. I am particularly indebted to Mohit.

I am also thankful to Michael Overton and Matthew Wilkins of New York
University for proposing and helping with the development of the mixed-
integer semidefinite programming module.



Chapter 2

Algorithmic Overview

We consider the problem of finding global solutions to general nonlinear and
mixed-integer nonlinear programs:

(P): min f(z)
st. g(x) <0
reX

where f: X - R, g: X - R, and X C R".

In solving P, we will rely on the existence of another optimization prob-
lem, R, the “relaxation” or “relaxed problem,” whose optimal solution pro-
vides a lower bound on the solution of P. This relaxation is constructed by
enlarging the feasible region and/or underestimating the objective function
of P:

ey
I

(R) : min
s.t.

(z)

QI
~

K|
n &
A

where f : X - R, g: X — R™, X C R?, and for any z feasible to P,
there exists 7 feasible to R with f(Z) < f(z). In many applications, the sets
of variables or constraints are the same in problems P and R. In general,
however, relaxations can be constructed in higher dimensional spaces than
the original problem or even in an altogether different space. To simplify
the notation, from now on we will drop the bars and use z, f, g to denote
the problem variables, objective and constraint functions of both problems
P and R; the corresponding optimization problem will be clear from the
context.
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As long as P has a finite-valued solution, it is always possible to construct
a relaxation for it. To be precise, it is possible to construct infinitely many
different relaxations. The discussion of techniques for the construction of
relaxations will be deferred to Section 2.5. Typically, we will construct
relaxations that are convex optimization problems so that their solution can
be found through conventional linear or nonlinear programming techniques.
All that we require, however, in the next section is that R be (much) easier
to solve than P.

2.1 Branch and Bound

For most problems of interest, it is possible to construct relaxations in such
a way so that the difference between the optimal objective function values
of P and R is a nonincreasing function of the size of the feasible region of
P. 1t is this property that makes possible the application of a branch and
bound algorithm for solving P.

A graphical interpretation of branch and bound is shown in Figure 2.1
for a univariate nonconvex function with two local minima. Once the re-
laxed problem is solved, a valid lower bound, L, is obtained for the global
minimum (Figure 2.1.a) of P. Using the relaxed solution as a starting point,
if some other more advantageous starting point is not available, local mini-
mization techniques can be used to obtain an upper bound, U, for the global
solution of P (Figure 2.1.b). At this stage, the global minimum is known to
be between L and U. If U — L is sufficiently small, the algorithm terminates.
Otherwise, branch and bound subdivides the feasible region into parts. In
a typical approach, two parts are generated: one to the right and one to
the left of the relaxed problem solution. A new relaxed problem is solved
for each subdivision. This time, the relaxations represent a more accurate
approximation of the original function and the least of their solutions pro-
vides the new lower bound. This bound is closer to the upper bound (Figure
2.1.c). The process of subdividing the domain and computing lower and up-
per bounds on the optimal objective over each subdivision is repeated until
the lower and upper bounds become sufficiently close.

The entire branch and bound process may be represented on a tree whose
nodes and branches correspond to solving relaxations and partitioning the
search space, respectively (Figure 2.1.d). During the subdivision process,
nodes of the search space whose lower bounds exceed the upper bound may
be excluded from further consideration as they clearly do not include any
superior solutions than the one already at hand. These nodes are termed as
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“fathomed.” Node R2 in Figure 2.1.d represents one such node.

A standard implementation branch and bound algorithm is illustrated
in Figure 2.2. At a given iteration, a number of partition elements (open
nodes) is available and maintained in a list. One of the open partitions
is chosen and its corresponding relaxation is solved. If the lower bound
indicates that the solved node is inferior than the current incumbent (best
known solution of P), the node is abandoned and another node is selected.
If the node cannot be discarded immediately, it is more finely subdivided
into a set of new nodes that replace it on the list of open nodes; a process
known as branching. The process of selecting a node, lower bounding and
branching is repeated until the list of open nodes becomes empty.

2.2 Optimality-Based Range Reduction

Consider the perturbation of problem R:

(Ry):  o(y)= min f(z)
st. g(x) <y
reX

If R is convex, so is R, for any y, and ¢(y) is a convex function. Assume
now that the solution of R has a value of L, i.e., ¢(0) = L, and that the
constraint x; — xgj < 0 is active at this solution. The value function ¢(y)
is depicted in bold line in Figure 2.3 where perturbations are considered
only with respect to the right hand side of constraint z; — xgj < 0. Let us
now assume that a valid upper bound, U, for P is available. Clearly, the
intersection of the value function and the line p(y) = U corresponds to a
valid lower bound, 7, for ;. In this case, £} is tighter than ij, which was
used to construct the relaxation in the first place.

Unfortunately, computing H; requires knowledge of the value function
©(y), which is not explicitly given. Nonlinear programming duality comes
to the rescue at this point as it provides an easily computable valid lower
bound, x; < /ij», for x; in this context. It is well known that, if R has an
optimum of finite value, \; € R is a Lagrange multiplier for R, corresponding
to constraint z; — :cgj < 0, if and only if the hyperplane with equation
z = ¢(0) — Ajy is a supporting hyperplane at y = 0 of the graph of the
perturbation function ¢(y). In other words, A; is a Lagrange multiplier if
and only if

Yy e R:p(y) = 0(0) — \jy.
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Figure 2.1: The principles of branch and bound.
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Figure 2.2: Branch and bound algorithm.
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Figure 2.3: Range reduction using marginals.

Utilizing this property, we can find a valid lower bound for z; simply
by computing the intersection of the supporting hyperplane z and the line
¢(y) = U. Assuming A\; > 0, the potentially improved lower bound for z;
is:

Kj = xgj — (U = L)/).

It is not hard to see that if the range constraint xJL

solution of R, one can obtain a valid upper bound for z; by an argument
that is analogous to the one used in relation to Figure 2.3. If a variable,
xj, is at neither of its bounds in the relaxed problem solution, we can probe
its bounds. Referring to Figure 2.4, we can temporarily fix this variable
at its lower (upper) bound, construct the linear underestimator, z*(zY), of
the value function and obtain a valid range, [;,;], for the said variable
from the intersection of the linear underestimators and ¢(y) = U. As in the
case of active constraints, knowledge of the entire value function produces
tighter bounds x7 > k; and 7; < ;. Unlike the case of active constraints,
obtaining tighter bounds using probing requires the solution of additional
relaxed problems when a variable is temporarily fixed at a bound.

The above process of range contraction can be extended to arbitrary
constraints of the type g;(x) < 0, or even to sets of constraints that may
or may not be active at the relaxed problem solution. Some of the valid
inequalities derived in this way and the range reduction mechanisms based

< z; is active at the
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9
A

Figure 2.4: Range reduction using probing.

on them are summarized in Tables 2.1 and 2.2. We use u to denote the
optimal dual multipliers of linear/nonlinear constraints and A to denote
the optimal multipliers (reduced costs) of simple variable bounds (range
constraints). L and Z in these tables denote the objective function values
of the relaxed and probing subproblems, respectively.

These valid inequalities were derived based on the optimal solution of the
relaxed problem and by using an optimality argument. For this reason, they
will be referred to as optimality-based valid inequalities. Although they may
exclude solutions that are feasible to P, they do not exclude any solutions
of P with objective function values better than U. As these inequalities
reduce the range of constraints and variables, they will be referred to as
optimality-based range reduction or range contraction mechanisms.

Table 2.1: Range reduction derived from active constraints.

Active Constraint Requirement Valid Inequality
9i(xz) <0 pi >0 9i(x) =2 =(U = L)/
atz < b; i >0 atx >b; — (U — L)/u;
xj :cgj Aj >0 :ch:cg-]—(U—L)/)\j

<
:cngx] )\]>0 .CCJS.’E7L+(U—L)/)\]
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Table 2.2: Range reduction derived from inactive constraints after probing.

Inactive Constraint Requirement Valid Inequality
Add b; < aﬁx to R.
atz < b; Solve R and obtain Z. afx <b, + (U — Z) /.
wi > 0.
Add :):gj <z; to R.
z; < :):gj Solve R and obtain Z. z; < xgj + (U - 2)/\j
)\j > 0.
Add z; < x]L to R.
:cf <z Solve R and obtain Z. x; > xJL —(U—-2)/\
)\j > 0.

2.3 Feasibility-Based Range Reduction

Feasibility-based tightening, or feasibility-based range reduction, is a process
that generates constraints that cut-off infeasible portions of the solution

space.
n

Consider, for example, the constraints ) a;;z; < b;, i = 1,...,m. Then,
=1
one of the constraints

1 .
Th < o <bi — Y min {aij:c?,aijxf}> , azp >0
i#h

h > ﬁ (bi — > min {aijx?,aij:):]]f}> , o ain <0
Jj#h
is also valid for each pair (i, h) that satisfies a;, # 0.

Of course, to tighten variable bounds based on the above linear con-
straints, one could simply solve the 2n LPs:

(2.1)

n
min +zx, s.t. Zaz’j%’ <b,i=1,....mp,k=1,...,n, (2.2)
j=1

which would provide tightening that is optimal, albeit computationally ex-
pensive. In this regard, the latter cuts 2.1 function as “poor man’s linear
programs,” particularly when they are applied iteratively, looping over the
set of variables several times.
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Figure 2.5 shows how an implementation of 2.1 compares to the solution
of the LPs for different two-dimensional examples. In each instance, the
outer box represents the bound set before tightening begins, with constraints
shown in bold lines and the feasible region shaded. Bounds improved by 2.1
are shown in plain line; improvements by 2.2 are shown in dashed line, when
they differ from those of 2.1.

In Figures 2.5.a and 2.5.b, techniques 2.1 and 2.2 give the same result.
In Figure 2.5.c, the effects of 2.1 agree with the effect of 2.2 for variable x4,
while also improving the bounds on x, albeit not to the maximum possible
extent. In Figure 2.5.d, 2.1 improves bounds on both variables, although
neither bound is improved to the maximum possible extent. Figure 2.5.e
shows the bounds on zs tightened to their full extent by 2.1, but here the
heuristic fails to improve bounds on z;, at all. Figure 2.5.f is particularly
insightful as a pathological case for the heuristic. In the latter case, the
bounds are not improved at all, whereas a great deal of bounds reduction is
possible, illustrated by the four LP solutions (dashed lines).

One can see why Figure 2.5.f is pathological for the “poor man’s linear
programs.” The heuristic can make use of only one bound and one con-
straint at a time, while linear programming considers the entire constraint
set simultaneously. In practice, a case such as Figure 2.5.f would not occur
in the context of branch and bound if all of the 2n LPs are solved initially, in
preprocessing, on a one-time basis. Thereafter, for each subdomain, at least
one bound acts as an nonredundant constraint. Finally, note that sometimes
the heuristic achieves its maximum domain reduction asymptotically, e.g.,
Figure 2.5.b and Figure 2.5.d, where improved bounds on variable x; then
enable bound improvement on variable xo that, in turn, facilitate further
tightening of x1 on the next pass, etc.

2.4 Branch and Reduce

The range reduction techniques of the previous section can be employed
to preprocess a global optimization problem before the application of any
global optimization algorithm. In the context of a branch and bound al-
gorithm, range reduction can be used to improve the performance of the
bounding procedure at every node of the search tree. As the emphasis is on
range reduction, we refer to the resulting algorithm as a branch and reduce
algorithm.

For a given problem, BARON’s global optimization strategy integrates
conventional branch and bound with a wide variety of range reduction tests
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(Figure 2.6). These tests are applied to every subproblem of the search tree
in pre- and post-processing steps to contract the search space and reduce
the relaxation gap. Many of the reduction tests are based on duality and
are applied when the relaxation is convex and solved by an algorithm that
provides the dual, in addition to the primal, solution of the relaxed problem.
Another crucial component of the software is the implementation of heuristic
techniques for the approximate solution of optimization problems that yield
improved bounds for the problem variables (feasibility-based tightening).

Finally, the algorithm incorporates a number of compound branching
schemes that accelerate convergence of standard branching strategies as out-
lined in Section 2.6.

2.5 Lower Bounding

Typically, the relaxed problem is constructed using factorable programming
techniques (McCormick, [12], [13], [14]), so that the relaxations are exact
at the variable bounds. The tightness of the relaxation depends on the
tightness of the variable bounds. Construction of underestimators for certain
nonconvex terms is described below.

1. Bilinearities of the form z;z; can be underestimated by two con-
straints, depending on the sign of the inequality in which they ap-
pear and the sign of the bilinear term. If the inequality is of the type
ziz; + g(z) <0, the following constraints may be used:

wij +g(x) <0

U U U,.U
Wij 2 Tj T + & Tj — Ty T
L L L.L
Wij 2 LT + X7 T — T T

where, in order to maintain differentiability, a new variable, w;;, was
substituted for x;x;.

If the inequality in which bilinear terms appear is of the type z;x; +
g(x) > 0, the following constraints may be employed:

wij +g(x) >0

L U LU
Wij S T A T T — X T
U L UL
Wij S XX + T T — X X
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Figure 2.6: Branch and reduce algorithm.
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2. Similarly, linear fractional terms of the form 7, with z; > ac > 0, can
also be underestimated by either the first or last two of the following
four constraints, depending on the sign of the inequality in which they

appear:
U U

Ti %o T T
Ti X xL xL
J J j j
L L

T, & T T
Ti X 2V xV
J J J J
U U

T _ o T T
xTi X 2V xV
J J J J
L L
oo T T
x: — x;  xb L
J J j 7

3. Univariate terms which are concave over their entire domain can be
underestimated by their secant. Such concave terms include z" with
0<n<1l,z>0and 2" withn =2k + 1,k € {1,2,...},z < 0.
Consider any such function, g(z),z € [I,u]. This concave function can
be underestimated by the term az + (3, where

_ g(u) —g()
u—1
B =g(u) - ou.

4. Terms of the form z" where n is odd and 0 € [l,u], can be treated in
two different ways.

(a) The interval [/, u] can be partitioned at x = 0 resulting into two
subproblems such that x™ is convex in one subproblem and con-
cave in the other. The concave part can then be treated as above.
This process increases the number of open nodes in the branch
and bound tree.

(b) If branching is not desired, a convex envelope, v(z), of the term
can be obtained as shown in Figure 2.7:

Y if x > ¢,
’Y(x)_{ozx—l—ﬁ, if v < €.
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The point £ is where the monomial and its underestimator have
the same slope and is, therefore, determined by solving the equa-
tion, (n — 1)€" — nl¢"~1 + 1" = 0. The coefficients a and 3 are
then given by:

o= nf"fl,

B=1I"—al

2.6 Branching

Here, the domain of the current node is partitioned into a finite number of
subregions through a rectangular subdivision scheme. This involves selecting
a branching variable and a branching point in its domain. Typically, the
branching variable is the one which “contributes” the most to the relaxation
gap, i.e., the one with the largest “violation.” Measures of the violation
include the distance between the underestimator and the nonconvex term at
the solution of the relaxation, the ranges of the variables and the distance
of the nearest variable bound from its solution value. In most cases, the
violations are calculated by combining all these criteria.

Once the branching variable is identified, the branching point is chosen
as follows:

1. Once every predetermined number of branch and bound iterations,
the variable is branched at its midpoint (bisection). This ensures a
significant reduction in the domains of the created subproblems and
hence exhaustiveness, which is a key to finiteness, at least for certain
problem classes [19].

2. If the incumbent solution is present in the current subdomain, the
value of the incumbent is used as the branching point provided that
this process leads to two new subproblems that are distinct from their
father node. This partitioning rule makes the incumbent gapless and
is also key to finiteness.

3. If the above two conditions do not apply, the branching variable is
branched at the solution of the lower bounding problem (w-branching).

At the end of the branching step, two subproblems are created and a
new node is selected for preprocessing. The branch and reduce algorithm is
now illustrated through an example.
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2.7 Illustrative Example 1

The branch and bound algorithm for continuous global optimization is demon-
strated on the following problem:

(P) Zopt = Min  —x1 — T
s.t. T1x2 < 4

0 S I S 6

0 S T2 S 4

See Figure 2.8 for a graphical illustration of the problem. The problem
exhibits two local minima at points A and B with objective function values
of —5 and —6%, respectively. Point B is thus the global minimum we seek
through the branch and bound algorithm.

T2

Figure 2.8: Feasible region for Example 1

2.7.1 A separable relaxation

The feasible region of (P) is nonconvex and the objective function is linear
(convex). We construct a convex relaxation of (P) by outer-approximating
its feasible set with a convex set by using a separable reformulation scheme
which employs the following alegebraic identity:

1
11Ty = 5 {(901 +a9)? —af - fl«“%}

Amongst the three square terms on the right hand side of the above equation,

(z1 +22)? is convex while —2? and —x3 are concave. We relax —z? and —x3
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by linear underestimators using the starting bounds for x; ([0, 6]) and x2
([0,4]), respectively. The following relaxation of (P) results:

(R) Zopt > Min  —x1 — T
s.t. (.’El + CCQ)2 - 6561 - 4562 < 8
0 S I S 6

The relaxation (R) is depicted in 2.9.

Figure 2.9: Separable Relaxation

An alternate, and in fact tighter, relaxation for (P) can be derived using
the convex envelope of xjx9 over the rectangle [0, 6] x [0,4]:

:L’Uy + yUx — nyU
Ty = maX< oly + ylz — gLyt > .
We choose the separable relaxation since it results in a more interesting
branch and bound tree for this example and allows us to demonstrate of
the effect of acceleration techniques for a branch and bound algorithm. The
factorable programming relaxation produces the convex hull for (P) and
therefore terminates with the optimal solution at the root node of the tree
as we shall detail later.

Root Node: The optimal solution for (R) is (z1,x2) ~ (6,0.89) with
an objective function value of —6.89. When a local search is performed
on (P) starting at the relaxation solution (6,0.89), the point B, (6,2/3), is
obtained with an objective function value of —6%. Thus, we have shown
that the objective function value corresponding to the global optimum lies
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in the interval

2
Zopt, € [—6.89, —65} .

Branching Variable: The optimal solution for (R) has 1 at its upper
bound. It is thus not wise to branch on x; for generating the partitions since
x1 does not contribute for any violations in the relaxation. We choose xo
as the branching variable. o = 1 is chosen as the branching point since it
bisects the feasible interval for x3. The resulting variable bounds are shown
in Figure 2.10.

Node Selection: We choose the left child of the root node for further
exploration. For this node, z; € [0,6] and z3 € [0,2]. We update our
relaxation to take advantage of these bounds:

(Rp) Zopt > Min  —x1 — T
st. (z1+ :1:2)2 — 621 — 229 < 8
0 S T S 6
0 S xT9 S 2

Solving the relaxation, we obtain a lower bound of —6.74. We partition this
node further at 29 = 1.

Node Selection: We choose the right child of the root node for further
exploration. For this node, x; € [0,6] and zy € [2,4]. We update our
relaxation to take advantage of these bounds:

(Rr) Zopt > Min  —x1 — T
st (x1+ @)2 —6x1 — 629 <0
0 S I S 6
2<mxy <4

Solving the relaxation, we obtain a lower bound of —6.00. The best known
solution has an objective function value of —6%. Therefore, the current node
does not contain an optimal solution and can safely be fathomed.

Upon further exploration, we observe that the branch and bound algo-
rithm proves optimality of (6,2/3) within an absolute tolerance of 0.01 after
conducting 5 iterations. For a graphical representation of the relaxations,
refer to Figure 2.11.

Next, we present the effect of acceleration techniques on the above ex-
ample.
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Figure 2.11: Separable relaxations generated for Example 1
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2.7.2 Tighter Relaxation

If factorable programming techniques are used to relax x1xs, then (P) relaxes
to:

(BR) min —x; — 9
s.t.  4dx; + 6y <28
0 S I S 6
0 S xT9 S 4

The optimum for (BR) lies at (6,2/3), which also provides an upper bound
for the problem. Therefore, the problem is solved exactly at the root node.
As shown in Figure 2.12, the factorable relaxation provides the convex hull
of the nonconvex problem.

Improved Factorable Relaxation

Ta 2.5

o
ul

Feasible Region

1 2 3 4 5 6

Iy
Figure 2.12: Factorable relaxation for Example 1

2.7.3 Optimality-Based Range-Reduction

In the solution of the root node relaxation, x; goes to its bound with a
lagrange multiplier A; = 0.2. Applying marginals-based range-reduction, it
follows that the lower bound for x1 may be updated to:

b =2V —(U—-L)/)\ =6 — (—6.67 +6.89)/0.2 ~ 4.86

By probing on the lower bound of z9, we get

. 2 2
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Reconstructing the relaxation with the new bounds, we get:

(MR) min  —z1 — 2
st. (w1 +x2)? — 10.8621 — 14/329 +23.82 <=0
4.86 <11 <6
0.66 < x5 < 4

The resulting lower bound is —6.67 and thus global optimality is proven
without branching even though the algorithm was based on a weak relax-
ation.

2.7.4 Branching on Incumbent

Once again, we consider the separable relaxation. This time, instead of
branching the root node at zo = 2, we branch on the incumbent solution
x9 = 2/3. After branching, the relaxation at the left node is:

(IRp) min  —z; — %9
2
st. (w1 +x2)% — 62y — 3% <8
0 S T S 6
0<2y<2/3

The lower bound for IRy, is —6% and the node is fathomed. For the right
child of the root node, the relaxation is:

(IRR) min —T1 — X2
14 16
s.t. (561 + IE2)2 - 6.’E1 - §$2 < ?
0 S X1 S 6
2/3 < a9 <4

Again, the optimal solution is found at (6,2/3) and the node is fathomed.
The globality of the solution is proven in only three nodes whereas the
standard branching scheme required five nodes.

2.8 Illustrative Example 2

Consider the following concave quadratic programming problem [5].

min  42z; — 5027 + 44y — 5023 4 4523 — 5023
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+47x4 — 5023 + 47.525 — 5022
s.t. 20x1 4+ 1229 + 11z + Tx4 + 425 < 40
0<z;<1,i=1,...,5

The global minimum for this problem occurs at x = (1,1,0,1,0), with
an objective function value of —17.

A standard branch-and-bound algorithm using bisection branching was
first used to solve this problem. This algorithm requires 17 iterations for
the upper and lower bounds to converge with a tolerance of 1076. The
branch and reduce algorithm, applied to the same problem, requires only 7
iterations. The branch and reduce tree is outlined in Figure 2.13. At each
node, L; and U; represent the lower and upper bounds for that node. L and
U are the global lower and upper bounds. A superscript is used if the node
was repeated due to significant bounds tightening during postprocessing.

In this process, preprocessing included feasibility-based range reduction
(poor man’s LPs) and range reduction based on an objective function cut.
In the postprocessing step, bounds were tightened using the marginal values
obtained during lower bounding. Probing was employed for variables which
were strictly within their bounds. The relaxed problem was constructed by
underestimating each concave quadratic term in the objective by a linear
term, within the variable bounds.

At the root node, preprocessing is performed by minimizing and max-
imizing each variable subject to the problem constraints. Any feasible so-
lution obtained was used to update the upper bound. Even though this
step did not yield improved variable bounds, an upper bound of —14 was
obtained for the optimal objective.

Iteration 1: The lower bounding problem is solved at = = (0.3,1,1,1,1),
with L; = —18.9. No bounds tightening was possible by postprocessing.
The node is branched at x7; = 0.3. At this time, the global bounds are
L=-189 and U = —14.0.

Iteration 2: Here, the node with (0,0,0,0,0) <z < (0.3,1,1,1,1) is consid-
ered. During preprocessing, the variable domains contract to (0,0.953,0.952,
0.950,0) < z < (0.064,1,1,1,1). The relaxed problem yields Ly = —16.5,
with z = (0,1,1,1,1). This value of x is also feasible to the original prob-
lem with Uy = —16.5. As the upper and lower bounds in this node have
collapsed, this node is fathomed. After this iteration, the global bounds are
L=-189 and U = —16.5.

Iteration 3: Now the node with (0.3,0,0,0,0) < =z < (1,1,1,1,1) is
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Preprocessing

U=-14.0

X 095556

x3 2 036364

x3 < 0.36364

5
Node infeasible
after
preprocessing

Ly =-18.2143
L=-18.318
U=-16.5

x3 <0.037195

x4 <0.99524 x4 = 0.99524

—16.7489
—16.7489
=-18.2143
= —16.7489

16
Us
L

Figure 2.13: Branch and reduce tree for Example 2.

27
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solved. In preprocessing, the bounds are tightened to (0.84,0,0,0,0) <
x < (1,1,1,1,1). The relaxed problem is solved with z = (1,1,0.364,0, 1),
and Ly = —18.318. Now the dual multiplier corresponding to the vari-
able bound constraint ;7 — 1 < 0 is A\; = 40.909. This gives the bound
x1 >zt — (U — L3)/A1, yielding 0.956 < z; < 1. As the bounds on
x1 have been tightened significantly, this node is solved again with the
updated bounds. This again yields the solution = = (1,1,0.364,0,1) and
L} = —18.318. Tightening using the marginals during postprocessing yields
0.961 < x1 < 1. At this stage, the node is branched at x3 = 0.364. After
this iteration, the bounds are L = —18.318 and U = —16.5.
Iteration 4: The node with (0.961,0,0,0,0) < x < (1,1,0.364,1,1) is
solved here. After preprocessing, the variable bounds are (0.961,0.944, 0,0, 0)
< x < (1,1,0.0725,1,1). The relaxed problem yields x = (1,1,0,0.571,1)
and Ly = —18.214. Postprocessing using marginals and probing contracts
the bounds to (0.964,0.964,0,0,0) < z < (1,1,0.0372,1,1). The node is
solved again with the new bounds. The solution obtained is z = (1,1,0,0.571,
1) and L} = —18.214. Postprocessing on the node yields (0.991,0.991,0,0.99,
0) <z < (1,1,0.0112,1,0.0106). The current node is branched at x4 =
0.99524. After this iteration, the bounds are L = —18.318 and U = —16.5.
Iteration 5: The node with (0.961,0,0.364,0,0) < x < (1,1,1,1,1) is
solved here. During preprocessing, this node becomes infeasible, indicating
that all points in it are “inferior” to the current best upper bound. Hence,
this node is fathomed. At this stage, the bounds are L. = —18.214 and
U=-16.5.
Iteration 6: The node with (0.991,0.991,0,0.99,0) < z < (1,1,0.0112,0.995,
0.0106) is solved here. After preprocessing, the bounds become (0.996, 0.996,
0,0.99,0) < z < (1,1,0.00556,0.995,0.00527). The solution of the relaxed
problem is x = (1,1,0,0.995,0) with Lg = —16.7489. This value of z is also
feasible to the original problem with Us = —16.749. Since the lower and
upper bounds are same for this node, it is fathomed. After this iteration,
L =-18214 and U = —16.74.
Iteration 7: The node with (0.991,0.991,0,0.995,0) <z < (1,1,0.0112,1,
0.0106) is solved now. After preprocessing, the variable bounds become
(0.996, 0.996,0,0.995,0) < x < (1,1,0.00562,1,0.00532). The minimum for
the relaxed problem occurs at x = (1,1,0,1,0) with Ly = —17.0. This
point is also feasible to the original quadratic problem with U7 = —17.0. As
the bounds for this node have collapsed, this node is fathomed. After this
iteration, L = —17.0 and U = —17.0.

As there are no more open nodes, the algorithm terminates at this point
with z = (1,1,0,1,0) and f = —17.0.
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As can be seen, range reduction and other acceleration techniques greatly
enhance the effectiveness of the branch and bound algorithm.



Chapter 3

System Features

3.1 Core Component

BARON comes in the form of a callable library. The software has a core
component which can be used to solve any global optimization problem for
which the user supplies problem specific subroutines, primarily for lower
and upper bounding. In this way, the core system is capable of solving very
general problems. The usage of the core component is detailed in Chapter
7.

3.2 Specialized Modules

In addition to the general purpose core, the BARON library also provides
ready to use specialized modules covering several classes of problems. These
modules work in conjunction with the core component and require no coding
on the part of the user as detailed in Chapter 8. In this chapter, we restrict
the discussion to a description of the capabilities of the modules.

Note: In all modules, x; is integer for i = 1,...,r, so that decision and

integer variables may be used.

3.2.1 Separable Concave Quadratic Programming

n

(SCQRP): min f(x)= Z(cle + q;x?)

i=1

30
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st. I, <Ax <wu,
le <z <
ri€Lfori=1,...,r
ri€ERfori=r+1,...,n

where x € Z" xR ", ceR", qeR", [, e R", u, e R", l. € R", u. € R",
and A € Rm*",

3.2.2 Separable Concave Programming

(SCP): min f(z) = Zfz(:cl)
=1

st. . <Azr <u,
le <z <
ri€Lfori=1,...,r
ri€ERfori=r+1,...,n

where x € Z" x R*™", fi(x;) are concave and bounded over I.; < x; < uc;
t=1,....,n), L, e R" u, ¢ R" . € R" u, € R", and A € R™*",

3.2.3 Problems with Power Economies of Scale (Cobb-Douglas
functions)

(PES): min f(z)= Zn:cixgi
i=1

st . <Ar <u,
le <z < ue
vi€Zfori=1,...,r
zieRfori=r+1,....n

where v € Z" x R*™", c € R}, q € (0,1]", I, € R", u, € R™, . € R},
u. € R?, and A € R™*X",

3.2.4 Fixed-Charge Programming

(FCP):  min f(x)=)_ fi(z:)
=1
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s.t. [ <Az <w,
le <z <
i €L fori=1,...,r
ri€Rfori=r+1,...,n
where x € Z" x R*™", fi(x;) equals ¢; + gx; if ©; > 0 and 0 otherwise

(i=1,...,n),ceR}, qgeR", [, e R" u, ¢ R", I. € R}, u. € R}, and
A e Rm*n,

3.2.5 Fractional Programming

cr + «
FP): i =
(FP): min fa)= S0
s.t. [ <Az <w,
le <z <ue

i €Lfori=1,...,r
ri€ERfori=r+1,...,n

where 1 e Z" X R*" ", ce R*", g e R", a e R, g eR I, € R", u. € R,
le € R", u. € R", and A € R™*"™. We require gz + 3 > 0 for any x € X :=
{z |1, <Az < wu,andl. < z < u.}, and X compact. It is well known
that this problem can be transformed to an equivalent linear program if no
integer variables are present.

3.2.6 Univariate Polynomial Programming

(POLY) : min f(x) = ch-:ci
st. . <z <u

where z € R, c e R¥, I, € R, u. € R.

3.2.7 Linear Multiplicative Programming

2 2
(LMP): min f(x)= H fi(z) = H (chz + cio)
i=1 i=1
st. , <Ar<u,
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le <2 < ue
v, €Lfori=1,...,r
r;€ERfori=r+1,...,n

where t € Z" xR, ¢; e R and ¢ip e R (1 =1,...,p), l, € R, u, € R,
le € R" u, € R" and A € R™ ™. We require cix +¢;o > 0 (i =1,...,p) for
ze{r |l <Ax <wu, and I < x < uc}.

3.2.8 General Linear Multiplicative Programming

T pi

(GLMP) : min f(x ZH c -+ :1:

i=1 j=1
st. I, <Az <wu,
le <z <
i €Lfori=1,...,r
ri€ERfori=r+1,...,n

where z € Z" x R"™", ¢;; € R" and c?j eER@GE=1,...,T;5 =1,....p),
l.eR" u, e R, I, e R", u. € R", and A € R™*",

3.2.9 Indefinite Quadratic Programming

(IQP) : min f(z Zquxzxj + Z T

i=1 j=1
st. , <Ar<u,
le <2 < ue
v, € Lfori=1,...,r
r;€ERfori=r+1,...,n

where z € Z" x R"™ ", ¢ € R"™" c € R, |, € R", u, € R™, [, € R",
u. € R*, and A € R™*"™,

3.2.10 Mixed Integer Linear Programming

(MILP): min f(z Zczxz
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s.t. [ <Az <w,
le <z <
i €Lfori=1,...,r
zi€ERfori=r+1,...,n

where x € Z" xR* ", ce R*, [, € R", u, € R", . € R*, u. € R*, and
A e Rmxn,

3.2.11 Mixed Integer Semidefinite Programming
(MISDP): min f(z)=) e
i=1

n
s.t. ZECCZ — Fp is positive semidefinite (= 0)
i=1
le <z <
i €Lfori=1,...,r
ri€Rfori=r+1,...,n

where z € Z" x R* 7, c € R*, I, € R", u, € R, and F; € R™™ (j =
0,...,n) are symmetric matrices.

3.3 Factorable Nonlinear Programming Module

This is the most general of the supplied modules that do not require any
coding from the user. The input to this module is through the parser, which
is described in Chapter 9.

The module solves fairly general nonlinear programs:

(NLP) : min f(z)
st. I <g(x) <u,
le <z < ue
vi€Zfori=1,...,r
rieRfori=r+1,....n

where, z € Z" xR* " f . R* - R ¢g: R* - R" [. € R" u, € R™|
lc € R*, u. € R", and f, g are factorable functions.
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Factorable functions are recursive compositions of sums and products of
functions of single variables. Most functions of several variables used in non-
linear optimization are factorable and can be easily brought into separable
form [14].

Currently, the types of functions allowed in this module include exp(z),
In(z), z¢ for « € R, and % for § € R. In this way, the capabilities of
this module subsume those of all other specialized modules. However, this
module is not designed to fully exploit the special structure of the problems
addressed by the above-described specialized modules.



Chapter 4

Hardware and Software
Requirements

The code is currently available for UNIX systems and can be ported to
other platforms as well. Most specialized modules require the use of a linear
programming solver as shown in Table 4.1. An NLP (QP) solver is optional
and frequently useful in the NLP (IQP) module.

Feature

‘ LP solver ‘ SDP solver ‘

Core BARON

NLP

SCQP

SCP

PES

FCP

FP

POLY

LMP

GLMP

QP

MILP

U] S

MISDP

A

Table 4.1: Solver requirements of BARON modules

Currently, we provide interfaces to OSL [9], CPLEX [3], MINOS [15],
SDPA [6], and SNOPT [7] for solving the required linear, nonlinear, or

36
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semidefinite programming subproblems. The solver options are as follows:

The LP solver can be either CPLEX, OSL, MINOS, or SNOPT in all
modules except for FP which runs only under OSL.

The desired solver is specified in the options file as described in Chap-
ter 6.

General NLP solvers for which we currently provide an interface are
MINOS and SNOPT.

Instead of an LP solver, the IQP module can optionally use the QP
solver of OSL, MINOS or SNOPT.

The only SDP solver currently supported by the MISDP module is
SDPA.

Future plans include the addition of interfaces to other solvers as well.



Chapter 5

Installation

The code can be downloaded from http://archimedes.scs.uiuc.edu.

5.1 Core Component and Specialized Modules

BARON comes in the form of a library called 1ibbaron.a. A sample FOR-
TRAN filemain.f, which calls BARON is also supplied along with a makefile
to link to all required subroutine libraries such as BLAS, CPLEX, LAPACK,
MINOS, OSL, SDPA, or SNOPT. In the simplest possible form, the main.f
file can be compiled using the command:

x1f -c main.f -0
x1f main.o -lbaron -0 -o main

Note that the order in which arguments appear in the x1f command is
important so as to overwrite the default BARON subroutines when the user
provides specialized routines.

If the user has access to a library mylib (e.g., OSL, CPLEX, SNOPT, or
MINOS) that is required (most specialized modules require one LP solver),
the following command sequence will be required:

x1f -c main.f -0
x1f main.o -mylib -lbaron -0 -o main

In both the above cases, the executable is put in the file main.

38
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5.2 Parser

The parser part of BARON comes in the file 1ibbarin.a. This library has to
be linked to the main file barin.c to produce an executable. For example,
if the final executable is to be called barin, then the compilation can be
done as follows:

cc —-c barin.c
x1f barin.o -lbaron -lbarin -o barin

If the user has access to a library mylib (e.g., BLAS, CPLEX, LAPACK,
MINOS, OSL, SDPA, or SNOPT) that is required (most specialized modules
require one LP solver), the following command sequence will be required:

cc -c barin.c
x1f barin.o -mylib -lbaron -lbarin -o barin



Chapter 6

Algorithmic and System
Options

Before describing how to use the core BARON or specialized modules, in
this chapter we detail the algorithmic and other options that are available
to the user. All options come with a default value and it is, therefore, not
necessary for the user to modify any options. The ability to modify them,
however, provides a great deal of flexibility.

6.1 Termination Options

‘ Option ‘ Description ‘ Default Value ‘
epsa (€¢,) | Absolute convergence tolerance 107
epsr (¢,) | Relative convergence tolerance 0
maxtime | Maximum CPU time allowed (sec) 1200
maxiter | Maximum number of branch and -1
bound iterations allowed

The algorithm terminates if any of the following conditions is satisfied:
e the CPU time limit, maxtime, has been reached or exceeded;
e the iterations limit, maxiter, has been reached;
o U—L <egy

o U—L<e¢lLl

40



CHAPTER 6. ALGORITHMIC AND SYSTEM OPTIONS 41

where L and U are the lower and upper bound on the global minimum at a
given iteration. Setting maxiter equal to —1 places no limit on the number
of iterations.

6.2 Branching Options

‘ Option ‘ Description Default Value
brstra Branching strategy 0
modbrpt Branch point modification option 1
numbranch | Number of variables to be branched on -1
numstore | Number of variables whose bounds are 0

to be stored at every node of the tree

0, if omega branching is desired,

brstra = p . .
rstra { 1, if bisection is desired.

0, user-specified branching point is used without
any modifications,

1, allows BARON to modify the user-specified
branching point, if applicable.

modbrpt =

—1, consider all variables for branching,
numbranch = . . .
n,  consider only the first n variables for branching.
0, store numbranch variables,
numstore = { —1, store all variables,
n, store n variables.

Only the first numbranch variables are branched on. By default, all
variables are considered for branching and the bounds of all branching vari-
ables are stored. Except for the default case (numstore = 0, implying
numstore = numbranch), numbranch < numstore is required.
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6.3 Heuristic Local Search Options

‘ Option ‘ Description ‘ Default Value ‘

dolocal | Local search option for upper bound- 1
ing

maxheur | Maximum number of passes allowed 5
for heuristic

habstol | Absolute improvement in the objec- 0.1
tive to repeat heuristic

hreltol | Relative improvement in the objective 0.1
to repeat heuristic

numloc | Number of local searches done in NLP 1
preprocessing

locres | Option to control output from local 0
search

0, no local search is done during upper bounding,
dolocal = 1, local search is used for upper bounding,
—n, local search is done once every n iterations.

At a given node, a local search heuristic is performed by calling subrou-
tine user6 (discussed in Chapter 7) if the value of dolocal so dictates. The
call to user6 is repeated after heuristic starting point initialization up to
maxheur times as long as the upper bound improvement during two consecu-
tive passes satisfies either the relative or absolute improvement requirement.
Here, habstol and hreltol can take any nonnegative value.

In the preprocessing step of the NLP module, numloc local searches are
done. The first one begins with the user-specified starting point as long as
it is feasible. Subsequent local searches are done from randomly generated
starting points. If locres is set to 1, detailed results from each local search
will be printed to the results file and a listing of all the different objective
function values obtained at the end of each local search will appear on the
screen along with a summary of the number of occurrences of each different
objective function value obtained.
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6.4 Range Reduction Options
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Option

‘ Description

‘ Default Value ‘

tdo

Bounds tightening option

1

mdo

Marginals testing option

1bttdo

Poor man’s LP option

obttdo

Optimality-based tightening option

pdo

Number of probing problems allowed

pxdo

Number of probing problems with an
x-objective (pxdo < pdo (full probing)

OO ===

profra

Fraction of probe to bound distance
from relaxed solution when forced
probing is done

0.67

twoways

Determines whether probing on both
bounds is done or not

maxredpass

Maximum number of times range re-
duction is performed at a node before
a new relaxation is constructed

10

maxnodepass

Maximum number of passes (relax-
ation constructions) allowed through
a node

creltol

Relative improvement in the objective
to reconstruct the relaxation of the
current node

0.1

cabstol

Absolute improvement in the objec-
tive to reconstruct the relaxation of
the current node

0.1

0,
tdo = { 1,

pdo =

_1’
n,

to be done,

done.

if no bounds tightening is to be performed,
if bounds tightening is to be performed.

if range reduction based on marginals is not

if range reduction based on marginals is to be

0, if range reduction by probing is not desired,
if probing on all variables is desired,
if probing on n variables is desired.
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tuowavs — 0, if probing is to be done at the farthest bound,
YT 1, it probing is to be done at both bounds.

At any given node, at most maxredpass calls of the range reduction
heuristics will be performed for tightening based on feasibility, marginals,
and probing in accordance to the options tdo, mdo and pdo, respectively.
Only feasibility-based tightening is done during preprocessing. If postpro-
cessing improves the node’s lower bound in a way that satisfies the absolute
or relative tolerances, cabstol or creltol, respectively, the process of lower
bounding followed by postprocessing is repeated up to maxnodepass times.
Here, cabstol and creltol can take any nonnegative value.

6.5 Module Options

The option alg can take integer values corresponding to different algorithms.
The possible values for alg are given below:

‘ alg ‘ Meaning ‘

0 | Core component without any specialized module
Separable Concave Quadratic Programming (SCQP)
Separable Concave Programming (SCP)

Power Economies of Scale (PES)

Fixed Charge Programming (FCP)

Fractional Programming (FP)

Univariate Polynomial Programming (POLY)
Linear Multiplicative Programming (LMP)

General Linear Multiplicative Programming (GLMP)
Indefinite Quadratic Programming (IQP)

Mixed Integer Linear Programming (MILP)

Mixed Integer Semidefinite Programming (MISDP)
Local Search from a number of random points

100 | Factorable Nonlinear Programming (NLP)

O 0| S| U | W N+~

—
[an)

—_
—

Ne)
Ne)
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6.6 Output Options

‘ Option ‘ Description ‘ Default Value ‘

prfreq | Results are printed every prfreq 100
nodes

prlevel | Level of results printed 1

results | If equal to 1, a results file res. 1st will 1
be created

summary | If equal to 1, a summary file sum.1st 1
will be created

times If equal to 1, a file tim.1lst with a 1
breakdown of CPU time spent on sec-
tions of BARON will be provided

45

Every prfreq nodes, the current lower and upper bounds are printed on
the screen and the summary file. All output is suppressed if prlevel is non-
positive. Larger values of prlevel produce more output. The sum.1lst con-
tains a copy of the bounds printed on the screen whereas res.1lst contains
all successively improved solutions found during the course of the algorithm.
The results, summary or time files will not be created if the corresponding
option is set to 0.
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6.7 Other Options

‘ Option ‘ Description ‘ Default Value ‘
lpsol LP solver to be used 3
gpsol QP solver to be used 2
nlpsol NLP solver to be used 1
sdpsol SDP solver to be used 6
lpsolopt Read LP solver options file if 1 0
gpsolopt Read QP solver options file if 1 0
nlpsolopt Read NLP solver options file if 1 0
sdpsolopt Read SDP solver options file if 1 0
nlpdolin Linearization option for NLP module 1
gplin Linearization option for IQP module 0
numint Number of integer variables 0
usave Length of user array at each node 0
baskp Indicates whether basis information is 0
to be saved

baslen Length of basis array 0

basfra Similarity measure between bases for 0.7
basis update not to occur

usave Length of user array at each node 0

postabstol | Absolute tolerance for postponing a 1030
node

postreltol | Relative tolerance for postponing a 1030
node

prelpdo Solve preprocessing LPs at root if 1

presdpdo Solve preprocessing SDPs at root if 1

diagonalize | Chooses among a separable and a non-
separable formulation in IQP

cutoff Eliminate solutions that are no better infinity
than this value

lpsol and gpsol are used to specify the choice of LP and QP solver,
respectively. Possible values are 1 for OSL, 2 for MINOS, 3 for CPLEX,
and 4 for SNOPT. The NLP solver is specified using nlpsol. A value of 2
corresponds to MINOS and a value of 4 selects SNOPT. The SDP solver is
specified using sdpsol. A value of 6 corresponds to SDPA.

A solver options file will be read if the corresponding option lpsolopt,
gpsolopt, nlpsolopt, or sdpsolopt is set to 1. The options file has a name
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of the form minoslp.opt, minosqp.opt, minosnlp.opt, or sdpasdp.opt.

The nlpdolin option applies only to the NLP module. A value of 1 will
result in the use of a linear programming relaxation whereas a value of 0
will result in the use of nonlinear relaxations whenever possible. A linear
relaxation is used by default.

The gplin option is relevant to the IQP module only. If gplin is set
to 1, a linear relaxation is used by these modules; a quadratic relaxation is
used by default.

The first numint variables of the problem will be treated as integers for
branching and tightening purposes.

The array userdata, which is of length usave for each node of the tree, is
available for storing node-specific information. This array can be accessed in
most of the user exits as described in Chapter 7. When a node is partitioned,
its userdata array is inherited by its two descendants.

The basis array basis is of length baslen for each mode of the tree
and is passed to user2 which is also expected to update the array upon
exit. The option baskp may take different nonzero values for different basis
information saving schemes. The default value of 0 corresponds to saving
no basis information. Whenever baskp is nonzero, the modules’ LP solver
working basis will not be modified if at least basfras*n of its basic variables
are also basic in the saved basis for the node that is about to be solved.

Instead of branching after solving a node, it is often advantageous to
postpone the current node if its lower bound is sufficiently above the (previ-
ously) second best lower bound in the branch and bound tree. Let z and zy
denote the current node’s lower bound and the previously second best lower
bound in the branch and bound tree, respectively. Postponement of a node
will take place if any of the following two conditions holds:

® z — zp > postabstol
e z — 29 > postreltol X |z.

The prelpdo option applies to all specialized modules while the presdpdo
option applies to the SDP module only. The diagonalize option applies to
the IQP module only.

6.8 The options File

All options are initialized in BARON at their default values. If the user
wishes to modify any options, this must be communicated to BARON
through the options file. This file contains one line per option that needs
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to be modified with the option name followed by its value. Options that
are not named in this file take their default values. If an options file is not
present in the directory where BARON runs, all options will assume their
default value. A typical options file is shown below:

*This is a typical BARON options file.
*We will rely on the default BARON options with two exceptions.

brstra 1 *Branching strategy.
alg 9 *We will use the specialized module for MIQP.
times 1

*prfreq 100
*maxnodepass 20
*maxredpass 10
*maxheur 10

In this file, a line or part of line following a “*’; I’ or ‘4’ will be treated
as a comment and ignored.
Note: The number of integer variables is passed through the options file
described only when the core component of BARON is used. For the spe-
cialized modules, numint is not specified in the options file. It is either
passed directly through the corresponding subroutine call or included in the
problem file as described in Chapter 8.



Chapter 7

Using The Core Component

The core component of BARON can be programmed to solve very general
types of global optimization problems. A main file must be supplied that
calls subroutine baron. Seven additional subroutines, userl—user7, are
required and will be called by baron. The BARON subroutines, data struc-
tures and heuristics, in conjunction with the user written subroutines, solve
the problem to global optimality (Figure 7.1). A description of the required
subroutines is given in this chapter.

N @ ] N
BARON User Exits

core

Relaxation
Data Structures

Branching
Range Reduction
- Local Search
Heuristics Heuristics
\ J \ /

Figure 7.1: Core-user interaction.

7.1 Subroutine baron

49
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Purpose:
Usage:

Arguments:

Inputs:

Outputs:

Global optimization using BARON.

call baron

integerx4
parameter
real*8
characterx*7

lc, uc

n
barspace

work

optfile
status

xbest
lbest
ubest

totaltime

(1c, uc, n, barspace, work,
optfile, status, lbest, ubest,
xbest, totaltime)

n, status, work

(n=<value>, work=<value>)
lc(n), uc(n), xbest(n),
barspace(work), lbest, ubest,
totaltime

optfile

lower and upper bounds on problem
variables.

number of variables in the problem.
work array for BARON: all memory-
intensive information is stored here.
length of barspace. The number of
doublewords needed is approximately
maxsub X (2n x usave + 2.5) + 8n + 100,
where maxsub is the maximum number
of subproblems to be allowed in memory
at any point during the search. Based
on work, BARON will calculate the al-
lowed maxsub.

name of the options file.

1, if successful termination;

2, if max. no. of nodes allowed ex-
ceeded;

3, if max. no. of iterations allowed ex-
ceeded;

4, if max. CPU time allowed exceeded.
the solution vector corresponding to the
best upper bound at termination.

the best lower bound on the problem
objective function.

the best upper bound on the problem
objective function.

total time (CPU seconds) taken for the
global minimization process.
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Note that the array xbest may contain the best known solution at entry
in which case BARON will use this as an upper bound.

7.2 User Subroutines

The following problem-specific subroutines must be provided by the user.
Even though subroutines userl, user4 and user6 are optional, providing
them is often essential for improved performance.

7.2.1 Subroutine userl (Range Reduction)

Purpose:

Usage:

Arguments:

Inputs:

Outputs:

Remarks:

Variable bounds tightening using optimality-based
and feasibility-based range-reduction tests. This sub-
routine is called before and after lower /upper bound-

ing a node.
subroutine useril

integerx4
realx*8
lc, uc
ubest
userdata

lc, uc

userdata
success

(1c, uc, ubest, userdata,
n, success)

success, n

lc(n), uc(n), ubest,
userdata(usave)

variable bounds for current node.
current best upper bound on the
objective function.

userdata for current node (initial-
ized at —99999 for the root node).
tightened lower and upper
bounds.

userdata for current node.

1, if successful tightening;

0, otherwise.

e In addition to the original problem constraints, the relationships in-
troduced for convexification and objective function cuts can be used
for range reduction.

e Unless numint has been passed to BARON, integrality requirements
must be enforced in this subroutine by rounding up lower bounds and
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rounding down upper bounds of the integer variables.

7.2.2 Subroutine user2 (Lower Bounding)

Purpose:
Usage:

Arguments:
Inputs:

Outputs:

Lower bounding for current node.

subroutine user2 (lc, uc, y, x, basis,
userdata, robj, zl2, zub,
marg, n, inform, ptype,
pvar, pbnd, pobj)

integerx*4 n, inform, ptype, pvar, y

real*8 lc(n), uc(n), y(),
x(n), userdata(usave),
basis(baslen), robj,
marg(n), pbnd, pobj(n)

lc, uc variable bounds for current node.
ptype determines probing type with the
following possible values:
0, if user?2 is not called for prob-
ing;
+1 (—1), if probing at upper
(lower) bound of variable pvar at
point pbnd is desired;
2, if probing by optimizing the
linear objective pobj over the re-
laxation constraint set is desired.
userdata userdata of closest related node,
i.e., current node if solved before,
its parent otherwise = —99999, if
no information is available).

basis basis of closest related node.

z12 second best lower bound on the
objective.

zub current best upper bound on the
objective.

y relaxed problem solution.

X candidate solution of nonconvex

problem (optional).
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Remarks:

marg
robj

inform

userdata
basis

marginal values (reduced costs)
for problem variables.

relaxed problem objective corre-
sponding to x.

—1: normal termination, feasible,
do not branch, instead, postpone
this node;

0: feasible, continue with branch-
ing;

1: infeasible;

other value: abnormal termina-
tion.

userdata for current node.

basis for current node.

e Underestimators must be constructed using the bounds 1c/uc.

e [f pindex is nonzero, the corresponding variable must be fixed at the
correct bound before the node is solved. Note that the relaxation must

be constructed using 1c/uc and not a fixed value.

7.2.3 Subroutine user3 (Feasibility Tester)

Purpose:
Usage:

Arguments:
Input:
Output:

The user must decide on the tolerance to be used for constraint satisfac-
tion. A commonly used value is 107°. However, constraint scaling should

Feasibility checker for candidate solutions.

subroutine user3

integerx*4
real*8

X
isfeas

be taken into account.

(x, n, isfeas)
n, isfeas
x(n)

candidate solution.
1, is candidate solution is feasible;
0, otherwise.
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7.2.4 Subroutine user4 (Random Search)

Purpose:
Usage:

Arguments:
Inputs:
Output:

Generate a starting point within specified bounds.

subroutine user4
integerx*4
realx*8

lc, uc
X

(1c, uc, x, n)
n
lc(n), uc(n), x(n)

variable lower /upper bounds.
generated point.

The user can use a truncated stochastic global optimization algorithm or
some other heuristic to generate the best possible solution to the problem.
Alternatively, a random point can be generated.

7.2.5 Subroutine user5 (Branching)

Purpose:
Usage:

Arguments:
Inputs:

Outputs:

Calculation of violations and branching variable selection.

subroutine userb

integerx4
real*8

lc, uc
X

userdata

viola

brvar
brpoint

(lc, uc, x, userdata,
viola, brpoint, n, brvar)
n, brvar

lc(m), ucm), x(n),
userdata(usave), viola(n),
brpoint

variable bounds for current node.
point at which violations are to
be calculated.

userdata for current node (=
—99999 if not available).
deviation of underestimators
from nonconvex functions as-
signed to individual variables.
branching variable index.
branching position of the branch-
ing variable.

7.2.6 Subroutine user6 (Local Search)
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Purpose:

Usage:

Arguments:
Inputs:

Output:

95

Upper bounding. A solution with a value better than
target is sought, if possible.

subroutine user6
integerx*4
realx*8

1lc, uc

userdata

target
X

(1c, uc, x, target,
userdata, n)

n
lc(n), uc(n), x(n), target,
userdata(usave)

lower and upper variable bounds.
userdata for current node (=
—99999 if not available).

target objective function value.
solution found.

7.2.7 Subroutine user7 (Objective Function Evaluation)

Purpose:
Usage:
Arguments:

Input:
Output:

Computation of nonconvex objective function value at a
specified point (not necessarily feasible).

subroutine user7
integerx4
realx*8

X
obj

(x, obj, n)
n
x(n), obj

specified point.
nonconvex objective function
value at x.
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Using the Specialized
Modules

8.1 Input data and problem parameters

Any of the following methods can be used to input data to the specialized
modules of BARON:

e By reading data files (the problen file).
e Through transferring data in memory using callable subroutines.

e In a high level format that will be read by the BARON parser.

The first two methods require an options file and are described below.
The high level input format is described in Chapter 9.

The format for the problem file for each specialized module is described
below through examples. There are two major options here, depending upon
the value of type which is to appear early enough in the problem file:

e If type = 0, then the constraint matrix is input in dense form, i.e.,
with m rows, n columns and m X n elements, including all zeros.

e type = 1 indicates that the constraint matrix is in the column major
form. A matrix in column major form is represented by three one-
dimensional arrays. The array a contains the nonzero elements of the
matrix stored by columns. The array ia contains the row indices of
the corresponding elements of a and is of the same length as a. The
array ja contains the column starts for each column and is of length

o6
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equal to the number of columns plus one. The last element of ja is
set equal to the number of nonzeros plus one.

Data can also be passed directly in memory by calling the subroutine
pertaining to the corresponding module. To illustrate these subroutine calls,
we will use the following notation.

‘ Argument ‘ Description ‘ data type
n Number of variables in the problem integerx*4
m Number of constraints integerx*4
ne Number of nonzeros in the constraint | integerx4

matrix
numint Number of integer variables integerx*4
lc Array of lower bounds on variables real*8
uc Array of upper bounds on variables real*8
a Vector of constraint matrix nonzeros | real*8

(by columns)
ia Row indices of a integerx4
ia Column starts on a integerx*4
barspace | BARON work array real*8
work Length of the barspace array integerx4
optfname | Name of the file containing options characterx7
barstatus | Exit status of BARON integerx4
zlbest Best lower bound real*8
zub Upper bound on objective real*8
xbest Array of best known solution real*8
totaltime | Execution time of BARON real*8
proname Name of the problem character*8

The value of work should be large enough to store all branch and bound
data structures. If it is not, BARON will issue a related message and ter-
minate. The arrays lc, uc and xbest should be of length greater than or
equal to the actual number of problem variables (n).

Module-specific input variables will be explained in the following sections
by means of examples.

8.2 Module barscqgp: Separable Concave Quadratic
Programming

min  —10.5z; — 0.527 — 7.5z — 0.523 — 3.523 — 0.523
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—2.514 — 0.5903 — 1.5z5 — 0.590% — 10x¢
s.t. 6x1 +3x0+ 3x3+ 224 + 25 < 6.5

10x1 + 1023 4+ z¢ < 20

0<z; <lforit=1,...,6

The above problem can be entered using type = 0, in the following
format.

scqp problem name
2 6 0 m, n, numint
0 type
0 0 0 0 0 0 1lc
-1e31 6 3 3 2 1 0 6.5 lr, a, ur (row 1)
-1e31 10 0 10 0 0 1 20 1r, a, ur (row 2)
1 1 1 1 1 le31 uc
-10.5 -7.5 -3.5 -2.5 -1.5 -10 [
-.5 -.6 -.6 -5 -.5 0

In case the constraint matrix is in the column major form (i.e., type =
1), the problen file looks as shown below:

scqp problem name
2 6 0 m, n, numint
1 type
8 ne
6 10 3 3 10 2 1 1 a(i), i=1,ne
1 2 1 1 2 1 1 2 ia(i), i=1,ne
1 3 4 6 7 8 9 ja(i), i=1,n+1
-1e31 -1e31 1r(i), i=1,m
6.5 20 ur(i), i=1,m
0 0 0 0 0 0 1c
1 1 1 1 1 le31 uc
-10.5 -7.5 -3.5 -2.5 -1.5 -10 c
-6 -5 -6 -5 -5 0

For either value of type, a starting point may be optionally supplied by
providing an array of length n in the last row of the input file.

Problem data can also be passed directly in memory by calling subroutine
barscqgp as shown below. The arrays should first be declared as follows:
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The real*8 arrays:

(=105 —7.5 —3.5 —25 —15 —10)
(=05 —0.5 —05 —05 —05 0)
(6 10 3 3 10 2 1 1)
Ir = (—1e3l1 —1e3l)
ur = (6.5 20)
(OO 0O 0 0 0)
(1

1 1 1 1 1e31)

le =
uc =
Note that a is the array of nonzero matrix elements (length ne), ia is the
array of row indices (length ne) and ja is the array of column starts (length

n+1).
The integer*4 arrays:

ia = (1 2112 1 1 2)
ja = (1 3 4 6 7 8 9)

The subroutine call is:

call barscqp(

$ lc, uc, n, barspace, work, optfname,
$ barstatus, zlbest, zub, xbest, totaltime,
$ proname, ¢, q, lr, ur, a, ia, ja, m, numint, ne)

The screen output for the above input is shown below.

Welcome to BARON v. 4.0
Global Optimization by BRANCH-AND-REDUCE

Separable Concave Quadratic Programming

Starting solution is feasible with a value of .000000D+00

Preprocessing found feasible solution with value -.949306D+02

Preprocessing found feasible solution with value -.155962D+03
We have space for 599988 nodes in the tree

Itn. no. Open Nodes Total Time Lower Bound Upper Bound
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* 1 1 000:00:00 -.100000D+52 -.213000D+03
1 0 000:00:00 -.213000D+03 -.213000D+03

*x* Successful Termination **x*

Total time elapsed : 000:00:00, in seconds : .01
on preprocessing: 000:00:00, in seconds : .00
on navigating : 000:00:00, in seconds : .01
on relaxed : 000:00:00, in seconds : .00
on local : 000:00:00, in seconds : .00
on tightening : 000:00:00, in seconds : .00
on marginals : 000:00:00, in seconds : .00
on probing : 000:00:00, in seconds : .00

Total no. of BaR iteratioms: 1

Best solution found at node: 1

Max. no. of nodes in memory: 1

A1l done with problem scqp

8.3 Module barscp: Separable Concave Program-
ming

The same example as in scqgp is solved here.
For type = 0, the problem file is:

scp problem name
2 6 0 m, n, numint
0 type
0 0 0 0 0 0 1lc
-1e31 6 3 3 2 1 0 6.5 lr, a, ur (row 1)
-1e31 10 0 10 0 0 1 20 lr, a, ur (row 2)
1 1 1 1 1 le31 uc

For type = 1, the problem file is:
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scp problem name
2 6 0 m, n, numint
1 type
8 ne
6 10 3 3 10 2 1 1 a(i), i=1,ne
1 2 1 1 2 1 1 2 ia(i), i=1,ne
1 3 4 6 7 8 9 ja(i), i=1,n+1
-1e31 -1e31 1r(i), i=1,m
6.5 20 ur(i), i=1,m
0 0 0 0 0 0 1lc
1 1 1 1 1 le31 uc

For either value of type, a starting point may be optionally supplied by
providing an array of length n in the last row of the input file.

Problem data can also be passed directly in memory by calling the sub-
routine barscp as shown below. The arrays should be declared as follows:

The real*8 arrays:

6 10 3 3 10 2 1 1)
—1e31 —1e31)

6.5 20)

0000 0 0)

1 1 1 1 1 1e31)

a =

Ir =

(
(
ur = (
le = (
uc = (
The integer*4 arrays:

ia = (1 211211 2)
ja = (1 3 4 6 7 8 9)

The subroutine call is:

call barscp(

$ lc, uc, n, barspace, work, optfname,
$ barstatus, zlbest, zub, xbest, totaltime,
$ proname, lr, ur, a, ia, ja, m, numint, ne)

The user is expected to write a function to provide the univariate concave
functions for the objective function. The layout of the required function is
given below:
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this function provides the objective function term
corresponding to the i-th variable, for this variable
being equal to x.

real*8 function f(i, x)
implicit none
integerx4 i

real*8 x

c calculation of ‘‘f’’ here

return
end

For the above example, the univariate concave function was computed
as fi(w;) = cx; + qx?, where ¢ and ¢ given below are used from the problem
file of scqp:

-10.5 -7.5 -3.5 -2.5 -1.5 -10 c
-.5 -6 -6 -6 -.5 0

The screen output for the above input is shown below.

Welcome to BARON v. 4.0
Global Optimization by BRANCH-AND-REDUCE

Separable Concave Programming

Preprocessing found feasible solution with value .000000D+00
Preprocessing found feasible solution with value -.949306D+02
Preprocessing found feasible solution with value -.155962D+03
We have space for 39988 nodes in the tree
Itn. no. Open Nodes Total Time Lower Bound Upper Bound
* 1 1 000:00:00 -.100000D+52 -.213000D+03
1 0 000:00:00 -.213000D+03 -.213000D+03

**%x Successful Termination **x*
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Total time elapsed : 000:00:00, in seconds : .00
on preprocessing: 000:00:00, in seconds : .00
on navigating : 000:00:00, in seconds : .00
on relaxed : 000:00:00, in seconds : .00
on local : 000:00:00, in seconds : .00
on tightening : 000:00:00, in seconds : .00
on marginals : 000:00:00, in seconds : .00
on probing : 000:00:00, in seconds : .00

Total no. of BaR iteratioms: 1

Best solution found at node: 1

Max. no. of nodes in memory: 1

All done with problem scp

8.4 Module barpes: Power Economies of Scale

min x?'6+x8'6+xg'4+2x4+5x5—:c6—4x7
st. —3r14+x2—3x4=0
—2x9 +x3 — 225 =0
dzy —x6 =0
1+ 2x4 <4
T9+x5 <4
T3+ 26 < 6
z3—x7 =0
0<x <3
0<a9 <4
0<ax3<4
0< a4 <2
0< a5 <2
0<26<6
0<zr <4

The input file for the above example problem is as follows:
For type = 0, the problem file is:
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pes problem name
7 7 0 m, n, numint
0 type

0 0 0 0 o 0 o 1lc
0 -3 1 0 -3 0 0 0 0 lr, a, ur (row 1)
0 0 -2 1 0 -2 0 0O 0 1r, a, ur (row 2)
0 0 0 0 4 0 -1 0 0 lr, a, ur (row 3)
-1e31 1 0 0 2 0O 0 0 4 1r, a, ur (row 4)
-1e31 0 1 0 0 1 0 0 4 1r, a, ur (row 5)
-1e31 0 0 1 0 0 1 0 6 lr, a, ur (row 6)
0 0 0 1 0 o 0 -1 0 1r, a, ur (row 7)

3 4 4 2 2 6 4 uc

1 1 1 2 5 -1 -4 c

0.6 0.6 0.4 1 1 1 1

For type = 1, the problem file is:
pes problem name
7 7 0 m, n, numint
1 type
16 ne
-311 -2 11 11 -3 4 2 -2 1 -1 1 -1 a(i), i=1,ne
1 4 1 2 5 2 6 7 1 3 4 2 5 3 6 7 ia(i), i=1,ne
1 3 6 9 12 14 16 17 ja(i), i=1,n+1

0 0 0 -1e31 -1e31 -1e31 0 1r(i), i=1,m
0 0 0 4 4 6 0 ur(i), i=1i,m
0 0 0 0 0 0 0 lc(i), i=1,n
3 4 4 2 2 6 4 uc(i), i=1i,n
1 1 1 2 5 -1 -4 c(i), i=1,n
0.6 0.6 0.4 1 1 1 1 q(i), i=1,n

For either value of type, a starting point may be optionally supplied by
providing an array of length n in the last row of the input file.

Problem data can also be passed directly in memory by calling the sub-
routine barpes as shown below. The arrays should be declared as follows:

The real*8 arrays:

c= (11125 -1 —4)

g = (06 06 04 1 1 1 1)

= (311 -21111 -342 -21 -1 1 —1)
Ir = (0 0 0 —1e31 —1e31 —1e3l 0)
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ur = (0 0 0 4 4 6 0)
le = (000 0 0 0 0)
ue = (3 4 4 2 2 4)
The integer*4 arrays:
ia = (1 41 25 6 713 42536 7)
ja = (1 3 6 9 12 14 16 17)
The subroutine call is:
call barpes(
$ lc, uc, n, barspace, work, optfname,
$ barstatus, zlbest, zub, xbest, totaltime,
$ proname, ¢, q, lr, ur, a, ia, ja, m, numint, ne)

The above input gives the following screen output.

Welcome to BARON v. 4.0
Global Optimization by BRANCH-AND-REDUCE

Programming with Economies of Scale

Starting solution is feasible with a value of
Preprocessing found feasible solution with value

.000000D+00
-.119591D+02

We have space for 555543

nodes in the tree

Itn. no. Open Nodes Total Time

gD WN R
O R, K N R -

000:
000:
000:
000:
000:
000:

00:
00:
00:
00:
00:
00:

00
00
00
00
00
00

Lower Bound

-.100000D+52
-.134031D+02
-.134031D+02
-.134019D+02
-.134019D+02
-.134019D+02

**%x Successful Termination **x*

Total time elapsed : 000:00:00,
on preprocessing: 000:00:00,

in seconds :
in seconds :

Upper Bound

.134019D+02
.134019D+02
.134019D+02
.134019D+02
.134019D+02
.134019D+02

.03
.02
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on navigating : 000:00:00, in seconds : .00
on relaxed : 000:00:00, in seconds : .01
on local : 000:00:00, in seconds : .00
on tightening : 000:00:00, in seconds : .00
on marginals : 000:00:00, in seconds : .00
on probing : 000:00:00, in seconds : .00

Total no. of BaR iterations:
Best solution found at node:
Max. no. of nodes in memory:

N = O

All done with problem pes

8.5 Module barfcp: Fixed Charge Programming

3
min f(z) = Zfz(%)
=1

s.t.  3x1 + 2x9 4 623 < 150
4z + 3x9 + 43 < 160
z; >0,0=1,...,3

Fi(z) = 200 — 6x1, when z1 >0
70, when 21 =0

Fola) = 150 — 4x9, when x5 > 0
22779 o, when 9 =0
~ [ 100 — 723, when x3 >0

Fs(ws) = {O, when z3 =0

The above example can be input in the following form:

For type = 0, the problem file is:
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fcp
2 3
0

0 0
-le31 3 2
-le31 4 3

200 150
-6 -4

0
6
4

le31 1e31 1e31
100

-7

150
160

problem name

m, n, numint
type

lc(i), i=1,n

1r, a, ur (row 1)
1r, a, ur (row 2)
uc(i), i=1,n
c(i), i=1,n
q(i), i=1,n

For type = 1, the problem file is:

fcp
2 3
1
6
3 4 2 3
1 2 1 2
1 3 5 7
-1e31 -1e31
150 160
0 0
le31 le31
200 150
-6 -4

0
6 4
1 2
0
le31
100
-7

problem name
m, n, numint
type

ne

a(i), i=1,ne
ia(i), i=1,ne
ja(i), i=1,n+1
1r(i), i=1,m
ur(i), i=1,m
lc(i), i=1,n
uc(i), i=1,n
c(i), i=1,n
q(i), i=1,n

67

For either value of type, a starting point may be optionally supplied by

providing an array of length n in the last row of the input file.

Problem data can also be passed directly in memory by calling the sub-
routine barfcp as shown below. The arrays should be declared as follows:
The real*8 arrays:

Ir
ur
le

uc

150 100)
4 -7)



CHAPTER 8. USING THE SPECIALIZED MODULES 68
The integer*4 arrays:
ia = (1 2 1 2 1 2)
ja = (1 3 5 7)
The subroutine call is:
call barfcp(
$ lc, uc, n, barspace, work, optfname,
$ barstatus, zlbest, zub, xbest, totaltime,
$ proname, ¢, q, lr, ur, a, ia, ja, m, numint, ne)

The above input gives the screen output given below:

Welcome to BARON v. 4.0
Global Optimization by BRANCH-AND-REDUCE

Fixed-Charge Programming

Starting solution is feasible with a value of .000000D+00
Preprocessing found feasible solution with value -.400000D+02
Preprocessing found feasible solution with value -.633333D+02
Preprocessing found feasible solution with value -.750000D+02
We have space for 789461 nodes in the tree
Itn. no. Open Nodes Total Time Lower Bound Upper Bound
1 1 000:00:00 -.100000D+52 -.750000D+02
1 1 000:00:00 -.817500D+02 -.750000D+02
2 1 000:00:00 -.817500D+02 -.750000D+02
3 0 000:00:00 -.750000D+02 -.750000D+02
**x* Successful Termination *¥x*
Total time elapsed : 000:00:00, in seconds .03
on preprocessing: 000:00:00, in seconds .02
on navigating : 000:00:00, in seconds .00
on relaxed : 000:00:00, in seconds .01
on local : 000:00:00, in seconds .00
on tightening : 000:00:00, in seconds .00
on marginals : 000:00:00, in seconds .00
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on probing : 000:00:00, in seconds : .00
Total no. of BaR iteratioms: 3
Best solution found at node: 0
Max. no. of nodes in memory: 2

A1l done with problem fcp

69

8.6 Module barfp: Fractional Programming

min

s.t.

1.5x1 + 229 + 2.523 4+ 3.5x4 + 325 + 2.524 + 1.527

r1 + 229 + x3 + 4wy + 2.525 + 226 + 327
221 + x9 + 2x3 + 314 + 2.525 + 1.526 + 327 < 30

2x1 + 3x3 + 1.525 + 226 + x7 < 15
—100 < —3x1 + 629 + 3x3 + x4 + 45 + 26 < 20
3 < x9+ 24 + 615 + 206 + 7 < 18
—10 < 21 — 229 + 2203 — 4x4 — 35 + D + 37 < 20
—3.5 <2521 — 3.529 + 1.bx3 + 2.2524
—3.5x5 + 1.25x¢ + 227 < 20
—10 < —1.521 + 0.5x9 — 1.523 + x4 — 35 + 2.526 — 27 < 5
1.5<x <7
—15<xy <7
1 <23 <7
0<as <7
0<x5<7
0<xg <7
0<a; <7

x; integer for ¢ =1,...,7

The above example can be input in any of the following two forms.

For type = 0, the problem file is:
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fp problem name
7 7 7 m, n, numint
0 type
1.6 -1.5 1 0 0 0 0 lc(i), i=1,n
-1.0E31 2 1 2 3 2.51.5 3 30 lr, a, ur (row 1)
-1.0E31 2 0 3 0 1.5 2 1 15 lr, a, ur (row 2)
-100 -3 6 3 1 4 1 0 20 lr, a, ur (row 3)
3 0 1 0o 2 6 2 1 18 1r, a, ur (row 4)
-10 1 -2 2 -4 -3 5 3 20 lr, a, ur (row 5)
-3.5 2.5 -3.56 1.5 2.25 -3.5 1.25 2 20 1lr, a, ur (row 6)
-10 -1.5 0.5 -1.5 1. -3 2.5 -1. 5 1r, a, ur (row 7)
7 7 7T 7 7 7 7 uc(i), i=1,n
1.5 2 2.5 3.5 3 2.6 1.5 c(i), i=1,n
2 1 4 2.5 2 3 q(i), i=1,n
0 O alpha, beta
For type = 1, the problem file is:
fp problem name
7 7 7 m, n, numint
1 type
44 ne
2.0 2.0 -3.0 1.0 2.5 -1.56 1.0 6.0 1.0 -2.0 -3.5 \
0.5 2.0 3.03.02.01.5-1.53.01.02.0-4.0 \
2.26 1.0 2.51.54.0 6.0 -3.0-3.5 -3.0 1.5 2.0 \
1.0 2.0 5.0 1.25 2.5 3.0 1.0 1.0 3.0 2.0 -1.0 \
12356713456712356713456717 a(i), i=1,ne
1234567123456712456717 ia(i), i=1,ne
17 13 19 25 32 39 45 ja(i), i=1,n+1
-1.0E31 -1.0E31 -100 3 -10 -3.5 -10 1r(i), i=1,m
30 15 20 18 20 20 5 ur(i), i=1i,m
1.6 -1.5 1 0 0 0 0 lc(i), i=1,n
7 7 7T 7 7 7 7 uc(i), i=1,n
1.5 2 2.5 3.5 3 2.5 1.5 c(i), i=1,n
1 2 1 4 2.5 2 3 q(i), i=1,n
0O O alpha, beta

For either value of type, a starting point may be optionally supplied by
providing an array of length n in the last row of the input file.

Problem data can also be passed directly in memory by calling the sub-
routine barfp as shown below. The arrays should be declared in the same
fashion as before. Here alpha = 0.0 and beta = 0.0 are real*8 values.

The subroutine call is:
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call barfp(
lc, uc, n, barspace, work, optfname,
barstatus, zlbest, zub, xbest, totaltime,
proname, c, q, alpha, beta, lr, ur,
a, ia, ja, m, numint, ne)

©“ L L &P

The above input gives the screen output given below:

Welcome to BARON v. 4.0
Global Optimization by BRANCH-AND-REDUCE

Fractional Programming

Itn. no. Open Nodes Total Time Lower Bound Upper Bound
1 1 000:00:00 -.100000D+52 .100000D+52
1 1 000:00:00 .706522D+00 .720000D+00
1 0 000:00:00 .690476D+00 .690476D+00
1 0 000:00:00 .690476D+00 .690476D+00

**%x Successful Termination **x*

Total time elapsed : 000:00:00, in seconds : .12
on preprocessing: 000:00:00, in seconds : .10
on navigating : 000:00:00, in seconds : .00
on relaxed : 000:00:00, in seconds : .02
on local : 000:00:00, in seconds : .00
on tightening : 000:00:00, in seconds : .00
on marginals : 000:00:00, in seconds : .00
on probing : 000:00:00, in seconds : .00

Total no. of BaR iteratioms: 1

Best solution found at node: 1

Max. no. of nodes in memory: 1

All done with problem fp
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8.7 Module barpoly: Univariate Unconstrained Poly-
nomials

1
min 0.1 — 2 — 3.952% + 7.12° + 0.48752* — 2.082° + 6“"6
st. —2<ax<I11

reR

The above example can be input in the following form:

poly problem name

6 noterms (degree of polynomial)
0 numint (1 if integer solution required, O else)
-2. 1lc

11. uc

0.1 objadd

-1. cl

-3.95 c2

7.1 c3

0.4875 c4

-2.08 cb

.16666666666666 c6

Note that type is not required here.

A starting point may be optionally supplied in the last row of the input
file.

Problem data can also be passed directly in memory by calling the sub-
routine barpoly as shown below. The arrays should be declared in the same
fashion as before. Here, objadd = 0.1 is the constant term in the objective.
The degree of the polynomial in the objective is noterms = 6. The real*8
array coeff represents the coefficients of the individual terms in the objec-
tive. In this way, coeff(i) is the coefficient of z* in the objective. If % does
not appear in the objective and 1 < i < noterms, coeff(i) = 0.0. Note that
n =1 in barpoly. If integer solution is required, numint is set to 1.

The subroutine call is:

call barpoly(

$ lc, uc, n, barspace, work, optfname,
$ barstatus, zlbest, zub, xbest, totaltime,
$ proname, coeff, objadd, numint, noterms)

The above input gives the screen output given below:
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Welcome to BARON v. 4.0
Global Optimization by BRANCH-AND-REDUCE

Univariate Unconstrained Polynomial Programming

Starting solution is feasible with a value of .100000D+00
Itn. no. Open Nodes Total Time Lower Bound Upper Bound
1 1 000:00:00 -.100000D+52 .100000D+00
1 1 000:00:00 -.100000D+52 .100000D+00
* 2 2 000:00:00 -.100000D+52 -.107819D+02
* 2 2 000:00:00 -.100000D+52 -.108948D+02
* 2 2 000:00:00 -.100000D+52 -.111060D+02
* 2 2 000:00:00 -.100000D+52 -.112663D+02
* 2 2 000:00:00 -.100000D+52 -.113515D+02
2 2 000:00:00 -.100000D+52 -.113515D+02
* 3 1 000:00:00 -.100000D+52 -.173611D+05
3 1 000:00:00 -.195184D+06 -.173611D+05
4 2 000:00:00 -.195184D+06 -.249521D+05
4 2 000:00:00 -.195184D+06 -.270831D+05
4 2 000:00:00 -.195184D+06 -.279032D+05
4 1 000:00:00 -.195184D+06 -.279032D+05
* 5 1 000:00:00 -.195184D+06 -.296472D+05
5 1 000:00:00 -.452908D+05 -.296472D+05
* 6 2 000:00:00 -.452908D+05 -.297109D+05
6 2 000:00:00 -.452908D+05 -.297109D+05
7 1 000:00:00 -.313699D+05 -.297109D+05
8 1 000:00:00 -.313699D+05 -.297109D+05
* 9 1 000:00:00 -.313699D+05 -.297617D+05
9 1 000:00:00 -.301048D+05 -.297617D+05
10 2 000:00:00 -.301048D+05 -.297619D+05
10 2 000:00:00 -.301048D+05 -.297624D+05
10 2 000:00:00 -.301048D+05 -.297624D+05
11 2 000:00:00 -.297867D+05 -.297624D+05
12 3 000:00:00 -.297867D+05 -.297624D+05
* 13 2 000:00:00 -.297867D+05 -.297632D+05
13 2 000:00:00 -.297682D+05 -.297632D+05
14 3 000:00:00 -.297682D+05 -.297632D+05
15 3 000:00:00 -.297660D+05 -.297632D+05
16 3 000:00:00 -.297660D+05 -.297632D+05
17 3 000:00:00 -.297660D+05 -.297632D+05
* 18 3 000:00:00 -.297660D+05 -.297632D+05
18 3 000:00:00 -.297660D+05 -.297632D+05
19 2 000:00:00 -.297633D+05 -.297632D+05
20 3 000:00:00 -.297633D+05 -.297632D+05
21 3 000:00:00 -.297633D+05 -.297632D+05
22 3 000:00:00 -.297633D+05 -.297632D+05
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23 2 000:00:00 -.297633D+05
24 2 000:00:00 -.297633D+05
25 2 000:00:00 -.297632D+05
26 2 000:00:00 -.297632D+05
* 27 2 000:00:00 -.297632D+05
27 2 000:00:00 -.297632D+05
28 1 000:00:00 -.297632D+05
29 2 000:00:00 -.297632D+05
30 2 000:00:00 -.297632D+05
31 2 000:00:00 -.297632D+05
* 32 2 000:00:00 -.297632D+05
32 2 000:00:00 -.297632D+05
33 3 000:00:00 -.297632D+05
34 4 000:00:00 -.297632D+05
35 3 000:00:00 -.297632D+05
36 3 000:00:00 -.297632D+05
* 37 3 000:00:00 -.297632D+05
37 3 000:00:00 -.297632D+05
38 2 000:00:00 -.297632D+05
* 39 3 000:00:00 -.297632D+05
39 3 000:00:00 -.297632D+05
40 3 000:00:00 -.297632D+05
41 2 000:00:00 -.297632D+05
* 42 2 000:00:00 -.297632D+05
42 1 000:00:00 -.297632D+05
43 1 000:00:00 -.297632D+05
44 0 000:00:00 -.297632D+05
*x* Successful Termination **x*
Total time elapsed : 000:00:00, in seconds :
on preprocessing: 000:00:00, in seconds :
on navigating : 000:00:00, in seconds :
on relaxed : 000:00:00, in seconds :
on local : 000:00:00, in seconds :
on tightening : 000:00:00, in seconds :
on marginals : 000:00:00, in seconds :
on probing : 000:00:00, in seconds :
Total no. of BaR iteratiomns: 44
Best solution found at node: 42
Max. no. of nodes in memory: 4

All done with problem poly
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.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05
.297632D+05

.04
.01
.02
.00
.00
.01
.00
.00
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8.8 Module barlmp: Linear Multiplicative Program-
ming

min (2 + 7z + 922 + 8x3 + 8x4) X (9 + 92 + Hzg + 4d24)
X (6 4 3z1 + 8x9 + 3x3 + 814)
s.t. —88x1 — a9 — 1bx3 — 8214 < —6
—30x1 — 2529 — 83x3 — 6814 < —6
—59x1 — 7223 — 2924 < —3
—17x1 — 3529 — BT7ag — 24wy < —3
x; integer for i =1,...,3
0<x;<100,7=1,...,3

The above example can be input in any of the following two forms.

For type = 0, the problem file is:

1mp problem name
4 4 33 m, n, numint, np
0 type
0 0 0 0 lc(i), i=1,n

-1.e31 -88 -1 -15 -82 -6 1r,a,ur (row 1)
-1.e31 -30 -25 -83 -68 -6 1r,a,ur (row 2)
-1.e31 -59 0 -72 -29 -3 1r,a,ur (row 3)
-1.e31 -17 -35 -57 -24 -3 1r,a,ur (row 4)

100 100 100 100 uc(i), i=1,n
2 7 9 8 8 const, cij (product term 1)
9 0 9 5 4 const, cij (product term 1)
6 3 8 3 8 const, cij (product term 1)

For type = 1, the problem file is:
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1mp problem name
4 4 3 3 m,n,numint,np
1 type
15 ne
-88 -30 -59 -17 -1 -25 -35 -15 -83 -72 -57 -82 -68 -29 -24 a
123412412341234 ia
158 12 16 ja
-1.e31 -1.e31 -1.e31 -1.e31 1r
-6 -6 -3 -3 ur
0 0 0 0 1c
1.e31 1.e31 1.e31 1.e31 uc
2 7 9 8 8 const, cij
9 9 5 4
6 3 8 3 8

For either value of type, a starting point may be optionally supplied by
providing an array of length n in the last row of the input file.

Problem data can also be passed directly in memory by calling the sub-
routine barlmp as shown below. The arrays should be declared in the same
fashion as before. The first numint variables are considered integers. The
number of linear terms in the objective product is denoted by np which is
declared as integer*4. The real*8 array const is of length maxnp and the
real*8 two dimensional array cij is of length (maxnp, maxn). const(i)
contains the constant term of the i¢th product of the objective function.
cij(i,J) contains the coefficient of the jth variable in the ith linear term of
the objective. In this example,

const = (2 9 6)
7 9 8 8
cij = 09 5 4
3 8 3 8
The subroutine call is:

call barlmp(
lc, uc, n, barspace, work, optfname,
barstatus, zlbest, zub, xbest, totaltime,
proname, const, cij, 1lr, ur, a, ia, ja, m, np,
numint, ne, maxnp)

©“ L L B

The above input gives the screen output given below:
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7

Welcome to BARON v. 4.0
Global Optimization by BRANCH-AND-REDUCE

Linear Multiplicative Programming

Preprocessing found feasible solution with value .127781D+11
Preprocessing found feasible solution with value .599288D+10
solution with value .193331D+07

Preprocessing found feasible

Itn. no. Open Nodes

1 1

* 1 1
1

000:00:00
000:00:00
000:00:00

Total Time

Lower Bound

-.100000D+52
.155679D+03
.199500D+03

*x* Successful Termination **x*

Total time elapsed
on preprocessing:
on navigating
on relaxed
on local
on tightening
on marginals
on probing

000:
000:
000:
000:
000:
000:
000:
000:

Total no. of BaR iterations:
Best solution found at node:

Max. no. of nodes in memor

All done with problem lmp

y:

00:
00:
00:
00:
00:
00:
00:
00:

00,
00,
00,
00,
00,
00,
00,
00,

in
in
in
in
in
in
in
in

seconds :
seconds :
seconds :
seconds :
seconds :
seconds :
seconds :
seconds :

Upper Bound

.193331D+07
.199500D+03
.199500D+03

.02
.02
.00
.00
.00
.00
.00
.00

8.9 Module barglmp:

tive Programming

min x; + (5+x1 —x2) X (=1 + 21 + 22)

st. 2x1+ 322 2>9
3x1 — a2 <8
—x1 4 229 < 8

General Linear Multiplica-
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T +2$2 < 12
0 §;$1 5;10
0 §;$2 5;10

The above example can be input in any of the following two forms.

For type = 0, the problem file is:

glmp problem name
4 2 0 2 m, n, numint, nt
0 type
1 2 np(i), i=1,nt
0 0 lc(i), i=1,n
9 2 3 1.e+15 1r,a,ur (row 1)
-1.e+15 3 -1 8 1r,a,ur (row 2)
-1.e+15 -1 2 8 1r,a,ur (row 3)
-1.e+15 1 2 12 1r,a,ur (row 4)
10 10 uc(i), i=1,n
0 1 0 c0, cij (term wise,
5 1 -1 and within term,
-1 1 1 product wise)

For type = 1, the problem file is:

glmp problem name
4 2 0 2 m, n, numint, nt
1 type
1 2 np(i), i=1,nt
8 ne
23-113-122 a(i), i=1,ne
12341234 ia(i), i=1,ne
159 ja(i), i=1,n+1

9 -1.e+15 1r(i), i=1,m

1.e+15 8 ur(i), i=1,m

0 0 lc(i), i=1,n

10 10 uc(i), i=1,n
0 1 0 c0, cij (term wise,
5 1 -1 and within term,
-1 1 1 product wise)

For either value of type, a starting point may be optionally supplied by
providing an array of length n in the last row of the input file.
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Problem data can also be passed directly in memory by calling the sub-
routine barglmp as shown below. The arrays should be declared in the same
fashion as before. The first numint variables are considered integers. The
number of product terms in the objective is given by the integer*4, nt.
The integer*4 array np is of length nt. np(7) is the number of linear terms
in the ith product term of the objective.

The real#*8 array cO is of length maxmp and the real*8 two dimensional
array cij is of length (maxmp, maxn). The integer*4, mp is the total
number of linear terms in the objective. c0(7) contains the constant term of
the ith linear term of the objective function. cij(i,j) contains the coefficient
of the jth variable in the ith linear term of the objective function. In this
example,

c«0 = (0 5 —1)

1 0
cty = 1 -1
1 1

The subroutine call is:

call barglmp(

$ lc, uc, n, barspace, work, optfname,

$ barstatus, zlbest, zub, xbest, totaltime,

$ proname, cO, cij, lr, ur, a, ia, ja, m, np, mp,
$ row, col, numint, ne, nt, maxn, maxmp)

The above input gives the screen output given below:

Welcome to BARON v. 4.0
Global Optimization by BRANCH-AND-REDUCE

General Linear Multiplicative Programming

Preprocessing found feasible solution with value .150000D+01
Preprocessing found feasible solution with value -.250000D+01
Itn. no. Open Nodes Total Time Lower Bound Upper Bound
1 1 000:00:00 -.100000D+52 -.250000D+01
1 1 000:00:00 -.300000D+01 -.250000D+01
2 1 000:00:00 -.300000D+01 -.250000D+01
3 1 000:00:00 -.250171D+01 -.250000D+01
4 1 000:00:00 -.250171D+01 -.250000D+01
5 0 000:00:00 -.250000D+01 -.250000D+01
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*x* Successful Termination **x*

Total time elapsed 000:00:00, in seconds : .03
on preprocessing: 000:00:00, in seconds : .03
on navigating 000:00:00, in seconds : .00
on relaxed 000:00:00, in seconds : .00
on local 000:00:00, in seconds : .00
on tightening 000:00:00, in seconds : .00
on marginals 000:00:00, in seconds : .00
on probing 000:00:00, in seconds : .00

Total no. of BaR iteratioms: 5

Best solution found at node: -1

Max. no. of nodes in memory: 2

A1l done with problem glmp

8.10 Module bariqgp: Indefinite Quadratic Program-

ming

min

s.t.

2x1 — 4xo + 8x3 + 4xg4 + 915

+3xg — x7 — 208 — 49 + dT10
+x126 + T2x7 + T3x8 + T4x9 + T5T10
—8x1 — 6x3 + Ty — Tx5 < 1

—6x1 4+ 229 — 3x3 + 924 — 325 < 3
6x1 — Txg — 8xy + 225 < 5

—x1 + x90 — 8xz — Ty — Dy < 4
4x1 — Txo +4x3 4+ drg + 25 <0
Sy — 4xg + 9xg — Tx19 < 0

Tre + 4x7 + 3xg + Txg + dxr1g < 7
6xg + x7 — 3xg + 819 < 3

—3xg + 2x7 + Txg + 2190 < 6

—2x¢ — 3x7 + 8xg + dbrg — 2719 < 2
0<x; <20, :=1,...,10.
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The above problem can be entered using type = 0, in the following
format.

igp problem name
10 10 0 5 m,n,numint,gterms
0 type

O 0 0 0 000 0 0 O lc(i), i=1,n
-1.d431 -8 0-6 7-7 0 O O O O 1 1r,a,ur (row 1)
-1.d431 -6 2-3 9-3 0 0 0 0 O 3 1r,a,ur (row 2)
-1.d31 6 0-7-8 2 0 0 0 O O 5 1r,a,ur (row 3)
-1.d431 -1 1 -8-7-5 0 0 0 O O 4 1r,a,ur (row 4)
-1.d31 4 -7 4 5 1 0 0 0 O O O 1lr,a,ur (row 5)
-1.d431 0O 0 0000 5-4 9-70 1r,a,ur (row 6)
-1.d431 0O 0 0 007 4 3 7 5 7 1r,a,ur (row 7)
-1.431 0 0 0 00O 6 1-8 8 0 3 1lr,a,ur (row 8)
-1.d431 0O 0 00O 0-3 2 7 0 1 6 1r,a,ur (row 9)
-1.d431 0 0 0 0 0-2-3 8 5-2 2 1lr,a,ur (row 10)

20 20 20 20 20 20 20 20 20 20 uc(i), i=1i,n

2-4 8 4 9 3-1-2-4 5 c(i), i=1,n

111 1 1 q(i), i=1,n
12345 iq(i), i=1,n
678910 ja@i), i=t,n

In case the constraint matrix is in the column major form (i.e., type =
1), the problen file looks as shown below:



CHAPTER 8. USING THE SPECIALIZED MODULES 82

igp problem name
10 10 0 5 m,n,numint,qterms
1 type
45 ne
-8-66-1421-7-6-3-7-8479-8-75-7 \
-32-5176-3-25412-3-43-8789738 \
5-751-2 a(i), i=1,ne
1234524512345 12345123457 \
891067891067 89 1067810679 10 ia(i), i=1,ne
169 14 19 24 28 33 38 42 46 ja(i), i=1,n+1
-1.d31 -1.d31 -1.d31 -1.d31 -1.d31 -1.431 \
-1.d431 -1.d31 -1.d31 -1.d31 1r(i), i=1,m
1354007362 ur(i), i=1,m
0 0 00 0 0 0O 0O 0O lc(i), i=1,n
20 20 20 20 20 20 20 20 20 20 uc(i), i=1,n
2 -4 8 9 3-1-2-4 5 c(i), i=1,n
11 1 1 q(i), i=1,qterms
12345 iq(i), i=1,qterms
67891 ja(i), i=1,qterms

For either value of type, a starting point may be optionally supplied by
providing an array of length n in the last row of the input file.

Problem data can also be passed directly in memory by calling subroutine
bariqgp as shown below. The arrays should first be declared as follows:

The real#8 arrays (all are one dimensional):

C

q

Ir
ur
le

uc

(2 -4 8 4 9 3 -1 -2 —4 5)

(1 1 1
-8 —6
-7 -8
2 -5
2 -3
5 -7

—1.d31

1 1)
6 -1 4 2 1 -7 —6 -3
4 7 9 -8 -7 5 -7 -3
1 7 6 -3 -2 5 4 1
-4 3 -8 7 8 9 7 8
5 1 -2

—1.d31)

0 0)

1 1 1.d31 1.d31 1.d31)

The integer*4 arrays (all are one dimensional):

1q

(1 2

3 4 5)



CHAPTER 8. USING THE SPECIALIZED MODULES 83

jg (6 7 8 9 10)
1 2 34 5 2 4 51 2
(3451234512
3 4 57 8 910 6 7 8
9 10 6 7 8 9 10 6 7 8
7 9 10
ja (1 14 19 24 28 33 38 42 46)

Note that a is the array of nonzero matrix elements (length ne), ia is the
array of row indices (length ne) and ja is the array of column starts (length
n+1). On the other hand, q is the array of quadratic terms in the objective
and is input by indices, i.e., q, iq, jq are of length qterms and the kth
element of q corresponds to the coefficient of x;x; in the objective where i
and j are the kth elements of iq and jq, respectively.

The subroutine call is:

call barigp(
lc, uc, n, barspace, work, optfname,
barstatus, zlbest, zub, xbest, totaltime,
proname, ¢, q, iq, jq, 1lr, ur, a, ia, ja,
m, numint, qterms, ne)

©“ L L &H

The screen output for the above input is shown below. The options
used in the run included diagonalize= 0 (no rotation of the objective) and
brstra= 1 (bisection branching strategy).

Starting solution is feasible with a value of -.453797D+02
We have space for 348820 nodes in the tree
Itn. no. Open Nodes Total Time Lower Bound Upper Bound
* 1 1 000:00:00 -.100000D+52 -.453797D+02
1 1 000:00:00 -.453799D+02 -.453797D+02
2 1 000:00:00 -.453799D+02 -.453797D+02
3 0 000:00:00 -.453797D+02 -.453797D+02

**%x Successful Termination **x*

Total time elapsed : 000:00:00, in seconds : .05
on preprocessing: 000:00:00, in seconds : .03
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on navigating : 000:00:00, in seconds : .01
on relaxed 000:00:00, in seconds : .01
on local 000:00:00, in seconds : .00
on tightening : 000:00:00, in seconds : .00
on marginals : 000:00:00, in seconds : .00
on probing 000:00:00, in seconds : .00

Total no. of BaR iterations: 3
Best solution found at node: 1
Max. no. of nodes in memory: 1

All done with problem iqp

8.11 Module barmilp: Mixed Integer Linear Pro-
gramming

min x1 + 4x9 + 923

st. x1+ax9<5H
—x1 —x3 < —10
—ro+ax3="7
0<x <14
—1<zy <1
r1,x2 integers
x3 >0

The above example can be input in any of the following two forms.

For type = 0, the problem file is:

milp
332

0.0 -1
-1.0d31 1

problem name
m, n, numint

type
0.0 lc(i), i=1,n
1 0 5 lr,a,ur (row 1)
0 1 1.0d31 1lr,a,ur (row 2)
-1 1 7 1lr,a,ur (row 3)
1431 uc(i), i=1,n

9 c(i), i=1,n
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For type = 1, the problem file is:

milp problem name
332 m, n, numint
1 type
6 ne
111-111 a(i), i=1,ne
121323 ia(i), i=1,ne
13567 ja(i), i=1,n
-1d31 10 7 1r(i), i=1,m
5 1d31 7 ur(i), i=1,m
0.0 -1 0.0 lc(i), i=1,n
4 1 1431 uc(i), i=1,n
1 4 9 c(i), i=i,n

85

For either value of type, a starting point may be optionally supplied by

providing an array of length n in the last row of the input file.

Problem data can also be passed directly in memory by calling the sub-
routine barmilp as shown below. The arrays should be declared as follows:

The real*8 arrays:

c = (1 4 9)

a = (1 11 -1 1 1)
Ir = (~1d31 10 7)

ur = (5 1d31 7)

le = (0.0 -1 0.0)

uc = (4 1 1d31)

The integer*4 arrays:

ia = (1 213 2 3)
ja = (1 3 5 7)

As the first two variables are integers, numint = 2.
The subroutine call is:

call barmilp(
$ lc, uc, n, barspace, work, optfname,
barstatus, zlbest, zub, xbest, totaltime,

&

$ proname, ¢, lr, ur, a, ia, ja, m, numint, ne)
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The above input gives the screen output given below:

Welcome to BARON v. 4.0
Global Optimization by BRANCH-AND-REDUCE

Mixed Integer Linear Programming

Preprocessing found feasible solution with value .540000D+02
Itn. no. Open Nodes Total Time Lower Bound Upper Bound
1 1 000:00:00 -.100000D+52 .540000D+02
1 0 000:00:00 .540000D+02 .540000D+02

**%x Successful Termination **x*

Total time elapsed : 000:00:00, in seconds : .01
on preprocessing: 000:00:00, in seconds : .01
on navigating : 000:00:00, in seconds : .00
on relaxed : 000:00:00, in seconds : .00
on local : 000:00:00, in seconds : .00
on tightening : 000:00:00, in seconds : .00
on marginals : 000:00:00, in seconds : .00
on probing : 000:00:00, in seconds : .00

Total no. of BaR iteratioms: 1

Best solution found at node:

Max. no. of nodes in memory: 1

All done with problem milp

8.12 Module barmisdp: Mixed Integer Semidefi-
nite Programming

min 48x1 — 8xy + 20x3

ot (10 4)x1+(0 0>x2+(0 —8)933_(—11 0>>(0
40 0 -8 -8 -2 0 23)=\0
x1,T2,x3 € {—5,...,5}

The above example is a modified version of Example 1 in [6] and can be
input via the following file in sparse form:
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misdp

337

1

2

48 -8 20
0111 -11
0122 23
1111 10
1112 4
2122 -8
3112 -8
3122 -2

-5 -5 -5
5 5 5
0 0 0

problem name

numbers of: variables, integers, nonzeros

number of blocks
block structure
objective function coefficients

matrix
matrix
matrix
matrix
matrix
matrix
matrix

lower bounds for the columns
upper bounds for the columns
starting point for the columns (optional)

FO,
FO,
F1,
F1,
F2,
F3,
F3,

block 1
block 1
block 1
block 1
block 1
block 1
block 1,

element
element
element
element
element
element
element

11
22
11
12
22
12
22
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In the second line, the numbers of variables, integer variables, and nonzero
elements in the upper triangular part of the constraint matrices are speci-
fied. In the third line of the input file, one specifies the number of blocks of
the block diagonal matrices F; (i = 1, ...,n)-all have the same block pattern.
The is only one two-dimensional block for this example. The dimension of
each block is declared in the fourth line of the input file (a negative value
denotes a diagonal block). Following the objective function coefficients, the

nonzero elements of the upper diagonal part of the F-matrices are given.

Problem data can also be passed directly in memory by calling the sub-
routine barmisdp as shown below. The arrays should be declared as follows:
The real*8 arrays:

c
lc
uc

xbest

The integer*4 arrays:

bs
fm
fb

(48 —8 20)
(=5 —5 —5)
(5 5 5)

(0 0 0)

(=11 23 10 4
= (2)

= (0 0 1 1 2
= (11111

-8 -8
3 3)
1 1)

~2)
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fi= (121121 2)
fi=(12122 2 2)

The number of integer variables for this problem is three: numint = 3.
Finally, the number of nonzero elements in the upper triangular part of the
constraint matrices is ne = 7.

The subroutine call is:

call barmisdp(

$ lc, uc, n, barspace, work, optfname,
$ barstatus, zlbest, zub, xbest, totaltime,
$ proname, numint, ne, nb, c, bs, fm, fb, fi, fj, f)

The above input gives the screen output given below:

Welcome to BARON v. 4.0
Global Optimization by BRANCH-AND-REDUCE

Mixed Integer Semidefinite Programming

We have space for 666649 nodes in the tree
Itn. no. Open Nodes Total Time Lower Bound Upper Bound
1 1 000:00:00 -.100000D+52 .100000D+52
1 1 000:00:00 -.378618D+02 .100000D+52
* 10 1 000:00:00 -.289237D+02 -.280000D+02
10 0 000:00:00 -.280000D+02 -.280000D+02
*x*% Successful Termination **x*

Total time elapsed : 000:00:00, in seconds : .14

on preprocessing: 000:00:00, in seconds : .04

on navigating : 000:00:00, in seconds : .00

on relaxed : 000:00:00, in seconds : .10

on local : 000:00:00, in seconds : .00

on tightening : 000:00:00, in seconds : .00

on marginals : 000:00:00, in seconds : .00

on probing : 000:00:00, in seconds : .00

Total no. of BaR iterations: 10
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Best solution found at node: 10
Max. no. of nodes in memory: 6

A1l done with problem misdp

89




Chapter 9

Using the Parser and NLP
Module

In addition to data files and direct subroutine calls, input to BARON can
also be in the form of a “high level” program/file. The contents of this file
are parsed and the problem is reformulated according to the module being
specified in the file. This method of input is described in the current chapter.

9.1 General Usage Description

All input files to the parser should have the extension .bar. The file syntax
is described later. The parser can be used in two different ways: to solve
the problem directly or to generate the input problem and options files for
BARON.

Let the input file be called test.bar. Then, issuing the command

$ barin test
or
$ barin test.bar

at the command line parses the file and calls BARON to solve the problem
directly.
Files can also be parsed using the -f (i.e., file) option:

$ barin -f test

or

90
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$ barin -f test.bar

The above commands generate the problem and options files as test . prob
and test.opt, respectively. These files can be used to solve the problem at
a later stage. For the NLP module, the problem can only be solved directly.

9.2 Input Grammar

The following rules should be adhered to while writing an input file:

e All statements should be terminated by a semicolon (;).
e Reserved words must appear in uppercase letters.

e Variable names can be in lower or upper case. The parser is case
sensitive, i.e., X1 and x1 are two different variables.

e Variable names should be no longer than 15 characters.

e Variable names can be any combination of letters and numbers that
starts with a letter.

e Non-alphanumeric characters such as underscores (_), hyphens (-) etc.
are not permitted in variable names.

e Any text between // and the end of a line is ignored (i.e., it is treated
as a comment).

e Thesigns “+7, “”, “*” and “/” have their usual meaning of arithmetic
operations. “"” is the power/exponentiation operator where, if the
base is a negative constant, the exponent must be an integer.

e The exponential function is denoted as exp().
e The natural logarithm is available as log() as well as 1n().

e Parentheses (“(” and “)”) can also be used in any meaningful combi-
nation with operations in mathematical expressions.

The input file can roughly be divided into four sections: the options, the
memory assignment, the module declaration, and the problem data sections.
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9.2.1 The Options Section

This section is optional. If used, it should be placed on top of the file. Any
of the algorithmic options can be specified here. The module or alg number
does not have to be specified as it is provided in the module section. The
options section has the following form:

OPTIONS {

<optnamel>: <optvaluel>;
<optname2>: <optvalue2>;
<optname3>: <optvalue3>;

}

The <optname> can be any of those described in Chapter 6. <optvalue>
is the corresponding value of that option. Options not specified here take
their default values. Instead of OPTIONS, the word OPTION can also be used.

9.2.2 The Memory Section

This section is optional. If used, it should be placed after the options section
and before the module section. Its purpose is to specify the memory that
BARON is allowed to use. The format of the memory section is:

BAR_SPACE_LENGTH: <value>;

The effect of this command is to allocate value doublewords to BARON’s
work array. If the above command is not included in the input file, a default
value of 1 million doublewords will be used for value.

9.2.3 The Module Section

The module section is a single statement and is required in all input files.
The statement is of the form:

MODULE: <module_name>;

Here, <module name> can be any one of the several described below.
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‘ Module Name ‘ Meaning ‘

FCP Fixed Charge Programming

FP Fractional Programming
GLMP General Linear Multiplicative Programming
IQP Indefinite Quadratic Programming

LMP Linear Multiplicative Programming
MILP Mixed Integer Linear Programming
NLP Factorable Non Linear Programming
PES Power Economies of Scale
POLY Univariate Polynomial Programming
SCQP Separable Concave Quadratic Programming

The module statement should be placed before the problem data in the
input file.

9.2.4 The Problem Data

This section contains the data relating to the particular problem to be solved.
The section can be divided into the following parts. Note that the words
EQUATIONS, ROWS, and CONSTRAINTS are used interchangeably.

e Variable Declaration: All variables used in the problem have to be
declared before they are used in equations. Variables can be declared
as binary, integer, positive or free using the keywords BINARY_VARIABLES,
INTEGER_VARIABLES, POSITIVE_VARIABLES, and VARIABLES respectively.
In these keywords, VARIABLE or VAR may be used instead of VARIABLES
and the underscore may be replaced by a space. Note that general in-
teger and 0-1 variables must come first in the declaration of variables.
A sample declaration is as follows:

BINARY_VARIABLES y1, y2; // 0-1 variables
INTEGER_VARIABLES x3, x7; // discrete variables
POSITIVE_VARIABLES x3, x4, x6; // nonnegative variables
VARIABLE x5; // this is a free variable

Note that all discrete (binary and integer) variables should be declared
before any of the continuous variables. This is an internal requirement
in BARON.
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e Variable Bounds (optional): Lower and upper bounds on previously
declared variables can be declared using the keywords LOWER_BOUNDS
and UPPER_BOUNDS, respectively. The word BOUND can be used instead
of BOUNDS.

A sample bounds declaration follows:

LOWER_BOUNDS{

x7: 10;

x5: -300;

}
UPPER_BOUND{
x4: 100;

}

e Branching Priorities (optional): Branching priorities can be pro-
vided using the keyword BRANCHING_PRIORITIES. The default values
of these parameters are set to 1. Variable violations are multiplied by
the user-provided priorities before a branching variable is selected.

A sample branching priorities section follows:

BRANCHING_PRIORITIES{
x3: 10;
x5: 0; }

The effect of this input is that variable x3 will be given higher priority
than all others, while variable x5 will never be branched upon.

¢ Equation Declaration: An identifier (name) corresponding to each
equation (constraint) has to be declared first. The keywords EQUATION,
EQUATIONS or EQN can be used for this purpose. A sample equation
declaration is shown below.

EQUATIONS el, e2, e3;
Note that the naming rules for the equations are the same as those

for variables, i.e., all equation names should be lowercase and should
begin with a letter.
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e Equation Definition: Each equation (or inequality) declared above
is written in this section of the input file. The equation is preceded
by its corresponding identifier. The bounds on the equations can be
specified using the symbols == (equal to), <= (less than or equal to)
and >= (greater than or equal to). Both <= and >= can be used in the
same equation. A sample equation definition is shown below.

el: 5%x3 + y2 - 3*x573 >= 1;
e2: yl + 2%x4 - 2%x7 == 25.7;
e3: -20 <= x4 + 2xyl*x3 + x6 <= 50;

Note that the variables appear only on one side of the relational op-
erator. That is, the “left hand side” and the “right hand side” should
be pure numbers or expressions involving constants but no variables.

e Objective Function: BARON minimizes the given objective func-
tion. This can be declared using the 0BJ and minimize keywords. A
sample objective definition is shown below:

OBJ: minimize 7*x3 + 2%x6;

The objective function for the FCP module is given in a different
manner. The contribution to the objective from each variable is listed
separately. A sample FCP objective definition is:

0BJ: minimize FCP_FUNC {

xl: 200 - 6%x1; // 200 = fixed charge cost for x1
// -6 = variable cost for x1

x2: 150 - 4x%x2; // 150 = fixed charge cost for x2
// -4 = variable cost for x2

x3: 100 - 7*x3; // 100 = fixed charge cost for x3
// =T = variable cost for x3

e Starting Point: A starting point can be optionally specified using
the keyword STARTING_POINT. A zero value will be used for variables
whose starting point is not specified.
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STARTING_POINT{

x1: 50;
x4: 100;
x7: 300;
}

9.3 Error Messages

Any errors in the input file are reported in the form of “warnings” and
“errors.” BARON tries to continue execution despite the warnings. In case
the warnings and/or errors are severe, the program execution is stopped and
the line where the fatal error occurred is displayed. The input file should
be checked even if the warnings are not severe, as the problem might have
been parsed in a way other than it was intended to be.

9.4 Sample Input File

A sample input file for the NLP module is shown below:

// This is input file exl.bar for the NLP module
OPTIONS{

contol: 1.0e-5; // constraint tolerance
//maxiter: 4;

}

MODULE: NLP;

POSITIVE_VARIABLES x1, x2;

UPPER_BOUNDS{

x1l: 6;
x2: 4;
}

EQUATION eil;
el: x1*xx2 <= 4;
0OBJ: minimize -(x1 + x2);
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